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1.Introduction 

A wireless sensor network (WSN) consists of sensor nodes (SNs) with wireless 
communication capabilities for specific sensing tasks. Among different applications, 
wireless location technologies which are designated to estimate the position of SNs 
(Geziciet al., 2005) (Haraet al., 2005) (Patwari et al., 2005)have drawn a lot of attention 
over the past few decades. There are increasing demands for commercial applications to 
adopt location tracking information within their system design, such as navigation 
systems, location-based billing, health care systems, and intelligent transportation 
systems. With emergent interests in location-based services (Perusco & Michael, 2007), 
location estimation and tracking algorithms with enhanced precision become necessitate 
for the applications under different circumstances. 
The location estimation schemes have been widely proposed and employed in the 
wireless communication system. These schemes locate the position of a mobile sensor (MS) 
based on the measured radio signals from its neighborhood anchor nodes (ANs). The 
representative algorithms for the measured distance techniques are the Time-Of-Arrival 
(TOA),the Time Difference-Of-Arrival (TDOA), and the Angle-Of-Arrival (AOA). The 
TOA scheme measures the arrival time of the radio signals coming from different wireless 
BSs; while the TDOA scheme measures the time difference between the radio signals. The 
AOA technique is conducted within the BS by observing the arriving angle of the signals 
coming from the MS. 
It is recognized that the equations associated with the location estimation schemes are 
inherently nonlinear. The uncertainties induced by the measurement noises make it more 
difficult to acquire the estimated MS position with tolerable precision. The Taylor Series 
Expansion (TSE) method was utilized in(Foy, 1976) to acquire the location estimation of 
the MS from the TOA measurements. The method requires iterative processes to obtain 
the location estimate from a linearized system. The major drawback of the TSE scheme is 
that it may suffer from the convergence problem due to an incorrect initial guess of the 
MS’s position. The two-step Least Square (LS) method was adopted to solve the location 
estimation problem from the TOA (Wanget al., 2003), the TDOA (Chen& Ho, 1994), and 
the hybrid TOA/TDOA(Tseng & Feng, 2009) measurements. It is an approximate 
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realization of the Maximum Likelihood (ML) estimator and does not require iterative 
processes. The two-step LS scheme is advantageous in its computational efficiency with 
adequate accuracy for location estimation.  
In addition to the estimation of a MS’s position, trajectory tracking of a moving MS has 
been studied. The Extended Kalman Filter (EKF) scheme is considered the well-adopted 
method for location tracking. The EKF algorithm estimates the MS’s position, speed, and 
acceleration via the linearization of measurement inputs. The Kalman Tracking (KT) 
scheme (Nájar& Vidal,2001) distinguishes the linear part from the originally nonlinear 
equations for location estimation. The linear aspect is exploited within the Kalman 
filtering formulation; while the nonlinear term is served as an external measurement 
input to the Kalman filter. The Cascade Location Tracking(CLT) scheme (Chen &Feng, 
2005) utilizes the two-step LS method for initial location estimation of the MS.The Kalman 
filtering technique is employed to smooth out and to trace the position of the MS based on 
its previously estimated data. 
With the characteristics of simplicity and high accuracy, the range-based positioning 
method based on triangulation approach is considered according to the time-of-arrival 
measurements. The location of a MS can be estimated and traced from the availability of 
enough SNs with known positions, denoted as anchor nodes ANs. In general, at least 
three ANs are required to perform two-dimensional location estimation for an MS. 
However, enough signal sources for location estimation and tracking may not always 
happen under the WSN scenarios. Unlike the regular deployment of satellites or cellular 
base stations, the ANs within the WSN are in general spontaneously and arbitrarily 
deployed. Even though there can be high density of SNs within certain area, the number 
of ANs with known position can still be limited. Moreover, the transmission ranges for 
SNs are comparably shorter than both the satellite-based (Kuusniemi et al., 2007) and the 
cellular-based (Zhao, 2002) systems. Therefore, there is high probability for the node 
deficiency problem (i.e., the number of available ANs is less than three) to occur within 
the WSN, especially under the situations that the SNs are moving. Due to the deficiency of 
signal sources, most of the existing location estimation and tracking schemes becomes 
inapplicable for the WSNs. 
In this book chapter, a predictive location tracking (PLT) algorithm is proposed to 
alleviate the problem with insufficient measurement inputs for the WSNs. Location 
tracking can still be performed even with only two ANs or a single AN available to be 
exploited. The predictive information obtained from the Kalman filtering technique (Zaidi 
& Mark, 2005) is adopted as the virtual signal sources, which are incorporated into the 
two-step least square method for location estimation and tracking. Persistent accuracy for 
location tracking can be achieved by adopting the proposed PLT scheme, especially under 
the situations with inadequate signal sources. Numerical results demonstrate that the 
proposed PLT algorithm can achieve better precision in comparison with other location 
tracking schemes under the WSNs. 

 
2. Preliminaries 

2.1 Mathematical Modeling 
In order to facilitate the design of the proposed PLT algorithm, the signal model for the TOA 
measurements is utilized. The set rkcontains all the available measured relative distance at 

 

the kthtime step, i.e., rk= { r1,k, r2,k, …, ri,k, …, rN� �� }, where N� denotes the number of 
available ANs. The measured relative distance (ri,k) between the MS and the ithAN(obtained 
at the kthtime step) can be represented as 
 

ri,k= c· ti,k=�i,k + ni,k + ei,k (1) 
 
Where ti,k denotes the TOA measurement obtained from the ithAN at the kthtime step, and c 
is the speed of light. ri,k is contaminated with the TOA measurement noise ni,kand the NLOS 
error ei,k. It is noted that the measurement noise ni,kis in general considered as zero mean 
with Gaussian distribution. On the other hand, the NLOS error ei,kis modeled as 
exponentially-distributed for representing the positive bias due to the NLOS effect (Lee, 
1993). The noiseless relative distance ζi,kin (1) between the MS’s true position and the ithAN 
can be obtained as 
 

ζi,k = [ (xk - xi,k)2 + (yk - yi,k)2]1/2 (2) 
 
where xk= [xkyk] represents the MS’s true position and xi,k= [xi,kyi,k] is the location of the 
ithAN for i = 1 to N�. Therefore, the set of all the available ANs at the kthtime step can be 
obtained as PAN,k= { x1,k, x2,k, …,xi,k, …, �N� ��}. 

 
2.2Two-Step LS Estimator 
The two-step LS scheme (Chen& Ho, 1994) is utilized as the baseline location estimator for 
the proposed predictive location tracking algorithms. It is noticed that three TOA 
measurements are required for the two-step LS method in order to solve for the location 
estimation problem. The concept of the two-step LS scheme is to acquire an intermediate 
location estimate in the first step with the definition of a new variable βk, which is 
mathematically related to the MS’s position, i.e., βk= xk2 + yk2. At this stage, the variable βkis 
assumed to be uncorrelated to the MS’s position. This assumption effectively transforms the 
nonlinear equations for location estimation into a set of linear equations, which can be 
directly solved by the LS method. Moreover, the elements within the associated covariance 
matrix are selected based on the standard deviation from the measurements. The variations 
within the corresponding signal paths are therefore considered within the problem 
formulation. 
The second step of the method primarily considers the relationship that the variable βkis 
equal to xk2 + yk2, which was originally assumed to be uncorrelated in the first step. 
Improved location estimation can be obtained after the adjustment from the second step. 
The detail algorithm of the two-step LS method for location estimation can be found in 
(Chen& Ho, 1994) (Cong & Zhuang, 2002) (Wang et al., 2003). 

 
 
 
 
 

www.intechopen.com



Mobile Location Tracking Scheme for Wireless  
Sensor Networks with Deicient Number of Sensor Nodes 259

 

realization of the Maximum Likelihood (ML) estimator and does not require iterative 
processes. The two-step LS scheme is advantageous in its computational efficiency with 
adequate accuracy for location estimation.  
In addition to the estimation of a MS’s position, trajectory tracking of a moving MS has 
been studied. The Extended Kalman Filter (EKF) scheme is considered the well-adopted 
method for location tracking. The EKF algorithm estimates the MS’s position, speed, and 
acceleration via the linearization of measurement inputs. The Kalman Tracking (KT) 
scheme (Nájar& Vidal,2001) distinguishes the linear part from the originally nonlinear 
equations for location estimation. The linear aspect is exploited within the Kalman 
filtering formulation; while the nonlinear term is served as an external measurement 
input to the Kalman filter. The Cascade Location Tracking(CLT) scheme (Chen &Feng, 
2005) utilizes the two-step LS method for initial location estimation of the MS.The Kalman 
filtering technique is employed to smooth out and to trace the position of the MS based on 
its previously estimated data. 
With the characteristics of simplicity and high accuracy, the range-based positioning 
method based on triangulation approach is considered according to the time-of-arrival 
measurements. The location of a MS can be estimated and traced from the availability of 
enough SNs with known positions, denoted as anchor nodes ANs. In general, at least 
three ANs are required to perform two-dimensional location estimation for an MS. 
However, enough signal sources for location estimation and tracking may not always 
happen under the WSN scenarios. Unlike the regular deployment of satellites or cellular 
base stations, the ANs within the WSN are in general spontaneously and arbitrarily 
deployed. Even though there can be high density of SNs within certain area, the number 
of ANs with known position can still be limited. Moreover, the transmission ranges for 
SNs are comparably shorter than both the satellite-based (Kuusniemi et al., 2007) and the 
cellular-based (Zhao, 2002) systems. Therefore, there is high probability for the node 
deficiency problem (i.e., the number of available ANs is less than three) to occur within 
the WSN, especially under the situations that the SNs are moving. Due to the deficiency of 
signal sources, most of the existing location estimation and tracking schemes becomes 
inapplicable for the WSNs. 
In this book chapter, a predictive location tracking (PLT) algorithm is proposed to 
alleviate the problem with insufficient measurement inputs for the WSNs. Location 
tracking can still be performed even with only two ANs or a single AN available to be 
exploited. The predictive information obtained from the Kalman filtering technique (Zaidi 
& Mark, 2005) is adopted as the virtual signal sources, which are incorporated into the 
two-step least square method for location estimation and tracking. Persistent accuracy for 
location tracking can be achieved by adopting the proposed PLT scheme, especially under 
the situations with inadequate signal sources. Numerical results demonstrate that the 
proposed PLT algorithm can achieve better precision in comparison with other location 
tracking schemes under the WSNs. 

 
2. Preliminaries 

2.1 Mathematical Modeling 
In order to facilitate the design of the proposed PLT algorithm, the signal model for the TOA 
measurements is utilized. The set rkcontains all the available measured relative distance at 

 

the kthtime step, i.e., rk= { r1,k, r2,k, …, ri,k, …, rN� �� }, where N� denotes the number of 
available ANs. The measured relative distance (ri,k) between the MS and the ithAN(obtained 
at the kthtime step) can be represented as 
 

ri,k= c· ti,k=�i,k + ni,k + ei,k (1) 
 
Where ti,k denotes the TOA measurement obtained from the ithAN at the kthtime step, and c 
is the speed of light. ri,k is contaminated with the TOA measurement noise ni,kand the NLOS 
error ei,k. It is noted that the measurement noise ni,kis in general considered as zero mean 
with Gaussian distribution. On the other hand, the NLOS error ei,kis modeled as 
exponentially-distributed for representing the positive bias due to the NLOS effect (Lee, 
1993). The noiseless relative distance ζi,kin (1) between the MS’s true position and the ithAN 
can be obtained as 
 

ζi,k = [ (xk - xi,k)2 + (yk - yi,k)2]1/2 (2) 
 
where xk= [xkyk] represents the MS’s true position and xi,k= [xi,kyi,k] is the location of the 
ithAN for i = 1 to N�. Therefore, the set of all the available ANs at the kthtime step can be 
obtained as PAN,k= { x1,k, x2,k, …,xi,k, …, �N� ��}. 

 
2.2Two-Step LS Estimator 
The two-step LS scheme (Chen& Ho, 1994) is utilized as the baseline location estimator for 
the proposed predictive location tracking algorithms. It is noticed that three TOA 
measurements are required for the two-step LS method in order to solve for the location 
estimation problem. The concept of the two-step LS scheme is to acquire an intermediate 
location estimate in the first step with the definition of a new variable βk, which is 
mathematically related to the MS’s position, i.e., βk= xk2 + yk2. At this stage, the variable βkis 
assumed to be uncorrelated to the MS’s position. This assumption effectively transforms the 
nonlinear equations for location estimation into a set of linear equations, which can be 
directly solved by the LS method. Moreover, the elements within the associated covariance 
matrix are selected based on the standard deviation from the measurements. The variations 
within the corresponding signal paths are therefore considered within the problem 
formulation. 
The second step of the method primarily considers the relationship that the variable βkis 
equal to xk2 + yk2, which was originally assumed to be uncorrelated in the first step. 
Improved location estimation can be obtained after the adjustment from the second step. 
The detail algorithm of the two-step LS method for location estimation can be found in 
(Chen& Ho, 1994) (Cong & Zhuang, 2002) (Wang et al., 2003). 
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3. Architecture overview of proposed PLT algorithm 

 
Fig. 1.The architecture diagrams of (a) the KT scheme; (b) the CLTscheme; and (c) the 
proposed PLT scheme. 
 
The objective of the proposed PLT algorithm is to utilize the predictive information acquired 
from the Kalman filter to serve as the assisted measurement inputs while the environments 
are deficient with signal sources. Fig. 1 illustrates the system architectures of the KT(Nájar& 
Vidal,2001), the CLT (Chen & Feng, 2005) and the proposed PLT scheme. The TOA signals 
(rkas in (1)) associated with the corresponding location set of the ANs (PAN,k) are obtained as 
the signal inputs to each of the system, which result in the estimated state vector of the MS, 
i.e.��� � � ����������Twhere ��� � � x��y��� represents the MS’s estimated position, ��� � � v����v����� 
is the estimated velocity, and ��� � � a����a�����= denotes the estimated acceleration. 
Since the equations (i.e., (1) and (2)) associated with the location estimation are intrinsically 
nonlinear, different mechanisms are considered within the existing algorithms for location 
tracking. The KT scheme (as shown in Fig. 1.(a)) explores the linear aspect of location 
estimation within the Kalman filtering formulation; while the nonlinear term (i.e.,β�� � x��� � y���) is treated as an additional measurement input to the Kalman filter. It is stated within the 
KT scheme that the value of the nonlinear term can be obtained from an external location 
estimator, e.g. via the two-step LS method. Consequently, the estimation accuracy of the KT 
algorithm greatly depends on the precision of the additional location estimator. On the other 
hand, the CLT scheme (as illustrated in Fig. 1.(b)) adopts the two-step LS method to acquire 
the preliminary location estimate of the MS. The Kalman Filter is utilized to smooth out the 
estimation error by tracing the estimated state vector ���of the MS. 

 

The architecture of the proposed PLT scheme is illustrated in Fig. 1.(c). It can be seen that 
the PLT algorithm will be thesame as the CLT scheme while N� ≥3, i.e. the number of 
available ANs is greater than or equal to three. However, the effectiveness of the PLT 
schemes is revealed as1≤ N� <3, i.e. with deficient measurement inputs. The predictive state 
information obtained from the Kalman filter is utilized for acquiring the assisted 
information, which will be fed back into the location estimator. The extended sets for the 
locations of the ANs (i.e., �AN���  � ��AN�� � �AN���� ) and the measured relative 
distances(i.e.,���  � ��� � �����) will be utilized as the inputs to thelocation estimator. The sets 
of the virtual ANs’ locations�AN���and the virtual measurements  ����are defined asfollows. 
 
Definition 1 (Virtual Anchor Nodes).Within the PLT formulation, the virtual Anchor 
Nodes are considered as the designed locations for assisting the location tracking of the MS 
under the environments with deficient signal sources. The set of virtual ANs �AN��� is 
defined under two different numbers of N� as 
 �AN��� � � ������ �  �or N� � ������� � ����� � �or N� � 1 

 
(3) 

 
Definition 2 (Virtual Measurements).Within thePLT formulation, the virtual measurements 
are utilized to provide assisted measurement inputs while the signal sources are insufficient. 
Associating with the designed set of virtual ANs �AN���, the corresponding set of virtual 
measurements is defined as 
 ���� � � �r���� �  �or N� � ��r���� � r���� � �or N� � 1 

 
(4) 

 
It is noticed that the major task of the PLT scheme is to design and to acquire the values of �AN���and ����for the two cases (i.e. N� = 1 and2) with inadequate signal sources. In both the 
KT andthe CLT schemes, the estimated state vector ���can onlybe updated by the internal 
prediction mechanism of the Kalman filter while there are insufficient numbers of ANs 
(i.e.,N� <3 as shown in Fig. 1.(a) and 1.(b) with the dashed lines). The location estimator (i.e., 
the two-step LS method) is consequently disabled owing to the inadequate number of the 
signal sources. The tracking capabilities of both schemes significantly depend on the 
correctness of the Kalman filter’s prediction mechanism. Therefore, the performance for 
location tracking can be severely degraded due to the changing behavior of the MS, i.e., with 
the variations from the MS’s acceleration. 
On the other hand, the proposed PLT algorithm can still provide satisfactory tracking 
performance with deficient measurement inputs, i.e., with N� = 1 and 2. Under these 
circumstances, the locationestimator is still effective with the additional virtual ANs �AN���and the virtual measurements����, whichare imposed from the predictive output of the 
Kalman filter (as shown in Fig. 1.(c)). It is also noted that the PLT scheme will perform the 
same as the CLT method under the case with no signal input, i.e., underN� = 0. The virtual 
ANs’ location set �AN���andthe virtual measurements ����by exploiting the PLTformulation 
are presented in the next section. 
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3. Architecture overview of proposed PLT algorithm 

 
Fig. 1.The architecture diagrams of (a) the KT scheme; (b) the CLTscheme; and (c) the 
proposed PLT scheme. 
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(rkas in (1)) associated with the corresponding location set of the ANs (PAN,k) are obtained as 
the signal inputs to each of the system, which result in the estimated state vector of the MS, 
i.e.��� � � ����������Twhere ��� � � x��y��� represents the MS’s estimated position, ��� � � v����v����� 
is the estimated velocity, and ��� � � a����a�����= denotes the estimated acceleration. 
Since the equations (i.e., (1) and (2)) associated with the location estimation are intrinsically 
nonlinear, different mechanisms are considered within the existing algorithms for location 
tracking. The KT scheme (as shown in Fig. 1.(a)) explores the linear aspect of location 
estimation within the Kalman filtering formulation; while the nonlinear term (i.e.,β�� � x��� � y���) is treated as an additional measurement input to the Kalman filter. It is stated within the 
KT scheme that the value of the nonlinear term can be obtained from an external location 
estimator, e.g. via the two-step LS method. Consequently, the estimation accuracy of the KT 
algorithm greatly depends on the precision of the additional location estimator. On the other 
hand, the CLT scheme (as illustrated in Fig. 1.(b)) adopts the two-step LS method to acquire 
the preliminary location estimate of the MS. The Kalman Filter is utilized to smooth out the 
estimation error by tracing the estimated state vector ���of the MS. 

 

The architecture of the proposed PLT scheme is illustrated in Fig. 1.(c). It can be seen that 
the PLT algorithm will be thesame as the CLT scheme while N� ≥3, i.e. the number of 
available ANs is greater than or equal to three. However, the effectiveness of the PLT 
schemes is revealed as1≤ N� <3, i.e. with deficient measurement inputs. The predictive state 
information obtained from the Kalman filter is utilized for acquiring the assisted 
information, which will be fed back into the location estimator. The extended sets for the 
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distances(i.e.,���  � ��� � �����) will be utilized as the inputs to thelocation estimator. The sets 
of the virtual ANs’ locations�AN���and the virtual measurements  ����are defined asfollows. 
 
Definition 1 (Virtual Anchor Nodes).Within the PLT formulation, the virtual Anchor 
Nodes are considered as the designed locations for assisting the location tracking of the MS 
under the environments with deficient signal sources. The set of virtual ANs �AN��� is 
defined under two different numbers of N� as 
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Definition 2 (Virtual Measurements).Within thePLT formulation, the virtual measurements 
are utilized to provide assisted measurement inputs while the signal sources are insufficient. 
Associating with the designed set of virtual ANs �AN���, the corresponding set of virtual 
measurements is defined as 
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(4) 

 
It is noticed that the major task of the PLT scheme is to design and to acquire the values of �AN���and ����for the two cases (i.e. N� = 1 and2) with inadequate signal sources. In both the 
KT andthe CLT schemes, the estimated state vector ���can onlybe updated by the internal 
prediction mechanism of the Kalman filter while there are insufficient numbers of ANs 
(i.e.,N� <3 as shown in Fig. 1.(a) and 1.(b) with the dashed lines). The location estimator (i.e., 
the two-step LS method) is consequently disabled owing to the inadequate number of the 
signal sources. The tracking capabilities of both schemes significantly depend on the 
correctness of the Kalman filter’s prediction mechanism. Therefore, the performance for 
location tracking can be severely degraded due to the changing behavior of the MS, i.e., with 
the variations from the MS’s acceleration. 
On the other hand, the proposed PLT algorithm can still provide satisfactory tracking 
performance with deficient measurement inputs, i.e., with N� = 1 and 2. Under these 
circumstances, the locationestimator is still effective with the additional virtual ANs �AN���and the virtual measurements����, whichare imposed from the predictive output of the 
Kalman filter (as shown in Fig. 1.(c)). It is also noted that the PLT scheme will perform the 
same as the CLT method under the case with no signal input, i.e., underN� = 0. The virtual 
ANs’ location set �AN���andthe virtual measurements ����by exploiting the PLTformulation 
are presented in the next section. 
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4. Formulation of PLT algorithm 

The proposed PLT scheme will be explained in this section. As shown in Fig. 1.(c), the 
measurement and state equations for the Kalman filter can be represented as 
 �� � � � ��� � m� (5) 
 ��� � � � ����� � p� (6) 
 
where ��� � � ����������T . The variables m� and  p� denotethe measurement and the process 
noises associated withthe covariance matrices R and Q within the Kalman filtering 
formulation. The measurement vector �� � � �������������Trepresents the measurement input 
whichis obtained from the output of the two-step LS estimatorat the kth time step (as in Fig. 
1.(c)). The matrix M and the state transition matrix F can be obtained as 
 � � �1 0 00 1 00 0 00 0 0� (7) 

 

� � ���
��� 1 0 ∆t0 1 0 0  0 1 0 0.�∆t� 0∆t 0 0.�∆t�0 ∆t 00 0 00 0 00 0 0 1  0 ∆t0  1 00  0 1 ���

���  
 

(8) 

 
where∆tdenotes the sample time interval. The mainconcept of the PLT scheme is to provide 
additional virtual measurements (i.e.,����as in (4)) to the two-step LS estimator while the 
signal sources are insufficient. Two cases (i.e. the two-ANs case and the single-AN case) are 
considered in the following subsections. 

 
4.1Two-ANs case 
As shown in Fig. 2, it is assumed that only two ANs (i.e., AN1and AN2) associated with two 
TOA measurements are available at the time step k in consideration. The main target is to 
introduce an additional virtual AN along with its virtual measurement (i.e., �AN��� �� ����� �and ���� � � r���� �  ) by acquiring the predictive output information from the Kalman 
filter. Knowing that there are predicting and correcting phases within the Kalman filtering 
formulation, the predictive state can therefore be utilized to compute the supplementary 
virtual measurement r���� as 

 

 
Fig. 2.The schematic diagram of the two-ANs case for the proposed PLT scheme. 
                               r���� � ���� � ��� � ����� � ���� � � � � � � ����� � ��� � ����� � ���� 

 
(9) 

 
where x�� � ��� denotes the predicted MS’s position at time step k; while x���� � ���  is the 
corrected (i.e., estimated) MS’s position obtained at the (k - 1)th time step. It is noticed that 
both values are available at the (k - 1)th time step. The virtual measurement r���� isdefined as 
the distance between the previous locationestimate (x���� � ���) as the position of the virtual 
AN (i.e., ANv,1: x���� � x���� � ��� ) and the predicted MS’s position(x�� � ���) as the possible 
position of the MS as shown in Fig. 2. It is also noted that the corrected state vectors���� � ���is 
available at the current time step k. However, due to the insufficient measurement input, the 
state vector s�� � �is unobtainable at the kth time step while adopting the conventional two-
step LS estimator. By exploiting r���� (in (9)) as the additional signal input, the measurement 
vector z� can be acquired after thethree measurement inputs r��  � �r��� � r��� � r���� � and 
thelocations of the ANs PAN���  � � x���  � x��� � x���� �have beenimposed into the two-step LS 
estimator. As ��has beenobtained, the corrected state vector s�� � �can be updatedwith the 
implementation of the correcting phase of the Kalman filter at the time step k as 
 ����� � ���������������T���������T � ������� � ��������� (10) 
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4. Formulation of PLT algorithm 
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noises associated withthe covariance matrices R and Q within the Kalman filtering 
formulation. The measurement vector �� � � �������������Trepresents the measurement input 
whichis obtained from the output of the two-step LS estimatorat the kth time step (as in Fig. 
1.(c)). The matrix M and the state transition matrix F can be obtained as 
 � � �1 0 00 1 00 0 00 0 0� (7) 
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where∆tdenotes the sample time interval. The mainconcept of the PLT scheme is to provide 
additional virtual measurements (i.e.,����as in (4)) to the two-step LS estimator while the 
signal sources are insufficient. Two cases (i.e. the two-ANs case and the single-AN case) are 
considered in the following subsections. 

 
4.1Two-ANs case 
As shown in Fig. 2, it is assumed that only two ANs (i.e., AN1and AN2) associated with two 
TOA measurements are available at the time step k in consideration. The main target is to 
introduce an additional virtual AN along with its virtual measurement (i.e., �AN��� �� ����� �and ���� � � r���� �  ) by acquiring the predictive output information from the Kalman 
filter. Knowing that there are predicting and correcting phases within the Kalman filtering 
formulation, the predictive state can therefore be utilized to compute the supplementary 
virtual measurement r���� as 

 

 
Fig. 2.The schematic diagram of the two-ANs case for the proposed PLT scheme. 
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(9) 

 
where x�� � ��� denotes the predicted MS’s position at time step k; while x���� � ���  is the 
corrected (i.e., estimated) MS’s position obtained at the (k - 1)th time step. It is noticed that 
both values are available at the (k - 1)th time step. The virtual measurement r���� isdefined as 
the distance between the previous locationestimate (x���� � ���) as the position of the virtual 
AN (i.e., ANv,1: x���� � x���� � ��� ) and the predicted MS’s position(x�� � ���) as the possible 
position of the MS as shown in Fig. 2. It is also noted that the corrected state vectors���� � ���is 
available at the current time step k. However, due to the insufficient measurement input, the 
state vector s�� � �is unobtainable at the kth time step while adopting the conventional two-
step LS estimator. By exploiting r���� (in (9)) as the additional signal input, the measurement 
vector z� can be acquired after thethree measurement inputs r��  � �r��� � r��� � r���� � and 
thelocations of the ANs PAN���  � � x���  � x��� � x���� �have beenimposed into the two-step LS 
estimator. As ��has beenobtained, the corrected state vector s�� � �can be updatedwith the 
implementation of the correcting phase of the Kalman filter at the time step k as 
 ����� � ���������������T���������T � ������� � ��������� (10) 
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where ������ � ��������T � � (11) 
 
and 
 �������� � �� � ���������T�����������T � ������ � �������� (12) 
 
It is noted that ������ and �������� represent the predicted and the corrected estimation 
covariance within the Kalman filter. I in (12) is denoted as an identity matrix. As can been 
observed from Fig. 2, the virtual measurement r���� associating with the other two 
existingmeasurements r��� and r��� provide a confinedregion for the estimation of the MS’s 
location at the time step k, i.e.,�����.Based on (9), the signal variation of r���� isconsidered as 
the variance of the predicted distance���� � ��� � ����� � ����between the previous (k -1) time 
steps. Therefore, the variance of virtual noise n���� is regarded as σ����� � = Var (���� � ��� ������ � ����). 

 
4.2One-AN case 
 

 
Fig. 3.The schematic diagram of the one-AN case for the proposed PLT scheme. 
 
In this case, only one AN (i.e.,AN1) with one TOA measurement input is available at the kth 

time step(as shown in Fig. 3). Two additional virtual ANs and measurements are required 

 

for the computation of the two-step LS estimator, i.e., �AN��� � ������ � ����� � and ���� ��r���� � r���� �. Similar to the previous case,the first virtual measurement r���� is acquired as 
in(9) by considering x���� � ���as the position of the firstvirtual AN (i.e.,����� �  x���� � ���) 
with the predicted MS’sposition (i.e.,x��� ���) as the possible position of the MS.On the other 
hand, the second virtual AN’s position i sassumed to locate at the predicted MS’s position 
(i.e., ����� � x��� ��� ) as illustrated in Fig. 3. The corresponding second virtual measurement r���� is defined as the averageprediction error obtained from the Kalman filtering 
formulation by accumulating the previous time steps as 
 r���� � 1� � 1 ������ � � ���� �������

���  
 

(13) 

 
It is noted that r���� is obtained as the mean predictionerror until the (k - 1)th time step. In the 
case while the Kalman filter is capable of providing sufficient accuracy in its prediction 
phase, the virtual measurement r���� may approach zero value. Associating with the 
singlemeasurement r���� from AN1, the two additional virtual measurements r���� (centered 
at x���� � ���) and r���� (centered at x�� � ���) result in a constrained region (as in Fig. 3) for 
location estimation of the MS under the environments with insufficient signal sources. 
Similarly to two-ANs case, the variance of virtual noise n���� is regarded as σ����� � = Var 
( ���� � ��� � ����� � ���� ). On the other hand, the signal variation of the second virtual 
measurement r���� is obtained as the variance of the averaged prediction errors as 
                               n���� � r����– ����� � 1� � 1 ������ � � ���� �������

��� � ����� � � ���� ���� 

 
 

(14) 

 
The associated variance of virtual noise n����can also be regarded as σ����� � = Var ( r���� ). It is 
noted that the variances will be exploited as the weighting coefficients within the 
formulation of the two-step LS estimator. 

 
5. Performance evaluation 

Simulations are performed to show the effectiveness of the proposed PLT scheme under 
different numbers of ANs, including the scenarios with deficient signal sources. The noise 
models and the simulation parameters are illustrated in Subsection 5.1. The performance 
comparison between the proposed PLT algorithm with the other existing location tracking 
schemes, i.e., the KT and the CLT techniques, are conducted in Subsection 5.2. 

 
5.1 Noise model 
Different noise models (Chen, 1999) for the TOA measurements are considered in the 
simulations. The model for the measurement noise of the TOA signals is selected as the 
Gaussian distribution with zero mean and 5meters of standard deviation, i.e. n����N�0����.On the other hand, an exponential distribution p�����τ�is assumed for the NLOS 
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noise model of the TOAmeasurements as 
 p�����v� � � 1λ��� exp �� vλ���� v � 00  otherwise 

 
(15) 

 
where  λ��� � � � τ��� � � � τ��������ρ. The parameter τ���is the RMS delay spread between the 
ith AN to the MS.τ�  represents the median value of τ��� , which is selectedas 0.1in the 
simulations. ε is the path loss exponentwhich is assumed to be 0.5. The shadow fading 
factor ρ is a log-normal random variable with zero mean andstandard deviation σ�chosen as 
4 dB in the simulations.The parameters for the noise models as listed in thissubsection 
primarily fulfill the environment while theMS is located within the rural area in (Chen,1999). 
It is noticed that the reason for selecting the rural area as the simulation scenario is due to its 
similarity to the channel condition of WSNs. The transmission range of the AN is set as 100 
meter. Moreover, the sampling time∆t is chosen as 1 sec in the simulations. 

 
5.2 Simulation Results 
 

 
Fig. 4.Total number of available ANs (Nk) vs. simulation time (sec). 
 
The performance comparisons between the KT scheme, the CLT scheme, and the proposed 
PLT algorithm are conducted under the rural environment. Fig. 4 illustrates the scenario 
with various numbers of ANs (i.e. the Nk values) that are available at different time intervals. 
It can be seen that the number of ANs becomes insufficient (i.e. Nk<3) from the time interval 
of t = 84 to 89 and t=98 to 150 sec. The region I marked in Fig. 4 denotes for the time period 

 

t=84 to 89 when the number of available AN is two (i.e., Nk= 2); the region II represents for 
the time period t=98 to 126 when Nk= 2; while the region III stands for t =127 to 150 when 
Nk= 1. The total simulation interval is set as 150 seconds. 
 

 
Fig. 5.Performance comparison of MS tracking. (Dashed lines: estimated trajectory; Solid 
lines: true trajectory; Red empty circles: the position of the ANs). 
 
Fig. 5 illustrates the performance comparison of the trajectory using the three algorithms. 
The estimated values obtained from these schemes are illustrated via the dashed lines; while 
the true values are denoted by the solid lines. The locations of the ANs are represented by 
the red empty circles as in Fig. 5. The acceleration is designed to vary at time t = 1, 40, 55, 
100, and 120sec from ak= (ax,k, ay,k) = (0.05, 0), (-0.01, 0.075), (0, 0), (0.025,0), to (0.05, -0.1) 
m/sec2. The corresponding velocity of MS is lied between [0,5] m/sec. It is noted that the 
MS experiences third (i.e., region I and II), fourth (i.e., region II) and fifth (i.e. region III) 
acceleration change when the number of ANs becomes insufficient. 
By observing the starting time interval between t = 0and 83 sec (where the number of ANs is 
sufficient), the three algorithms provide similar performance on location tracking as shown 
in the x-y plots in Fig. 5.During the time interval between t = 98 and 150 sec with inadequate 
signal sources, it can be observed that only the proposed PLT scheme can achieve 
satisfactory performance in the trajectory tracking. The estimated trajectories obtained from 
both the KT and the CLT schemes diverge from the true trajectories due to the inadequate 
number of measurement inputs. 
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Fig. 6.The position error(m) vs. the simulation time (sec) 
 

 
Fig. 7.The RMSE (m) vs. the simulation time (sec). 
 
Moreover, Figs. 6 and 7 illustrate the position error and the Root Mean Square Error 
(RMSE)(i.e., characterizing the signal variances) for location estimation and tracking of the 

 

MS. It is noted that the position error (∆x�) are computed as: ∆x� � ��x�� � x����N�, where N�= 100 indicates the number of simulation runs. On the other hand, it is noted that the 

RMSE is computed as: RMSE= ��� �x�� � x���N���� ��N�����
.The three location tracking schemes 

are compared based on the same simulation scenario as shown in Fig. 5. It can be observed 
from both plots that the proposed PLT algorithms outperform the conventional KT and CLT 
schemes. The main differences between these algorithms occur while the signal sources 
become insufficient within the region I, II, and III. The proposed PLT schemes can still 
provide consistent location estimation and tracking; while the other two algorithms result in 
significantly augmented estimation errors. The major reason is attributed to the assisted 
information that is fed back into the location estimator while the signal sources are deficient. 
 

 
Fig. 8.Performance comparison between the location tracking schemes. 
 
Fig. 8 shows the sorted position errors based on the same simulation results as shown in Fig. 
6. Since the PLT algorithm is essentially the same as the CLT scheme while the number of 
ANs is adequate, both schemes perform the same under 50% of position errors. The 
performance of the CLT scheme becomes worse after 60% of position errors due to the 
deficiency of signal sources; while the proposed PLT algorithm can still provide feasible 
performance for location tracking. Moreover, the performance obtained from the KT scheme 
is similar to the CLT which is comparably worse than the PLT algorithm. 

 
6. Conclusion 

In this book chapter, the Predictive Location Tracking (PLT) scheme is proposed. The 
predictive information obtained from the Kalman filtering formulation is exploited as the 
additional measurement inputs for the location estimator. With the feedback information, 
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sufficient signal sources become available for location estimation and tracking of a mobile 
device. It is shown in the simulation results that the proposed PLT scheme can provide 
consistent accuracy for location estimation and tracking even with insufficient signal sources. 

 
7. References 

Chen, C.-L. & Feng, K.-F. (2005). Hybrid Location Estimation and Tracking System for Mobile 
Devices, Proceedings of IEEE Vehicular Technology Conference, pp. 2648–2652, Jun. 2005 

Chen, P. C. (1999). A Non-Line-of-Sight Error Mitigation Algorithm in Location Estimation, 
Proceedings of IEEE Wireless Communications Networking Conference, pp. 316–320, Sep. 
1999 

Chen, Y. T. & Ho, K. C. (1994).A Simple and Efficient Estimator for Hyperbolic Location. 
IEEE Trans. Signal Processing, Vol. 42, Aug. 1994.pp.1905–1915 

Cong, L. & Zhuang, W. (2002).Hybrid TDOA/AOA Mobile User Location for Wideband 
CDMA Cellular Systems. IEEE Trans. Wireless Commun., Vol. 1, Jul. 2002, pp. 439–447 

Foy,W. H. (1976).Position-Location Solutions by Taylor-Series Estimation, IEEE Trans. Aerosp. 
Electron. Syst., vol. 12, pp. 187–194, Mar.1976. 

Gezici, S.; Tian Z.; Giannakis, G. B.; Kobayashi, H.; Molisch, A. F.; Poor, H. V.& Sahinoglu, Z. 
(2005). Localization via Ultra-Wideband Radios: A Look at Positioning Aspects for 
Future Sensor Networks. IEEE Signal Processing Mag., Vol. 22, Jul. 2005, pp. 70–84 

Hara, S.; Zhao, D.; Yanagihara, K.; Taketsugu, J.; Fukui, K.; Fukunaga, S. & Kitayama, K. 
(2005). Propagation Characteristics of IEEE 802.15.4 Radio Signal and Their 
Application for Location Estimation, Proceedings of IEEE Vehicular Technology 
Conference, pp. 97–101, Jun. 2005 

Lee, C. Y. (1993). Mobile Communications Engineering, McGraw-Halls, ISBN: 978-0070370395 
Kuusniemi, H.; Wieser, A.; Lachapellea, G. & Takala, J. (2007).User-level reliability 

monitoring in urban personal satellite-navigation. IEEE Trans. Aerosp. Electron. Syst., 
Vol. 43, Oct. 2007, pp. 1305–1318 
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