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1. Introduction

During the last years, Wireless Sensor Networks (WSN) have attracted the attention of re-
searchers from electronics, signal processing, communications, and networking communities
due to their potential for providing new capabilities. Among the many design challenges that
have been identified, the ability of sensors to behave in an autonomous and self-organized
manner using limited energy and computation resources has emerged as a fundamental fac-
tor to take into account when WSN are deployed. In fact, the limitation of resources at the
network nodes is often a critical factor that conditions the design of applications for sensor
networks. Among the multiple limitations to consider, energy consumption emerges as a pri-
mary concern. This is because in many practical scenarios, sensor node batteries cannot be
(easily) refilled, thus nodes have a finite lifetime. Since every task carried out by the WSN has
an impact in terms of energy consumption, an enormous variety of solutions, both software
and hardware, have been proposed in the literature to optimize energy management; see, e.g.,
(Shih et al., 2001; Akyildiz et al., 2002).
Communication processes are typically among the most energy-expensive of such tasks.
Many works have focused on the minimization of the energy cost taking into account the
physical behavior of the WSN; see, e.g., (Shih et al., 2001; Marques et al., 2008; Wang et al.,
2008). However, energy savings can also be obtained by taking a higher level approach and
considering the different nature of the information that nodes have to transmit. This way, in
order to enlarge the network lifetime and optimize the overall network performance, sensor
nodes should weigh up: (a) the potential benefits of transmitting information and (b) the cost
of the subsequent communication process. A first step to address such optimum design is
to properly quantify or estimate both costs and benefits. This is possible in many practical
cases because the energy consumed during the different communications tasks (cost) is typ-
ically well-characterized and because applications where messages are graded according to
an importance indicator (benefit) are frequent in WSN. The message importance can be, for
instance, a priority value established by the routing protocol, or an information value spec-
ified by the application supported by the sensor network. Relevant examples in the context
of Sensor Networks can be found in the fields of: security (attack reports (Wood & Stankovic,
2002)), medical care (critical alerts (Shnayder et al., 2005)), or data fusion (DAIDA algorithm
in (Qiu et al., 2005)), to name a few.
In such scenarios, energy in WSN can be saved by making intelligent importance-driven de-
cisions about message transmission, in an autonomous and self-organized manner, adapting
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forwarding decisions to the traffic importance. This way, a selective forwarding scheme allows
nodes to keep the capacity for managing their own resources at the same time that optimizes
communication expenses by only transmitting the most relevant messages.
That is precisely the objective pursued in this work: to develop optimum selective message
forwarding schemes for energy-limited sensor networks where sensors (re-) transmit mes-
sages of different importance (priority). In order to decide whether to transmit or discard a
message, sensors will take into account factors such as the energy consumed during the dif-
ferent tasks that a sensor has to carry out (transmission, reception, etc.), the available battery,
the importance of the received message, the statistical model of such importances, or their
neighbors’ behavior.
Related ideas have recently been explored in literature. The IDEALS algorithm (Merrett et al.,
2005), built under the concept of message and power priorities, tries to extend network life-
time for important messages, discarding all messages except those of high importance when
battery resources are scarce. The PGR (Prioritized Geographical Routing) algorithm (Mujum-
dar, 2004) selects the appropriated routing technique depending on the priority of the message
(low, medium or high). Moreover, a fuzzy logic approach to deal with message transfer pri-
ority arbitration that considers fifteen different priority levels has been presented in (Rivera
et al., 2007). Rather than using a heuristic approach, the aim here is to obtain analytical re-
sults that building on a mathematical formulation, provide basic guidelines to design such
energy-efficient schemes. This will be done by following a probabilistic and statistical ap-
proach that will open the door to a long-term optimization of the network. The optimal for-
warding schemes will be obtained then as the optimal solution of the formulated problem.1

The initial step will be to carefully select the model for the WSN. On the one hand the model
has to be rich enough so that different real scenarios can be fit into, on the other hand it
has to be simple enough so that the mathematical formulation is tractable and closed-form
solutions can be derived. This way, basic principles to guide the design of energy-efficient
importance-driven schemes can be identified. Once the mathematical model is set, we will
derive optimum schemes for three different scenarios.
First we will consider the case when the forwarding schemes are designed so that sensors max-
imize the importance of their own transmitted messages. Second, we enrich the model by also
considering the behavior of neighboring nodes. Third, we develop a forwarding scheme for
nodes optimizing the importance of the messages that successfully arrive to the sink. Clearly,
from an overall network efficiency perspective the first scenario will perform worse than its
counterparts, but it will require less signaling overhead. On the contrary, the last scheme
will optimize the overall network performance, but it will require full coordination among
the nodes of the WSN. Differences among the proposed schemes will be quantified both from
a theoretical and numerical perspective. Together with those optimal schemes, suboptimal
schemes that operate under less demanding conditions than those for the optimal ones are
also developed. 2

1Noticeably, the statistical model presented in this chapter exhibits similarities to other problems in
Operations Research and Stochastic Dynamic Programming (see, e.g., (Sennott, 1999)), and the equations
describing the energy evolution at the sensor node and the importance sum can be restated as a par-
ticular type of Markov decision process. Nonetheless, our treatment of the problem and the theoretical
derivations are self-contained.

2To facilitate exposition, most of the chapter will be devoted to the first (and simplest) scenario. Never-
theless it should be noted that the specific results presented only for that scenario can be easily extended
to the other two scenarios. Under the same philosophy, no mathematical proofs have been included in
the chapter. Readers who are interested can always check our original work in (Arroyo-Valles et al., 2009;
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It will be shown that in most cases, the optimal forwarding scheme is fairly simple. More
specifically, it will turn out that the optimal decision is made comparing the importance of the
received message with a threshold whose optimum value varies along time. We will show
that our schemes improve the global performance in terms of quantity and quality of the
messages that really arrive at the destination node. Finally, it will be also shown that the gain
of the selective forwarding schemes (compared to a non-selective ones) will critically depend
on factors such as the relationship among the energy consumed during each of the tasks that
nodes have to implement, the frequency of idle times, or the statistical distribution of the
importances, to name a few.
The theoretical results will be complemented with numerical simulations that not only will
corroborate the theoretical claims but also will help us to quantify the gains of implementing
the selective scheme for a broader range of practical scenarios.
It is worth stressing that besides the theoretical value of this work: (i) the developed schemes
can eventually be incorporated into many existing routing protocols; and (ii) our approach
can also be easily integrated with a variety of existing data collection approaches, including
schemes that support in network data aggregation.

2. Sensor model

For the purpose of the analysis that follows, we consider a sensor network as a collection
of nodes N = {n|n = 0, . . . , N − 1}. For the time being, we will focus on the behavior of each
node, which receives a sequence of requests to transmit messages (no matter how the network
topology is). The node dynamics will be characterized by two variables

• ek : available energy at a given node at time k. It reflects the “internal state” of the node;
and

• xk : importance of the message to be sent at time k. It reflects the “external input” to the
node.

For mathematical reasons, we assume that if the node does not receive any request to transmit
at time k, then xk = 0, while true messages will have xk > 0.
At time k, the sensor node must make a decision, dk, about sending or not the current message,
so that dk = 1 if the message is sent, and dk = 0 if the node decides to discard it.
Nodes consume energy at each time slot, by an amount that depends on the message reception
and the taken actions. In the literature, up to three different energy expenses are typically
considered:

• EI : energy spent at a silent time, when there is no message reception, and the node may
stay at ”idle” mode;

• ER: energy spent when receiving a message; and

• ET : energy spent when transmitting a message.

The value of these parameters will depend on the system specifications and the specific appli-
cation (among the factors that will determine the energy costs we find mobility, sensed mag-
nitude, or behavior of the batteries, to name a few). For example, for static dense networks, ET

and ER values may be very similar, while for mobile networks operating over fading channels,
ET >> ER is expected.

2008).
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Energy at time k can be expressed recursively as

ek+1 = ek − dkE1(xk)− (1 − dk)E0(xk), (1)

where E1(xk) is the energy consumed when the node decides to transmit the message, and
E0(xk) is the energy consumed when the message is discarded. For positive values of impor-
tance, energy consumption is independent of the message importance, and we have

E1(xk) = ET + ER, xk > 0 (2)

E0(xk) = ER, xk > 0. (3)

Recalling that xk = 0 means that no messages are received, we also have

E1(0) = E0(0) = EI . (4)

When the sensor node is the source of the message, ER comprises the energy expense of the
message generation process (possibly by a sensing device). When the sensor node acts as a
forwarder, ER comprises the energy expense of receiving the message from other node. Thus,
we assume that ER is the same no matter if the node is the source of the message or it has been
requested to forward a message from other node. Even though this assumption is not critical
and could be bypassed by splitting ER between receiving and sensing costs, we adopt it for
two reasons: (i) it leads to a simpler mathematical formulation and (ii) nodes are prevented
from acting selfishly (note that if the energy cost of sensing were smaller than the cost of
receiving, nodes would promote their own messages instead of forwarding others’ messages).

Remark 1 It is important to mention that although this chapter focuses on the case where the energy
consumption is given by (2)-(4), we will formulate and solve the general case in (1) by assuming
that both consumption profiles, E1(x) and E0(x), may arbitrarily depend on x. As a first approach,
the model could even be applied to situations where ET and ER are random or time-variant (e.g., in
sensors operating over fast fading channels where transmissions are adapted based on the channel state
information) by substituting ET and ER by their respective mathematical expectations. In any case, we
assume that both energy functions are perfectly known.

3. Optimal selective transmission

To derive an optimal transmission policy we will consider that node decisions do not depend
on the state and the actions of neighboring nodes, but only on the available information at
each node. Therefore, at each time, k, the node decision depends on the internal state and the
external input

dk = g(ek, xk), (5)

with the constraint
g(ek, xk) = 0, if ek < E1(xk) (6)

reflecting that, if the sensor node does not have enough energy to receive and transmit the
message, it cannot decide dk = 1.
Decisions at each node will be made with infinite horizon, i.e., by maximizing (on average) the
importance sum of all transmitted messages

s∞ =
∞

∑
k=0

dkxk. (7)
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Since nodes have limited energy resources, this sum only contains a finite number of nonzero
values (eventually, for some k, ek < mink E1(xk), and ∀k′ ≥ k, we have dk′ = 0).
The following result provides an optimal selective transmitter.

Theorem 1 Let {xk,k ≥ 0} be a statistically independent sequence of importance values, and
ek the energy process driven by (1). Consider the sequence of decision rules

dk = u(xk − µk(ek, xk))u(ek − E1(xk)), (8)

where u(x) stands for the Heaviside step function (with the convention u(0) = 1), and µk is
defined recursively through the pair of equations

µk(e, x) = λk+1(e − E0(x))− λk+1(e − E1(x)) (9)

λk(e) = (E{λk+1(e − E0(xk))} + E{(xk − µk(e, xk))
+u(e − E1(xk))}

)

u(e), (10)

where (z)+ = zu(z), for any z.
The sequence {dk} is optimal in the sense of maximizing E{s∞} (with s∞ given by (7)), among
all sequences in the form dk = g(ek, xk) (with g(ek, xk) = 0 for ek < E1(xk)).
The auxiliary function λk(e) represents the expected increment of the total importance (ex-
pected reward) at time k , i.e.,

λk(e) =
∞

∑
i=k

E{dixi|ek = e}. (11)

The proof can be found in (Arroyo-Valles et al., 2009). Although Theorem 1 holds for any
energy cost and importance value, it does not provide a clear intuition about the impact of
E0(x) and E1(x) and the distribution of xk on the design of the optimal transmission scheme.
Moreover, the direct application of this theorem is difficult, because (9) and (10) state a time-
reversed recursive relation: in order to make optimal decisions, the node should know the
future importance distributions in advance. For these reasons, in the reminder of this chapter
we will focus special attention on several particular cases that will lead us to tractable closed-
form solutions.

3.1 Stationarity

If all variables x1, . . . , xk have the same distribution, then µk does not depend on k [c.f. (9) and
(10)]. In this case, the following result can be shown (see (Arroyo-Valles et al., 2009)):

Theorem 2 Under the conditions of Th. 1, if the importance values {xk,k ≥ 0} are identically dis-
tributed and infx{Ei(x)} > 0, for i = 0,1, the sequence of decision rules given by

dk = u(xk − µ(ek, xk))u(e − E1(xk)), (12)

where

µ(e, x) = λ(e − E0(x))− λ(e − E1(x)) (13)

λ(e) = (E{λ(e − E0(x))} + E{(x − µ(e, x))+u(e − E1(x))}
)

u(e), (14)
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is optimal in the sense of maximizing E{s∞} among all sequences of decision rules in the form
dk = g(ek, xk) (with g(ek, xk) = 0 for ek < E1(xk)).
It is important to stress that in most scenarios involving multiple sensors, the stationarity as-
sumption, strictly speaking, is not true. For example, the distribution of messages arriving
to a node depends on the transmission policy used by forwarding nodes. Since the optimal
policy presented here is energy-dependent [c.f. either (9) or (13)] and the available energy
clearly changes along time for all nodes, the importance distribution of the received messages
will also change along time. However, it will be shown in the next sections that the simplifi-
cation obtained in (13) is not only useful from a theoretical perspective, but also valid from a
practical point of view for large networks. This (almost) stationary behavior can be justified
based on different reasons. First, although the optimal forwarding policy varies along time,
this variation turns out to be negligible during most of the time (i.e., it is almost-stationary).
The underlying reason is that for medium-high values of available energy the optimal for-
warding scheme is not very sensitive to energy changes. Only when nodes are close to run
out of batteries, the decision threshold varies significantly as a function of the remaining en-
ergy. Second, even if the behavior of a single node is not stationary, the aggregate effect of
the entire network may be stationary. In other words, the approximation given by (13) will
be accurate during most of the time, and the discrepancy will only arise when the network is
close to expire. Theoretical analysis and numerical results will corroborate this intuition.

3.2 Constant energy profiles

Under the constant profile model given by (2)-(4), the optimal threshold can be written as

µk(e, x) = µk(e)Ix>0, (15)

where Ix>0 is an indicator function (equal to unity if the condition holds and zero otherwise),
and using (9) we have

µk(e) = λk+1(e − ER)− λk+1(e − ET − ER). (16)

Also, (10) becomes

λk(e) = PIλk+1(e − EI) + (1 − PI)λk+1(e − ER)− PIµk(e,0)u(−µk(e,0))u(e − EI)

+ (1 − PI)E{(xk − µk(e, xk))
+|xk > 0} · u(e − ET − ER)

= PIλk+1(e − EI) + (1 − PI)λk+1(e − ER)

+ (1 − PI)E{(xk − µk(e, xk))
+|xk > 0} · u(e − ET − ER) (17)

where PI = Pr{x = 0}. Defining

Hk(µ) = E{(xk − µ)+|xk > 0}, (18)

we can write

λk(e) = PIλk+1(e − EI) + (1 − PI)λk+1(e − ER)

+(1 − PI)H(µk(e))u(e − ET − ER). (19)

Thus, the optimal transmission policy for a sensor with a constant energy profile is described
by (16) and (19). In order to analyze the influence of idle times and the relation between
transmission and reception energy expenses separately, in the following examples we consider
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the case of PI = 0 and/or EI = 0. Note that if any of these conditions holds, the expected
importance sum in (19) can be rewritten as

λk(e) = λk+1(e − ER) + H(µk(e))u(e − ET − ER). (20)

3.3 Examples

As we have already mentioned, there is no general explicit solution to the pair of equations
(9) and (10), not even for the stationary case in (16) and (19). For this reason, in this section
we focus on systems satisfying the operating conditions that gave rise to (20) (constant energy
profiles, stationarity and zero idle energy) and solve the recursive relations for several impor-
tance distributions3. This simplification will lead to tractable expressions, providing insight
into the behavior of the optimal forwarding scheme.

• Uniform Distribution: Let U(0,2) denote the uniform distribution between 0 and 2
whose probability density function (PDF) is

p(x) =
1

2
(u(x)− u(x − 2)). (21)

Substituting (21) into (18), we have

H(µ) = E{(x − µ)+} =
1

4
(2 − µ)2, (22)

and therefore, the expected reward is given by

λ(e) = λ(e − ER) +
1

4
(2 − µ(e))2u(e − ET − ER). (23)

Figure 1(a) plots the threshold for extremely small values of available energy, e. E1(x) = 1
and different values of the ratio ET/ER are considered. Note that, for values of e lower
than 1, in spite of the threshold value is 0, there is no actual transmission because u(e −
ET − ER) = 0. For 1 < e < E1 + ER there is only one opportunity to send the message,
so the threshold is also 0, which means that the message will be transmitted whatever
its importance value is. For larger energy values, the threshold increases, meaning that
the transmission can be made more selective. Note, also, that µ(e) evolves in a staircase
manner, because any energy amount in excess of a multiple of ER is useless.

Figure 1(b) represents the expected reward (λ(e)). Note that the case ET = 0 is equiva-
lent to a non-selective transmitter (because, according to (16), the optimal threshold is
0 in that case, which means that no messages are discarded). Despite that, for e close
to 2, there is not energy for a second transmission, the selective transmitter provides a
significant expected income with respect to the non-selective one.

Figure 2(a) shows the optimal threshold for ET = 4, ER = 1 and high values of available
energy. Note the sawtooth shape of the forwarding threshold: as the available energy is
reduced to a value close to a multiple of the energy required to transmit, the forward-
ing threshold decreases, because if there is not any transmissions, the total number of
possible messages to be sent is reduced by a unity.

Figure 2(b) represents the expected reward of the selective transmitter (continuous line)
and the non-selective one (dotted line), which transmits all messages regardless of their
importance value, until energy is used up.

3In the following, free parameters will be set so that all importance distributions have a mean value
equal to one.
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Fig. 1. Variation of the decision threshold (a) and the expected importance sum (b) with respect
to the available energy, e. A uniform importance distribution U(0,2) with E1(x) = ER + ET = 1
is assumed. Different plots correspond to different values of ET/ER.
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Fig. 2. The decision threshold (a) and the expected importance sum (b) (continuous line) as a
function of the available energy. A uniform importance distribution U(0,2) with ET = 4 and
ER = 1 is assumed. The stepwise function (dotted line) reflects the behavior of a non-selective
transmitter, which transmits any message whatever its importance value is.

• Exponential: For an exponential distribution of free parameter a, we have

p(x) =
1

a
exp

(

−
x

a

)

u(x), (24)

and

H(µ) = aexp
(

−
µ

a

)

, (25)

so that

λ(e) = λ(e − ER) + aexp

(

−
µ(e)

a

)

u(e − ET − ER). (26)

The variation of µ for an exponential distribution with a = 1, ET = 4 and ER = 1 is
illustrated in Figure 3. The more restrictive threshold, compared to that one shown in
Figure 2(a) for the uniform distribution, gives rise to a higher increase in the expected
reward with regard to the non-selective forwarder.
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Fig. 3. Variation of the decision threshold (a) and the expected importance sum (b) (continous
line) with respect to the available energy. An exponential importance distribution with a = 1,
ET = 4 and ER = 1 is assumed. The dotted line represents the expected importance sum of the
non-selective transmitter.

4. Asymptotic analysis

4.1 Large energy threshold

The above examples show that for large energy values e, the threshold converges to a constant
value, and the expected reward tends to grow linearly. Both behaviors are closely related be-
cause, as (9) shows, the optimal threshold is the difference between two expected rewards. In
this section, we discuss the asymptotic behavior of any selective transmitter in the stationary
case. To do so, we first define the income rate of a selective transmitter.

Definition 1 The income rate of a selective transmitter with expected reward λ(e) is defined
as

r = lim
e→∞

λ(e)

e
. (27)

The following theorem (Arroyo-Valles et al., 2009) provides a way to compute the income rate
of the optimal selective transmission policy.

Theorem 3 The only threshold function µ(e, x) which is a solution of (13) and (14) and is
constant with e is given by

µ(e, x) = µ(x) = (E1(x)− E0(x))r, (28)

where r is a solution of

E{E0(x)}r = E{(x − (E1(x)− E0(x))r)+}. (29)

Moreover, if E1(x) ≥ E0(x), for all x, this solution is unique.

An important consequence of Theorem 3 is that, if lime→∞ µ(e, x) exists, it must be equal to
(28). Even though we will not show any theoretical convergence result, we have found a
systematic empirical convergence, and we guess that this could be a general result for any
importance distribution, provided it is stationary.
For the constant profile case, the asymptotic threshold (28) becomes

µ(x) = ETrIx>0. (30)
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The recursive expression in (29) can be written as a function of µ∗ = ETr as

(PI EI + (1 − PI)ER)µ
∗ = (1 − PI)ET H(µ∗) (31)

where H(µ∗) is given by (18). Defining

ρ =
(1 − PI)ET

PI EI + (1 − PI)ER
(32)

we get
µ
∗ = ρH(µ∗). (33)

As a reference for comparison, we will consider the income rate of the non-selective transmit-
ter (i.e., the node transmitting any message requested to be sent, provided that the battery is
not depleted), which can be shown (Arroyo-Valles et al., 2009) to be equal to

r0 =
E{x}

E{E1(x)}
. (34)

4.2 Gain of a selective forwarding scheme

In this section we analyze asymptotically the advantages of the optimal selective scheme with
regard to the non-selective one. To do so, we define the gain of a selective transmitter as the
ratio of its income rate, r, and that of the non-selective transmitter, r0,

G =
r

r0
. (35)

For the optimal selective transmitter in the constant profile case, combining (29) and (34), we
get

G =
µ∗

E{E1(x)}

ETE{x}
=

µ∗(PI EI + (1 − PI)(ET + ER))

ETE{x}

=(1 − PI)(1 + ρ
−1)

µ∗

E{x}
=

1 + ρ

ρ

µ∗

E{x|x > 0}
. (36)

In the following, we compute the gain for several importance distributions.

4.3 Examples

Let us illustrate some examples taken from the constant profile case,

• Uniform Distribution: Substituting (22) into (33), we get

µ
∗ =

1

4
ρ(2 − µ

∗)2, (37)

which can be solved for µ∗ as

µ
∗ = 2





1 + ρ

ρ
−

√

(

1 + ρ

ρ

)2

− 1



 (38)

(the second root is higher than 2, which is not an admissible solution). Note that, for
ρ = 4, we get µ∗ = 1, which agrees with the observation in Fig.2(a).

     












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Therefore, the gain is given by

G = 2
1 + ρ

ρ





1 + ρ

ρ
−

√

(

1 + ρ

ρ

)2

− 1



 . (39)

• Exponential: Using (25) we find that µ∗ is the solution of

µ
∗ = aW(ρ), (40)

where W(x) = y is the real-valued Lambert’s W function which solves the equation
yey = x for −1 ≤ y ≤ 0 and −1/e ≤ x ≤ 0 (Corless et al., 1996). Thus,

G = (1 + ρ
−1)W(ρ). (41)

Figure 4 compares the gain of the uniform and the exponential distributions as a func-
tion of ρ. The graphic remarks that, under exponential distributions, the difference be-
tween the selective and the non-selective forwarding scheme is much more significant.
The better performance of the exponential distribution compared to the uniform may
be attributed to the tailed shape. We may think that, for a long-tailed distribution, the
selective transmitter may be highly selective, saving energy for rare but extremely im-
portant messages. This intuition is corroborated by the Pareto distribution (see (Arroyo-
Valles et al., 2009) for further details).

     






ρ








Fig. 4. Gain of the uniform and exponential distributions, as a function of ρ.

4.4 Influence of idle times

The above examples show that the gain of the optimal selective transmitter increases with
ρ. By noting that ρ in (32) is a decreasing function of PI and EI , the influence of idle times
becomes clear: as soon as the frequency of idle times or the idle energy expenses increases,
the gain of the selective transmission scheme reduces.

5. Network Optimization

5.1 Optimal selective forwarding

Since each message must travel through several nodes before arriving to destination, the mes-
sage transmission is completely successful if the message arrives to the sink node. In general,
an intermediate node in the path has no way to know if the message arrives to the sink (unless
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the sink returns a confirmation message), but it can possibly listen if the neighboring node in
the path propagated the message it was requested to forward. If dk denotes the decision at
node i, and qk denotes the decision at the neighboring node j, the transmission is said to be
locally successful through j if dk = 1 and qk = 1.
In this case, we can re-define the cumulative sum of the importance values in (7) by omitting
all messages that are not forwarded by the receiver node, as

s∞ =
∞

∑
i=0

diqixi, (42)

and, as we did in Section 3, the goal at each node is to maximize its expected value of s∞. Note
that (42) reduces to (7) by taking qi = 1 for all i.
The following result provides the optimal selective forwarder.

Theorem 4 Let {xk,k ≥ 0} be a statistically independent sequence of importance values, and
ek the energy process given by (1). Consider the sequence of decision rules

dk = u(Qk(ek, xk)xk − µk(ek, xk))u(e − E1(xk)), (43)

where u(x) stands for the Heaviside step function (with the convention u(0) = 1),

Qk(xk, ek) = E{qk|ek, xk} = P{qk = 1|ek, xk} (44)

and thresholds µk are defined recursively through the pair of equations

µk(e, x) = λk+1(e − E0(x))− λk+1(e − E1(x)) (45)

λk(e) = (E{λk+1(e − E0(xk))} + E{(Qk(ek, xk)xk − µk(e, xk))
+u(e − E1(xk))}

)

u(e). (46)

Sequence {dk} is optimal in the sense of maximizing E{s∞} (with s∞ given by (42)) among all
sequences in the form dk = g(ek, xk) (with g(ek, xk) = 0 for ek < E1(xk)).
The auxiliary function λk(e) represents the increment of the total importance that can be ex-
pected at time k, i.e.,

λk(e) =
∞

∑
i=k

E{diqixi|ek = e}. (47)

The proof can be found in (Arroyo-Valles et al., 2009). It is interesting to re-write (43) as

dk = u

(

Qk(xk, ek)−
µk(e)

xk

)

u(ek − E1(xk)) (48)

which expresses the node decision as a comparison of Qk with a threshold inversely pro-
portional to the importance value, xk. This result is in agreement with our previous models in
(Arroyo-Valles et al., 2006), (Arroyo-Valles, Alaiz-Rodriguez, Guerrero-Curieses & Cid-Sueiro,
2007).
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5.2 Global network optimization applying a selective transmission policy

In order to complete the theoretical study, the network optimization at a global level is ana-
lyzed. In general, and as we mentioned in Sec. 5.1, an intermediate node in the path has no
way to know if the message arrives to the sink unless the sink sends a confirmation mes-
sage. Let’s denote ak as the arrival of a message to the sink node and let’s define Ak as
Ak(xk, ek) = E{ak|ek, xk} = P{ak = 1|ek, xk}, similar to Qk definition from Theorem 4. The
optimal selective policy when optimizing the global performance can be obtained from Theo-
rem 4 just replacing qk and Qk by ak and Ak. The difference among both theorems will stay in
the interpretation of variables ak and qk. While qk indicates the action of a forwarding node,
ak refers to the success of the whole routing process.

6. Algorithmic design

In practice, to compute the optimal forwarding threshold in a sensor network, Qk(xk, ek),
Ak(xk, ek) and the importance distribution of messages, pk(xk), are required. As they are
unknown, they can be estimated on-the-fly with data available at time k.

6.1 Estimating Qk and Ak

A simple estimate of the forwarding policy Qk = E{qk|xk, ek} can be derived by assuming that
(1) it does not depend on ek (i.e., the subsequent forward/discard decision of the receiver node
is independent of the energy state at the transmitting node), and (2) each node is able to listen
to the retransmission of a message that has been previously sent (i.e. each node can observe
qk when dk = 1). Following an approach previously proposed in (Arroyo-Valles et al., 2006)
and (Arroyo-Valles, Marques & Cid-Sueiro, 2007), in (Arroyo-Valles et al., 2008) we propose
to estimate Qk by means of the parametric model

Qk(xk,w,b) = P{qk = 1|xk,w,b} =
1

1 + exp(−wxk − b)
(49)

Note that, for positive values of w, Qk increases monotonically with xk, as expected from
the node behavior. We estimate parameters w and b via ML (maximum likelihood) using
the observed sequence of neighbor decisions {qk} and importance values {xk}, by means of
stochastic gradient learning rules

wk+1 = wk + η(qk − Qk(xk,wk,bk))xk

bk+1 = bk + η(qk − Qk(xk,wk,bk)) (50)

where η is the learning step.
Similarly, the estimation algorithm given by (49) and (50) can be adapted to estimate Ak in a
straightforward manner, but it requires the sink node to acknowledge the reception of mes-
sages back through the routing path, so as to provide the nodes with a set of observations ak

for the estimation algorithm.

6.2 Estimating asymptotic thresholds

The optimal threshold depends on the distribution of message importances, which in practice
may be unknown. Another alternative, apart from estimating it (see (Arroyo-Valles et al.,
2009)), consists of estimating parameter r in (29) and replace the optimal threshold function
by its asymptotic limit. Parameter r can be estimated in real time based on the available data
{xℓ,ℓ = 0, . . . ,k} at time k.
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However, first of all we should update (29) to incorporate to the formula the information ob-
tained from neighboring nodes and thus, define a formula as general as possible. Comparing
(8) and (43), we realize that x in the optimal transmitter is replaced by xQ(x) in the optimal
forwarder and so, (29) should be replaced by

E{E0(x)}r = E{(xQ(x)− (E1(x)− E0(x))r)+}. (51)

Defining ∆(x) = E1(x)− E0(x), we can estimate the expected value on the right-hand side of
(51) as

E{(xQ(x)− ∆(x)r)+} ≈ mk (52)

where

mk =
1

k

k

∑
i=1

(xiQ(xi)− ∆(xi)r)
+ =

(

1 −
1

k

)

mk−1 +
1

k
(xkQ(xk)− ∆(xk)r)

+ (53)

According to (51), we can then estimate r at time k as rk = mk/ǫ0, where ǫ0 = E{E0(x)}. Using
(53) we get

rk =

(

1 −
1

k

)

rk−1 +
(xkQ(xk)− ∆(xk)r)

+

kǫ0
(54)

Unfortunately, the above estimate is not feasible, because the left-hand side depends on r. But
we can replace it by rk−1, so that

rk =

(

1 −
1

k

)

rk−1 +
(xkQ(xk)− ∆(xk)rk−1)

+

kǫ0
. (55)

For the constant profile case, the optimal forwarding threshold is computed as

µk =

(

1 −
1

k

)

µk−1 +
ρ

k
· (xkQ(xk)− µk−1)

+ (56)

where ρ is given by (32).

7. Experimental work and results

In this section we test the selective message forwarding schemes in different scenarios. All
simulations have been conducted using Matlab.

7.1 Sensor network

The scenario of an isolated energy-limited selective transmitter node can be found in (Arroyo-
Valles et al., 2009). Although it provides useful insights, from a practical perspective a test
case with a single isolated node is too simple. For this reason, we simulate a more realistic
scenario consisting of a network of nodes. Experiments have been conducted considering both
optimal selective transmitters and optimal selective forwarders (with both local and global
optimization). Results focused on the optimal selective transmitters are presented in Section
7.1.1 while results for both selective transmitters and forwarders are presented in Section 7.1.2.
Before starting the analysis of those results, we first describe part of the simulation set-up that
is common for all the numerical tests run in this Section.
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1. All nodes deployed in the sensor network are identical and have the same initial re-
sources except for the sink, that has rechargeable batteries (thus it does not have energy
limitations). This static unique sink is always positioned at the right extreme of the
field. We will consider that PI = 0, ET = 4, ER = 1 and EI = 0. Sources are selected at
random and keep transmitting messages of importances x to the sink until network life-
time expires. Network lifetime is defined as the number of time slots achieved before
the sink is isolated from its neighboring nodes. In order to simulate a more realistic set
up, the parameters of the two distributions considered (uniform and exponential) will
be adjusted so that xk ∈ [0,10] (with xk = 0 representing a silent time).

2. Nodes are considered as neighbors if they are placed within the transmission radius,
which for simplicity reasons and due to power limitations is assumed to be the same
for all nodes (i.e., a Unit Disk Graph model is assumed). Since nodes can only transmit
messages inside their coverage area, they have geographical information about their
own position, the location of their neighbors and the sink coordinates. It is naturally
assumed that coverage areas are reciprocal, which is common when having a single
omnidirectional antenna. Under this assumption nodes can listen to the channel and
detect retransmissions of neighboring nodes before retransmitting the message again,
in case a loss is detected, or discard it.

3. Performance is assessed in terms of the importance sum of all messages received by the
sink, the mean value of these received importances, the number of transmissions made
by origin nodes and the network lifetime (measured in time slots).

4. Experimental results are averaged over 50 different topologies which contain different
samples of the two previous importance distributions.

7.1.1 Sensor network composed of selective transmitters

In this scenario, the sensor network is considered as a square area of 10× 10, where 100 nodes
have been uniformly randomly deployed. The initial energy of the nodes is set to E = 200
units. Regarding to the transmitting schemes implemented, four different types of sensors are
compared.

• Type NS (Non-Selective): Non-selective node. The threshold is set to µ = 0, so that it
forwards all messages.

• Type OT (Optimal Transmitter): Optimal selective node. Threshold µ is computed ac-
cording to (16) and (19), where nodes know the source importance distribution p(x).

• Type CT (Constant Threshold): Asymptotically optimal selective node. The sensor node
establishes a constant threshold which is set to the asymptotic value of the optimal
threshold given by (33).

• Type AT (Adaptive Transmitter): Adaptive selective node. The threshold is also com-
puted following (16) and (19). Nevertheless, the node is unaware of p(x) and it uses the
Gamma distribution estimation strategy, proposed in (Arroyo-Valles et al., 2009).

The routing algorithm implemented by the network follows a greedy forwarding scheme
(Karp & Kung, 2000). Although the disadvantages of the greedy forwarding algorithm are
well-known (e.g., when the number of nodes close to the sink is small or there is a void), we
choose this algorithm due to its simplicity, which will contribute to minimize its influence on
the final results. This way, we can gauge better the effect of implementing our optimal selec-
tive schemes in a network, which indeed is the main objective of the simulations. It is worth
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re-stressing that we are not proposing a new routing algorithm but a forwarding scheme with
a selective mechanism and therefore, this scheme can also be integrated into other more ef-
ficient routing algorithms. Periodical “keep alive” beacons are sent to keep nodes updated.
Link losses have also been included and so, the algorithm is made more robust by establishing
a maximum number of retransmissions before discarding the message, which has been set to
5 in our simulations.

Total Import. Importance Number of Network

Received Sink mean value Transmissions Lifetime

Type NS 1021.92 5.06 688.56 7896.00

Type OT 1388.40 7.49 677.38 8467.90

Type CT 1384.26 7.49 656.92 8441.08

Type AT 1377.22 7.80 720.78 8812.74

Table 1. Averaged performance when the importance values are generated according to a
uniform distribution - routing scenario

Simulation results for the scenario composed of selective transmitters are summarized in Ta-
bles 1 and 2. The numerical results validate our theoretical claims. As expected, the main
conclusion is that the selective transmission scheme outperforms the non-selective one.

Total Import. Importance Number of Network

Received Sink mean value Transmissions Lifetime

Type NS 331.72 1.76 672.84 7798.02

Type OT 610.96 3.84 613.30 8758.00

Type CT 609.45 3.86 596.82 8713.88

Type AT 594.92 4.18 685.98 9309.56

Table 2. Averaged performance when the importance values are generated according to an
exponential distribution - routing scenario

Regardless of the distribution tested, both the mean value of the importance of messages re-
ceived by the sink and the network lifetime are higher when the selective transmission scheme
is implemented.
Among the selective policies, OT nodes exhibit the best performance. Nevertheless, perfor-
mance differences among OT, CT and AT are not extremely high. The underlying reason is
that decisions made at neighboring nodes and path losses may alter the shape of the original
importance distribution. Since AT nodes estimate the importance distribution p(x) based on
real received data, they are able to correct this alteration. This is not the case of OT and CT
nodes, which calculate µ based on the original distribution, without accounting for the alter-
ations introduced by the network. The existence of a transitory phase through the calculation
of the adaptive threshold in the AT scheme may also justify small differences with respect to
the other non-adaptive selective schemes.
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7.1.2 Performance comparison among selective nodes

In this subsection, we compare the performance of different networks each of them comprising
a different type of selective nodes, namely:

• Type NS (Non-Selective) : Non-selective sensor node, it forwards all the received mes-
sages, no matter which its importance value is.

• Type AT (Adaptive Transmitter): Adaptive Selective transmitter sensor node. This sen-
sor corresponds to the particular case of (42) taking qk = 1, which is equivalent to as-
sume that the node does not take into account the neighbors’ behavior, i.e. it maximizes
the importance sum of all messages transmitted by the node, no matter if they are for-
warded by the neighboring node or not.

• Type LAF (Local Adaptive Forwarder): Local Adaptive Selective forwarder sensor
node. This sensor type computes the forwarding threshold according to (45) and (46).
It bears in mind the influence of neighboring nodes decisions.

• Type GAF (Global Adaptive Forwarder): Global Adaptive Selective forwarder sensor
node. The forwarding threshold is set according to (45) and (46); however ak and Ak are
used instead of qk and Qk in order to achieve a global network optimization.

Since the transmission policies implemented by each node can (and will) alter the importance
distribution originally generated by the sources, all selective types of nodes considered here
are adaptive and the forwarding threshold is computed using the asymptotic threshold esti-
mate given by (56).
For illustrative purposes, we simplify the simulation set-up by considering 30 nodes that are
equally-spaced placed in a row, so that each sensor can only communicate with the adjoining
sensors. This configuration is a simple but illustrative manner of emulating the traffic arriving
to a sink, as nodes located close to the sink have to route more messages (both those generated
by themselves and the ones arriving from others far-away located). The energy values of the
different energy states are the same as the ones used in previous sections. Nodes have the
same initial amount of battery, set to 5000. The channel is ideal (loss free path). Parameter η in
(50) is set to .005. All nodes generate messages according to the same importance distribution,
which is equivalent to say that the source importance distribution is the same for all nodes.
Again, results averaged over 50 runs for different importance distributions are listed in Tables
3 and 4. Simulations are stopped when the sink is isolated.

Total Import. Importance Number of Network

Received mean value Receptions Lifetime

Type NS 4989.26 4.99 999.02 1000

Type AT 8158.45 8.28 985.52 2963.42

Type LAF 8210.73 8.33 985.38 3056.90

Type GAF 8209.80 8.33 985.36 3056.64

Table 3. Averaged performance when the importance values are generated according to a
uniform distribution

According to the analytical formulation, the non-selective sensor nodes perform worse (re-
gardless of the metrics) than any type of the selective nodes. It is worth mentioning that the
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mean value of the messages received by the sink is slightly higher in this scenario than in the
precedent which corresponds to an arbitrary topology.
If we look closely among the selective nodes, the selective forwarding (local or global) yields
a better performance than the selective transmission for all the proposed importance distri-
bution types. Nevertheless, looking at the averaged values of the importance sum, the goal
metric to be maximized, it is revealed that the improvement, although substantial, is not ex-
treme. The reason stems from the fact that all nodes have an identical source importance
distribution. More noticeable differences will appear whenever the nodes generate messages
of different importance distributions.

Total Import. Importance Number of Network

Received mean value Receptions Lifetime

Type NS 1755.40 1.76 999.02 1000

Type AT 5526.04 5.99 923.12 11580.70

Type LAF 5612.34 6.11 919.18 12459.76

Type GAF 5612.22 6.11 919.08 12468.58

Table 4. Averaged performance when the importance values are generated according to an
exponential distribution

Additionally, the difference is almost unnoticeable when comparing the LAF and GAF nodes
(the actual difference depends on the distribution tested). This extremely low difference is
due to the effect that nodes tend to propagate their current thresholds to adjoining nodes and,
therefore, the local and global optimization are almost coincident.
Figure 5 shows the threshold evolution for Adaptive Transmitters (a) and Local Adaptive
Forwarders (b). Going into detail, results in Figure 5(a) point out that each node behaves
independently and sets its threshold according to its own available information. The furthest
node from the sink sets the lowest threshold, which clearly corresponds to the isolated node
scenario given that it only has its own generated traffic. Nevertheless, the subsequent nodes
in the network increase their thresholds as a consequence of receiving messages with clipped
importances from their previous nodes. Thus, the closer a node is placed to the sink, the larger
the threshold value is. On the other hand, LAF nodes in Figure 5(b) follow a similar trend.
Again, after a transitory phase, nodes tend to converge to the threshold value established by
the nearest node from the sink. This is a reasonable behavior because it would not make sense
to transmit a message up to the last but one node and then, discard it for not being important
enough. Nodes tend to learn the threshold that the neighbor closer to the sink node is using to
ensure that the message to transmit is forwarded, so that in the end, nodes learn the threshold
estimated by the nearest node to the sink. Learning the probability of retransmission (Qk

or Ak in case of global optimization) is equivalent to the effect of backward propagating the
threshold value to the whole sensor network.
Once the last but one node is isolated, two effects can be observed. The first is related to that
node, which is now free to fix its own threshold value according to the messages generated by
itself. And the second is related to the remaining nodes in the network. From the moment the
network is broken down and there is no manner to reach the sink, nodes located on the iso-
lated side of the breakdown will tend to set a lower threshold since the lack of collaboration is
then propagated backwards (the estimation of the probability that a neighbor will re-transmit
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the messages decreases). Moreover, since this effect is produced in cascade, nodes will end up
adjusting their thresholds to the threshold of the node located next to the breakdown.
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Fig. 5. The decision threshold evolution for Adaptive Transmitters (a) and Local Adaptive
Forwarders (b) as a function of the number of sent messages in a simulation run. A network
topology of 30 equally-spaced nodes located in a row is considered. A uniform importance
distribution U(0,10) is assumed.

In order to enhance the advantages of using selective forwarding schemes, a new scenario is
proposed. In this case, nodes generate messages according to an exponential distribution, but
the source importance distribution is different in every node so that parameter a follows an
exponential trend, too. Remark that the manner of selecting parameter a implies that message
importance xk /∈ [0,10] any more. For concision, Table 5 lists results only for the AT and LAF
cases.

Total Import. Importance Number of Network

Received mean value Receptions Lifetime

Type AT 11229.32 13.92 811.60 27014.90

Type LAF 11763.35 14.37 825.48 28583.16

Table 5. Averaged performance when the importance values are generated according to an
heterogeneous exponential distribution

In summary, numerical results corroborate that selective forwarding sensor nodes are more
energy-efficient than their non-selective counterparts. On the one hand, the selective forward-
ing schemes significantly increase the network lifetime. On the other hand, they also allow
high importance messages to reach the sink when batteries are scarce.

8. Conclusions

This chapter has introduced an optimum selective forwarding policy in WSN as an energy-
efficient scheme for data transmission. Messages, which were assumed to be graded with an
importance value and which could be eventually discarded, were transmitted by sensor nodes
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according to a forwarding policy, which considered consumption patterns, available energy
resources in nodes, the importance of the current message and the statistical description of
such importances.
Forwarding schemes were designed for three different scenarios (a) when sensors maximize
the importance of their own transmitted messages (selective transmitter); (b) when sensors
maximize the importance of messages that have been successfully retransmitted by at least
one of its neighbors (selective forwarder with local optimization); and (c) when sensors max-
imize the importance of the messages that successfully arrive to the sink (selective forwarder
with global optimization). Interestingly, the structure of the optimal scheme was the same in
all three cases and consisted of comparing the received importance and the forwarding thresh-
old. The expression to find the optimum threshold varies with time and is slightly different for
each scenario. It is worth remarking that the developed schemes were optimal from an impor-
tance perspective, efficiently exploited the energy resources, entailed very low computational
complexity and were amenable to distributed implementation, all desirable characteristics in
WSN.
The three schemes have been compared under different criteria. From an overall network
efficiency perspective, the first scheme performed worse that its counterparts, but it required
less signaling overhead. On the contrary, the last scheme was the best in terms of network
performance, but it required the implementation of feedback messages from the sink to the
nodes of the WSN. Numerical results showed that for the tested cases the differences among
the three schemes were small. This suggests that the second scheme, which is just slightly
more complex than the first one and performs evenly with the third one, can be the best
candidate in most practical scenarios.
Finally, suboptimal schemes that operate under less demanding conditions than those for the
optimal ones were also explored. Under certain simplifying operating conditions, a constant
forwarding threshold which did not change along time and entailed asymptotic optimality,
was also developed and closed-form expressions were obtained. The gain of the selective for-
warding policy compared to a non-selective one was quantified and it was proved to have
a strong dependence on energy expenses (transmission, reception and idle), the frequency
of idle times and the statistical distribution of importances. Going further, as nodes are in-
tegrated in a sensor network, information coming from the neighborhood was incorporated
into the statistical model and thus, an expression for the optimal forwarding threshold was
obtained, which turned into a general expression of the optimal selective transmitter. Finally,
for cases were the importance distribution of messages was unknown (or it varied with time),
a blind algorithm, which is based on the received messages, caught this distribution on-the-fly
and required less computational complexity, was proposed.
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