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1. Introduction

In recent years, formation flying has become an increasingly popular subject of study. This
is a new method of performing space operations, by replacing large and complex spacecraft
with an array of simpler micro-spacecraft bringing out new possibilities and opportunities
of cost reduction, redundancy and improved resolution aspects of onboard payload. One
of the main challenges is the requirement of synchronization between spacecraft; robust
and reliable control of relative position and attitude are necessary to make the spacecraft
cooperate to gain the possible advantages made feasible by spacecraft formations. For
fully autonomous spacecraft formations both path- and attitude-planning must be performed
on-line which introduces challenges like collision avoidance and restrictions on pointing
instruments towards required targets, with the lowest possible fuel expenditure. The system
model is a key element to achieve a reliable and robust controller.

1.1 Previous work

The simplest Cartesian model of relative motion between two spacecraft is linear and known
as the Hill (Hill, 1878) or Clohessy-Wiltshire (Clohessy & Wiltshire, 1960) equations; a
linear model based on assumptions of circular orbits, no orbital perturbations and small
relative distance between spacecraft compared with the distance from the formation to
the center of the Earth. As the visions for tighter spacecraft formations in highly elliptic
orbits appeared, the need for more detailed models arose, especially regarding orbital
perturbations. This resulted in nonlinear models as presented in e.g. (McInnes, 1995; Wang
& Hadaegh, 1996), and later in (Yan et al., 2000a) and (Kristiansen, 2008), derived for
arbitrary orbital eccentricity and with added terms for orbital perturbations. Most previous
work on reference generation are concerned with translational trajectory generation for fuel
optimal reconfiguration and formation keeping such as in (Wong & Kapila, 2005) where
a formation located at the Sun-Earth L2 Langrange Point is considered, while (Yan et al.,
2009) proposed two approaches to design perturbed satellite formation relative motion orbits
using least-square techniques. Trajectory optimization for satellite reconfiguration maneuvers
coupled with attitude constraints have been investigated in (Garcia & How, 2005) where
a path planner based on rapidly-exploring random tree is used in addition to a smoother
function. Coupling between the position and attitude is introduced by the pointing constrains,
and thus the trajectory design must be solved as a single 6N Degrees of Freedom (DOF)
problem instead of N separate 6 DOF problems.
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2 Advances in Spacecraft Technologies

Ground target tracking for spacecraft has been addressed by several other researchers, such
as (Goerre & Shucker, 1999; Chen et al., 2000; Tsiotras et al., 2001) and (Steyn, 2006) where
only one spacecraft is considered. The usual way to generate target tracking reference is
to find a vector pointing from the spacecraft towards a point on the planet surface where
the instrument is supposed to be pointing, and then the desired quaternions and angular
velocities are generated to ensure high accuracy tracking of the specified target point.
Due to the parameterization of the attitude for both Euler angles and the unit quaternion we
obtain a set of two equilibria of the closed-loop system of a rigid body, and possibilities of the
unwinding phenomenon. One approach to solve the problem of multiple equilibria is the use
of hybrid control (cf. (Liberzon, 2003), (Goebel et al., 2009)), and different solutions have been
presented, as in (Casagrande, 2008) for an underactuated non-symmetric rigid body, and by
(Mayhew et al., 2009) using quaternion-based hybrid feedback where the choice of rotational
direction is performed by a switching control law.
The nonlinear nature of the tracking control problem has been a challenging task in robotics
and control research. The so called passivity-based approach to robot control have gained much
attention, which, contrary to computed torque control, coupe with the robot control problem
by exploiting the robots’ physical structure (Berghuis & Nijmeijer, 1993). A simple solution to
the closed-loop passivity approach was proposed by (Takegaki & Arimoto, 1981) on the robot
position control problem. The natural extension the motion control task was solved in (Paden
& Panja, 1988), where the controller was called PD+, and in (Slotine & Li, 1987) where the
controller was called passivity- based sliding surface. The control structure was later applied for
spacecraft formation control in (Kristiansen, 2008).
For large systems, e.g. complex dynamical systems such as spacecraft formations, the
expression divide and conquer may seem appealing, and for good reasons; by dividing a
system into smaller parts, the difficulties of stability analysis and control design can be greatly
reduced. A particular case of such systems is cascaded structure which consists of a driving
system which is an input to the driven system through an interconnection (see (Lorı́a & Panteley,
2005) and references therein).
The topic of cascaded systems have received a great deal of attention and has successfully
been applied to a wide number of applications. In (Fossen & Fjellstad, 1993) a cascaded
adaptive control scheme for marine vehicles including actuator dynamics was introduced,
while (Lorı́a et al., 1998) solved the problem of synchronization of two pendula through use
of cascades. The authors of (Janković et al., 1996) studied the problem of global stabilisability
of feedforward systems by a systematic recursive design procedure for autonomous systems,
while time-varying systems were considered in (Jiang & Mareels, 1997) for stabilization of
robust control, while (Panteley & Lorı́a, 1998) established sufficient conditions for Uniform
Global Asymptotical Stability (UGAS) for cascaded nonlinear time-varying systems. The
aspects of practical and semi-global stability for nonlinear time-varying systems in cascade
were pursued in (Chaillet, 2006) and (Chaillet & Lorı́a, 2008). A stability analysis of spacecraft
formations including both leader and follower using relative coordinates was presented in
(Grøtli, 2010), where the controller-observer scheme was proven input-to-state-stable.

1.2 Contribution

In this paper we present a solution for real-time generation of attitude references
for a leader-follower spacecraft formation with target tracking leader and followers
complementing the measurement by pointing their instruments at a common target on the
Earth surface. The solution is based on a 6DOF model where each follower generates the
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Synchronization of Target Tracking Cascaded Leader-Follower Spacecraft Formation 3

attitude references in real-time based on relative translational motion between the leader
and its followers, which also ensures that the spacecraft are pointing at the target during
formation reconfiguration. We are utilizing a passivity-based sliding surface controller for
relative position and Uniform Global Practical Asymptotic Stability (UGPAS) is proven for
the equilibrium point of the closed-loop system. The control law is also adapted for hybrid
switching control with hysteresis for attitude tracking spacecraft in formation to ensure
robust stability when measurement noise is considered, and avoid unwinding, thus achieving
Uniform Practical Asymptotical Stability (UPAS) in the large on the set S3 × R

3 for the
equilibrium point of the closed-loop system. Simulation results are presented to show how
the attitude references are generated during a formation reconfiguration using the derived
control laws.
The rest of the paper is organized as follows. In Section 2we describe the modeling of relative
translation and rotation for spacecraft formations; in Section 3 we present a scheme were
the attitude reference for the leader and follower spacecraft is generated based on relative
coordinates; in Section 4 we present continuous control of relative translation and hybrid
control of relative rotation where stability of the overall system is proved through use of
cascades; in Section 5 we present simulation results and we conclude with some remarks in
Section 6.

2. Modeling

In the following, we denote by ẋ the time derivative of a vector x, i.e. ẋ = dx/dt, and moreover,
ẍ = d2x/dt2. We denote by ‖·‖ the Euclidian norm of a vector and the induced L2 norm of a
matrix. The cross-product operator is denoted S(·), such that S(x)y = x× y. Reference frames

are denoted by F (·), and in particular, the standard Earth-Centered Inertial (ECI) frame is
denoted F i and The Earth-Centered Earth-Fixed (ECEF) frame is denoted F e. We denote by
ωωωc

b,a the angular velocity of frame F a relative to frame F b, referenced in frame F c. Matrices

representing rotation or coordinate transformation from frame F a to frame F b are denoted
Rb

a. When the context is sufficiently explicit, we may omit to write arguments of a function,
vector or matrix.

2.1 Cartesian coordinate frames

Basically there are two different approaches for modeling spacecraft formations: Cartesian
coordinates and orbital elements, which both have their pros and cons. The orbital element
method is often used to design formations concerning low fuel expenditure because of the
relationship towards natural orbits, while Cartesian models often are used where an orbit
with fixed dimensions are studied, which is the case in this paper.
The coordinate reference frames used throughout the paper are shown in Figure 1, and defined
as follows:
Leader orbit reference frame: The leader orbit frame, denoted F l , has its origin located in
the center of mass of the leader spacecraft. The er axis in the frame coincide with the vector
rl ∈ R

3 from the center of the Earth to the spacecraft, and the eh axis is parallel to the orbital
angular momentum vector, pointing in the orbit normal direction. The eθ axis completes the
right-handed orthonormal frame. The basis vectors of the frame can be defined as

er :=
rl

‖rl‖
, eθ := S(eh)er and eh :=

h

‖h‖
, (1)

where h = S(rl)ṙl is the angular momentum vector of the orbit.
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Follower orbit reference frame: The follower orbit frame has its origin in the center of mass
of the follower spacecraft, and is denoted F f . The vector pointing from the center of the Earth
to the frame origin is denoted r f ∈ R

3, and the frame is specified by a relative orbit position

vector p = [x, y, z]⊤ expressed in F l components, and its unit vectors align with the basis
vectors of F l . Accordingly,

p = Rl
i(r f − rl) = xer + yeθ + zeh ⇒ r f = Ri

lp + rl . (2)

2.2 Quaternions and kinematics

The attitude of a rigid body is often represented by a rotation matrix R ∈ SO(3) fulfilling

SO(3) = {R ∈ R
3×3 : R⊤R = I, detR = 1} , (3)

which is the special orthogonal group of order three, where I denotes the identity matrix.
A rotation matrix for a rotation θ about an arbitrary unit vector kkk ∈ R

3 can be angle-axis
parameterized as –cf. (Egeland & Gravdahl, 2002),

Rk,θ = I + S(k)sinθ + S2(k)(1 − cosθ) , (4)

and coordinate transformation of a vector r from frame a to frame b is written as rb = Rb
ara.

The rotation matrix in (4) can be expressed by an Euler parameter representation as

R = I + 2ηS(ǫǫǫ) + 2S2(ǫǫǫ) , (5)

where the matrix S(·) is the cross product operator

S(ǫǫǫ) = ǫǫǫ× =

⎡

⎣

0 −ǫz ǫy

ǫz 0 −ǫx

−ǫy ǫx 0

⎤

⎦ , ǫǫǫ =

⎡

⎣

ǫx

ǫy

ǫz

⎤

⎦ . (6)

Quaternions are often used to parameterize members of SO(3) where the unit quaternion is
defined as q = [η, ǫǫǫ⊤]⊤ ∈ S3 = {x ∈ R

4 : x⊤x = 1}, where η = cos (θ/2) ∈ R is the scalar

Leader

Follower

r
l

r
fix

iy

iz

er

eθ

eh

p

Fig. 1. Reference coordinate frames.
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part and ǫǫǫ = ksin (θ/2) ∈ R
3 is the vector part. The set S3 forms a group with quaternion

multiplication, which is distributive and associative, but not commutative, and the quaternion
product is defined as

q1 ⊗ q2 =

[

η1η2 − ǫǫǫ⊤1 ǫǫǫ2

η1ǫǫǫ2 + η2ǫǫǫ1 + S(ǫǫǫ1)ǫǫǫ2

]

. (7)

The inverse rotation can be performed by using the inverse conjugate of q given by q̄ =
[η, −ǫǫǫ⊤]⊤. The time derivative of the rotation matrix is

Ṙa
b = S

(

ωωωa
a,b

)

Ra
b = Ra

bS
(

ωωωb
a,b

)

, (8)

and the kinematic differential equations may be expressed as

q̇ = T(q)ωωω, T(q) =
1

2

[

−ǫǫǫT

ηI + S(ǫǫǫ)

]

∈ R
4×3 . (9)

2.2.1 Relative translation

The fundamental differential equation of the two-body problem can be expressed as (cf.
(Battin, 1999))

r̈s =−
μ

r3
s

rs +
fsd

ms
+

fsa

ms
, (10)

where fsd ∈ R
3 is the perturbation term due to external effects, fsa ∈ R

3 is the actuator force,
ms is the mass of the spacecraft, and super-/sub-script s denotes the spacecraft in question, so
s = l, f for the leader and follower spacecraft respectively. The spacecraft masses are assumed
to be small relative to the mass of the Earth Me, so μ ≈ GMe, where G is the gravitational
constant. According to (2) the relative position between the leader and follower spacecraft
may be expressed as

Ri
lp = r f − rl , (11)

and by differentiating twice we obtain

Ri
l p̈ + 2Ri

lS(ωωω
l
i,l)ṗ + Ri

l

(

S2(ωωωl
i,l) + S(ω̇ωωl

i,l)
)

p = r̈ f − r̈l . (12)

By inserting (10), the right hand side of (12) may be written as

r̈ f − r̈l = −
μ

r3
f

r f +
f f d

m f
+

f f a

m f
+

μ

r3
l

rl −
fld

ml
−

fla

ml
, (13)

and by inserting (2) into (13), we find that

m f (r̈ f − r̈l) = −m f μ

[(

1

r3
f

−
1

r3
l

)

rl +
Ri

lp

r3
f

]

+ f f a + f f d −
m f

ml
(fla + fld) . (14)

Moreover, by inserting (14) into (12), and rearranging the terms we obtain

m f p̈ + Ct(ωωω
l
i,l)ṗ + Dt(ω̇ωω

l
i,l ,ωωω

l
i,l ,r f )p + nt(rl ,r f ) = Fa + Fd , (15)
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where

Ct(ωωω
l
i,l) = 2m f S(ωωωl

i,l) (16)

is a skew-symmetric matrix,

Dt(ω̇ωω
l
i,l ,ωωω

l
i,l ,r f ) = m f

[

S2(ωωωl
i,l) + S(ω̇ωωl

i,l) +
μ

r3
f

I

]

(17)

may be viewed as a time-varying potential force, and

nt(rl ,r f ) = μm f Rl
i

[

1

r3
f

−
1

r3
l

]

rl (18)

is a nonlinear term. The composite perturbation force Fd and the composite relative control
force Fa are respectively written as

Fd = Rl
i

(

f f d −
m f

ml
fld

)

and Fa = Rl
i

(

f f a −
m f

ml
fla

)

. (19)

Note that all forces f are presented in the inertial frame. If the forces are computed in another
frame, the rotation matrix should be replaced accordingly. The orbital angular velocity and
angular acceleration can be expressed as ωωωi

i,l = S(rl)vl/r⊤l rl , and

ω̇ωωi
i,l =

r⊤l rlS(rl)al − 2v⊤
l rlS(r

⊤
l )vl

(r⊤l rl)2
, (20)

respectively.

2.2.2 Relative rotation

With the assumptions of rigid body movement, the dynamical model of a spacecraft can be
found from Euler’s momentum equations as (Sidi, 1997)

Jsω̇ωωsb
i,sb = −S(ωωωsb

i,sb)Jsωωωsb
i,sb + τττsb

sd + τττsb
sa (21)

ωωωsb
s,sb = ωωωsb

i,sb − Rsb
i ωωωi

i,s, (22)

where Js = diag{Jsx, Jsy, Jsz} ∈ R
3×3 is the spacecraft moment of inertia matrix, τττsb

sd ∈ R
3 is

the total disturbance torque, τττsb
sa ∈ R

3 is the total actuator torque and ωωωi
i,s = S(rs)vs/r⊤s rs is

the orbital angular velocity. Rotation from the leader body frame to the inertial frame are
denoted qi

lb, while rotation from the follower body frame to the inertial frame are denoted

qi
f b. Relative rotation between the follower and leader body frame is found by applying the

quaternion product (cf. (7)) expressed as

qlb
f b = qi

f b ⊗ q̄i
lb , (23)

and with a slightly abuse of notation we denote ql = qi
lb and q f = qlb

f b. The relative attitude

dynamics may be expressed as (cf. (Yan et al., 2000b; Kristiansen, 2008))

J f ω̇ωω + J f S(R
f b
lb ωωωlb

i,lb)ωωω − J f R
f b
lb J−1

l S(ωωωlb
i,lb)Jlωωω

lb
i,lb (24)

+ S(ωωω + R
f b
lb ωωωlb

i,lb)J f (ωωω + R
f b
lb ωωωlb

i,lb) = Υd + Υa,

568 Advances in Spacecraft Technologies
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Synchronization of Target Tracking Cascaded Leader-Follower Spacecraft Formation 7

where

ωωω = ωωω
f b
i, f b − R

f b
lb ωωωlb

i,lb (25)

is the relative angular velocity between the follower body reference frame and the leader body
reference frame expressed in the follower body reference frame,

Υd =τττ
f b
f d−J f R

f b
lb J−1

l τττlb
ld, Υa =τττ

f b
f a−J f R

f b
lb J−1

l τττlb
la (26)

are the relative perturbation torque and actuator torque, respectively. For simplicity (24) may
be rewritten as

J f ω̇ωω + Cr(ωωω)ωωω + nr(ωωω) = Υd + Υa, (27)

where
Cr(ωωω) = J f S(R

f b
lb ωωωlb

i,lb) + S(R
f b
lb ωωωlb

i,lb)J f − S(J f (ωωω + R
f b
lb ωωωlb

i,lb)) (28)

is a skew-symmetric matrix, and

nr(ωωω) = S(R
f b
lb ωωωlb

i,lb)J f R
f b
lb ωωωlb

i,lb − J f R
f b
lb J−1

l S(ωωωlb
i,lb)Jlωωω

lb
i,lb (29)

is a nonlinear term.

3. Reference generation

Our objective for the spacecraft formation is to have each spacecraft, including the leader,
tracking a fixed point located at the surface of e.g. the Earth by specifying a tracking direction
of the selected pointing axis where a measurement instrument is mounted such as e.g. a
camera or antenna. The target is chosen by the spacecraft operator as a given set of coordinates
such as latitude (φ) and longitude (λ). The vector pointing from the center of Earth to the
target in an Earth Centered Earth Fixed (ECEF) frame is obtained by applying

re
t =

⎡

⎣

cos(φ)cos(λ)
cos(φ)sin(λ)

sin(φ)

⎤

⎦ re (30)

where re = 6378.137 × 103 m is the Earth radii. It is assumed a perfect spherical Earth;
alternatively a function of the Earth radii may be used as re(λ,φ) with longitude and latitude
as arguments. If we assume that the Earth has a constant angular rate ωe = 7.292115 ×
10−5 rad/s around its rotation axis we can rotate the target vector to ECI coordinates by
utilizing

rt = Ri
ere

t (31)

where the rotation matrix from ECEF to ECI coordinates is dentoed

Ri
e =

⎡

⎣

cos(ωet + α) −sin(ωet + α) 0
sin(ωet + α) cos(ωet + α) 0

0 0 1

⎤

⎦ , (32)

where t is time scalar and α is an initial phase between the x-axis of the ECEF and EIC
coordinates at t = 0.
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3.1 Leader reference

For the leader spacecraft we start by defining a target pointing vector in inertial coordinates
as

lld = rt − rl , (33)

which is used to construct a leader desired frame called F ld as

xld = −
lld

‖lld‖
, yld =

S(xld)(−hl)

‖S(xld)(−hl)‖
and zld = S(xld)yld , (34)

and thus we can obtain a desired quaternion vector by transforming the constructed
rotation matrix and require continuity of solution to ensure a smooth vector over time. By
differentiating (33) twice we obtain

l̇ld = ṙt − ṙi , (35)

l̈ld = r̈t − r̈i , (36)

where

ṙt = S(ωωωi
i,e)R

i
ere

t , (37)

r̈t = S2(ωωωi
i,e)R

i
ere

t , (38)

and ωωωi
i,e = [0, 0, ωe]⊤. According to (Wertz, 1978) the relationship between the desired angular

velocity and the normalized target vector is

ℓ̇ℓℓld = S(ωωωi
i,ld)ℓℓℓld , (39)

where
ℓℓℓld = lld/‖lld‖ . (40)

Equ. (39) is linearly dependent, thus the desired angular velocity is not uniquely specified.
On component form (39) is written as

ℓ̇ldx = −ωldzℓldy + ωldyℓldz , (41a)

ℓ̇ldy = ωldzℓldx − ωldxℓldz , (41b)

ℓ̇ldz = −ωldyℓldx + ωldxℓldy , (41c)

where ωωωi
i,ld = [ωldx, ωldy, ωldz]

⊤ and ℓℓℓld = [ℓldx, ℓldy, ℓldz]
⊤. This particular problem was

solved in (Chen et al., 2000) by adding a cost constraint to minimize the amplitude of ωωωi
i,ld

such as

J =
1

2
kωωωi,⊤

i,ldωωωi
i,ld , (42)

where k is a positive cost scalar. We then define a Hamiltonian function based on (41b) and
(41c) leading to

H =
1

2
kωωωi,⊤

i,ldωωωi
i,ld + λ1(ℓ̇ldy − ωldzℓldx + ωldx lldz) + λ2(ℓ̇ldzωldyℓldx − ωldxℓldy) , (43)

570 Advances in Spacecraft Technologies
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Synchronization of Target Tracking Cascaded Leader-Follower Spacecraft Formation 9

where λ1,λ2 are constant adjoint scalars. By differentiating (43) with respect to ωωωi
i,ld and

setting the result to zero, we obtain

kωldx + λ1ℓldz − λ2ℓldy = 0 , (44a)

kωldy + λ2ℓldx = 0 , (44b)

kωldz − λ1ℓldx = 0 . (44c)

By inserting (44b) and (44c) into (44a) we obtain the relation

ωωωi
i,ld · ℓℓℓld = 0, (45)

which implies that the desired angular velocity will be orthogonal to the desired tracking
direction. By solving (39) and (45) for the angular velocity, we obtain

ωωωi
i,ld = S(ℓℓℓld)ℓ̇ℓℓld , (46)

which is a solution resulting in no rotation about the desired pointing direction during
tracking maneuvers. By inserting (40) and its differentiated into (46), it can be shown that

ωωωi
i,ld =

S(lld)l̇ld

‖lld‖2
. (47)

To obtain the desired angular acceleration we differentiate (47), which leads to the expression

ω̇ωωi
i,ld =

S(lld)l̈ld‖lld‖
2 − 2l⊤ldS(lld)l̇ld

‖lld‖2
. (48)

Since the leader body frame is utilized in the dynamic equations (21), we simply rotate (47)
and (48), obtaining

ωωωlb
i,ld =Rlb

i ωωωi
i,ld , (49)

ω̇ωωlb
i,ld =− S(ωωωlb

i,lb)R
lb
i ωωωi

i,ld + Rlb
i ω̇ωωi

i,ld . (50)

3.2 Follower reference

The procedure to generate a follower reference is similar to the one presented in Section 3.1.
We start by defining a target pointing vector in the inertial frame as

l f d = rt − rl − Ri
lop , (51)

which is used to construct a follower desired reference frame called F f d as

x f d = −
l f d

‖l f d‖
, y f d =

S(x f d)(−hl)

‖S(x f d)(−hl)‖
and z f d = S(x f d)y f d . (52)

We can now construct a rotation matrix between F f d and F i, and because the relative rotation
is between F f b and F lb we apply composite rotation, thus obtaining

Rlb
f d = Rlb

i Ri
f d , (53)
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and transform the rotation matrix (53) to desired quaternion. By differentiating (51) twice, we
obtain

l̇ f d = ṙt − ṙl − S(ωωωi
i,lo)R

i
lop − Ri

loṗ , (54)

l̈ f d = r̈t − r̈l − (S(ω̇ωωi
i,lo) + S2(ωωωi

i,lo))R
i
lop − 2S(ωωωi

i,lo)R
i
loṗ − Ri

lop̈ . (55)

The same optimization technique as presented in Section 3.1 can then be applied, leading to

ωωωi
i, f d =

S(l f d)l̇ f d

‖l f d‖2
, (56)

ω̇ωωi
i, f d =

S(l f d)l̈ f d‖l f d‖
2 − 2l⊤f dS(l f d)l̇ f d

‖l f d‖2
. (57)

The desired angular rotation and acceleration vectors have to be transformed according to the
relative dynamics of (24), resulting in

ωωω
f b
lb, f d = R

f b
i ωωωi

i, f d − R
f b
lb ωωωlb

i,lb , (58)

ω̇ωω
f b
lb, f d = −S(ωωω

f b
i, f b)R

f b
i ωωωi

i, f d + R
f b
i ω̇ωωi

i, f d + S(ωωω
f b
lb, f b)R

f b
lb ωωωlb

i,lb − R
f b
lb ω̇ωωlb

i,lb . (59)

4. Controller design

In this section we present a control law for relative translation and switching control laws
for attitude control of the leader spacecraft and relative attitude control for the follower
spacecraft. All controllers are reminiscent of the so-called Slotine and Li controller for robot
manipulators –cf. (Slotine & Li, 1987). For all control laws it is assumed that all disturbances
are unknown but upper bounded.

4.1 Translational control

We assume that disturbances for both the leader and follower spacecraft are unknown but
bounded such that ‖fld‖ ≤ αld and ‖f f d‖ ≤ α f d. In addition we also assume that control force
of the leader spacecraft is upper bounded such that ‖fla‖ ≤ αla. Reference trajectories are
defined as

ṗr = ṗd − γp̃, p̈r = p̈d − γ ˙̃p , (60)

where pd is the desired position, γ > 0 is a constant gain, and p̃ = p − pd is the position
error. The reference vector ṗr represent a notational manipulation that allows translation of
energy-related properties expressed in terms of the actual velocity vector ṗ into trajectory
control properties expressed in terms of the virtual velocity error vector s. This is performed
by shifting the desired velocities ṗd according to the position error p̃ (cf. (Slotine & Li, 1987;
Berghuis & Nijmeijer, 1993)). The sliding surface is defined as

s = ṗ − ṗr = ˙̃p + γp̃ . (61)

A model based control law is derived based on (15) as

f f a = m f p̈r + Ct(ωωω
l
i,l)ṗr + Dt(ω̇ωω

l
i,l ,ωωω

l
i,l ,r f )p + nt(rl ,r f )− Kpp̃ − Kds (62)
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where Kp and Kd are both symmetric positive definite constant matrices such that Kp = K⊤
p >

0 and Kd = K⊤
d > 0. By inserting (62) and (61) into (15), the closed-loop dynamics may be

written as

m f ṡ + (Ct + Kd) s + Kpp̃ − f f d +
m f

ml
(fld + fla) = 0 . (63)

A suitable Lypaunov Function Candidate (LFC) is chosen as

Vt =
1

2
s⊤m f s +

1

2
p̃⊤Kpp̃ > 0 ∀ s 
= 0, p̃ 
= 0 , (64)

and by differentiation and insertion of (63), we obtain

V̇t = −s⊤Cts − s⊤Kpp̃ − s⊤Kds + p̃⊤Kp ˙̃p + s⊤
(

f f d −
m f

ml
(fld + fla)

)

. (65)

Using the fact that Ct(ωωω
l
i,l) is skew-symmetric, we further obtain

V̇t = −(s⊤ − ˙̃p⊤)Kpp̃ − s⊤Kds + s⊤
(

f f d −
m f

ml
(fld + fla)

)

(66)

= −x⊤t Pxt + s⊤
(

f f d −
m f

ml
(fld + fla)

)

(67)

≤ −pm‖xt‖
2 +

(

α f d +
m f

ml
(αld + αla)

)

‖xt‖ (68)

where xt = [s⊤, p̃⊤]⊤, P = diag{Kd, γKp} and pm > 0 is the smallest eigenvalue of P.

Thus V̇t < 0 when ‖xt‖ > δt = [α f d + (αld + αlam f /ml)]/pm and δt can be diminished by
increasing pm which is done by increasing the controller gains, and we can conclude that
equilibrium point of the closed-loop system is Uniformly Globally Practically Exponentially
Stable (UGPES) (cf. (Grøtli, 2010)).

Remark 1. If some of the unknown forces are assumed to be known, they can be removed by the control
law thus putting less constraint on the controller gains.

Remark 2. We would also like to remark that even if we state global stability, this is not precise since
when Ri

lp =−rl , which means that the follower is located at the center of the orbit, there is a singularity
in (15) and according to (Hahn, 1967) the adjective global pertains to the case and only to the case when
the state space is R

n.

4.2 Rotational control

For attitude control, the system’s solutions are defined using Teel’s framework (cf. (Goebel
et al., 2009)) for hybrid systems and incorporates a switching law with hysteresis to coupe with
the well known problem of dual equilibrium points when working with quaternion attitude
representation. We assume that disturbances for both the leader and follower spacecraft are
unknown but bounded such that ‖τττlb

ld‖ ≤ βld and ‖τττ f d‖ ≤ β f d. The leader-follower dynamical
system is looked upon as a cascaded system on the form

Σ1 : ẋ1 = f1(t, x1) + g(t, x) (69)

Σ2 : ẋ2 = f2(t, x2), (70)
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where x1 ∈ R
n, x2 ∈ R

m, x = [x⊤1 , x⊤2 ]⊤ and the functions f1(·, ·), f2(·, ·) and g(·, ·)
are continuous in their arguments, locally Lipschitz in x, uniformly in t, and f1(·, ·) is
continuously differentiable in both arguments. Equation (70) is said to be the driving system,

ẋ1 = f1(t, x1) (71)

is said to be the driven system, while the interconnection is the term g(t, x). In our case the
leader spacecraft is the driving system while the follower spacecraft represents the driven
system.

The spacecraft error quaternion q̃s = [η̃s, ǫ̃ǫǫ⊤s ]⊤ is given by the quaternion product (cf. (7))

q̃s = qs ⊗ q̄sd =

[

ηsηsd + ǫǫǫ⊤s ǫǫǫ⊤sd
ηsdǫǫǫs − ηsǫǫǫsd − S(ǫǫǫs)ǫǫǫsd

]

, (72)

and the error kinematics may be presented analogous to (9) as

˙̃qqqs = Tse(q̃s)esω , (73)

where
elω = ωωωlb

i,lb − ωωωlb
i,ld, e f ω = ωωω

f b
lb, f b − ωωω

f b
lb, f d . (74)

We perform coordinate transformation of the attitude error such that esq = [1 − hsη̃s, ǫ̃ǫǫ⊤s ]⊤

which satisfies the kinematic equation

ėsq = T⊤
se(esq)esω , (75)

where

T⊤
se(esq) =

[

hs ǫ̃ǫǫ⊤s
η̃sI + S(ǫ̃ǫǫs)

]

, (76)

and the state variables hs ∈ H = {−1,1} determines the choice of goal equilibrium point.

4.2.1 Control of leader

The controller is given by

τττlb
la = Jlω̇ωωlr − S

(

Jlωωω
lb
i,lb

)

ωωωlr − klqT
⊤elq

le elq − klωsl , (77a)

ωωωlr = ωωωlb
i,ld − γlT

⊤
le (elq)elq , (77b)

sl = ωωωlb
i,lb − ωωωlr = elω + γlT

⊤
le (elq)elq . (77c)

where klq > 0, klω > 0 and γl > 0 are constant feedback gains. Next, let x2 = [e⊤lq ,e⊤lω , hl ]
⊤, and

for a given hysteresis margin σl > 0 define the flow and jump sets, respectively as

Cl = {(elq,elω , hl) : hl(klqη̃l −
1

4
γl ǫ̃ǫǫ

⊤
l Jlelω) ≥ −σl} , (78a)

Dl = {(elq,elω , hl) : hl(klqη̃l −
1

4
γl ǫ̃ǫǫ

⊤
l Jlelω) ≤ −σl} . (78b)

Fig. 2. Cascade interconnection of two dynamical systems.
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Then, the switching law is defined by

ḣl = 0 x2 ∈ Cl (79a)

x+2 = Gl(x2) = [e⊤lq ,e⊤lω ,−hl ]
⊤ x2 ∈ Dl . (79b)

We have the following.

Proposition 1. Consider the system defined by (21) and (75)–(76) in closed-loop with the hybrid
controller (77)–(79). Then, the set

Al = {(elq,elω , hl) : (elq,elω) ∈ Bδl
} (80)

where Bδl
= {xn ∈ R

n : ‖x‖ ≤ δl} and δl is to be defined, is Uniformly Asymptotically Stable (UAS)

in the large on the set S3 × R
3. That is, the equilibrium point (elq,elω) = (0,0) of the closed-loop

system is Uniformly Practically Asymptotically Stable (UPAS) for all initial conditions in S3 × R
3.

Proof: Define the LFC as

Vl(x2) =
1

2
(s⊤l Jlsl + e⊤lqklqelq) > 0 ∀ sl 
= 0, elq 
= 0 . (81)

Its total time derivative along the trajectories of the closed-loop system (21), (75)–(76) with the
controller (77) and the switching law (79) yields

V̇l(x2) =s⊤l S(Jlωωω
lb
i,lb)sl − s⊤l klωsl − s⊤l klqT⊤

le elq (82)

+ e⊤lqklqTlesl − e⊤lqklqTleγlT
⊤
le elq + s⊤l τττlb

ld

and by inserting (77c) and applying the fact that S(Jlωωω
lb
i,lb) is skew-symmetric, we obtain

V̇l = −χχχ⊤
2 Qlχχχ2 + (elω + γlT

⊤
le elq)

⊤τττlb
ld , (83)

where

Ql =

[

γlTleT⊤
le (klq + γlklω) γlklωTle

γlklωT⊤
le klωI

]

= [qij], i, j = 1,2 , (84)

and χχχ2 = [e⊤lq , e⊤lω ]
⊤. According to (Horn & Johnson, 1985) Ql is positive definite if

q22 = klωI ≻ q21q−1
11 q12 = k2

lωγ2
l T⊤

le

(

γlTleT⊤
le (klq + γlklω)

)−1
Tle (85)

=
k2

lωγl

klq + γlklω
I (86)

klq + γlklω > klωγl → klq > 0 , (87)

with the additional conservative condition that klω ≥ klq, thus yielding

V̇l ≤ −qlm‖χχχ2‖
2 + βld

(

1 +
γl

2

)

‖χχχ2‖ , (88)

and qlm > 0 is the smallest eigenvalue of Ql . Thus V̇l < 0 when ‖χχχ2‖> δl = βld(1+ γl/2)/qlm

and δl can be diminished by increasing qlm which is done by increasing the controller gains.
The change in Vl during jumps is expressed as

Vl(Gl(x2))− Vl(x2) = 2hl(klqη̃l −
1

4
γl ǫ̃ǫǫ

⊤
l Jlelω) , (89)
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and by defining the flow and jump sets as in (78) we ensure that Vl(Gl(x2))− Vl(x2) < −2σl

when x2 ∈ Dl , thus Vl is strictly decreasing over jumps, and then

V̇l(x2) ≤ 0 ∀x2 ∈ Cl/Bδl
, (90a)

Vl(Gl(x2))− Vl(x2) < 0 ∀x2 ∈ Dl . (90b)

Since the projection ProjS3×R3Al = {(elq,elω , hl) : (elq,elω) ∈ Bδl
}, according to (Sanfelice

et al., 2007) renders the set Al UAS with the basin of attraction BAl
= Cl ∪ Dl , thus UPAS

in the large on the set S3 × R
3 of the equilibrium point (elq,elω) = (0,0) of the closed-loop

system follows. �

Proposition 2. The interconnection term between the leader and follower spacecraft in (26), denoted
as

g(t,x) = −J f R
f b
lb J−1

l (τττlb
ld + τττlb

la) , (91)

is uniformly bounded.

Proof: Since Vl is positive definite and proper for ‖χχχ2‖ > δl we obtain that ‖χχχ2‖ is bounded
that is, for any r > 0 there exists ∆(r)> 0 such that supt≥t0

‖χχχ2(t)‖ ≤ ∆ for all initial conditions

‖χχχ2(t0)‖ < r, t0 ≥ 0. Both ‖ωωωlb
i,ld‖ ≤ βωωωlb

i,ld
and ‖ω̇ωωlb

i,ld‖ ≤ βω̇ωωlb
i,ld

, derived in Section 3 are

continuous and bounded functions for some positive constants βωωωlb
i,ld

and βω̇ωωlb
i,ld

. Thus it follows

from (74) that ‖ωωωlb
i,lb‖ ≤ βωωωlb

i,lb
is bounded by a positive constant βωωωlb

i,lb
for all t ≥ t0 ≥ 0. The

derivative of (77b) can be denoted as

ω̇ωωlr = ω̇ωωlb
i,ld − γl(ṪTT

⊤
le elq + T⊤

le ėlq) , (92)

where

Ṫ⊤
le elq =

1

2
˙̃ǫǫǫl − T⊤

le ėlq =

(

1

2
[η̃lI + S(

1

2
˙̃ǫǫǫl)]−

1

4

)

elω , (93)

and by inserting (93) and (75) into (92) we obtain

ω̇ωωlr = ω̇ωωlb
i,ld −

γl

2
[η̃lI + S(ǫ̃ǫǫl)]elω . (94)

Then by inserting (77b), (94) and (77c) into (77a) we obtain

τττlb
la =Jl

(

ω̇ωωlb
i,ld −

γl

2
[η̃lI + S(ǫ̃ǫǫl)]elω

)

(95)

− S(Jlωωω
lb
i,lb)[ωωω

lb
i,ld − γlT

⊤
le elq]− klqT⊤

le elq − klω(elω + γlT
⊤
le elq) .

Note that hl is removed from the calculations since it won’t have any impact on (96). Since all
terms in (95) are either constant or upper bounded we have that ‖τττlb

la‖ ≤ βla, where βla is a
positive constant, for all t ≥ t0 ≥ 0. The interconnection term (91) can thus be written as

‖g(t,x)‖ ≤ jlM jlm(βld + βla) , (96)

where jlm ≤ ‖Jl‖ ≤ jlM, and we conclude that the interconnection term is uniformly bounded.
�
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4.2.2 Control of leader-follower formation

This section follows the line of Section 4.2.1 but we now talk of relative attitude and stress
the point that the relative rotation and angular velocity is denoted q f and ωωω, respectively. We
define the control law as

τττ
f b
f a = J f ω̇ωω f r + Cr(ωωω)ωωω f r + nr(ωωω)− k f qT⊤

f e(e f q)e f q − k f ωs f , (97a)

ωωω f r = ωωω
f b
lb, f d − γ f T⊤

f e(e f q)e f q , (97b)

s f = ωωω
f b
lb, f b − ωωω f r = e f ω + γ f T⊤

f e(e f q)e f q . (97c)

where k f q > 0, k f ω > 0 and γ f > 0 are constant gains. Next, let x1 = [e⊤f q,e⊤f ω , h f ]
⊤ and, for a

given hysteresis margin σf > 0 define the flow and jump sets, respectively as

C f = {(e f q,e f ω , h f ) : h f (k f qη̃ f −
1

4
γ f ǫ̃ǫǫ⊤f J f e f ω) ≥ −σf } , (98a)

D f = {(e f q,e f ω , h f ) : h f (k f qη̃ f −
1

4
γ f ǫ̃ǫǫ⊤f J f e f ω) ≤ −σf } . (98b)

Then, the switching law is defined by

ḣ f = 0 x1 ∈ C f , (99a)

x+1 = G f (x1) = [e⊤f q,e⊤f ω ,−h f ]
⊤ x1 ∈ D f . (99b)

We have the following.

Proposition 3. Consider the system defined by (27) and (75)–(76) in closed-loop with the hybrid
controller (97)–(99). Then, the set

A f = {(e f q,e f ω , h f ) : (e f q,e f ω) ∈ Bδ f
} (100)

where Bδ f
= {xn ∈R

n : ‖x‖ ≤ δ f } and δ f is to be defined, is UAS in the large on the set S3 ×R
3. That

is, the equilibrium point (e f q,e f ω) = (0,0) of the closed-loop system is UPAS for all initial conditions

in S3 × R
3.

Proof: Define the LFC as

Vf (x1) =
1

2
(s⊤f J f s f + e⊤f qk f qe f q) > 0 ∀ s f 
= 0, e f q 
= 0 . (101)

Its total time derivative along the trajectories of the closed-loop system (27), (75)–(76) with the
controller (97a)–(97c) and the switching law (99) yields

V̇f (x1) =s⊤f Cr(ωωω)s f − s⊤f k f ωs f − s⊤f k f qT⊤
f ee f q + e⊤f qk f qT f es f (102)

− e⊤f qk f qT f eγ f T⊤
f ee f q + s⊤f

[

τττ
f b
f d − JlR

f b
lb J−1

l (τττlb
ld + τττlb

la)
]

and by inserting (97c) and applying the fact that C(ωωω) is skew-symmetric, we obtain

V̇f (x1) = −χχχ⊤
1 Q f χχχ1 + (e f ω + γ f T⊤

f ee f q)
⊤
[

τττ
f b
f d − JlR

f b
lb J−1

l (τττlb
ld + τττlb

la)
]

, (103)
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where Q f is similar to (84), and thus positive definite, and χχχ1 = [e⊤lq , e⊤lω ]
⊤. Eq. (103) can now

be written as
V̇f (x1) ≤ −q f m‖χχχ1‖

2 + β f ‖χχχ1‖ , (104)

where β f = β f d(1 + γ f /2) + jlM jlm(βld + βla) and q f m > 0 is the smallest eigenvalue of Q f .

Thus V̇f < 0 when ‖χχχ1‖ > δ f = β f /q f m and δ f can be diminished by increasing q f m which is
done by increasing the controller gains. The change in Vf during jumps is expressed as

Vf (G f (x1))− Vf (x1) = 2h f (k f qη̃ f −
1

4
γ f ǫ̃ǫǫ⊤f J f e f ω) , (105)

and by defining the flow and jump sets as in (98) we ensure that Vf (G f (x1))− Vf (x2)<−2σf

when x1 ∈ D f , thus Vf is strictly decreasing over jumps, and then

V̇f (x1) ≤ 0 ∀x1 ∈ C f /Bδ f
, (106a)

Vf (G f (x1))− Vf (x1) < 0 ∀x1 ∈ D f . (106b)

Thus we conclude that the set A f is UAS with the basin of attraction BA f
= C f ∪D f , and UPAS

in the large on the set S3 ×R
3 of the equilibrium points (e± f q,e f ω) = (0,0) of the closed-loop

system follows. �

It follows that since both the equilibrium point of the driving system and the equilibrium point
of the driven system are UPAS in the large on the set S3 × R

3 and the interconnection term is
uniformly bounded, the equilibrium point of the closed-loop system of the total cascaded
system on the form (69)–(70) is UPAS in the large on the set S3 × R

3 (cf. Lorı́a & Panteley
(2005)).

5. Simulation results

In this section we present simulation results where one leader and one follower spacecraft
were tracking a common point on the Earth surface. The simulation was performed in
Simulink using a fixed sample-time Runge-Kutta ODE4 solver, with sampling period equal
to 0.1 s. The leader spacecraft was flying in an elliptic Low Earth Orbit (LEO) with perigee
at 600 km, apogee at 750 km, inclination (i) at 79◦ and the argument of perigee (ω) and
the right ascension of the ascending node (Ω) at 0◦. The tracking point was located on the
Earth surface at zero degrees latitude and longitude, and both spacecraft continued tracking
the point even if it was outside field of view. The spacecraft moments of inertia were
Jl = J f = diag{4.350, 4.337, 3.664} kgm2 and spacecraft masses ml = m f = 100 kg. The initial

conditions were set to p(t0) = [0, −100, 0]⊤ m, ṗ(t0) = p̈(t0) = 0,
ql(t0) = q f (t0) = [0.9437, 0.1277, 0.1449, −0.2685]⊤, ωωωlb

i,lb(t0) = [1.745 − 3.491 0.873]⊤ ×

10−3 rad/s and ωωω
f b
i, f b(t0) = [0, 0, 0]⊤ rad/s. The desired conditions for relative translation

were set to pd = [0, −1000, 500]⊤ m, ṗd = p̈d = 0, while the desired values for relative rotation
were calculated based on the results presented in Section 3. The controller gains were set to
Kp = Kd = {0.5}I for control of relative translation, and klq = k f q = 5, klω = k f ω = 10 and
γl = γ f = 1 for control of relative rotation.
Since we are considering a slightly elliptic LEO, we only consider the disturbance torques
which are the major contributors to these kind of orbits; namely, gravity gradient torque
(Sidi, 1997), and forces and torques caused by atmospheric drag (Wertz, 1978) and J2 effect
(Montenbruck & Gill, 2001). The J2 effect is caused by non-homogeneous mass distribution
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Fig. 3. Relative position error, relative velocity error and control force with uncompensated
disturbances and unfiltered sensor noise.
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Fig. 4. Relative attitude error, relative angular velocity error and control torque with
uncompensated disturbances and unfiltered sensor noise.
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of a planet. The torques generated by atmospheric drag and J2 are induced because of a
10 cm displacement of the center of mass. All disturbances were considered continuous and
bounded. The noise was considered to be contained in a compact σB

n = {x ∈ R
n : ‖x‖ ≤ σ}

and a suitable amount were added to the measured vectors such that rln = rl + 0.01B
3,

pn = p + 0.01B
3, pln = pl + 5 × 10−3

B
3, ṗn = ṗ + 5 × 10−3

B
3. The measured states qln and

qn satisfies qln ∈ (ql + [0, (0.001B
3)⊤]⊤) ∩ S3 and qn ∈ (q + [0, (0.001B

3)⊤]⊤) ∩ S3, and
ωωωln = ωωωlb

i,lb + 2 × 10−3
B

3 and ωωωn = ωωω + 2 × 10−3
B

3. The simulation time is set to one orbital

period (5896 s) to show the performance of the reference generation scheme.
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Fig. 5. Follower desired attitude, angular velocity, angular acceleration and relative desired
attitude with uncompensated disturbances and unfiltered sensor noise.

Figure 3 shows the relative position, velocity and control force during both settling and
station keeping phase. As can be seen the position of the follower spacecraft converged
toward the desired position and was then stationed there within a few centimeters during
the orbital period. Figure 4 shows the relative attitude, angular velocity and control torque
during settling and station keeping phase, and results similar to the relative translation can be
observed for relative rotation as well. It can further be shown that the fluctuations caused
by the disturbances can be diminished by increasing the controller gains. The states are
converging towards the equilibrium point and kept close during the following orbit. The
three topmost plots in Figure 5 shows the desired attitude, angular velocity and angular
acceleration for the leader spacecraft during one orbit. What can be seen is that there is no
rotation about the x-axis during the orbital period. It should also be mentioned that the
desired angular velocity and acceleration are smaller during the second pass compared to the
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first. This is because the Earth is rotating, thus the distance between the spacecraft and target
is longer, causing less fluctuation on the components. The bottommost plot in Figure 5 shows
the epsilon components of the difference in attitude between desired leader and follower,
defined as ǫ̃ǫǫd = ηldǫǫǫ f d − η f dǫǫǫld − S(ǫǫǫ f d)ǫǫǫld. It can be seen that since the follower spacecraft
was moving away from the leader spacecraft during the first 500 seconds, the difference in
desired relative attitude increased during the same period.
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Fig. 6. Relative attitude error, relative angular velocity error, switching value and control
torque with uncompensated disturbances and unfiltered sensor noise.

Figure 6 shows simulation results where the follower spacecraft starts with an initial attitude

of q f (t0) = [−0.866, 0.5, 0, 0]⊤ and ωωω
f b
i, f b(t0) = [−0.5236, 0, 0]⊤ rad/s. As can be seen, the

negative equilibrium point is the closest one, thus h f =−1, but a switch occurs because of the
initial angular velocity, driving the states towards the positive equilibrium.

6. Conclusions

In this paper we have presented a scheme for calculating the desired attitude, angular velocity
and angular acceleration for a leader spacecraft and relative attitude, angular velocity and
angular acceleration for a leader-follower spacecraft formation. Sliding surface tracking
control laws were presented for both relative translational and rotational control of a leader
and follower in cascades. For relative position the equilibrium point of the closed-loop
system was proven globally uniformly asymptotically stable, while for relative rotation, the
equilibrium point of the cascaded closed-loop systems was proven uniformly practically
asymptotically stable in the large on the set S3 × R

3, both control laws were considered
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to be perturbed by unknown but bounded disturbances which were not compensated for.
Simulation results were presented to show both the performance of the control laws, and
that the presented scheme enables a leader-follower formation to perform measurements on a
common point on the Earth surface even during formation reconfiguration.
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