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1. Introduction 

The first ant colony optimization (ACO) called ant system was inspired through studying of 
the behavior of ants in 1991 by Macro Dorigo and co-workers [1]. An ant colony is highly 
organized, in which one interacting with others through pheromone in perfect harmony. 
Optimization problems can be solved through simulating ant’s behaviors. Since the first ant 
system algorithm was proposed, there is a lot of development in ACO. In ant colony system 
algorithm, local pheromone is used for ants to search optimum result. However, high 
magnitude of computing is its deficiency and sometimes it is inefficient. Thomas Stützle et 
al. introduced MAX-MIN Ant System (MMAS) [2] in 2000. It is one of the best algorithms of 
ACO. It limits total pheromone in every trip or sub-union to avoid local convergence. 
However, the limitation of pheromone slows down convergence rate in MMAS. 
In optimization algorithm, it is well known that when local optimum solution is searched 
out or ants arrive at stagnating state, algorithm may be no longer searching the global best 
optimum value. According to our limited knowledge, only Jun Ouyang et al [3] proposed an 
improved ant colony system algorithm for multi-colony ant systems. In their algorithms, 
when ants arrived at local optimum solution, pheromone will be decreased in order to make 
algorithm escaping from the local optimum solution. 
When ants arrived at local optimum solution, or at stagnating state, it would not converge at 
the global best optimum solution. In this paper, a modified algorithm, multi-colony ant 
system based on a pheromone arithmetic crossover and a repulsive operator, is proposed to 
avoid such stagnating state. In this algorithm, firstly several colonies of ant system are 
created, and then they perform iterating and updating their pheromone arrays respectively 
until one ant colony system reaches its local optimum solution. Every ant colony system 
owns its pheromone array and parameters and records its local optimum solution. 
Furthermore, once a ant colony system arrives at its local optimum solution, it updates its 
local optimum solution and sends this solution to global best-found center. Thirdly, when 
an old ant colony system is chosen according to elimination rules, it will be destroyed and 
reinitialized through application of the pheromone arithmetic crossover and the repulsive 
operator based on several global best-so-far optimum solutions. The whole algorithm 
implements iterations until global best optimum solution is searched out. The following 
sections will introduce some concepts and rules of this multi-colony ant system. 
This paper is organized as follows. Section II briefly explains the basic ACO algorithm and 
its main variant MMAS we use as a basis for multi-colony ant algorithm. In Section III we 
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describe detailed how to use both the pheromone crossover and the repulsive operator to 
reinitialize a stagnated colony in our multi-colony ant algorithm. A parallel asynchronous 
algorithm process is also presented. Experimental results from the multi-colony ant 
algorithm are presented in Section IV along with a comparative performance analysis 
involving other existing approaches. Finally, Section V provides some concluding remarks. 

2. Basic ant colony optimization algorithm 

The principle of ant colony system algorithm is that a special chemical trail (pheromone) is 
left on the ground during their trips, which guides the other ants towards the target 
solution. More pheromone is left when more ants go through the trip, which improved the 
probability of other’s ants choosing this trip. Furthermore, this chemical trail (pheromone) 
has a decreasing action over time because of evaporation of trail. In addition, the quantity 
left by ants depends on the number of ants using this trail. 
Fig.1 presents a decision-making process of ants choosing their trips. When ants meet at 
their decision-making point A, some choose one side and some choose other side randomly. 
Suppose these ants are crawling at the same speed, those choosing short side arrive at 
decision-making point B more quickly than those choosing long side. The ants choosing by 
chance the short side are the first to reach the nest. The short side receives, therefore, 
pheromone earlier than the long one and this fact increases the probability that further ants 
select it rather than the long one. As a result, the quantity of pheromone is left with higher 
speed in short side than long side because more ants choose short side than long side. The 
number of broken line in Fig. 1 is direct ratio to the number of ant approximately. Artificial 
ant colony system is made from the principle of ant colony system for solving kinds of 
optimization problems. Pheromone is the key of the decision-making of ants. 
 

 

Fig. 1. A decision-making process of ants choosing their trips according to pheromone. 

ACO was initially applied to the traveling salesman problem (TSP) [4][5]. The TSP is a 
classical optimization problem, and is one of a class of NP-Problem. This article also uses the 
TSP as an example application. Given a set of N towns, the TSP can be stated as the problem 
of finding a minimal length closed tour that visits each town once. Each city is a decision-
making point of artificial ants. 
Define (i,j) is an edge of city i and city j. Each edge (i,j) is assigned a value (length) dij, which 
is the distance between cities i and j. The general MMAX [2] for the TSP is described as 
following: 

2.1 Pheromone updating rule 
Ants leave their pheromone on edges at their every traveling when ants complete its one 
iteration. The sum pheromone of one edge is defined as following 

Ant

BA

pheromone 

decision-
making point 
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 ( + 1) = Δ + (1 - ) ( )ij ij ijt tτ τ ρ τ  (1) 

ρ∈(0,1), 1-ρ is persistence rate of previous pheromone. ρ is defined as evaporation rate of 
pheromone. 
In MMAS, only the best ant updates the pheromone trails and that the value of the 
pheromone is bound. Therefore, the pheromone updating rule is given by 

 ( +1) = [Δ + (1- )  max

min
( )]best

ij ij ijt t τ
ττ τ ρ τ   (2) 

where τmax and τmin are respectively the upper and lower bounds imposed on the 

pheromone; and Δ best
ijτ is:  

 
if( , ) belongs to the best tour, 

0           otherwise                                

 
Δ

1 / bestbest
ij

i jL
τ

⎧
= ⎨
⎩

     (3) 

where Lbest is solution cost of either the iteration-best or the best-so-far or a combination of 
both [2]. 

2.2 Ants moving rule 

Ants move from one city to another city according to probability. Firstly, cities accessed 
must be placed in taboo table. Define a set of cities never accessed of the kth ant as allowedk. 
Secondly, define a visible degree ηij, ηij =1/dij. The probability of the kth ant choosing city is 
given by 
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where ǂ and ǃ are important parameters which determine the relative influence of the trail 
pheromone and the heuristic information. 
In this article, the pseudo-random proportional rule given in equation (5) is adopted as in 
ACO [4] and modified MMAS [6]. 

 
( )[ ]

                                    else        

0arg max { }   if 
k

ik ik
k allowed

t p p
j

J

βτ η
∈

⎧ ≤⎪= ⎨
⎪⎩

 (5) 

where p is a random number uniformly distributed in [0,1]. Thus, the best possible move, as 
indicated by the pheromone trail and the heuristic information, is made with probability 
0≤p0<1 (exploitation); with probability 1-p0 a move is made based on the random variable J 
with distribution given by equation (4) (biased exploration). 

2.3 Pheromone trail Initialization 

At the beginning of a run, we set τmax= ( )1 (1 ) nnCρ− , τmin=τmax/2N, and the initial 

pheromone values τij(0)=τmax, where Cnn is the length of a tour generated by the nearest-

neighbor heuristic and N is the total number of cities.  
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2.4 Stopping rule 

There are many conditions for ants to stop their traveling, such as number limitation of 
iteration, CPU time limitation or the best solution. 
From above describing, we can get detail procedure of MMAS. MMAS is one of the most 
studied ACO algorithms and the most successful variants [5]. 

3. Multi-colony ant system based on a pheromone arithmetic crossover and a 
repulsive operator  

3.1 Concept 

1. Multi-Colony Ant System Initiating. Every ant colony system owns its pheromone array 
and parameters ǂ, ǃ and ρ. In particular, every colony may possess its own arithmetic policy. 
For example, all colonies use different ACO algorithms respectively. Some use basic Ant 
System. Some use elitist Ant System, ACS, MMAS, or rank-based version of Ant System etc. 
The others maybe use hyper-cube framework for ACO. 
Every ant colony system begins to iterate and update its pheromone array respectively until 
it reaches its local optimum solution. It uses its own search policy. Then it sends this local 
optimum solution to the global best-found center. The global best-found center keeps the 
global top M solutions, which are searched thus far by all colonies of ant system. The global 
best-found center also holds parameters ǂ, ǃ and ρ for every solution. These parameters are 
equal to the colony parameters while the colony finds this solution. Usually M is larger than 
the number of colonies. 
2. Old Ant Colony being Eliminated Rule. We destroy one of the old colonies according to 
following rules:  

a. A colony who owns the smallest local optimum solution among all colonies.  
b. A colony who owns the largest generations since its last local optimum solution 

was found.  
c. A colony that has lost diversity. In general, there are supposed to be at least two 

types of diversity [7] in ACO: (i) diversity in finding tours, and (ii) diversity in 
depositing pheromone. 

3. New Ant Colony Creating by Pheromone Crossover. Firstly, we select m (m<<M) 
solutions from M global best-so-far optimums in the global best-found center randomly. 
Secondly, we deliberately initialize the pheromone trails of this new colony to ρ(t) which 
starts with ρ(t)=τmax(t)=1/((1-ρ)·Lbest(t)), achieving in this way a higher exploration of 
solutions at the start of algorithm and a higher exploitation near the top m global optimum 
solutions at the end of algorithm. Where Lbest(t) is the best-so-far solution cost  of all colonies 
in current t time. Then these trails are modified using arithmetic crossover by   

 
=1

= ( + rand ( )Δ)
m

k
ij k k ij

k

t cτ ρ τ∑   (6)  

where k

ijΔτ 1 /
k
bestL=  in which  edge (i,j) is on the kth global-best solution and k

bestL  denotes 

the kth global-best solution cost in the m chosen solutions; randk() is a random function 

uniformly distributed in the range [0,1]; ck is the weight of k

ijΔτ  and 
=1

2
m

kk
c =∑  because the 

mathematical expectation of randk() equals 1 2 . Last, the parameters ǂ, ǃ and ρ are set using 

arithmetic crossover by:  
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where ǂk, ǃk and ρk belong to the kth global-best solution in the m chosen solutions. 
After these operations, the colony starts its iterating and updating its local pheromone anew. 

4. Repulsive Operator. As Shepherd and Sheepdog algorithm [8], we introduce the 

attractive and repulsive ACO in trying to decrease the probability of premature convergence 

further. We define the attraction phase merely as the basic ACO algorithm. In this phase the 

good solutions function like “attractors”. In the colony of this phase, the ants will then be 

attracted to the solution space near good solutions. However, the new colony which was just 

now reinitialized using pheromone arithmetic crossover  maybe are redrawn to the same 

best-so-far local optimum solution again which was found only a moment ago. As a result, 

that wastes an amount of computational resource. Therefore, we define the second phase 

repulsion, by subtracting the term Δ best
ijτ  in association with the best-so-far solution in the 

pheromone-update formula when we reinitialize a new colony. Then the equation (6) will 

become as: 

 
=1

= ( + rand ( )Δ  - Δ)
m

k best
ij k k ij ij

k

bestt c cτ ρ τ τ∑   (8) 

where best

ijΔτ 1 / bestL=  in which  edge (i,j) is on the best-so-far solution, Lbest denotes the best-

so-far solution cost, cbest is the weight of best

ijΔτ , and the other coefficients are the same as in 

the equation (6). In that phase the best-so-far solution functions like “a repeller” so that the 

ants can move away from the vicinity of the best-so-far solution. 
We identify our implementation of this model based on a pheromone crossover and a 
repulsive operator with the acronym MCA. 

3.2 Parallel asynchronous algorithm design for multi-colony ant algorithms 

As in [9], we propose a parallel asynchronous algorithm process for our multi-colony ant 
algorithm in order to make efficient use of all available processors in a heterogeneous cluster 
or heterogeneous computing environments. Our process design follows a master/slave 
paradigm. The master processor holds a global best-found center, sends colony initialization 
parameters to the slave processors and performs all decision-making processes such as the 
global best-found center updates and sorts, convergence checks. It does not perform any ant 
colony algorithm iteration. However, the slave processors repeatedly execute ant colony 
algorithm iteration using the parameters assigned to them. The tasks performed by the 
master and the slave processors are as follows:  

• Master processor 
1.  Initializes all colonies’ parameters and sends them to the slave processors; 
2.  Owns a global best-found center which keeps the global top M solutions and their 

parameters; 
3. Receives local optimum solution and parameters from the slave processors and updates 

its global best-found center; 
4. Evaluate the effectiveness of ant colonies in the slave processors; 
5. Initializes a set of new colony’s parameters by using both a pheromone crossover and a 

repulsive operator based on multi-optimum for the worst ant colony; 
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6. Chooses one of the worst ant colonies to kill and sends the new colony parameters and 
kill command to the slave processor who owns the killed colony; 

7.  Checks convergence. 

• Slave processor 
1. Receives a set of colony’s parameters from the master processor; 
2. Initializes an ant colony and starts iteration; 
3. Sends its local optimum solution and parameters to the master processor; 
4. Receives kill command and parameters from the master processor, and then use these 

parameters to reinitialize and start iteration according to the equation (8). 
Once the master processor has performed the initialization step, the initialization 
parameters are sent to the slave processors to execute ant colony algorithm iteration. 
Because the contents of communication between the master processor and the slave 
processors only are some parameters and sub-optimum solutions, the ratio of 
communication time between the master and the slaves to the computation time of the 
processors of this system is relatively small. The communication can be achieved using a 
point-to-point communication scheme implemented with the Message Passing Interface 
(MPI). Only after obtaining its local optimum solution, the slave processor sets message to 
the master processor (Fig. 2). During this period, the slave processor continues its iteration 
until it gets kill command from the master processor. Then the slave processor will initialize 
a new ant colony and reiterate. 
To make the most use of the heterogeneity of the band of communication between the 
master processor and the slave processors, we can select some slave processors the band 
between which and the master processor is very straightway. We never kill them but only 
send the global best-so-far optimum solution to them in order to speed up their local 
pheromone arrays update and convergence. 
A pseudo-code of a parallel asynchronous MCA algorithm is present as follow: 

• Master processor 
Initialize Optimization 

Initialize parameters of all colonies 
Send them to the slave processors; 

Perform Main-Loop 
Receive local optimum solution  

              and parameters from the slave processors 
Update the global best-found center 
Check convergence 
If (eliminating rule met) then  

              Find the worst colony 
              Send kill command and a set of new parameters to it 
Report Results 

• Slave processor 
Receive Initialize parameters from the master processor 
Initialize a new local ant colony 
Perform Optimization 

For k = 1, number of iterations 
    For i = 1, number of ants 
        Construct a new solution 
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        If (kill command and a set of new parameters received) then   
           Goto initialize a new local ant colony; 
    Endfor  
    Modify its local pheromone array 
    Send its local optimum solution and parameters to the master processor 
Endfor 

End  
 

 

Fig. 2. Block diagram for parallel asynchronous algorithm. Grey boxes indicate activities on 
the master processor. 

4. Experiment results 

4.1 Parallel independent runs & Sequential algorithm 

In this parallel model, k copies of the same sequential MMAS algorithm are simultaneously 
and independently executed using different random seeds. The final result is the best solution 
among all the obtained ones. Using parallel independent runs is appealing as basically no 
communication overhead is involved and nearly no additional implementation effort is 
necessary. We identify the implementation of this model with the acronym PIR. Max Manfrin 
et al [10] find that PIR owns the better performance than any other parallel model. 
In order to have a reference algorithm for comparison, we also test the equivalent sequential 
MMAS algorithm. It runs for the same overall generations as a parallel algorithm (k-times 
the generations of a parallel algorithm). We identify the implementation of this model with 
the acronym SEQ. 

…
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4.2 Experimental setup 

For this experiment, we use MAX-MIN Ant System as a basic algorithm for our parallel 
implementation. We remain the occasional pheromone re-initializations applied in the 
MMAS described in [2], and a best-so-far pheromone update. Our implementation of 
MMAS is based on the publicly available ACOTSP code [11]. Our version also includes a 3-
opt local search, uses the mean 0.05-branching factor and don’t look bits for the outer loop 
optimization, and sets q0=0.95. 
We tested our algorithms on the Euclidian 2D TSP PCB442 from the TSPLIB [12]. The 
smallest tour length for this instance is known to be 50778. As parameter setting we use ǂ=1, 

ǃ=2 and ρ=0.1 for PIR and SEQ; and ǂ∈[0.8,1.2], ǃ∈[2,5], ρ∈[0.05,0.15] for MCA. 
Computational experiments are performed with k=8 colonies of 25 ants over T=200 
generations for PIR and MCA, but 25 ants and T=1600 for SEQ, i.e. the total number of 
evaluated solutions is 40000 (=25*8*200=25*1600). We select m=4 best solutions, ck=2/4=0.5 
and cbest=0.1 in the pheromone arithmetic crossover and the repulsive operator for MCA. All 
given results are averaged over 1000 runs. As far as eliminated rules in MCA, we adopt rule 
(b). If a colony had run more than 10 generations (2000 evaluations) for PCB442 since its 
local optimum solution was updated, we think it had arrived at the stagnating state. 

4.3 Experimental result 

The Fig. 3 shows cumulative run-time distribution that certain levels of solution quality are 
obtained depending on the number so far evaluated solutions. There is a rapid decrease in 
tour length early in the search in the SEQ algorithm because it runs more generations than 
SEQ and MCA in the same evaluations. After this, the improvement flattened out for a short 
while before making another smaller dip. Finally, the SEQ algorithm decreases at a much 
slower pace quickly and tends to stagnate prematurely. Although,  the tour length decreases 
more slowly in PIR and MCA than in SEQ early in the search, after about 6600 evaluations 
SEQ and MCA all give better results than PIR in average. Moreover, for every level of 
solutions MAC gives the better performance than PIR. Conclusively, SEQ has great risk of 
getting stuck on a local optimum; however, the MCA is able to escape local optima because 
of the repulsive operator and the pheromone crossover. 
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5. Conclusion 

In this paper, an improved ant colony system, multi-colony ant algorithm, is presented. The 
main aim of this method is to increase the ant colonies’ capability of escaping stagnating 
state. For this reason, a new concept of multiple ant colonies has been presented. It creates a 
new colony of ants to iterate, which is accomplished through application of the pheromone 
arithmetic crossover and the repulsive operator based on multi-optimum when meeting at 
the stagnating state of the iteration or local optimum solution. At the same time, the main 
parameters ǂ, ǃ and ρ of algorithm are self-adaptive. In this paper, a parallel asynchronous 
algorithm process is also presented. 
From above exploring, it is obvious that the proposed multi-colony ant algorithm is an 
effective facility for optimization problems. The result of experiment has shown that the 
proposed multi-colony ant algorithm is a precise method for TSP. The speed of multi-colony 
ant algorithm’s convergence is faster than that of the parallel independent runs (PIR). 
At the present time, our parallel code only allows for one computer. In future versions, we 
will implement MPI-based program on a computer cluster. 
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