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1. Introduction

Rendezvous problems between spacecraft have attracted a major research interest due to
important applications in actual space missions. Rendezvous problems may be categorized
into two groups depending on how the rendezvous maneuver is performed by the
participating spacecraft for a given mission: active-passive and cooperative maneuvers. In
an active-passive rendezvous problem involving two vehicles, the first vehicle, known as the
target vehicle, does not apply any control force while following its trajectory. The second
vehicle, which serves as the active vehicle, is controlled in such a way as to meet the target
vehicle at a later time. The control objective for the active vehicle is to match the position
and the velocity of the target vehicle. On the other hand, in a cooperative rendezvous
problem, both vehicles are controlled and guided to match the same position and velocity.
Therefore, solutions to either rendezvous problem consist of a sequence of control maneuvers
or guidance laws, designed to bring the vehicles to the same states, i.e., position and velocity.
Based on the overall mission requirements, the control objective of the rendezvous can include
additional constraints such as the total amount of propellant for each vehicle or the mission
time from beginning to end.
An optimal control problem consists of finding the control sequences as a function of time,
while achieving the control objectives and satisfying the given constraints. In the rendezvous
problem, the performance index to be minimized can be the duration of the maneuver or
the amount of fuel for each vehicle. The control objective is to match the final states of each
vehicle. The vehicle dynamics are defined by a set of ordinary differential equations.
The solution methods for the optimal control problem consist of indirect and direct methods.
Indirect methods are founded on the methods of the calculus of variation and its extension to
the maximum principle of Pontryagin and use a Hamiltonian formulation. They require the
solution of a two-point boundary value problem (TPBVP) for the system state variables and a
set of adjoint variables. The state variables are subject to the initial conditions and the adjoint
variables to the final conditions (constraints). The TPBVP is derived from the original optimal
control problem and its dimension is higher than the dimension of the original problem. In
addition, a TPBVP is more difficult to solve than an initial value problem (IVP) [Shampine &
Thompson (2003)]. For this reason, direct methods have been developed in order to avoid the
development of the Hamiltonian formulation from the optimal control problem.
Direct search methods include direct collocation nonlinear programming (DCNLP)
[Hargraves & Paris (1987)], genetic algorithms (GA) [Goldberg (1989); Michalewicz (1994)],
particle swarm optimization (PSO) [Venter & Sobieszczanski-Sobieski (2002)], simulated
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2 Advances in Spacecraft Technologies

annealing (SA) [Kirkpatrick & Vecchi (1983); van Laarhoven & Aarts (1987); Davis (1987)],
etc. In the DCNLP method, the system of equations and the constraints are satisfied at a
finite set of specific points, known as the collocation points. On the other hand, evolutionary
methods such as the GA, the PSO and SA, mimic either some biological behavior or some
physical phenomenon. For example, the PSO algorithm is inspired by the social behavior of a
swarm of birds or insects [Crispin (2005)].
Orbital transfer problems and cooperative rendezvous problems using an optimal control
formulation have been studied by many authors [Pourtakdous & Jalali (1995); Marinescu
(1976); Park & Guibout (2006); Jezewski (1992); Rauwolf & Coverstone-Carroll (1996);
Carpenter & Jackson (2003); Kim & Spencer (2002); Olsen & Fowler (2005)]. A Hamiltonian
formulation was used as a solution searching method by Marinescu [Marinescu (1976)] and
Pourtakdoust [Pourtakdous & Jalali (1995)]. Another method based on generating functions
has been proposed by Park [Park & Guibout (2006)], where generating functions were used
to find the optimal solution, treating the TPBVP as a canonical transformation. Rouwolf
and Coverstone-Carroll [Rauwolf & Coverstone-Carroll (1996)] proposed the use of a GA
for a low-thrust orbital transfer problem. A chaser-target rendezvous problem was solved
by Carpenter [Carpenter & Jackson (2003)] using a GA. They used the Clohessy-Wiltshire
equations as a linear approximation for preliminary mission planning. Another chaser-target
type problem is studied by Kim and Spencer [Kim & Spencer (2002)] with minimum fuel
consumption as the objective function. Olsen and Fowler [Olsen & Fowler (2005)] also
adopted the GA to generate a near optimal solution to a rendezvous problem using elliptic
orbits.
Crispin [Crispin (2006; 2007)] obtained GA based solutions to rendezvous problems as
nonlinear discrete or continuous time optimal control problems with terminal constraints.
Using the GA has the advantage of completely eliminating the need for a TPBVP
reformulation. Instead, GA utilizes a stochastic search method that can explore a large
region of the solution space. In addition, GA requires no derivatives, which simplifies the
computation of the actual algorithm. However, it does not guarantee finding the global
optimum, because of the stochastic behavior. Several methods have been proposed in order to
prevent GA’s from converging to a local optimum [Schraudolph & Belew (1992); Fogel (1995)].
In this paper, we treat the rendezvous problem using GA’s and simulated annealing in order
to find nearly optimal solutions. We consider a cooperative rendezvous problem where both
vehicles are active and the mission time duration is taken as a terminal constraint. The
spacecraft dynamics are based on a continuous low-thrust assumption and are not restricted
to a specific orbital shape. This is different from the Clohessy-Wiltshire approximation, which
assumes the trajectories remain in the vicinity of a given orbit, usually circular or elliptic.
Furthermore, the near optimal solutions obtained by the GA or the SA are used as an initial
guess in a collocation method, in order to obtain more accurate solutions.
The paper is organized as follows. In the following Section 2, a detailed problem formulation
is presented and the equations of motion for both spacecraft are derived. Then, it is followed
by Section 3, which contains numerical simulation results in order to demonstrate the points
given in the previous section. Finally, concluding remarks and future research directions are
given in Section 4.

2. Problem formulation

This section describes the formulation of the optimal control problem for the given
rendezvous mission with both spacecraft active. The rendezvous mission time is prescribed
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Rendezvous Between Two Active Spacecraft with Continuous Low Thrust 3

a priori. If no solution can be found for the prescribed time duration, it usually means that
the time is too short to achieve rendezvous. Therefore, the mission time is increased and the
optimal problem is solved again. Fig. 1 shows the frame of reference and the nomenclature
for the rendezvous problem.
It is assumed that the initial orbit of each spacecraft is circular. Here ν is the true anomaly
measured counter-clockwise from the +x axis direction. Initially, the two spacecraft are
located at different positions so that their radial locations and true anomalies values are
different at the initial time t = to. Each spacecraft is equipped with a low thrust rocket engine,
which is assumed to have a constant thrust force T. This assumption simplifies the optimal
control problem because the steering angle θ of the thrust vector can be used as a single
control variable. The measurement directions for each quantity are depicted in Fig. 1. It is also
assumed that there are no gravity perturbations due to the oblateness of the main attracting
body, the existence of another attracting body in the vicinity of the spacecraft and the mutual
attraction between the spacecraft. We restrict our problem to two identical spacecraft with the
same initial masses as well as the same constant thrust force and the same propellant mass
flow rate. Therefore, the dynamics of each spacecraft are given by

m

(

d2r

dt2
− r

(

dν

dt

)2
)

= −
mµ

r2
+ T sinθ (1)

m

(

r
d2ν

dt2
+ 2

(

dr

dt

)(

dν

dt

))

= T cosθ (2)

where µ = GM is the gravitational constant of the main attracting body, which is located
at the origin O in Fig. 1, M is the corresponding mass of the attracting body, and G is the
universal gravitational constant. As seen in Eq. (1) and Eq. (2), the motion of each spacecraft
is decomposed into the radial and the transverse direction. Accordingly, the radial and
transverse components of the velocity vector are given by

u =
dr

dt
, v = r

dν

dt
(3)

Using the velocity components given in Eq. (3), we may now rewrite Eq. (1) and Eq. (2) as
first-order differential equations as follows

s

v

v

( )r t

m

u

V

T

x

y

O

Fig. 1. Spacecraft trajectory for the rendezvous mission. The center of attraction is at the
origin of the xy-frame. u and v are the components of the velocity V in polar coordinates
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m

(

du

dt
−

v2

r

)

= −
mµ

r2
+ T sinθ (4)

m

(

dv

dt
+

uv

r

)

= T cosθ (5)

Therefore, the system of first-order differential equations consisting of Eq. (3), Eq. (4), and
Eq. (5) describes the dynamics of the spacecraft. We now introduce the following characteristic
parameters (time, speed, and thrust force) in order to non-dimensionalize the system of
equations.

t∗ =

√

r3
o

µ
, Vo =

√

µ

ro
, To =

µmo

r2
o

(6)

where ro is the radius of the initial orbit; mo is the initial mass of each spacecraft; and Vo

is the initial velocity of each spacecraft. Since each spacecraft starts its motion on a circular
orbit before the start of the rendezvous mission, Vo has only a transverse velocity component,
which is identical to the orbital velocity of the spacecraft in its circular orbit. The definitions
of the non-dimensional variables are given by

r̄ = r/ro m̄ = m/mo t̄ = t/t∗ = t/
√

r3
o /µ

ū = u/Vo = u/
√

µ/ro v̄ = v/Vo = v/
√

µ/ro τ = T/To = T/(µmo/r2
o)

(7)

where the bar denotes non-dimensional variables and the symbol τ is chosen for the
non-dimensional thrust in order to avoid confusion with t̄, which is the normalized time. Since
the mass of the spacecraft varies during the rendezvous mission, the mass m is a function of t̄
and is given by

m(t) = mo + ṁt (8)

where ṁ is negative, since the mass of the vehicle decreases as fuel is consumed. Thus, m̄ is
obtained by

m̄ = 1 −
|ṁ|

mo

√

r3
o

µ
t̄ = 1 − Bt̄ (9)

where B = (|ṁ|/mo)
√

r3
o /µ is introduced for notational simplicity. The corresponding

non-dimensionalized system of equations (Eq. (3),Eq. (4), and Eq. (5)) are obtained as follows

dr̄

dt̄
= ū (10)

dν

dt̄
=

v̄

r̄
(11)

dū

dt̄
=

v̄2

r̄
−

1

r̄2
+

τ sinθ

(1 − Bt̄)
(12)

dv̄

dt̄
= −

ū · v̄

r̄
+

τ cosθ

(1 − Bt̄)
(13)
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Rendezvous Between Two Active Spacecraft with Continuous Low Thrust 5

The non-dimensional initial conditions are

r̄(0) = 1, ū(0) = 0, v̄(0) = 1, ν(0) = νo (14)

In order to achieve the rendezvous, the following final conditions must be satisfied by each
spacecraft

r̄(t̄ f ) = r̄ f , ū(t̄ f ) = 0, v̄(t̄ f ) = v̄ f =
1

√

r̄ f
, ν(t̄ f ) = ν f (15)

From Eq. (15), we see that the rendezvous point is located on the final circular orbit with an
arbitrary true anomaly value. As mentioned before, r̄ f and t̄ f are prescribed parameters of the
optimal control problem. The final t̄ f can be reduced if it is required to find a shorter time for
the mission duration.
The objective function to be minimized for the given rendezvous problem is chosen as

J = max{w1 · [r̄(t̄ f )− r̄ f ]
2,w2 · [ū(t̄ f )− ū f ]

2,w3 · [v̄(t̄ f )− v̄ f ]
2,w4 · [ν(t̄ f )− ν f ]

2} (16)

where wi is a weight determining the contribution of each error and can be adjusted based
on the mission scenario. In fact, in our simulations, w4 is set to zero for a free final true
anomaly value at the the rendezvous point. The choice of J is not unique and the reason
for the choice of J in Eq. (16)is to improve the simulation speed based on several J trials. In
the following section, the rendezvous between two spacecraft is considered. If we denote
the objective function for the ith spacecraft as Ji from Eq. (16), the objective function for a
rendezvous mission consisting of N spacecraft (e.g., N = 2 in our simulations) is given by

Jtot = max
N
⋃

i=1

Ji (17)

3. Numerical results

The rendezvous simulations are performed using canonical units. The characteristic distance
ro is in astronomical unit (AU) which is the average distance between the Earth and the Sun
(ro = 1AU ≈ 1.4960 × 108 km). The gravitational constant µ for the sun is about 1.3271 ×

1011 km3/s2. The mass of the spacecraft [Bryson (1999)] is mo = 4536 kg. The characteristic
time is obtained by Eq. (6) and set to t∗ = 58.13 days. Similarly, Vo = 29.785 km/s and To ==
26.9 N. The constant thrust force for the spacecraft [Bryson (1999)] is T = 3.778 N and leads to
the non-dimensionalized thrust force τ = 0.1405. Finally, the mass consumption rate estimated
from the spacecraft model [Bryson (1999)] is ṁ = 6.7564 × 10−5 kg/s and corresponding B for
Eq. (9) is about 0.0748. As a reference mission, we consider the rendezvous mission at Mars
orbit (r̄ f = 1.5237). The velocity constraints at the final position are ū f = 0 and v̄ f = 0.8101.
The prescribed mission time t̄ f = 5.5 to ensure the fast convergence to near optimal solutions
by the GA and SA. In the following discussion, we drop the bar for the non-dimensional
variables to simplify the notation.

3.1 Rendezvous between two spacecraft using genetic algorithms and simulated annealing

Two cases are discussed in the following simulations. First, both spacecraft start from the
orbit of the Earth. However, the difference between the initial values of the true anomaly
of the two spacecraft is larger than π/2, in order to study the case of relatively large initial
angular differences between the locations of the two vehicles. The second case is about the
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rendezvous of spacecraft starting from two different orbits such as the orbit of Mars and orbit
of the Earth, meeting at an intermediate orbit. In both cases, the final value of the true anomaly
of both spacecraft is free (is not prescribed a priori). In both cases, the GA and SA methods
are used and the results are compared.
The numerical integration of the differential equations describing the spacecraft dynamics is
performed using a fourth order Runge-Kutta method. The time duration t f = 5.5 is divided
into Nt time steps each of ∆t = t f /Nt. The discrete time is ti = i∆t. The corresponding control

function θ(t) is also discretized to θi = θ(ti) based on the number of time steps Nt. In the
simulations, the number of time steps Nt is fixed. The control function θ(t) is smoothed by
fitting a third order polynomial to the discrete values of θi from i = 1 to i = 41. A population
size of 50 members was used for the GA. All the members of the initial population θi = θ(ti)
are set to zero. The chosen crossover fraction is 0.8. For SA, the re-annealing interval is 100
and the initial temperature is 100. The maximum iteration number for the GA is 100 and for
the SA it is 300. The objective function tolerance is set to 0.001 for both the GA and the SA.
The rate of convergence may vary dramatically when running the same case many times,
because both the GA and SA operations are stochastic processes. Furthermore, the number
of iterations for the same order of magnitude of the objective function is another aspect that
distinguishes the GA from the SA. Fig. 2 shows the simulation results using the GA and the
SA. Both methods failed to satisfy the tolerance condition (less than 0.001) for the objective
function and were stopped after 100 iterations. Spacecraft 1 starts from r1o = 1 with θ1o = 0
and Spacecraft 2 starts from r2o = 1 with θ2o = 2π/3. The final radius for both spacecrafts is
r f = 1.528, corresponding to the orbit of Mars (r f = 1.528au). The final true anomaly θ f is free
as mentioned earlier. Fig. 2(a) represents the result when the objective function value is 0.043
and Fig. 2(b) corresponds to 11.046 for the same objective function. The errors in Fig. 2(b)
are due to a large value of the final radius being greater than 2. However, the calculation
time for the SA is much less than that of the GA for the same number of iterations. The final
true anomaly values for Spacecraft 1 and 2 are ν1 f ≈ 325.5o and ν2 f ≈ 326.9o when using the
GA; ν1 f ≈ 286.6o and ν2 f ≈ 329.1o when using the SA. Fig. 2(c) and Fig. 2(d) show the control
history obtained by the GA and the SA. Since we use third order polynomials to smooth the
control function based on θi

1 and θi
2 with i ∈ [1,41], both θ1(t) for Spacecraft 1 and θ2(t) for

Spacecraft 2 look similar to each other except for the direction of the curvatures.
The second case we consider is when each spacecraft starts from a different orbit (the orbits
of Mars and Earth, respectively) and rendezvous at an intermediate orbit. Spacecraft 1 starts
from a point on the Earth orbit (r1o = 1, θ1o = 2π/3) and Spacecraft 2 from a point located on
the Mars orbit (r2o = 1.528, θ2o = 2π/3). The rendezvous is at the intermediate orbit (r f = 1.2)
between Earth and Mars orbits and the final true anomaly is free (not prescribed). The final
time is the same as in the previous simulations (t f = 5.5). The maximum numbers of iterations
for the GA and the SA are also the same as in the previous case. Fig. 3 shows the simulation
results for the GA and the SA. The objective function value obtained using the SA Fig. 3(a) is
about 0.06 and for the SA in Fig. 3(b) it is about 3.64. Although the number of iterations of
the SA is larger than the number of generations of the GA, the actual CPU time for the SA is
shorter than that of the GA. The final true anomalies obtained are ν1 f ≈ 23.4o and ν2 f = 22.2o

in the case of the GA; and ν1 f ≈ 37.9o and ν2 f ≈ 44.4o in the case of the SA. Fig. 3(c) and
Fig. 3(d) show the corresponding control histories.
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Fig. 2. Trajectories generated by the GA and the SA direct search methods. The number of
iterations is 100 for the GA and 300 for the SA. The radial distances and the angles are in AU
and degrees, respectively.
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Fig. 3. Optimal control trajectories generated by the GA and the SA direct search methods.
The number of iterations for the GA is 100 and 300 for the SA. The units for the radius and
angles are AU and degrees, respectively
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3.2 Using GA and SA near-optimal solutions as initial guesses for a collocation method

Direct search methods like the GA and the SA may not generate solutions accurate enough to
satisfy the final conditions because of the stochastic behavior. On the other hand, numerical
methods for the solution of TPBVP’s are more accurate than stochastic methods, but they
require the knowledge of initial solutions (initial guesses) for starting the solution. Noting
that the GA/SA methods can provide approximate trajectories, we can use them as initial
guesses in a numerical method for solving TPBVP’s, based on the collocation method. In
this way, we can attempt to combine the advantages of the stochastic method and of the
more accurate collocation method for TPBVP’s. The nearly optimal initial solutions are
obtained without solving optimal control problems with adjoint variables and we solve a
TPBVP of reduced dimensions without adjoint variables, which simplifies the original optimal
control problem significantly. Solving optimal control problems directly by TPBVP is not easy
and numerical solutions are very sensitive to the initial guesses for the solutions [Bailey &
Waltman (1968); Shampine & Thompson (2003)]. For this purpose, we combine the SA method
with a collocation method [Kierzenka (1998); Shampine & Thompson (2003)]. Fig. 4 shows the
simulation results where SA results are used as an initial guess.
We use the solutions obtained using the SA method in Section 3.1. We parameterize the
steering control as follows

θ1(t) =
N1

∑
i=0

Ait
N1−i, θ2(t) =

N2

∑
i=0

Bit
N1−i (18)

where the subscript i refers to the ith spacecraft in the rendezvous mission. By adopting the
parametrization for the control inputs, the spacecraft dynamics become

dyyy

dt
= fff (t,yyy, AAA) (19)

where the parameter vector AAA for the collocation method is defined by

AAA = [A0, A1, . . . , AN1
, B0, B1, . . . , BN2

]T (20)

and the state vector is

yyy = [r1,u1,v1,ν1,r2,u2,v2,ν2]
T (21)

The nonlinear vector field fff in Eq. (19) refers to the system of equations Eq. (10), Eq. (12),
Eq. (13), and Eq. (11) in an order of components in yyy. We use polynomials of degree 3 for each
spacecraft (N1 = N2 = 3). The initial value of A using SA is given by

AAA = [−0.0613, 0.3264, −0.0196, −1.5158, −0.0365, 0.3279, −1.3149, 2.1545]T (22)

The results obtained by the collocation method for AAA are

AAA = [0.0291, −0.3704, 1.3080, −2.4064, −0.0080, −0.1863, 0.4425, 1.5668]T (23)

As we can see from Eq. (22) and Eq. (23), the solution of the TPBVP by the collocation method
gives results which satisfy the final conditions of Eq. (15). A comparison of the control
functions and the trajectories for each spacecraft is presented in Fig. 4.
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Fig. 4. Optimal trajectories generated by a combination of SA and a collocation method. The
units for the radius and the angle are AU and degrees, respectively
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4. Conclusion

The rendezvous problem between two spacecraft using low thrust continuous propulsion
systems has been formulated as an optimal control problem. Instead of using a Hamiltonian
formulation, the optimal control problem s solved by direct search methods such as GA’s
and SA. Since SA is faster than the GA for the same number of iterations, SA is combined
with the collocation method to overcome the stochastic behavior of SA (i.e., to match the final
constraints). Simulations of a rendezvous mission between two spacecraft are performed in
order to demonstrate the proposed methodology. The SA and the collocation method have
been used successfully as complementary methods in order to achieve improved solutions to
the original optimal control problem.
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