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1. Introduction 

1.1 Target groups of brain-computer interfaces (BCIs) 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects 
nerve cells which are responsible for controlling voluntary movement. Primary lateral sclerosis 
(PLS) is a variant of ALS that affects the corticospinal upper motor neurons, limiting 
movement. ALS/PLS patients, as well as patients disabled from other degenerative diseases or 
brain injuries, have difficulty with everyday motor behaviors such as moving, swallowing, 
and speaking. In the later stages of disease, some patients may completely lose motor function 
and become totally ‘locked-in’ (Hayashi and Oppenheimer, 2003). Loss of motor function 
significantly affects patients’ quality of life (QoL) (Mockford et al., 2006; Bromberg, 2008; 
Williams et al., 2008; Lule et al., 2009) and increases the financial burden for the cost of care 
(Mutsaarts et al., 2004). One important component of quality of life being addressed repeatedly 
by patients, specifically as the disease progresses, is the ability to communicate. A brain–
computer interface (BCI) or brain–machine interface (BMI), has been proposed as an 
alternative communication pathway, bypassing the normal cortical-muscular pathway 
(Joseph, 1985; Kennedy et al., 2000). BCI is a system that provides a neural interface to 
substitute for the loss of normal neuromuscular outputs by enabling individuals to interact 
with their environment through brain signals rather than muscles (Wolpaw et al., 2002; Daly 
and Wolpaw, 2008). Recent years have featured a rapid growth of BCI research and 
development owing to increased societal interest and appreciation of the serious needs and 
impressive potential of patients with severe motor disabilities (Birbaumer and Cohen, 2007; 
Daly and Wolpaw, 2008). The majority of BCI-related publications have studied performance 
in healthy volunteers and focused on the development of signal processing/computational 
algorithms to improve BCI performance (Bashashati et al., 2007). Practical BCI clinical 
applications for the potential patient users, however, are still limited (Birbaumer, 2006a).  

1.2 Worldwide research on Electroencephalography (EEG)-based BCI 

The BCIs using invasive signal methods to record intracortical neuronal activities have 
shown great promise in direct brain control of external devices in primates, for example, to 
restore self-feeding by controlling a 3-D robotic arm (Velliste et al., 2008). However, due to 
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the technical concerns such as associated surgical risks as well as unclear long-term benefit 
and robustness, non-invasive signal methods, mainly EEG, have been extensively explored 
because of its lower clinical threshold as well as the ease of use. Although EEG mainly 
supports one dimensional control (Krusienski et al., 2007; McFarland and Wolpaw, 2003), 
successful two-dimensional BCI has been achieved. Wolpaw’s group used two channels of 
bipolar EEG from the two hemispheres to provide vertical and horizontal cursor control 
(Wolpaw and McFarland, 2004). In contrast to invasive methods, non-invasive methods 
feature an extremely low signal-to-noise (s/n) ratio, which is a major challenge in EEG-
based BCI development. Conventionally, s/n ratio can be improved by repeated averaging, 
for example, as in event-related potentials (ERPs), which can be obtained by averaging 
across trials time-locked to the stimuli. However, due to the requirement for repeated 
measurements, the communication speed is greatly reduced. An alternative method to 
improve s/n ratio for reliable BCI control is to train users to regulate their brain activity, 
such as by modulation of the slow-cortical potentials (SCP) (Birbaumer et al., 2000) or the 8–
12 Hz sensorimotor Mu rhythm (Wolpaw and McFarland, 1994). Once people learn to 
effectively regulate their brain activity, reduction of the variance in the EEG signal can be 
expected and as a result, the s/n ratio is increased. However, due to the variance of 
spontaneous activity in EEG, long-term training is usually required for users to achieve 
effective and accurate regulation of either SCPs or sensorimotor Mu rhythms. The long-term 
training may require a couple of months to 1 or 2 years (Wolpaw and McFarland, 2004; 
Iversen et al., 2008b). Moreover, users may be easily fatigued from the sustained attention 
that is required to regulate their brain activities and as a result, render the BCI control 
unreliable.  

1.3 What challenges practical applications of EEG-BCI? 

Fatigue becomes serious in severely paralyzed patients who demonstrate not only reduced 

physical but also mental endurance (Sykacek et al., 2003; Birbaumer, 2006b). Recent pilot 

studies of BCI feasibility for ALS patients shows that they may not be able to learn the skills 

for effective regulation of brain activities because they are too weak to tolerate long-term 

training and/or active regulation with focused attention (Kubler et al., 1999, 2001; Hill et al., 

2006). Though healthy persons or less severely paralyzed patients may operate current EEG-

based BCIs efficiently (Birch et al., 2002; Blankertz et al., 2007), the performance of current 

BCIs in severely paralyzed patients with degenerative diseases such as ALS, however, was 

much lower because they were easily fatigued or could not tolerate long-term training. The 

accuracy was just over the random level for ALS patients, in contrast to the 90% accuracy 

level achieved in healthy subjects (Sellers and Donchin, 2006; Iversen et al., 2008a). 

Therefore, the inconvenience in operation may prevent current BCIs from practical clinical 

applications for severely paralyzed patients who are the users most in need of direct brain 

control of external devices to restore function.  

1.4 Sensorimotor Rhythm-based 2D cursor control in EEG&BCI Lab VCU 

Sensorimotor rhythms (SMR) decrease (event-related desynchronization or ERD) with 
movement or preparation for movement and increase (event-related synchronization or 
ERS) in the post-movement period or during relaxation, based on which our 2D BCI strategy 
was established. We have identified that the human volition to move or cease to move 
associated with natural motor behavior can be reliably decoded online from EEG signals, 
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where users do not need to learn vast training to regulate brain activities. We found that the 
discrimination of ERD from ERS was much more reliable than the discrimination of ERD 
from background activities in conventional BCI methods (Bai et al., 2008; Kayagil et al., 
2009). A short-lasting burst of EEG oscillation, termed as beta rebound or beta-ERS, has been 
observed in beta band (16–30 Hz) over human sensorimotor area after subjects produce a 
self-paced movement (Salmelin et al., 1995; Pfurtscheller and Lopes da Silva, 1999; Neuper 
and Pfurtscheller, 2001). Though the beta rebound has been postulated as the result of 
afferent input (Cassim et al., 2001), other studies show that the beta rebound does not 
necessarily depend on motor cortex output and muscle activation, and it may reflect a short-
lasting state of deactivation or inhibition of the motor cortex (Pfurtscheller, 1992; 
Pfurtscheller et al., 1996). The feasibility of the beta rebound for BCI application derives 
from the fact that beta rebound may not only occur with real physical movement but also 
presents with motor imagery (Pfurtscheller et al., 2005). This comes into consideration since 
the patients who lose their voluntary muscle contraction may only imagine movement 
instead of producing real movement (Bai et al., 2008). The beta rebound results in a strong 
synchronization, i.e. higher amplitude of rhythmic activities in beta band than background 
activities. As ERD features lower amplitude beta band activities, the discrimination of beta 
rebound or beta-ERS from beta-ERD is presumably more accurate than the discrimination of 
ERD from background activity. Furthermore, the beta rebound also features strict 
somatotopic organization (Salmelin et al., 1995), allowing for potential discrimination of 
different limb movements spatially according to human somatotopy. In 2008, our group 
implemented a synchronous sequencial binary controls approach to decode EEGs to provide 
2D control of a cursor on a computer screen, with simple threshold-based binary 
classification of band power readings taken over pre-defined time windows during subject 
right hand movement/motor imagery (Bai et al., 2008). The following study, using spatial 
feature of the beta rebound, supports a multi-dimensional BCI by reliable decoding of 
intentions to move individual limbs (Huang et al., 2009). The beta-ERD and beta-ERS 
features associated with human natural motor control has also been further tested on six 
ALS or PLS patients in sequential binary control for 2D cursor control, and two patients 
further participated in direct two-dimensional cursor control in a single visit (Bai et al., 
2010). 

2. Physiological rationale for the proposed two-dimensional BCI 

Human somatotopic organization indicates that human limbs are controlled by contralateral 
brain hemispheres. Many neurophysiological and neuroimaging studies have confirmed the 
nature of contralateral control (Bai et al., 2005; Rao et al., 1993; Stancak and Pfurtscheller, 
1996). Therefore, reliably decoding the movement intention of right and left hand, which are 
associated with different spatiotemporal patterns of event-related desynchronization (ERD), 
i.e. oscillation amplitude attenuation, and event-related synchronization (ERS), i.e. 
oscillation amplitude increase, may provide additional degrees-of-freedom for control. 
During physical and motor imagery of right and left hand movements, beta band brain 
activation (15-30 Hz) ERD occurs predominantly over the contralateral left and right motor 
areas. The brain activity associated with ceasing to move, the post movement ERS, can also 
be found over the contralateral motor areas. It suggests that the brain activity associated 
with four natural motor behaviors (thus, not requiring extensive training) may potentially 
provide four reliable features for a discrete two-dimensional control, e.g. left-hand ERD to 
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command move to the left, left-hand ERS to command move up, right-hand ERD to 
command move to the right, and right-hand ERS to command move down. As the spatial 
distribution of post movement beta rebound (ERS) is more focal than ERD distribution, the 
detection of ERS might be potentially more reliable than ERD detection only (Pfurtscheller 
and Solis-Escalante, 2009). As a result, the proposed method to discriminate spatial 
distribution of ERD and ERS might provide more accurate classification than previous 
methods relying on the detection of ERD only (Neuper et al., 2005; Naeem et al., 2006). 
Evidence has demonstrated separate spatial patterns of ERD and ERS with physical 
movement, it is also important to know about the hemispheric patterns during motor 
imagery of limb movement which is essential for achieving purely mental control without 
involvement of muscle activity.  

3. Experimental paradigms 

3.1 Data acquisition and online processing system 

We used the typical BCI system setting (Fig. 1). Participants were presented with stimuli 
and required to perform specific mental tasks while the electrical activity of the brains was 
being recorded by EEG. Relevant EEG features were extracted and then fed back to the user 
by so-called closed-loop BCI. 
 

 

Fig. 1. Experimental system. EEG signals were picked up from scalp and amplified, then 
were digitized through A/D convertor and sent to the computer for signal processing. 

We recorded EEG signals from 27 (tin) surface electrodes (Fig. 2) attached on an elastic cap 
(Electro-Cap International, Inc., Eaton, OH, U.S.A.) according to the international 10-20 
system (Jasper and Andrews, 1938), with reference from the right ear lobe and ground from 
the forehead. Surface electromyography (EMG), which was used to monitor the movement 
and bipolar electrooculogram (EOG) above left eye and below right eye were also recorded. 
The analog signals were amplified, and then digitized through A/D convertor. The digital 
signal was then sent to a computer for online processing. Signals from all the channels were 
amplified using a 64 channel g.USBamp-System (g.tec GmgH, Schiedlberg, Austria), filtered 
(0.1-100 Hz) and digitized (sampling frequency was 250 Hz). 
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Fig. 2. Placement of 27 electrodes on the cap, marked by solid bold circles. They were F3, F7, 
PC3 (C3A), C1, C3, C5, T3, CP3 (C3P), P3, P7 (T5), F4, F8, PC4 (C4A), C2, C4, C6, T4, CP4 
(C4P), P4, T6, FPZ, FZ, PCZ (FCZ), CZ, CPZ (CZP), PZ, OZ and AFz was used as the 
ground. 

3.2 Binary and four-directional control paradigms for 2D control 

A text box was provided in the center of the computer monitor. The text message was either 
a blue ‘Yes’ or ‘No’ (the first cue) as illustrated in Fig. 3. Subjects were instructed to start a 
motor task with motor execution or motor imagery of repetitive wrist extension when they 
perceived the blue text message of either ‘Yes’ or ‘No’. Subjects kept performing the motor 
task in the Condition window of 2.5 s until the color of the text message changed from blue 
to green (the second cue). In the ‘Yes’ case, subjects were instructed to continue the motor 
task of either motor execution or motor imagery until the text message disappeared. In the 
‘No’ case, subjects were asked to stop the motor task and relax as soon as possible. The 
duration of the Detection window from text color change to text removal was also 2.5 s. 
Because of the response delay, the signal from 1 s after color change to the end of the 
Detection window was extracted for classification. After an inter-trial interval randomly 
from 4 to 6 s, the next text message was provided. The detailed paradigm was provided in a 
previous study (Bai et al., 2008; Kayagil et al., 2009). Patients participated in both motor 
execution and motor imagery sessions. The purpose of the motor execution session was 2-
fold: the patients are more comfortable with the paradigms, and the investigators could 
check whether patients performed the instructions properly by monitoring their motor 
output from EMG. One important factor was that patients need to relax as soon as possible 
at the beginning of the ‘Detection’ window in order to induce a transient feature of ERS for 
BCI detection. ERD was expected when subjects performed the active motor task during the 
Detection window, whereas ERS was expected when subjects stopped the motor task in the 
Detection window. This paradigm would yield a more accurate classification between ERD 
and ERS compared with that between ERD and baseline activity. 
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Fig. 3. Binary control paradigm. Subject started motor tasks of motor execution or motor 
imagery when they perceived the first color text message of either ‘Yes’ or ‘No’. When the 
color of text message changed from blue to green (less dark in grey scale), subjects sustained 
the motor tasks in case of ‘Yes’ or ceased the motor tasks and relaxed in case of ‘No’. EEG 
signal in the Detection window was extracted to determine ‘Yes’ from ERD activity or ‘No’ 
from ERS activity. Therefore, subjects was able to make binary control of either ‘Yes’ or ‘No’ 
intentionally by sustaining or ceasing motor tasks time-locked to the cues (see Bai et al., 2010).  

 

 

Fig. 4. Four-directional cursor control paradigm. Subjects started motor execution or motor 
imagery of right hand movement upon perceiving the blue text message (in Condition 
window) of ‘RYes’ or ‘RNo’, or left hand movement when perceiving ‘LYes’ or ‘LNo’. They 
would continue the movement after text color change in cases of ‘RYes’ or ‘LYes’, or stop 
moving and relax in cases of ‘RNo’ or ‘LNo’. Computer extracted EEG signal in the Detection 
window and decoded ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ from ERD and ERS over the left 
hemisphere, or ERD and ERS over the right hemisphere correspondingly (see Bai et al., 2010).  

Each of the four text messages ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ was assigned to one of the 
four directions of a computer cursor, provided in the center of the computer monitor (Fig. 
4). One of four text messages in the corresponding cursor direction was provided each time. 
The message text was a blue color at first; in the cases of ‘RYes’ or ‘RNo’, subjects started to 
perform motor execution or motor imagery of their right wrist in the form of repetitive 
extension; and in the cases of ‘LYes’ or ‘LNo’, subjects started to perform motor execution or 
motor imagery of their left wrist in the form of repetitive extension. Subjects kept 
performing the motor task until the color change of the text message. In the Detection 
window after the color change, subjects were instructed to continue the motor task of right 

www.intechopen.com



A Two-Dimensional Brain-Computer Interface Associated With Human Natural Motor Control  

 

157 

wrist extension or left wrist extension with text messages of ‘RYes’ or ‘LYes’, respectively. 
Subjects were asked to cease the motor task as soon as possible and relax when they saw the 
messages of ‘RNo’ or ‘LNo’. The durations of the Condition and Detection window were 
both 2 s. The signal between 1 s after the text color change and the end of the Detection 
window was extracted for classification. The detailed paradigm can be found in (Huang et 
al., 2009). In the Detection window, the four motor tasks of ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ 
were associated with four spatial patterns of ERD over the left hemisphere, ERS over the left 
hemisphere, ERD over the right hemisphere and ERS over the right hemisphere according to 
human somatotopy of hand control. The spatial distribution of the four patterns provided 
the basis for the classification of ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ to achieve control of the 
four directions of the computer cursor. 

3.3 Online two-dimensional cursor control game 

A computer game of virtual computer cursor control using BCI was developed to facilitate 
subjects’ interest and active involvement for BCI development (Kayagil et al., 2009). Subjects 
were asked to control the cursor movement in a two-dimensional space on the computer 
monitor (see Fig. 5) by performing motor tasks with either motor execution or motor 
imagery. The binary control of two-dimensional cursor movement was achieved by 
consecutive binary classification to determine one of up, down, right and left directions. 
Subjects were instructed to move the cursor (the dark square box) towards the target (the 
circle) with minimal cursor movements in the grids, and at the same time, avoid the trap 
(the black ghost). The initial position of the cursor as well as the target and trap position 
were randomly generated by the computer. Fig. 5 shows screen shots of a binary control in 
the up row. As the target was in the upper left direction of the cursor, the subjects would 
select either up or left cursor, i.e. ‘No’ directions. Similar to the binary control paradigm, 
subjects started motor task with either motor execution or motor imagery when the four text 
boxes were provided. Because the ‘No’ direction was closer to the target, subjects would 
stop the motor task when the cursor color changed to green so that the ERS activity was 
 

 

Fig. 5. Consecutive binary control and four-directional control of two-dimensional computer 
cursor movement: an online computer game to test the performance of binary control and 
four-directional control paradigms (see detail in the text). 
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voluntarily produced. The computer determined whether the subjects intended to move to 
‘Yes’ or ‘No’ direction according to the extracted EEG signal, i.e. ERS, with respect to the 
computer model created from the data obtained from binary control paradigm. The two 
‘Yes’ directions were removed when the computer detected ERS signal. The two ‘No’ 
directions were changed to one ‘Yes’ direction and one ‘No’ direction, and the subjects 
performed the motor task to voluntarily ‘tell’ the computer which direction they wanted to 
move to. In the illustrated sample, the subjects performed a sustained movement, and the 
computer determined the ‘Yes’ direction and move the cursor upward. Similarly, subjects 
would control the cursor movement until it reached the target. The detailed explanation of 
the binary cursor control game was described in the previous study (Kayagil et al., 2009). 
The scheme of the four-directional control of two-dimensional cursor movement was similar 
to that of binary cursor control. Because one of the possible four directions was able to be 
determined from one of ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’, which were provided in four-
directional control paradigm, the consecutive two binary classification was reduced to one 
classification from four options as shown in the lower row in Fig.5. The detailed explanation 
of the four-directional cursor control game was described in (Huang et al., 2009). 

3.4 Center-out two-dimensional cursor control paradigm  

A trial began when a target (dark) appeared at one of the four locations on the periphery of 
the screen, together with three non-target objects on the other three sides (Fig. 6a). A target 
location was pseudo-randomized (i.e. each occurred the same times in one block). In both 
parts (physical movement and motor imagery), there were four hint words in the task 
paradigm (a), ‘RYes’, ‘RNo’, ‘LYes’, and ‘LNo’ (‘R’ indicating right hand task, and ‘L’ for left 
hand task) on the four directions of the central cursor, which was set in green initially. 
Subjects were instructed to begin real or imagined repetitive wrist extensions of the right 
arm, if the target was on the direction of ‘RYes’ or ‘RNo’; if the target was on the direction of  
 

 

Fig. 6. Online 2D center-out cursor control paradigm. (a) A trial began. The target (dark) was 
pseudo-randomly chosen from the four positions along the edges; the cursor was in green. 
Subject started motor task for 1 s. (b) The cursor turned to cyan, at which point subject 
stopped and relaxed in ‘No’ case, or performs sustained movement in ‘Yes’ case for 1.5s. (c) 
The hint words disappeared. Subject stopped the task. (d) The cursor moved steadily 
towards the classified direction for 2 s. (e) The target flashed for 1 s when it was hit by the 
cursor. If the cursor missed the target, the screen was blank for 1 s. (f) The screen was blank 
for a 1.5s interval before next trail started. 
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‘LYes’ or ‘LNo’, they performed real or imagined repetitive wrist extensions of the left arm. 
After a period of 1s, the central cursor changed color to blue (b), when the subject was 
instructed to continue real or imagined movement with the ‘Yes’ case or abruptly relax and 
stop moving with the ‘No’ case. After displaying for a period of 1.5s, the configuration 
disappeared, indicating that subject needed to stop the task, and the screen was blank for 
4.5s (f). Next trial began from (a).  

4. Signal processing and computational methods 

4.1 Pre-processing 

EEG signal in the Detection window was extracted for modeling and classification. Signals 
from 27 channels were spatially filtered by surface Laplacian derivation (SLD), i.e. signal 
from each electrode was referenced to the averaged potentials from the nearby four 
orthogonal electrodes (Hjorth, 1975). The temporal filtering was achieved by power spectral 
estimation with Welch method. A 4 Hz frequency resolution with segment length of 0.25 s 
and 50% overlapping was determined for spectral estimation (Bai et al., 2007). 

4.2 Feature extraction 

Empirical feature reduction: assuming that movement intention associated cortical activities 

occur over the motor cortex, we reduced the channel number from 27 to 14, which covered 

both left and right motor areas. Furthermore, as we did not expect relevant activities in the 

delta, theta or gamma band, only alpha and beta band (8–30 Hz) activities were extracted for 

modeling and classification. Thus, the total number of extracted features were 8 (frequency 

bins) * 14 (channels) = 112 features.  

Bhattacharyya distance: Bhattacharyya distance provides an index of feature separability for 

binary classification, which is proportional to the inter-class mean difference divided by 

intra-class variance (Chatterjee et al., 2007). The empirically extracted features were ranked 

by the Bhattacharyya distance for further classification.  

Genetic algorithm: Genetic algorithm (GA)-based feature selection is a stochastic search in 

the feature space guided by the concept of inheriting, where at each search step, good 

properties of the parent subsets found in previous steps are inherited. Ten fold cross-

validation was used with a Mahalanobis Linear Distance (MLD) classifier for feature 

evaluation (Li and Doi, 2006). In this approach, the population size we used was 20, the 

number of generations was 100, the crossover probability was 0.8, the mutation probability 

was 0.01, and the stall generation was 20. 

4.3 Classification 

ROC: A receiver operating characteristics (ROC) was generated from the feature with the 
largest Bhattacharyya distance, i.e. the one providing the largest inter-class separability. The 
working point was determined from the ROC curve that was the closet point to 100% true 
positive with 0% false positive. 
GA-MLD: The sub-optimal feature subset was selected by genetic algorithm (GA) with 
Mahalanobis Linear Distance (MLD) as the evaluation function. Then, the selected features 
providing the best cross-validation accuracy were applied to a Mahalanobis Linear Distance 
Classifier. The number of features for the subset was four, which was determined from the 
cross-validation accuracy with feature numbers of 2, 4, 6, 8 and 10. 
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SVM: the support vector machine (SVM) was employed as the evaluation function. We 
employed a SVM approach provided in LIBSVM (Fan et al., 2005). The radial basis function 
was used as the SVM kernel function as it can provide similar classification outcome 
compared with other kernels (Keerthi and Lin, 2003). As the performance of SVM depends 
on the regulation parameters or hyper-parameters C and the width of the kernel r (Chang 
and Lin, 2001; Muller et al., 2001), 10-fold cross-validation was performed; 2K, K from -5 to 
15 with step of 2 for the penalty parameter and 2K, K from -15 to 5 with step of 2 for the 
spread parameter. These parameters were determined by the training dataset only. 

4.4 Flow chart of online calibration and two-dimensional cursor control games 

Fig.7 illustrates the general procedures for online calibration and online 2D cursor control 
games. In calibration step, data was first spatially filtered using surface Laplacian derivation 
(SLD), and then was temporally filtered by estimation of the power spectral density. 
Through offline neurophysiological analysis, 0.5-1.5 s after T2 window started was selected 
to obtain strongest ERD/ERS. We applied Welch method with Hamming window, and kept 
the frequency resolution 4 Hz, the same as previous study, with 50% overlap of the 
segments. For either physical movement or motor imagery, parameters and features were 
determined from the training data to make a model, used for decoding the movement 
intention in online tests. We performed empirical feature reduction by empirical feature 
reduction of channel and frequency band restrictions. GA-MLD and DTC were used to 
generate models. The online data also went through spatial filtering, temporal filtering, 
channels and frequency bands restriction. The cursor was moved to the classified direction. 
For the center-out paradigm, where we performed model adaptation, trials were combined 
with the old ones, keeping the data pool updated. New models would be generated using 
MLD and DTC, the one with higher accuracy would be used as the classifier in next trial. If 
the block was completed, the features were re-selected by genetic algorithm, and new 
models were generated by GA-MLD and DTC. Next block began with the same procedures.  

4.5 Offline cross-validation 

The offline performances were evaluated from 10-fold cross-validation; 90% of the data pool 
was used for training, and the other 10% was used for validation so that the validation 
dataset was independent from the training dataset. In the online game, the features for 
decoding the movement intention was extracted and classified using the parameters 
determined from the training datasets. 

4.6 Data processing for neurophysiological analysis 

Offline data analysis was performed to investigate the neurophysiology following the tasks 
of ‘Yes’ and ‘No’ for binary classification, and ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ for four-
directional classification. The calibration datasets were used for analysis. Data processing 
was performed using MATLAB Toolbox: BCI2VR (Bai et al., 2007). Epoching was done with 
windows of -2 s to 7 s with respect to the first cue onset. Any epochs contaminated with 
artifacts were rejected. ERD and ERS were calculated for each case. Epochs were linearly de-
trended and divided into 0.25 s segments. The power spectrum of each segment was 
calculated using FFT with Hamming window resulting in a bandwidth of 4 Hz. ERD and 
ERS were obtained by averaging the log power spectrum across epochs and having baseline 
corrected with respect to -2 s to 0 s.  
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Fig. 7. Flow chart of online calibration and two-dimensional cursor control games. 
Calibration data went through spatially filtering, temporally filtering and empirical feature 
selection. In classification, genetic-algorithm based Mahalanobis linear discrimination 
(MLD) classifier and decision tree classifier (DTC) were used to generate models for online 
game. During the online test, data was spatially filtered, temporal filtered, and empirical 
features were selected. Then the model generated in calibration step, giving a better 
prediction result was used to classify the movement intention, and the cursor was moved. 
For the later study with center-out 2D paradigm, after data pool was updated, the model 
was updated consequently, using MLD and DTC, and the one giving a higher result was 
used as the model for classification in next trial; if the block ended, features would be re-
selected by genetic algorithm. If all the blocks were completed, the procedure ended. 

5. Observations and experiment results 

5.1 ERD/ERS in healthy subjects and in ALS/PLS patients 

For ERD/ERS patterns in ALS/PLS patients during binary control in order to realize 2-D 
control, results were shown in (Bai et al., 2010). We selected to present results of healthy and 
ALS1/PLS1 patients in four-directional control, which included patterns from all four motor 
tasks. 
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Fig. 8. Time-course and topography of ERD and ERS during motor execution following the 
calibration paradigm for healthy subjects S1and S2. Blue color stands for power decrease or 
ERD; red stands for power increase or ERS (see original color picture in Huang et al., 2009). 
The T1 window is from 0 s to 2.5 s and the T2 window is from 2.5 s to 5 s. ERD was observed 
in the T2 window on the left hemisphere during sustained right-hand movement; ERS was 
observed in the T2 window on the left hemisphere when the subjects ceased to move right-
hand movement. During left-hand movement, ERD was observed in the T2 window on the 
right hemisphere during sustained movement and ERS on the right hemisphere when the 
subjects ceased to move left hand. ERD and ERS in each case were marked by pink circles in 
the time–course plot. The head topography corresponding to the pink marked time period 
was provided next to the time–course plots. 

Fig.8 shows an example of time–frequency plots, head topographies of ERDs or ERSs for 
motor execution with physical movement, from two healthy subjects. For each subject, time–
frequency plots of channel C3 over the left sensorimotor cortex and C4 over the right 
hemisphere are illustrated in the left two columns and head topography of ERD or ERS to 
their right, containing each of the four situations: ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’. In the 
time– frequency plot, 0 s stands for the first cue (green in the visual paradigm) occurrence. 
ERD (blue color) was observed from around 0.5–1 s after the cue onset due to the response 
delay; for S1, S2 and S3, ERD in both alpha and beta bands from 10–30 Hz was observed 
over motor areas contralateral to the hand moved. The ERS in red color was mainly 
observed in the beta band centered around 20 Hz over the contralateral motor areas. 
Compared with ERD patterns, ERS was shortlasting in time but highly distinguishable. 
Therefore, the ERD and ERS on either left or right hemisphere provided four spatial patterns 
to detect ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ intentions.  
Fig.9 shows the time–frequency plots and head topography of ERD and ERS associated with 
motor imagery. Similar to the patterns associated with physical movement, ERD associated 
with motor imagery was observed in both alpha and beta bands on the contralateral 
hemisphere with the hand moved, although ERD amplitude was smaller than that of 
physical movement. ERS in the T2 window was observed on the contralateral hemisphere in 
beta band (13–24 Hz) only, and its amplitude was smaller than that of physical movement. 
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Fig. 9. Time-course and topography of ERD and ERS during motor imagery following the 
calibration paradigm for healthy subjects S1 and S2. For both S1 and S2, ERD is obtained in 
the time window with sustained motor imagery and ERS with termination of motor 
imagery. ERDs appear in both alpha and beta bands, bilateral, whereas ERSs appear only in 
the alpha band on the contralateral hemisphere. ERD and ERS in each case were marked by 
pink circles in the time–course plot. The head topography corresponding to the pink marked 
time period is provided next to the time-course plots (see original color picture in Huang et 
al., 2009). 

During left hand motor imagery for S1 (‘LYes’), ERD in the T2 time window was also 
observed on the left hemisphere. The ERD and ERS associated with motor imagery also 
provided four spatially differentiable patterns; however, the smaller amplitudes of ERD and 
ERS with motor imagery may result in less effective detection in single trials. 
In the further study with patients, ALS1 and PLS1 participated in the additional session of 
four-directional control. ERD and ERS associated with motor execution were presented over 
left and right hemispheres corresponding to right hand and left hand movements as 
illustrated in Fig. 10. ERD was observed over contralateral hemispheres to the right and left 
hand for both subjects. Similar to the ERD pattern in binary control paradigm, ipsilateral 
ERD was also seen in ALS1 during the active motor task. The contralateral ERS after active 
motor task was clearly seen in PLS1, whereas ERS pattern was not distinguishable in ALS1. 
In the motor imagery experiment, ALS1 was not able to cease the motor task as soon as the 
color was changed. The subject reported that the muscle stiffness delayed her relaxation 
response. The time–frequency analysis was not presented because the ERD and ERS 
patterns were not distinguishable. 

5.2 Feature selection and classification 

The best frequency bands and channels for classifying movement intentions were 
determined from the calibration data sets. Fig.11 shows the spatial-frequency feature 
analysis indexed by the Bhattacharyya distance for S1 and S2 during motor execution with 
physical movement and motor imagery. All the channels over the whole head were used for 
plot. The first column for each subject illustrates the channel–frequency plot of the 
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Fig. 10. Example of ERD and post-beta ERS activity over left and right motor areas 
associated with motor execution of right and left hand movement in the four-directional 
control paradigm for patients ALS1 and PLS1. ERD was detected over the motor area 
contralateral to the hand moved in both ALS1 and PLS1: ERD on the left hemisphere 
contralateral to right hand moved in case of  ‘RYes’, and ERD on the right hemisphere 
contralateral to left hand moved in case of ‘LYes’. Contralateral ERS to hand moved was 
distinguishable in PLS1: ERS on the left hemisphere contralateral to right hand moved in 
case of  ‘RNo’, and ERS on the right hemisphere contralateral to left hand moved in case of 
‘LNo’. However, post-beta ERS in ALS1 was not recognizable (see original color picture in 
Bai et al., 2010). 

Bhattacharyya distance, and the second column is the topography of the Bhattacharyya  
distance of the best frequency band. In the Bhattacharyya distance plot, the dark red color 
shows the higher Bhattacharyya distance standing higher separability to classify movement 
intentions from single trial EEG signal. In the channel–frequency plot for S1, the higher 
Bhattacharyya distance value for right-hand physical movement was observed in beta band 
ranging from 17 to 24 Hz in the channels located on the left hemisphere over the 
sensorimotor area. The high separability between ERD and ERS in the beta band was 
consistent with the time–frequency analysis in time-frequency plot. The topography of the 
Bhattacharyya distance around 17–24 Hz shows that the best EEG spatial channels for the 
classification of ‘RYes’ and ‘RNo’ were in the contralateral left hemisphere over the 
sensorimotor area since ERS presented on contralateral left hemisphere only, although ERD 
occurred bilaterally in time-frequency plot. A higher Bhattacharyya distance value for left-
hand physical movement was also seen in the beta band on the contralateral right 
hemisphere. For S2, the distribution of Bhattacharyya distance values was similar to that of 
S1, except that for either right hand or left hand, the ‘Yes’ case showed high separability 
only on the contralateral hemisphere, which can be seen in the topography of the 
Bhattacharyya distance. Compared with physical movement, separability of mental tasks in 
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motor imagery was weaker, indicated by lighter red area in the right two columns. Figure 7 
shows feature analysis for S1 and S2 with motor imagery. The highest Bhattacharyya 
distance values were in the beta band and on the channels over contralateral hemisphere for 
both right and left-hand motor imagery. 
 

 

Fig. 11. Feature visualization indexed by Bhattacharyya distance for healthy subjects S1 and 
S2 in physical movement (left two columns) and in motor imagery (right two columns) 
following the calibration paradigm. The best frequency band with the highest separability 
was found in beta band, and the best channel was found on sensorimotor areas (see original 
color picture in Huang et al., 2009). 
 

 

Fig. 12. Bhattacharyya distance for patient ALS1 and PLS1 in selecting better spatiotemporal 
features for four-directional classification. The frequency power features over left motor 
areas in beta band provided better detection of ‘RYes’ and ‘RNo’ associated with right hand 
movement, whereas the frequency power features over right motor areas in beta band 
provided better detection of ‘LYes’ and ‘LNo’ associated with left hand movement (see 
original color picture in Huang et al., 2009). 
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Subject MLD(%) GA-MLD(%) DTC(%) SVM(%) 

S1 
S2 
S3 
S5 

63.1 ± 4.51 
79.5 ± 6.21 
67.3 ± 3.04 
71.0 ± 2.18 

87.7 ± 1.29 
93.0 ± 1.97 
85.2 ± 0.95 
87.2 ± 0.58 

87.8 ± 1.47 
85.5 ± 3.87 
84.5 ± 2.30 
87.7 ± 1.75 

87.8 ± 1.31 
90.0 ± 3.12 
88.9 ± 1.04 
85.8 ± 2.13 

Average 70.2 ± 6.97 88.3 ± 3.33 86.4 ± 1.64 88.1 ± 1.79 

Table 1. 10-fold cross-validation accuracy. MLD, Mahalanobis linear discrimination; GA-
MLD, genetic algorithm-based Mahalanobis linear discrimination; DTC, decision tree 
classifier; SVM, support vector machine classifier. 

The Bhattacharyya distance was also analyzed from the activity associated with four-
directional control paradigm. Fig. 12 shows the Bhattacharyya distance values in ALS1 and 
PLS1 who performed motor execution. In consistence with the ERD and ERS patterns 
presented in Fig. 10, the better features to classify one of four directions from the other three 
directions were the activities in the beta band over the motor cortex contralateral to the hand 
moved. The EEG activities over central-medial area in PLS1 also provided good 
discrimination of ‘LYes’ and ‘LNo’. 
For study with five healthy subjects, Table 1 provides the comparison of offline 10-fold 
cross-validation accuracies using MLD, GA-MLD, DTC and SVM methods for S1, S2, S3 and 
S5 during physical movement. Since ERD and ERS patterns were not strong enough for S4, 
we excluded it from further exploration of classification methods. MLD has a mean value of 
70.2%; after applying genetic algorithm in feature selection, GA-MLD provides an improved 
mean value of 88.3%. A paired t-test suggested that GA-MLD had a significant 
improvement of the classification accuracy over the MLD (t = 7.64, df = 3, p-value < 0.01*). 
Similarly, we also compared DTC and SVM performance with that of MLD and found that 
DTC and SVM outperformed MLD significantly while they two had no great difference. 
Since there was no significant difference among the intensive methods, the DTC method 
was employed for the online 2D cursor control game. Except for S4, all the other four 
subjects were successful in controlling the cursor moving to the target by physical 
movement and the average online game performances for S1, S2, S3 and S5 were 92%, 85%, 
81% and 84%, with the overall performance of 85.5% ± 4.65%. S1 and S2 participated in the 
second session performing motor imagery tasks. The offline classification accuracy for S1 
was 73% ± 5.97%, and for S2 was 59.2% ± 3.63%, which were lower than those of cursor 
control with physical movement. The two subjects reported good concentration throughout 
the recording, except that S2 felt sleepy in a short period in the middle. Online 2D cursor 
control game using motor imagery was performed by S1 and S2. S1 was able to move the 
cursor to the target. However, S2 performed less well than S1. The performance was 
consistent with the classification results for motor imagery. 
To further investigate the performance of proposed 2D BCI, the four-directional 
classification result for ALS1 and PLS1 was provided in Table 2. The four-direction 
classification accuracy was about 60% for motor execution, which was much higher than the 
random level of 25% in the case of 4-class discrimination. The subjects also reported that it 
was more difficult to imagine wrist movement of the non-dominant left hand than the 
dominant right hand. An appropriate training to teach effective motor imagery maybe 
necessary for this motor imagery task. The online game provided a better accuracy than that 
of offline analysis of data recorded using the four-direction control paradigm. A possible  
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   Motor Execution Motor Imagery 

 Offline Cross-Validation Online Offline Cross-Validation 
Online 
Game* 

  GA-MLD GA-SVM 
GA-
MLD 

 GA-MLD 
GA-
SVM 

GA-
MLD 

ALS1  52.5±6.4 47.3±4.4 52.0  42.1±4.7 39.1±4.5 59.7 

PLS1  67.1±2.6 61.5±5.6 71.0  43.9±3.6 31.0±6. 9 55.3 

Average  59.8±10.3 54.4±10.0 61.5  43.0±1.3 35.1±5.7 58.0 

Table 2. Decoding four-directional movement intention from lateral ERD and beta-ERS 
associated with human natural motor behavior. *Estimated from cursor trajectory towards 
target. 

reason might be that subjects were more actively involved with the interactive game than 
the paradigm without performance feedback. Further, subjects might be able to adapt to the 
computer model for the classification from the cursor movement feedback. 

5.3 Information transfer rate of the BCI 
The BCI performance can be evaluated from both the decoding rate and accuracy (Wolpaw 
et al 2002). Wolpaw et al introduced the information transfer rate (ITR) for a BCI as bits per 
minute (bpm) as a good measurement for both decoding rate and accuracy (Wolpaw et al 
2000). In our study of 2D control for healthy subjects, accuracies for physical movement 
ranged from 85.2% to 93.0% (given by GA-MLD, although not significantly better than DTC 
and SVM), with the average of 88.3%; for a fourclass mental task, ITR was from 1.16 bits per 
trial, to 1.37 bits per trial, with the average 1.29 bits per trial. For motor execution with 
physical movement, the total duration of T1 and T2 windows was 5 s, i.e. 12 trials per 
minute. Therefore, the ITR was 13.9–16.5; the average was 15.5 bits per minute. Similarly, for 
motor imagery, the ITR was 4.15 bits per minute to 8.03 bits per minute. The cueing period 
T1 is important as it left enough time for the subjects to prepare for the movement. The 
results were comparable in terms of both accuracy and decoding rate with previous studies 
(see review in Wolpaw et al (2002)). In the study where center-out paradigm was adopted, 
T1 window was further shortened and the subjects can still make rapid response, and as a 
result, the ITR was further improved. As we also consider that the control 
performance/accuracy is very important in practical BCI application since BCI is intended 
for patients having limited motor function which features extremely slowness in motor 
control, it may be appropriate to have limited communication speed, whereas the accuracy 
needs to be high enough so that the users may avoid frustration when using BCI. 

6. Conclusion 

We analyzed ERD and ERS activity from EEG associated with human natural motor control in 
healthy people and ALS/PLS patients. ERD associated with active motor control and post 
beta-ERS associated with cessation of active motor control were preserved in four out of five 
healthy subjects and all six ALS and PLS patients participating in this study. ERD and ERS 
occurred not only with motor execution with physical movement, but also with motor imagery 
without overt movement. The amplitudes of ERD and ERS were less with motor imagery than 
during motor execution. In this study, we verified that the difference between ERS and ERD 

www.intechopen.com



 Recent Advances in Brain-Computer Interface Systems 

 

168 

provided better contrast than the difference between idle state or baseline activities and ERD 
in not only healthy subjects but also ALS and PLS patients. The better contrast provided better 
classification rate by reducing the inter-class pattern overlapping. Under the proposed ERD 
and ERS-based paradigm, subjects achieved a high accuracy of binary control (80–90% for 
motor execution/motor imagery) despite not receiving extensive training. The accuracy for 
four-directional control was also much higher than the random level, though further training 
of effective motor imagery of right and left hand might be required.  
The successful test on the ERD and ERS-based method associated with human natural motor 
control will promote the development of a practical user-friendly BCI because long-term 
training becomes unnecessary. This is important for severely affected patients who are unable 
to tolerate prolonged training. Further, users may not need to keep sustained attention to 
regulate EEG rhythm in the proposed BCI associated with human natural motor control.  
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