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1. Introduction 

During the last decade many advances in a number of fields have supported the idea that a 

direct interface between the human brain and an artificial system, called Brain Computer 

Interface (BCI), is a viable concept, although a significant research and development effort 

has to be conducted before these technologies enter routine use. The conceptual approach is 

to model the brain activity variations and map them into some kind of actuation over a 

target output through the use of signal processing and machine learning methods. In the 

meantime, several working BCI systems have been described in the literature using a variety 

of signal acquisition methods, experimental paradigms, pattern recognition approaches and 

output interfaces, and requiring different types of cognitive activity (Allison et al., 2008; 

Bashashati et al., 2007; Berger et al., 2008; Leeb et al.‚  2007; Millán, 2008; Müller-Putz & 

Pfurtscheller‚ 2008). Nowadays, the principal reason for the BCI research is the potential 

benefits to those with severe motor disabilities, such as brainstem stroke, amyotrophic 

lateral sclerosis or severe cerebral palsy (Bensch et al.‚  2007; Birbaumer et al.‚  2007; Nijboer et 

al.‚  2008; Pfurtscheller et al.‚  2008). However, the most recent advances in acquisition 

technology and signal processing assert that controlling certain functions by neural 

interfaces may have a significant impact in the way people will operate computers, 

wheelchairs, prostheses, robotic systems and other devices.  

A very effective way to analyze the brain physiological activity is the electroencephalogram 

(EEG) measurements from the cortex whose sources are the action potentials of the nerve 

cells in the brain. The theoretical and the application studies are based on the knowledge 

that the EEG signals are composed of waves inside the 0-60 Hz frequency band and on the 

fact that different brain activities can be identified based on the recorded oscillations 

(Niedermayer & Lopes da Silva, 1999). Over the last years, the interest in extracting 

knowledge hidden in the EEG signals is rapidly growing, as well as their applications. EEG-

based BCIs for motor control and biometry are among the most recent applications in the 

computational neuro-engineering field. Despite the proof of concept and many encouraging 

results achieved by some research groups (Marcel & Millán, 2007; Millán et al.‚  2004; 

Palaniappan & Mandic, 2007; Pineda, 2005; Pfurtscheller et al., 2006; Vidaurre et al., 2006), 

additional efforts are required in order to design and implement efficient BCIs. For example, 

reliable signal processing and pattern recognition techniques able to continuously extract 

meaningful information from the very noisy EEG is still a high challenge. 
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The project behind this chapter aims to initiate a long-term multidisciplinary research by 

combining developments in relevant fields, such as computational neuro-engineering, signal 

processing, pattern recognition, brain imaging and robotics. In the middle-term, the main 

objective has been the design and development of BCIs to exploit the benefits of advanced 

human-machine interfaces for control and biometry. In this line of thought, this chapter will 

present recent advances towards the development of two BCI systems that analyzes the 

brain activity of a subject measured through EEG. The former tries to find out the user’s 

intention and generates output commands for controlling an appropriate output device 

(Bento et al., 2008). The later explores the possibility of using the brain electrical activity 

during visual stimuli for implementing an EEG biometric system (Ferreira et al., 2010).  

The remainder of the chapter is organised as follows: Section 2 presents an overview of the 

activity at the IEETA (Institute of Electronic Engineering and Telematics of Aveiro) research 

unit. Section 3 explores the application of beamforming techniques in EEG source analysis 

from a simulated dataset. Section 4 describes the main advances in the development of an 

EEG-based BCI for biometry. Section 5 concludes the chapter and outlines the perspectives 

of future research. 

2. Framework of the research at IEETA 

The development of non-invasive BCIs for control and biometry are the research focus of the 

IEETA Computational Neuro-engineering research group and among the most recent 

applications based on personal EEG data. In spite of sharing the same basic components, a BCI 

to provide an alternative control channel for acting on the environment and a biometric system 

for identification or authentication reveal significant differences. While the BCI technology has 

been focused on interpreting brain signals for communication and control, the requirements of 

an EEG-based biometric system are entirely different: they require no interpretation of the brain 

signals, but use the unique brain´s response to stimuli as the identification method. The 

identified person is exposed to a stimulus (usually visual or auditory) for a certain time and the 

EEG data collected over this time is input to the biometry system. It has been shown in previous 

studies (Paranjape et al., 2001; Poulos et al., 1999) that the EEG can be used for building personal 

identification systems due to the unique brain-wave patterns of every individual. At the same 

time, the frequency band segmentation is a key concept in the area of EEG-based BCIs. Current 

implementations for motor control are based on the special frequency range termed 

sensorimotor rhythm mu which is related with imagery subject movements. As for the EEG-

based biometry, the concept of Evoked Potentials (EP) and Visual Evoked Potentials (VEP) of 

the brain electrical activity play a major role. EP are transient EEG signals generated in response 

to a stimulus (e.g., motor imagery or mental tasks) and VEP are EP produced in response to 

visual stimuli generating activity within the gamma band. 

From the viewpoint of brain-computer interfacing for control, a major concern has been 

considered to structure the research, which is: how to improve the BCI’s performance by 

solving the EEG inverse problem for the localization of the brain activities underlying 

recorded EEG. Source-based BCIs have been exploited with encouraging results by 

achieving improved spatial accuracy, as well as by providing additional biophysical 

information on the origin of the signals (Grave de Peralta et al., 2005; Grosse- Wentrup et al., 

2009; Kamousi et al., 2005; Noirhomme et al., 2008; Qin et al., 2004). In line with this, the 

problems of head models in EEG source analysis, the generation of the simulated datasets, 

the estimation of original sources signals using beamforming and the optimization of certain 
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parameters with influence in the system’s performance will be addressed as the central 

topics of this chapter. The insights gained with this study can be relevant when optimizing 

the design and implementation of a practical source-based BCI.  

In what concerns the EEG-based biometrical scenario, we aim at focusing on several open 

problems related with: i) design a feature model that belongs to a certain person and design a 

personal classifier with a respective owner, ii) study on the type and the duration of the 

evoked potentials (visual or auditory) that would enhance the identification/ authentication 

capacity; iii) post-processing techniques on the classifier output as averaging or sporadic error 

correction would improve the identification/ authentication capacity, and iv) optimization of 

the evoked potential duration (EPD) in order to implement the paradigm in an on-line scheme. 

3. Beamforming in brain-computer interfaces 

In brain imaging, the EEG inverse problem can be formulated as follows: using the 

measurements of electrical potential on the scalp recorded from multi-sensors, the idea is to 

build a reconstruction system able to estimate the time course of the original source signals 

or some of them with specific properties. The problems of reconstructing the original source 

waveforms from the sensor array, without exploiting the a priori knowledge about the 

transmission channel, can be expressed as a number of related blind source separation (BSS) 

problems. Choi et al. (2005) present a review of various blind source separation and 

independent component analysis (ICA) algorithms for static and dynamic models and their 

applications. 

Nowadays, beamforming has also become a popular analysis procedure for non-invasive 

recorded electrophysiological data sets (Baillet et al., 2001; Fuchs, 2007). The goal is to use a 

set or recording sensors and combine the signals recorded at individual sites to increase the 

signal-to-noise ratio, but focusing on a certain region in space (region-of-interest, ROI). In 

that sense, beamforming uses a different approach to image brain activity: the whole brain is 

scanned point by point. In general, when this approach is applied to EEG recordings the 

objective is to estimate the magnitude, locations and directions of the neural brain sources, 

by applying a spatial filter to the data. This spatial filter is designed to be fully sensitive to 

activity from the target location, while being as insensitive as possible to activity from other 

brain regions. This is achieved by constructing the spatial filter in an adaptive way, i.e., by 

taking into account the recorded data. More concretely, the beamforming is carried out by 

weighting the EEG signals, thereby adjusting their amplitudes such as that when added 

together they form the desired source signal.  

The primary motivation for our study is the potential of application of beamforming in 

brain-computer interfaces. In spite of some encouraging results (Grosse- Wentrup et al., 

2009; Kamousi et al., 2005; Noirhomme et al., 2008; Qin et al., 2004), only recently the concept 

of source-based BCI was adopted in literature. Therefore, additional research efforts are 

needed to establish a solid foundations aiming at uncovering the driving force behind the 

growth of source-based BCI as a research area and to expose its implications for the design 

and implementation of better systems. 

This section proceeds as follows: first, an EEG dataset is created by simulating the neural 

activity in specific locations modelled as current dipoles. The spatiotemporal patterns that 

would be measured by the recording system are the superposition of these brain sources. 

Second, some basic concepts on beamforming are presented before the EEG dataset used to 

estimate the source activity is processed. Finally, several simulations are performed in order 

to evaluate how certain parameters affect the performance of the reconstruction system.  
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3.1 Simulating the electric activity in the brain 
The human brain consists of neuron cells that communicate by means of short bursts of 

electrical activity called action potentials. Neurons that have relatively strong potentials at 

any given time tend to be clustered in the brain. Thus, the total electric potentials at any 

given time in such an activated region may be large enough to be detected on the scalp by 

EEG electrodes. Bearing this in mind, the current distribution in an activated region will be 

modelled by an equivalent current dipole within the conductive brain tissue. Further, the 

EEG dataset is simulated assuming that the electrical activity of the brain, at any given time, 

can be modelled by only a small number of dipoles.  

A three-concentric spherical model consisting of a central sphere for the brain and two 

spherical shells for the skull and scalp was used to approximate the head volume. This is a 

simplification that preserves some important electrical characteristics of the head, while 

reducing the mathematical complexity of the problem. The different electric conductivities 

of the several layers between the brain and the measuring surface need to be known. The 

skull is typically assumed to be more resistive than the brain and scalp that, in turn, have 

similar conductivity properties (Lai et al., 2005).  

Once defined the source and head models, the computation of the scalp potentials given by 

known electrical dipoles sources requires the solution of the forward problem. If there are M 

active dipoles and N sensors, the measured activity at the sensors ( )x t  is the sum of the 

individual contributions of each individual dipole ( )my t  as follows: 

 
1

( ) ( )
M

m m
m

x t L y t
=

= ∑  (1) 

Here, 3N
mL R ×∈  is the lead field matrix for dipole m. In the spherical three-layer model, an 

analytical expression for the forward model can be derived as function of the dipole 

location, electrodes positions and head geometry (Salu et al., 1990). The three columns in the 

forward model contain the activity that will be measured at the sensors due to a dipole 

source with unity moment in the x, y, and z directions, respectively, and zero moment in the 

other directions. The development of a forward model is also the first step in building the 

beamformer filter. This model is needed because its inverse describes how the brain activity 

can be estimated from sensor measurements, which is the purpose of beamforming.  

Throughout this section, all simulations are based on the following assumptions: (1) the 

scalp electrodes record the superposition of both brain sources and non-brain sources 

related to, for example, movements of muscles, (2) the reference is at an infinite distance 

with zero potential, (3) the location of the target dipoles are known; (4) the distribution of 

the electrodes on the scalp is made by selecting spherical coordinates θ and φ  from uniform 

distributions. Fig. 1 illustrates a realistic head model and the hemisphere model (top view) 

where an array of 64-electrodes is arranged. Their coordinates are defined with respect to a 

reference frame whose origin is located at the centre of the sphere. 

3.2 Beamforming: generic concepts 
The basic idea behind beamforming is to estimate the time course of a current dipole y(t)  at 

location r and direction d using the measurements of electrical potential on the scalp 

recorded from N sensors located at the surface of the head. The beamformer filter consists of 
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weight coefficients mw  that when multiplied by the electrode measurements give an 

estimate of the dipole moment: 

 ( ) ( )T
my t w x t=  (2) 

 

       

Right
Side
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Back

Left
Side

Yr

Xr

 

Fig. 1. The realistic head shape (left) is approximated by three concentric spherical shells; the 

referece coordinate frame has its origin at the centre of the spheres (right) 

The choice o the beamformer weights mw  is based on the statistics of the signal vector ( )x t  

received at the electrodes. Basically, the objective is to optimize the beamformer response with 

respect to a prescribed criterion, so that the output ( )y t contains minimal contribution from 

noise and interference. There are a number of criteria for choosing the optimum weights. The 

method described above represents a linear transformation where the transformation matrix is 

designed according to the solution of a constrained optimization problem (the early work is 

attributed to Capon, 1969). The basic idea is the following: assuming that the desired signal 

and its direction are both unknown, one way of ensuring good signal estimation is to 

minimize the output signal variance. To ensure that the desired signal is passed with a specific 

gain, a constraint may be used so that the response of the beamformer to the desired signal is: 

 ( )m mw L r I=  (3) 

where mL  is the lead field matrix of a unit source at target location r and I is the unit matrix. 

Minimization of contributions to the output due to interference is accomplished by choosing 

the weights to minimize the variance of the filter output: 

 { } { }mx
T
m wRwtryVar =  (4) 

Here, { }tr  is the trace of the sub-matrix of the bracketed expression and xR  is the 

covariance matrix of the EEG signals. In practice, the covariance matrix xR  will be estimated 

from the EEG signals during a given time window.  Therefore, the filter is derived by 

minimizing the output variance subject to the constraint defined in (3). This constraint 

ensures that the desired signal is passed with unit gain. Finally, the optimal solution can be 
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derived by constrained minimization using Lagrange multipliers (Van Veen, et al., 1997) and 

it can be expressed as: 

 1 1 1( )opt T
m x m m x mw R L L R L− − −=  (5) 

The response of the beamformer is often called the linearly constrained minimum variance 

(LCMV) beamformer. The LCMV provides not only an estimate of the source activity, but 

also its orientation, reason why is classified as vector beamforming. The differences and 

similarities among beamformers based on this criterion for choosing the optimum weights 

are discussed in Huang et al. (2004). It is also shown that the output power P of the 

beamformer, for a specific brain region at location r, can be computed by the following 

equation: 

 { } [ ]
⎭
⎬
⎫

⎩
⎨
⎧=

−− 11
mx

T
m LRLtryVar  (6) 

This is known as the Neural Activity Index (NAI) and it can be calculated for over the whole 

head at each grid point (Van Veen et al., 1997). 

3.2.1 Two dipole simulation 

The performance of the beamformer algorithm in determining the magnitude and direction 

of the source is evaluated in a specific scenario. First, two uncorrelated sources are defined 

based on sinusoidal waveforms with amplitudes 0.1 and frequencies 10 Hz and 15 Hz. The 

dipole moments are oriented along the z-axis and they are located at the following 

coordinates: ( ) ( )1 : , , 4,4,1d x y z = − cm and ( ) ( )2 : , , 4, 4,1d x y z = − cm. The radii of the three 

concentric hemispheres are 8.7, 9.2 and 10 cm. The corresponding conductivity values are 

0.33, 0.0165 and 0.33 1S m−⋅ . The scalp electrodes are distributed on a regular grid of 64-

electrodes covering the entire hemisphere. Second, white noise is added into the EEG 

representing the effect of external sources not generated by brain activity, but by some 

disturbance. The noise power was defined in such a way that the maximum signal-to-noise 

ratio (SNR) among the electrodes never exceeds 10. It is assumed that the EEG recording 

system operates with a 1kHz sampling rate. 

Fig. 2 shows the original and the estimated waveforms, giving an idea of the achieved 

accuracy provided by the LCMV algorithm. It must be emphasised that the reconstruction is 

performed considering that the location of one dipole is known, while the other represents 

an unknown interference source (single-source beamformer). The method is able to 

reconstruct the original signal and suppress the interfering source activity, though both 

estimates are noisy. The considerable noise gain can be reduced by subspace projection: the 

measurement space is separated into a signal and noise space by applying an eigenspace 

decomposition of the covariance matrix Rx. The dimensionality is reduced to the subspace 

defined by the eigenvectors whose eigenvalues are significantly bigger than zero. This 

eigenspace-based LCMV is able to strongly suppress the interfering source, as well as to 

provide a low noise gain (Fig. 3). However, the condition (3) is not preserved affecting 

slightly the amplitude of the output signal. In the simulations, the mean square error (MSE) 

is used to quantify the difference between the estimated source moments (beamformer 

output) and the reference signals.  
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Fig. 2. The original and estimated source waveforms represented together for dipole 1 (top) 

and dipole 2 (bottom) using the LCMV beamformer 
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Fig. 3. The original and estimated source waveforms represented together for dipole 1 (top) 

and dipole 2 (bottom) using the eigenspace-based LCMV beamformer 
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3.2.2 Performance limitations 
The distance and correlation among sources are two factors that may lead to degradation in 

the beamforming algorithm. Van Veen et al. (1997) pointed out these limitations by 

calculating the neural activity index in brain areas over a certain time interval. On the one 

hand, sources that are close to each other tend to merge. On the other hand, when the 

sources are correlated it is difficult to detect distinct source locations. A number of 

techniques have attempted to address the problem of correlated sources, such as a dual 

beamformer (Herdman et al., 2003) or using only half of the sensor array (Popescu et al., 

2008). The idea of a multiple-source beamforming is to account for the activity from possibly 

correlated brain regions: the calculation contains not only the leadfield matrix of the source 

at the target location, but also those of possible sources whose interference is to be 

minimized. For example, this allows for source separation of highly correlated bilateral 

activity in the two hemispheres that commonly occurs during motor imagery tasks (a 

common control paradigm in BCI). Anyway, localising potentially correlated sources 

remains an open problem and it is not addressed along this chapter. Instead, the sources are 

assumed uncorrelated and relatively distant. Fig. 4 shows the contour plot of the global 

neural activity measured in a horizontal cross section for two uncorrelated dipoles, as 

defined in the previous subsection. 
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Fig. 4. Contour plot of the neural activity index in a horizontal cross section 1 cm above the 

centre of the sphere where the two dipoles are localized 

3.3 Number and localization of the electrodes 

One of the questions about applying beamforming techniques to BCIs is the choice of the 

number and localization of the electrodes. Here, the goal is to understand how the 
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performance of the LCMV beamformer is influenced by these two factors, for example: (1) to 

what extend the number of electrodes can be reduced and (2) what is the optimal 

distribution of the electrodes on the scalp. In line with this, the MSE between reference and 

estimated waveforms is evaluated for different number of electrodes and distributions. The 

electrodes form a grid of points covering a variable percentage of the total hemisphere 

surface area (see Fig. 5). In this study, the electrodes are located, symmetrically, around a 

specific point in the scalp considering two different situations: a first in which this point has 

coordinates ( ) ( ), 0,0x y =  and a second in which the point has coordinates ( ) ( ), 5,0x y = − cm 

(exactly where the dipole vector points). The parameters associated with the head and 

dipole models remain unchanged, but the dipole locations: ( ) ( )1 : , , 5,0,1d x y z = − cm and 

( ) ( )2 : , , 5,0,1d x y z = cm. The additive noise power is assumed to be the same throughout the 

simulations.  
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Fig. 5. Top view of the hemisphere with the locations of two dipoles and 64-electrodes (with 

a normalized area of 0.062); the electrodes are located, symmetrically, around a point with 

coordinates ( ) ( ), 0,0x y = cm (left) and a point with coordinates ( ) ( ), 5,0x y = −  cm (right) 

Fig. 6 shows the achieved results for dipole 1 in terms of MSE as function of the normalized 

area. The two graphics were obtained by superimposing the curves for { }4,9,16,32,64N=  

electrodes. The first observation is the quite modest performance with only 4 electrodes. 

However, for 9N= , the second arrangement (closer to the target dipole) is able to achieve 

improved results, especially by increasing the surface area. When the number of electrodes 

increases, the curves give a good indication of the required area and number of electrodes 

from which no improvements are achieved. At the same time, the second distribution leads 

to only a slightly better performance than the first one, observable at higher areas.  

In conclusion, when fewer electrodes are more suitable (e.g., BCI applications), an optimal 

local distribution seems to be essential to reduce the number of electrodes, while 

maintaining an acceptable performance from the viewpoint of source reconstruction. 

However, the extrapolation of these results for other scenarios is more difficult since they 

are the direct consequence of the selected dipoles, as well as the time course of the signal-to-

noise ratio.  
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Fig. 6. Mean-square error for dipole 1 as function of the normalized area using N electrodes 

3.4 Sensitivity analysis to errors in the forward model 
In this subsection, we will discuss the sensitivity of the reconstruction system to 

uncertainties in the mathematical model. More precisely, we intend to study how the 

uncertainties in the parameters of the forward model can affect the performance of the 

beamformer. The forward model is derived as function of the dipole location, electrodes 

positions and head geometry. Here, the attention is devoted to parameters related with the 

localization of the electrodes and the a priori estimation of the source location. The objective 

is to execute the model repeatedly for a combination of parameter values with some 

probability distribution. In the first case, the error in the location of each electrode is 

represented by the radius Rc of a circumference centred at the original electrodes’ locations. 

Every electrode moves the same distance from the original position, but with a random 

direction. In Fig. 7, the MSE as function of radius are plotted for the two dipoles. 
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Fig. 7. Mean-square error for the two dipoles as function of radius Rc  
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In this simulation, the dipole locations are ( ) ( )1 : , , 5,0,1d x y z = − cm and 

( ) ( )2 : , , 5,0,1d x y z = cm, while the simulated EEG is generated using 36 measurement 

electrodes distributed over the whole head. Then, the LCMV beamformer algorithm 

estimates the sources based on a leadfield matrix that incorporates the random errors. As 

expected, the MSE tends to increase with the radius, but with random fluctuations. A small 

increase in Rc does not necessarily signify a degradation of the system’s performance due to 

the random orientation applied in each electrode. In some way, this procedure represents 

well a real scenario involving the placement of electrodes in the scalp. A similar analysis is 

performed when small deviations between the real and the estimated dipole’s locations 

occur. Fig. 9 shows the MSE degradation when the location of dipole 1 is not correctly 

estimated in the directions defined by the x-, y- and z-axis in the reference coordinate frame. 
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Fig. 8. Mean-square error for the two dipoles as function of deviation in the dipole 1  

3.5 Adaptive algorithm 
The simulations performed so far use the complete dataset to calculate the filter weights and 

then to estimate the time course of the target source. However, in a practical situation the 

EEG signals are not known and a nonstationary (time-varying) environment can be 

anticipated. To evaluate the performance of the spatial filter as a function of the amount of 

available data the following procedure is employed: first, in the static mode, the 

beamformer weights are computed once using a given segment of data and they are applied 

to new data without further update. The beamformer algorithm uses estimates of the 

covariance matrix based on the available EEG data. Further, this matrix needs to be inverted 

and, in certain circumstances, it can be close to singular. Theoretically, the number of 

observations must greater than number of sensors to avoid singularities. Fig. 9 shows the 

influence of the number of observations on the MSE of the dipole 1 with 36 sensors. 

Independently of the SNR, a number of 400 independent observations should be used to 

estimate the covariance matrix (dashed line).   

www.intechopen.com



 Recent Advances in Brain-Computer Interface Systems 

 

182 

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

Number of Samples

M
S

E

 

 

SNR = 0.1

SNR = 1

SNR = 10

 

Fig. 9. Mean-square error for dipole 1 as function of the number of samples used to estimate 

the covariance matrix when varying the noise power 

Second, an adaptive algorithm is continually updating the weight vector to meet the new 

requirements imposed by the varying conditions. This need to update the weight vector 

without a priori information leads to the expedient of obtaining estimates of the covariance 

matrix in a finite observation interval and then using these estimates to obtain the optimum 

weight vector. This is a block-adaptive approach where statistics are estimated from 

successive temporal windows. In the present simulation, the source waveform is a damped 

sinusoid and the EEG acquisition uses a sampling rate of 512 Hz with 36-electrodes. Fig. 10 

allows the comparison between the static and block-adaptive approaches. 
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Fig. 10. The original and estimated source waveforms represented together for dipole 1 

using static beamforming (top) and block-adaptive beamforming (bottom) 
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In block-adaptive beamforming the optimal weights are recomputed from time windows of 

1 second. As can be observed, the adaptive approach outperforms the static approach when 

the amplitude of the source waveform reduces significantly. This suggests its potential 

utility to deal with dynamic changes in the source brain activity. 

4. EEG-based biometry 

Like the BCIs discussed in the previous sections, the EEG based biometry provides an 

alternative communication channel between the human brain and the external world. There 

is very little research work published using brain signals as biometric tools to identify 

individuals (Poulos et al., 1999; Paranjape, et al., 2001; Palaniappan & Mandic, 2007). 

Nevertheless, in these studies it was suggested that the brain-wave pattern of every 

individual is unique and, therefore, the EEG can be used for building personal identification 

or authentication systems. The identification attempts to establish the identity of a given 

person out of a closed list of persons (one from many), while the authentication aims to 

confirm or deny the identity claimed by a person (one to one matching), Marcel & Millan, 

2007. The identified person is exposed to a stimulus (usually visual or auditory) for a certain 

time and the EEG signals coming from a number of electrodes spatially distributed over the 

subject’s scalp are collected and input to the biometry system. The EEG signals induced by 

mental or perception tasks related with visual stimuli are known as Visually Evoked 

Potentials (VEP).  

The raw EEG signals are too noisy and variable to be analyzed directly. Therefore, the EEG 

signals need to go through a sequence of processing steps: i) Data acquisition, storage and 

format transforming; ii) Filtering (removal of interferences from other unwanted sources, as 

for example physiological artifacts or baseline electrical trends); iii) Feature extraction and 

classification; iv) Feedback generation and visualization.  

The identification/ authentication systems built so far differ basically in filtering and 

classification components (Palaniappan & Mandic, 2007; Marcel & Millán, 2007). However, 

our initial study (Ferreira et al., 2010) has shown that the discrimination process is slightly 

dependent on the specific filter and classifier. Critical issues related with building an 

efficient EEG based biometry system are briefly discussed below. 

Biometry as a modeling problem. The EEG recordings are unique for each person and the 

problem of EEG-based biometry can be interpreted as a modelling problem, i.e., design a 

feature model that belongs to a certain person and design a personal classifier with a 

respective owner. The trained identification model has to identify the subject from a data 

base of personal profiles and the authentication system has to confirm or not that the subject 

being evaluated is who he claims to be. 

Stimulus. Study on the type and the duration of the evoked potentials (visual or auditory) 

that would enhance the identification/ authentication capacity. Preliminary tests have 

demonstrated that the type of the stimulus (for example mental task, motor task, image 

presentation or a combination of them) is crucial for reliable extraction of personal 

characteristics. It seems that some mental tasks are more appropriate than others. At the 

same time, experiments with combination of stimuli appear to be more advantageous for the 

personal uniqueness of the EEG patterns. 

Post-processing. Ongoing research suggests that post-processing techniques on the classifier 

output as instant error correction and averaging would improve the identification/  

authentication capacity. 
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Real-time biometry. Optimization of the evoked potential duration (EPD) in order to 

implement the paradigm in an on-line scheme. Current study has shown that both two short 

or too long EPD worsen the biometrical system (Ferreira et al., 2010). The compromise can be 

learned by cross validation during the classifier training.  

This section is organized as follows: Subsection 4.1 presents the experimental setup for the 

present study. In subsections 4.2 to 4.5 the main modules of the EEG biometry system are 

discussed, namely the feature extraction, the classification and the post-processing 

procedure. Finally, in subsection 4.6 the effect of the EPD is analyzed.  

4.1 Experimental setup 
VEP signals were extracted from thirteen female subjects (20-28 years old). All participants 

had normal or corrected to normal vision and no history of neurological or psychiatric 

illness. Neutral, fearful and disgusting faces of 16 different individuals (8 males and 8 

females) were selected, giving a total of 48 different facial stimuli. Images of 16 different 

house fronts to be superimposed on each of the faces were selected from various internet 

sources. This resulted in a total of 384 grey-scaled composite images (9.5 cm wide by 14 cm 

high) of transparently superimposed face and house with equivalent discriminability.  

Participants were seated in a dimly lit room, where a computer screen was placed at a 

viewing distance of approximately 80 cm coupled to a PC equipped with software for the 

EEG recording. The images were divided into two experimental blocks. In the first, the 

participants were required to attend to the houses (ignoring the faces) and in the other they 

were required to attend to the faces (ignoring the houses). The participant’s task was to 

determine, on each trial, if the current house or face (depending on the experimental block) 

is the same as the one presented on the previous trial. Stimuli were presented in sequence, 

for 300ms each and were preceded by a fixation cross displayed for 500 ms. The inter-trial 

interval was 2000 ms.  

EEG signals were recorded from 20 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2; F7, 

F8, T3, T4; P7, P8, Fz, Cz, Pz, Oz) according to the 10/ 20 International system (see Fig. 11). 

EOG (Electrooculogram - eye movemen) signals were also recorded from electrodes placed 

just above the left supraorbital ridge (vertical EOG) and on the left outer canthus (horizontal 

EOG). VEP were calculated off-line averaging segments of 400 points of digitized EEG (12 

bit A/ D converter, sampling rate 250 Hz). These segments covered 1600ms comprising a 

pre-stimulus interval of 148 ms (37 samples) and post-stimulus onset interval of 1452 ms. 

Before processing, EEG was visually inspected and those segments with excessive EOG 

artifacts were manually eliminated. Only trials with correct responses were included in the 

data set. The experimental setup was designed by Santos et al. (2008) for their study on 

subject attention and perception using VEP signals. 

4.2 Feature extraction 
The neuro-engineering theoretical and application studies related with the EEG signals are 

based on the knowledge that the EEG signals are composed of waves inside the 0-60 Hz 

frequency band and that different brain activities can be identified based on the recorded 

oscillations. For example, signals within the delta band (below 4 Hz) correspond to a deep 

sleep, theta band (4-8 Hz) signals are typical for dreamlike state, alpha frequencies (8-13 Hz) 

correspond to relaxed state with closed eyes, beta band (13-30 Hz) are related with waking 
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activity and gamma frequencies (30-50 Hz) are characteristics for mental activities as 

perception and problem solving. The relationship between the EEG and the brain functions 

is well documented in Niedermayer and Lopes da Silva (1999).  

 

 

Fig. 11. Spatial location of the EEG electrodes over the frontal, central and parietal areas 

For the present study the gamma-band spectral power of the VEP signals was computed by 

the Welch’s periodogram method. The temporal segments, over which one value of the 

spectral power matrix is computed, correspond to one trial (around 1600 ms), i.e., the 

samples collected during one image presentation. The normalized gamma-band spectral 

power for each channel was computed. It is a ratio of the spectral power of each channel and 

the total gamma-band spectral power of all channels. The level of perception and memory 

access among individuals are different and this reflects in significant difference between the 

gamma-band spectral power ratios of the subjects which is the key for the VEP based 

individuals identification.  

4.3 Classifiers 
Two strategies of training multiple binary classifiers for classification of the VEP spectral 

power ratios were implemented, Tan (2006): i) Support Vector Machine - One Against Other 

(SVM_OAO) and ii) Support Vector Machine - One Against All (SVM_OAA). Each strategy 

creates a set of binary classifiers that are afterwards combined to output the final labeling. 

Linear or nonlinear functions are comparatively tested as the SVM feature space mapping 

functions. Radial Basis Function (RBF) is selected for the nonlinear SVM case. The SVM-

OAO creates P(P-1)/ 2 binary classifiers where P is the number of the persons identified. The 

classification principle is the max-wins voting strategy, in which every classifier assigns the 

instance to one of the two classes, the class with most votes determines the instance 

classification. The SVM-OAA creates P binary classifiers with the classification principle - 

the winner-takes-all and the binary classifier with the highest output function assigns the 

class.  

Two training scenarios were considered:  

• Scenario 1: The classifier is trained with data set coming from one experimental block 

(subject has to attend to the faces ignoring houses) and tested with data from the other 

experimental block (subject has to attend to the houses and ignore the faces). 

www.intechopen.com



 Recent Advances in Brain-Computer Interface Systems 

 

186 

• Scenario 2: The classifier is trained with data coming from both experimental blocks 

and tested with unseen data from the same blocks.  

4.4 Principal component analysis (PCA) 
A possible way to increase the signal to noise ratio is to accompany the feature extraction 

step with the principal component analysis (PCA). For the case considered, the PCA was 

designed first to extract only principal components of the normalized gamma-band spectral 

power (the feature space) that accumulates 95% of the signal energy (this is equivalent to 

feature space reduction). Then, it follows a step to reconstruct the feature space with the 

same dimensionality. The performance of both SVM classifiers was evaluated with or 

without PCA processing in the framework of the two scenarios. The results, summarized in 

Table 1 and Table 2, suggest that while the PCA is aimed at capturing the main EEG 

patterns, the individual specificity is lost and the classification accuracy is worsen. A 

possible interpretation is that the energy in the 30-50 Hz band of the original data set is 

already attenuated due to an embedded filtering process of the EEG acquisition apparatus. 

The PCA processing additionally reduces the VEP power spectral density and, therefore, all 

classifiers studied exhibit worse generalization performance (Table 1). 

4.5 Post processing (PP) procedure 
Both classifiers perform a static (memoryless) classification that does not consider explicitly 

the temporal nature of the VEP signals. Time accounting classifiers, as for example 

Recurrent Neural Networks (NNs), Time Lag NNs or Reservoir Computing, have the 

disadvantage to require complex training procedures that not always converge.  

In order to keep low complexity of the biometrical system, we propose here an empirical 

way to introduce memory into the classifiers. During a post processing (PP) procedure, a 

moving window of a sequence of n past classifier outputs (personal labels) is isolated and 

following a predefined strategy the labels are corrected. For example, during the first PP 

step a window of the last three labels is defined (n=3) and, in case the first and the last labels 

are the same but different from the central one, this label is corrected to be equal to the 

others. The window dimension of the second PP step is increased with one (n=4). If the first 

and the last elements have the same label, but the two central elements are different from 

each other and from the lateral elements they are corrected. It was observed that increasing 

the dimensionality of the moving window (third PP step with n=5; fourth PP step with n=6; 

fifth PP step with n=7) the overall performance of both classifiers improved. The strategy of 

each next step is to increase the number of central elements and to correct them in case they 

are different from the equal lateral elements of the moving (with one sample) window. After 

the fifth PP step the performance started to decrease, therefore five PP steps were 

subsequently implemented in the EEG-based biometry system (see Table 1 and Table 2 below).  

In Fig. 12 an example of classifier response for 5 classes with a sequence of 10 samples per class 

is depicted. Though the classifier recognizes in general the different persons correctly some of 

the responses are incorrect and the aim of the PP procedure is to correct these wrong guesses. 

The incorrect responses of the classifier decrease after each subsequent PP step.  

4.6 Evoked potential duration 
The effect of the Evoked Potential Duration (EPD) was particularly studied since it defines 

the viability of the biometry system. If the identified person has to be exposed too long time 
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With PCA Classifier 
1st PP 

step 

2nd PP 

step 

3rd PP 

step 

4th PP 

step 

5th PP 

step 

Linear 

(Scenario 1) 
65,94 63,10 60,01 59,71 59,79 59,61 

Linear 

(Scenario 2) 
56,42 51,58 48,05 47,12 46,25 45,57 

Nonlinear 

(Scenario 1) 
44,53 37,26 31,24 27,95 26,19 24,07 

 

SVM_ 

OAO 

 

(One 

Against 

One ) 
Nonlinear 

(Scenario 2) 
36,43 28,00 22,08 19,01 17,41 14,49 

Linear 

(Scenario 1) 
58,65 54,24 50,64 49,88 49,34 48,60 

Linear 

(Scenario 2) 
59,79 56,55 54,42 53,42 52,36 51,24 

Nonlinear 

(Scenario 1) 
43,78 36,76 31,12 28,03 24,93 23,33 

 

SVM_ 

OAA 

 

(One 

Against 

All) 
Nonlinear 

(Scenario 2) 
35,99 27,60 21,24 18,67 16,44 15,17 

Table 1. Average classification error with PCA feature selection 

 

Without PCA Classifier 
1st PP 

step 

2nd PP 

step 

3rd PP 

step 

4th PP 

step 

5th PP 

step 

Linear 

(Scenario 1) 
38,21 35,36 33,43 31,89 31,63 30,37 

Linear 

(Scenario 2) 
29,98 24,88 23,19 23,55 22,77 21,54 

Nonlinear 

(Scenario 1) 
26,42 20,31 17,42 16,87 15,97 14,95 

 

SVM_ 

OAO 

 

(One 

Against 

One ) 
Nonlinear 

(Scenario 2) 
15,67 10,16 8,32 6,95 5,54 5,10 

Linear 

(Scenario 1) 
30,57 25,02 23,56 22,58 21,27 20,26 

Linear 

(Scenario 2) 
26,84 21,17 17,87 16,45 14,52 13,71 

Nonlinear 

(Scenario 1) 
26,99 21,54 18,32 16,70 15,16 14,49 

 

SVM_ 

OAA 

 

(One 

Against 

All) 
Nonlinear 

(Scenario 2) 
17,43 12,05 9,78 8,49 6,96 6,62 

Table 2. Average classification error without PCA feature selection 

to a stimulus in order to be identified, it would make the system not quite practical and 

difficult to realize in real time. Therefore, the length of the ERP time series required for 

person identification needs to be reasonably short. The results of this study are summarized 

in Fig. 13 to Fig. 15 where the average classification error (ACE) is depicted as a function of 

the training segment length (Nº of trails). This analysis was done for the two studied SVM 

classifiers: SVM_OAO (Fig. 13), SVM_OAA (Fig. 14) and confirmed also for the k-Nearest  
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Fig. 12. Example of classifier response for 5 classes with a sequence of 10 samples per class 

Neighbor (k-NN) basic classifier (Fig. 15) with k=3 and k=5. Note that for all classifiers there 
is a number of trails for which the ACE is minimized and longer time exposure does not 
suggest better person’s discrimination. These results are averaged over the total number of 
identified subjects (13 persons) and an interval of 25-30 trials is determined as the optimal 
duration. Each trial corresponds to 400 samples with duration of about 1.5 s. Subsequently, 
40-45 s is going to be the expected times for stimulus expose before the classifier identify one 
person with the highest probability to make a correct guess. Though the conclusions go 
beyond of what can be analytically proved, the intuition behind is that too long time 
exposure to visual stimuli leads to accommodation and tiredness, thus the personal 
specificity encoded in the ERPs is vanishing and the classifier error increases.  
 

 

Fig. 13. SVM_OAO: ACE without PP (bold line) & after the 5th PP step (dashed line) 
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Fig. 14. SVM_OAA: ACE without PP (bold line) & after the 5th PP step (dashed line) 

 

 

Fig. 15. k-NN: ACE without PP (bold (K=5) and dashed (K=3) lines below) & after the 5th PP 

step (bold (K=5) and dashed (K=3) lines above) 

5. Conclusion 

This chapter described recent efforts towards the development of EEG-based brain 

computer interfaces for control and biometry. In the first part, the chapter focuses upon an 

introduction of the principles underlying the use of beamforming to reconstruct the brain 

activity. Completely different problems in developing BCI systems and in their applications 

arise when moving from electrode-based domain to source-based scale. The goal of this 

source-based approach is to obtain knowledge about our brain activity and to answer 

fundamental questions about interacting regions. Beamforming techniques for source-based 

estimation are being proposed and recent research efforts demonstrate potential as a new 

direction in BCI design.   

In this line of though, the first study was dedicated to source signal estimation based on 

vectorised beamformers and to the optimization of certain parameters that have influence in 

the system’s performance. For example, the problem of the localization and number of 
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measurement electrodes was addressed, as well as how modelling errors in the constraint 

matrix or imprecise dipole locations can result in signal attenuation. LCMV beamforming 

does not require the a priori knowledge about the number of active sources. Instead, it 

provides an adaptive filter in which the degrees of freedom are used so that the activity 

from the target location is accepted, while being as insensitive as possible to activity from 

other brain regions.  

The insights gained with this study can be relevant when optimizing the design and 

implementation of a practical source-based BCI. However, there are a number of open issues 

to be investigated in the near future. For example, defining a real-time model paradigm in 

an EEG-fMRI environment provides, in theory, new perspectives to achieve innovative 

designs. At the same time, the inverse solution is constructed from the forward or lead-field 

matrix which makes the system greatly underdetermined considering that the solution 

space consists typically of thousands of source locations. Regularisation and smoothing 

methods need to be applied to create a unique solution. Finally, on-line and off-line 

experiments are essential to full access the advantages and limitations of beamforming in 

BCI applications when compared with other alternative approaches.  

The present study also confirmed the feasibility of the EEG-based person identification. 

Although the results are only for 13 person subject pool, it does provide evidence of stability 

and uniqueness in the EEG shapes across persons. However, the classification accuracy of 

the EEG biometry currently cannot compete with the conventional biometrics (such as 

fingerprint, iris or palm recognition systems) and in general the EEG person identification 

modality can be seen just as a supplement (“a second opinion”).  

Nevertheless, our long term goal is to use the principles of EEG-based biometry to detect 

abnormal scenarios, i.e., scenarios where a person is not acting as it would normally do in 

similar circumstances. Cognitive functions, such as attention, learning, visual and audio 

perception and memory, are critical for many human activities (for example driving) and 

they trigger numerous brain activities. Assuming that those brain activities follow a pattern 

for each person in normal circumstances (reference pattern), they are likely to change when 

the person is stressed, fatigued (physically, visually or mentally), or under the influence of 

several substances (alcohol, stimulants, drugs, etc.) (deviation pattern). In this context, the 

EEG-based biometry would be particularly effective in health care applications, where it 

could be used not only to verify a patient’s identity in medical records, prior to drug 

administration or other medical procedures but also to detect early in advance abnormal 

physiological or mental states of the patient. 

In all, we expect several potential applications to emerge in the future. Control of the 

classified access into restricted areas security systems, illnesses or health disorder 

identification in medicine, gaining more understanding of the cognitive human brain 

processes in neuroscience are among the most appealing. 

6. Acknowledgments 

The first author is supported by the Portuguese Foundation for Science and Technology 

under grant SFRH/ BD/ 48775/ 2008. 

7. References 

Baillet, S., Mosher, J.C., Leahy, R.M. (2001). Electromagnetic Brain Mapping. IEEE Signal 

Processing Magazine, 18: 14-30.  

www.intechopen.com



Advances in Non-Invasive Brain-Computer Interfaces for Control and Biometry 

 

191 

Bashashati, A., M. Fatourechi, R.K. Ward and G.E. Birch, “A survey of signal processing 
algorithms in brain-computer interfaces based on electrical brain signals”, J. Neural 

Engineering, 4: R32-R57, 2007.  
Bensch‚ M.‚ A. Karim‚ J. Mellinger‚ T. Hinterberger‚ M. Tangermann‚ M. Bogdan‚ W. 

Rosenstiel and N. Birbaumer‚ “Nessi: an EEG-controller web browser for severely 
paralyzed patients” ‚ Intelligence Neuroscience‚ (2): 1-10‚ 2007.  

Bento, V., J.P. Cunha and F. Silva, “Towards a Human-Robot Interface Based on the electrical 
Activity of the Brain”, Proc. IEEE-RAS International Conference on Humanoid Robots, pp. 
85-90, Daejon, South-Korea, 2008. 

Berger, T.W., J.K. Chapin, G.A. Gerhardt, D.J. McFarland, J.C. Princípe, W.V. Soussou, D.M. 
Taylor and P.A. Tresco, Brain-Computer Interfaces: An International Assessment of 

Research and Development Trends, Springer, 2008. 
Birbaumer‚ N. and L. Cohen‚ “Brain-computer interfaces (BCI): communication and 

restoration of movement in paralysis” ‚ J. Physiology‚ January‚ 2007. 
Capon, J. (1969). “High-resolution Frequency Wavenumber Spectrum Analysis”, Proceedings of 

the IEEE, 57: 1408-1418.   
Choi, S., Cichocki, A., Park, H-M. and Lee, S-Y. (2005). “Blind Source Separation and 

Independent Component Analysis: A Review”, Neural Information Processing, 6(1): 1-
57.  

Ferreira A., Almeida, C., Georgieva, P., Tomé, A., Silva, F. (2010). Advances in EEG-based 
Biometry, In: Lecture Notes in Computer Science (LNCS) series, A. Campilho & M. 
Kamel (Eds.), 287-295, ICIAR 2010, Part II, LNCS 6112, Springer, Heidelberg. 

Fuchs, A. (2007). Beamforming and Its Applications to Brain Connectivity, In: Handbook of Brain 

Connectivity, V.K. Jirsa and A.R. McIntosh, (Ed.), 357-, 378, Springer-Verlag, Berlin. 
Grave de Peralta, R., S.G. Andino, L. Perez, P.W. Ferrez and J.R. Millán, “Non-invasive 

Estimation of Local Field Potentials for Neuroprosthesis Control”, Cognitive Process, 
Vol. 6, pp. 59-64, 2005.  

Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., Salmelin, R. (2001). 
Dynamic Imaging of Coherent Sources: Studying Neural Interactions in the Human 
Brain. Proceedings of the National Academy of Sciences USA, 98: 694-699.   

Grosse-Wentrup, M., C. Liefhold, K. Gramann and M. Buss, “Beamforming in Non-Invasive 
Brain-Computer Interfaces”, IEEE Transactions on Biomedical Engineering, 56(4): 1209-
1219, 2009.   

Herdman, A.T., Wollbrink, A., Chau, W., Ishii, R., Ross, B., Pantev, C. (2003). Determination of 
Activation areas in the Human Auditory Cortex by Means of Synthetic aperture 

Magnetometry. Neuroimage, 20: 995-1005.  
Huang, M-X., Shih, J.J., Lee, R.R., Harrington, D.L., Thoma, R.J., Weisend, M.P., Hanion, F., 

Paulson, K.M., Li, T., Martin, K., Miller, G.a., Canive, J.M. (2004). “Commonalities and 
Differences Among Vectorized Beamformers in Electromagnetic Source Imaging”, 
Brain Topography, 16: 139-158. 

Kamousi, B, Z. Liu and B. He, “An EEG Inverse Solution Based Brain-Computer Interface”, The 

International Journal of Bioelectromagnetism, 7(2): 292-294, 2005. 
Lai, Y., Van Drongelen, W., Ding, L, Hecox, K.E., Towle, V.L., Frim, D.M., He, B. (2005). 

Estimation of in Vivo Human Brain-Skull Conductivity Ratio from Simultaneous 
Extra- and Intra-Cranial Electrical Potential Recordings. Clinical Neurophysiology, 116: 
456-465.  

Leeb‚ R.‚ F. Lee‚ C. Keinrath‚ R. Scherer‚ H. Bischof and G. Pfurtscheller‚ “Brain computer 

communication: motivation‚ aim and impact of exploring a virtual apartment” ‚ IEEE 

Transactions on Neural Systems and Rehabilitation Engineering‚ 15(4): 473-482‚ 2007. 

www.intechopen.com



 Recent Advances in Brain-Computer Interface Systems 

 

192 

Marcel, S., José del R. Millán, “Person authentication using brainwaves (EEG) and maximum a 
posteriori model adaptation”, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 29(4), 743-752, 2007.  
Millán, J. del R., F. Renkens, J. Mouriño and W. Gerstner “Brain-Actuated Interaction”, 

Artificial Intelligence, 159: 241-259, 2004.  
Millán, J. del R., “Brain-controlled robots” ‚ IEEE Intelligent Systems‚ 2008.  
Müller-Putz‚ G.R. and G. Pfurtscheller‚ “Control of an electrical prosthesis with an SSVEP-

based BCI”‚ IEEE Transactions on Biomedical Engineering‚ 55(1): 361-364‚ 2008. 
Niedermeyer‚ E. and F. Lopes da Silva‚ Electroencephalography. Lippincott Williams and 

Wilkins‚ 1999.  
Nijboer‚ F.‚ E. Sellers‚ J. Mellinger‚ M. Jordan‚ T. Matuz‚ A. Furdea‚ S. Halder‚ U. Mochty‚ D. 

Krusienski and T. Vaughan‚ “A P300-based brain computer interface for people with 
amyotrophic lateral sclerosis” ‚ Clinical Neurophysiology‚ 119(8): 1909-1916‚ 2008. 

Noirhomme, Q., R.I. Kitney and B. Macq, “Signle-Trial EEG Source Reconstruction for Brain-
Computer Interface”, IEEE Transactions on Biomedical Engineering, 55(5): 1592-1601, 
2008.   

Palaniappan, R., D. P. Mandic, “Biometrics from Brain Electrical Activity: A Machine Learning 
Approach”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 2007. 

Paranjape, R.B., J. Mahovsky, L. Benedicenti, and Z. Koles, "The Electroencephalogram as a 
Biometric", Proc. CCECE, vol. 2, pp.1363-1366, 2001.  

Pfurtscheller, G., G.R. Muller-Putz, A. Schlogl, B.A. Graimann, R.A. Scherer, R.A. Leeb, C.A. 
Brunner, C.A. Keinrath, F.A. Lee, G.A. Townsend, C.A: Vidaurre, and C.A. Neuper, 
“15 years of BCI research at graz university of technology: current projects”, IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 14: 205-210, 2006. 
Pfurtscheller, G., G.R. Muller-Putz, R.A. Scherer and C.A. Neuper, “Rehabilitation with brain-

computer interface systems“, Computer, 41(10): 58-65, 2008. 
Pineda, J.A., “The functional significance of mu rhythms: translating ‘seeing’ and ‘hearing’ into 

‘doing’” , Brain Res Rev, 50:57-68, 2005. 
Popescu, M., Popescu, E.A., Chan, T., Blunt, S.D., Lewine, J.D. (2008). Spatio-temporal 

Reconstruction of Bilateral Auditory Steady-state Responses using MEG 
Beamformers. IEEE Transactions on Biomedical Engineering, 55: 1092-1102. 

Poulos, M., M. Rangoussi, V. Chrissikopoulos, and A. Evangelou, "Person identification based 
on parametric processing of the EEG", Proc. IEEE ICECS, vol. 1, pp. 283-286, 1999.  

Qin, L., L. Ding and B. He, “Motor Imagery Classification by Means of Source Analysis for 
Brain Computer Interface Applications”, Journal of Neural Engineering, Vol. 1, pp. 133-

141, 2004. 
Rush, S, Driscoll, D. (1969). EEG Electrode Sensitivity – An Application of Reciprocity. IEEE 

Transactions on Biomedical Engineering, 16(1):15-22. 
Salu, Y., Cohen, L.G., Rose, D., Sato, S., Kufta, C., Hallet, M. (1990). An Improved Method for 

Localizing Electric Brain Dipoles. IEEE Transactions on Biomedical Engineering, 37: 699-
705. 

Santos, I.M., J. Iglesias, E. I. Olivares, A.W. Young, “Differential effects of object-based 
attention on evoked potentials to fearful and disgusted faces”, Neuropsychologia, 46(5), 
1468-1479, 2008.  

Tan, P.-N., M. Steinbach and V. Kumar, Introduction to Data Mining, 2006. 
Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A. (1997). “Localization of Brain 

Electrical Activity via Linearly Constrained Minimum Variance Spatial Filtering”, 

IEEE Transactions on Biomedical Engineering, 44(9):867-880 

www.intechopen.com



Recent Advances in Brain-Computer Interface Systems

Edited by Prof. Reza Fazel

ISBN 978-953-307-175-6

Hard cover, 222 pages

Publisher InTech

Published online 04, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Brain Computer Interface (BCI) technology provides a direct electronic interface and can convey messages
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applications. In this book a few recent advances in these areas are discussed.
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