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Fuzzy Attitude Control of  
Flexible Multi-Body Spacecraft 

Siliang Yang and Jianli Qin 
Beijing University of Aeronautics and Astronautics, 

China 

1. Introduction    

In order to complete the flexible multi-body spacecraft attitude control, this chapter will 
research on the dynamics and attitude control problems of flexible multi-body spacecraft 
which will be used in the future space missions. 
Through investigating plentiful literatures, it is known that some important progress has 
been obtained in the research of flexible multi-body spacecraft dynamic modeling and fuzzy 
attitude control technologies. In the aspect of dynamic modeling, most models were 
founded according to spacecrafts with some special structures. In order to satisfy the 
requirement of modern project design and optimization, acquire higher efficiency and lower 
cost, researching on the dynamic modeling problem of flexible multi-body spacecraft with 
general structures and founding universal and programmable dynamic models are needed. 
In the aspect of attitude control system design, the issues encountered in flexible spacecraft 
have increased the difficulties in attitude control system design, including the high stability   
and accuracy requirements of orientation, attitude control and vibration suppression, high 
robustness against the different kinds of uncertain disturbances. At the present time, classical 
control theory and modern control theory are often used in flexible multi-body spacecraft 
attitude control. These two methods have one common characteristic which is basing on 
mathematics models, including control object model and external disturbance model. It is 
usually considered that the models are already known or could be obtained by identification. 
But those two methods which are based on accurate math models both have unavoidable 
defects for large flexible multi-body spacecraft. Until this time, the most advanced and 
effective control system is the human itself. Therefore, researching on the control theory of 
human being and simulating the control process is an important domain of intelligent control. 
If we consider the brain and the nerve center system as a black box, we only investigate the 
relationship between the inputs and the outputs and the behavior represented from this 
process, that is called fuzzy control. The fuzzy control doesn’t depend on the accurate math 
models of the original system. It controls the complicated, nonlinear, uncertainty original 
system through the qualitative cognition of the system dynamic characteristics, intuitional 
consequence, online determination or changing the control strategies. This control method 
could more easily be realized and ensured its real time characteristic. It is especially becoming 
to the control problem of math models unknown, complicated, uncertainty nonlinear system. 
Accordingly, large flexible multi-body spacecraft attitude control using fuzzy control theory is 
a problem which is worth researching. 
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2. Attitude dynamic modeling of flexible multi-body spacecraft 

Mathematics model is the basement of most control system design. Dynamic modelling is to 
describe the real system in physics world using models in mathematics world. Mathematics 
model provide the mapping from input to response, the coincidence extent between the 
response and the real object being controlled represent the quality of the model. 
Mathematics model world is totally different from physics system world, so a real physics 
object being controlled can not be constructed exactly by mathematics models. Therefore, 
engineers intend to establish a model which can reflect dynamic characteristics of spacecraft 
system, as well as the controller design based on the model can be applied into the real 
system. 
In this section, the attitude dynamic equations of flexible multi-body spacecraft with 
topological tree configuration have been derived based on the Lagrange equations in terms 
of quasi-coordinates. The dynamic equations are universal and programmable due to the 
information of system configuration being introduced into the modelling process. 

2.1 Description of system configuration 
2.1.1 Coordinate system definition 

The movement of spacecraft is always described in a reference coordinate, several 
coordinate systems used in the attitude dynamic modeling process are as follows: 

1. Inertial coordinate system ( )
i i i i
o x y z

i
f  

This inertial frame is defined as its origin at the mass center of the earth, the third axis 
i
z  

perpendicular to the Earth’s equatorial plane pointing to the arctic, axis ix and iy lying in 

the Earth’s equatorial plane, axis ix pointing to the direction of the vernal equinox, 

axis iy forms this coordinate system as a right-handed one. 

2. Orbit coordinate system ( )
o o o o
o x y z

o
f  

Its origin at the mass center of the spacecraft, axis 
o
z pointing to the geocenter, axis 

o
x lying 

in the orbit plane perpendicular to axis 
o
z , pointing along the direction of spacecraft 

velocity, axis 
o
y  forms this coordinate system as a right-handed one. 

3. Central body coordinate system ( )
b b b b
o x y z

b
f  

Its origin at the mass center of the spacecraft which has not been deformed, axis 
b
x pointing 

along the direction of spacecraft velocity, axis 
b
z  pointing to the geocenter，axis 

b
y  forms 

this coordinate system as a right-handed one. 

4. Floating coordinate system ( )
ai ai ai ai
o x y z

ai
f , 2, 3, ,= "i n  

Floating coordinate system is the body frame of the flexible body i, its origin usually at the 
mass center of the flexible body i which has not been deformed. 

5. Gemel coordinate system ( )
ck ck ck ck
o x y z

ck
f  

Gemel coordinate system is the body frame of the gemel k between the flexible bodies, its 
origin usually at the connection point between the gemel k and its inboard connected 
flexible body. 

2.1.2 Description of spacecraft system 

Considering a flexible multi-body spacecraft with topological tree configuration which 
contains a central body and 1n − flexible appendages, there are several accesses, objects are 

connected by gemels, ignoring collision and friction at gemels, access l of the system can be 
shown in figure 1: 
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Fig. 1. Access l of flexible multi-body spacecraft system 

In this figure, 
i i i i
o x y z is the inertial frame, 

o o o o
o x y z is the orbit frame. 

1
B is the central body, 

origin of 
b b b b
o x y z is at the mass center of the spacecraft which has not been deformed, as 

well as axises are parallel to the principle axises of inertia. Radius vecter 

b
a
K

and
b

ρK respectively are rigid and flexible displacement of mass center 
b
o , 

ob
R
K

is the 
radius vector of mass center 

b
o in orbit coordinate system, 

ob b b
R a ρ= +
K KK

. Gemel frames are 
founded at each gemel 

k
h , 

ck
o is the origin of gemel coordinate system of 

k
h , its radius 

vector in flexible body 
( )L k

B is 
k
s
K

, 
k k k
s a ρ= +

KK K
, 

k
a
K

and
k

ρK  respectively are rigid and flexible 
displacement of 

k
h  in flexible body 

( )L k
B . 

ak
o is the origin of floating coordinate system of 

object 
k
B , its radius vector in gemel coordinate system of 

k
h is 

k
h
K

, 
k k k
h b p= +
K K K

, 
k
b
K

and
k
p
K

 
respectively are rigid and flexible displacement of origin 

ak
o in gemel coordinate system of 

k
h , 2, ,k n= " . 
If the central body of the spacecraft system is rigid, the origin of orbit coordinate system is 
coinsident with the origin of central body coordinate system, according to the analysis result 
of mass matrix (Lu, 1996), choosing frames like this can eliminate the coupling term of rigid 
body translation and rotation., as well as 0

ob b b
R a ρ= = =
K KK

. 

2.2 Description of flexible multi-body system using graph theory 

Graph theory (Wittenburg & Roberson, 1977) is a useful tool to describe topological 
configuration, here several relative concept were given before we using it to do more research. 

Oriented graph description: multi-body system can be described using gemel and its 
adjacent objects, if we express the objects in system using the vertex, express gemels using 
arc, then topological configuration of multi-body can be expressed as a oriented graph 

,D V A= . There is a bijection between the collection of vertex V and the collection of 
objects and also a bijection between the collection of arc A and the collection of gemels. A 
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description of multi-body system with topological tree configuration using oriented graph is 
shown in figure 2. 

i
H represent Gemels, and 

i
B represent objects. 

 

1B

6B

4B3B

2B 5B

7B

2H
5H

7H

6H
4H

3H

1H
0B

 

Fig. 2. Description of multi-body system using oriented graph  

Regular labelling: Regular labelling approach is specified as follows: 

1. The adjacency object of the root object
0
B is defined as 

1
B , relative gemel defined as 

1
H ; 

2. Each object has the same serial number with its inboard connected gemel; 
3. Each object has a bigger serial number than its inboard connected object; 

4. Each gemel has a deviated direction from the root object 
0
B . 

Multi-body system shown in figure 2 is numbered in accordance with rules 

Inboard connected object array: according to the regular labelling approach, label the N  
objects of spacecraft system. Define a N order one dimension integer array ( )L i , 

1, ,i N= " , i is the subscript of object 
i
B , ( )L i is the subscript of the inboard connected 

object of 
i
B . System topological configuration can be described by array ( )L i which is 

called inboard connected object array of system. 
A graph can be conveniently expressed by matrix, its advantage is that structural features 
and character can be studied using of kinds of operation in matrix algebra. 
Access matrix: Supposed that ,D V A= is an oriented graph, { }

1 2
, , ,

n
V u u u= " , name 

matrix ( )ijT t= is the access matrix of the ortiented graphD , if: 

 
when there is a connectivity between and

otherwise

1,

0,

j i

ij

u u

t =
⎧
⎨
⎩

 (1) 

Access matrix of the system with topological tree configuration shown in figure 2 can be 
written as: 

 

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 0 1 0 0 0

1 0 0 0 1 0 0

1 0 0 0 1 1 0

1 0 0 0 0 0 1

T =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 
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2.3 Recursion relationship of adjacency bodies kinematics 

Considering the kinematics relationship between flexible body i and flexible body j , 

( )j L i= . According to figure 2, we know that : 

 
i j i i
R R s h= + +

GG G G
 (3) 

where ρ= +
GG G

i i i
s a , = +

G G G
i i i
h b p . 

The time derivative of equation (3) in inertial coordinate system is obtained as follows : 

 
i

i j aj i i ci i i

DR
R R s h p

Dt
ω ρ ω= = + × + + × +

G
GG G G G GG G� � � � ,  2, 3, ,i N= "  (4) 

where ( )iD

Dt
expresses the time derivative of vector “ i“in inertial coordinate system, 

the“ i “and“ ii “ above vectors respectively express the 1-order and 2-order time derivative 

in their own body coordinate systems. 
aj

ω
G

is the angular velocity vector of the floating 

coordinate system of flexible body 
j
B , 

ci
ω
G

is the angular velocity vector of the gemel 

coordinate system of gemel 
i
h . 

Suppose that the deformation of flexible bodies is always in the range of elastic deformation, 

translation and rotation modal matrix of gemel 
i
h respectively are 

ci
φ and

ci
ψ , corresponding 

modal coordinate is 
ci
q , translation modal matrix of flexible body 

i
B is 

ai
φ , cooresponding 

modal coordinate is 
i
q , we have: 

 
i ci ci

qρ =
K Kφ , 

i ai i
p q=K Kφ , 

ci aj ci ci
qω ω= +

K K Kψ  (5) 

 

Write equation 4 in form of matrix for convenience like: 

 
T T T T T× ×= + − +

G� � � �i R a s a c h c pω ρ ω
i j j i aj j i i i ci i i
R -  (6) 

where 
T

[ ]
x y z
i i i=
G G G

i is the unit base vector of 
i
f ; [ ]

T

j xj yj zj
a a a= K K K

a , 2, 3, ,j N= " , is 

the unit base vector of 
aj
f ; [ ]

T

i xi yi zi
c c c=
G G G

c , is the unit base vector of 
ci
f , 

aj
ω , 

i
s and 

i
ρ respectively are component column arrays of corresponding vector in 

aj
f , 

ci
ω , 

i
h and

i
p  

respectively are component column arrays of corresponding vector in 
ci
f . 

Vector equation (5) can be written in form of matrix as follows: 

 
T

i i ci ci
ρ =
G

c qφ , 
T

i i ai i
p =
G

a qφ , ( )
T

ci j aj ajci ci ci
ω = +
G

a A qω ψ  (7) 

From Eq. (6) and Eq. (7), we obtain 

 

T T T T T T
( )

i j j i i i ciaj aj i ci ci i i ci ci i ai i
R

× × ×= − + + − +
G� � � �i R a s c h A c q c h q a qω φ ψ φ

 
(8)
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where 
ci
q is the component column array of corresponding vector in 

ci
f ; 

i
q is the 

component column array of corresponding vector in
ai
f ; 

ciaj
A is the coordinate conversion 

matrix from 
aj
f to

ci
f , besides

T

ciaj ajci
=A A . 

For central body 
1
B , we have 

 
b o ob o b b
R R R R a ρ= + = + +
K K K K KK

 (9) 

where 
o

ω
G

is the angular velocity of orbit coordinate system; 
b b b

qρ =
G G� �φ , 

b
φ is the translation 

modal matrix of the central body, 
b
q is the corresponding modal coordinate. Upon that 

matrix form of absolute velocity vector of the spacecraft can be written as 

 
T T T T T T

b o o ob o b b o o ob o b b
R

× ×= − + = − +
K� � � �i R i R b q i v i R b qω φ ω φ  (10) 

where 
T

[ ]
o ox oy oz

i i i=
G G G

i is the unit base vector of orbit coordinate system
o
f ; 

T
[ ]

x y z
b b b=
G G G

b is the unit base vector of cantral body coordinate system
b
f . 

From Eq.(8) and Eq. (10), we get 

 

T T T T T T T T

T T T T T

( )

( )

i o o ob o b b k k k ckb b k ck ck k k ck ck k ak k

j i i i ciaj aj i ci ci i i ci ci i ai i

i D

R
× × × ×

× × ×

∈

= − + − + + − +

+ − + + − +⎡ ⎤⎣ ⎦∑

K� � � �

� �

i v i R b q b s c h A c q c h q a q

a s c h A c q c h q a q

ω φ ω φ ψ φ

ω φ ψ φ
 (11) 

where k is the serial number of the outboard connected object of the central body
1
B in the 

access from object
1
B to

i
B ; D is the serial number collection of the objects in the access from 

object
1
B to

i
B except for 

1
B and its outboard connected object; ( )j L i= ; 

b
ω is the 

component column array of angular velocity of the central body
1
B in

b
f . 

If we define that 
T T

1
=b a ,

1cib cia
=A A ,

1b a
=ω ω , then the Eq.(11) can be written in more 

concise form like: 

 

T T T

T T T T T
( )

i o o ob o b b

j i i i ciaj aj i ci ci i i ci ci i ai i

i E

R
×

× × ×

∈

= − +

+ − + + − +⎡ ⎤⎣ ⎦∑

K� �

� �

i v i R b q

a s c h A c q c h q a q

ω φ

ω φ ψ φ
 (12) 

where is the serial number collection of objects in the access from object
1
B to

i
B except for 

the central body
1
B . 

The projection of the vector
i
R
G�

in the central body coordinate system can be written as: 

 

( )

( )

i b bi o bo ob o b b

baj i bci i ciaj aj bci ci ci bci i ci ci bai ai i

i E

R
×

× × ×

∈

= − +

+ − + + − +⎡ ⎤⎣ ⎦∑

� �

� �

A v A R q

A s A h A A q A h q A q

ω φ

ω φ ψ φ
 (13) 

where
bi
A is the coordinate conversion matrix from

i
f to

b
f , besides,

T

bi ib
=A A ; 

bo
A is the 

coordinate conversion matrix from
o
f to

b
f , besides, 

T

bo ob
=A A ; 

baj
A is the coordinate 

conversion matrix from
aj
f to

b
f , besides, 

T

baj ajb
=A A ; 

bci
A is the coordinate conversion 
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matrix from
ci
f to

b
f , besides, 

T

bci cib
=A A ; 

bai
A is the coordinate conversion matrix 

from
ai
f to

b
f , besides, 

T

bai aib
=A A . 

We make several definitions as follows: 

 

1

2 2
[ ( ) ]

[ ( ) ]

bi o bo ob o b b

baj i bci i ciaj aj bci ci ci bci i ci ci bai ai i i

n baj i bci i ciaj aj bci ci ci bci i ci ci bai ai i i n

×

× × ×

=

× × ×

=

− +

= − + + − +

= − + + − +

�

� �

#

� �

E = A v A R q

E A s A h A A q A h q A q

E A s A h A A q A h q A q

ω φ

ω φ ψ φ

ω φ ψ φ

 (14) 

 
T

1 2
[ ]

n
= "E E E E  (15) 

Upon that the origin velocity of arbitrary flexible body coordinate system can be expressed 
using access matrix as follows: 

 ( ) ( )=�
i b i
R T E  (16) 

where ( )
i

T represents the i row of access matrix T . 

2.4 Dynamics modeling based on quasi-Lagrange equations 
2.4.1 Quasi-Lagrange equations 
Quasi-Lagrange equations is a kind of improvement of classical Lagrange equations, on one 
hand they have the advantage of normalized derivation, on the other hand they can reserve 
the presentation form of dynamics equations of rigid body. Therefore they are applicable for 
researching the dynamics problem of large spacecraft. Using quasi-Lagrange equations 
system dynamics can be expressed as follows: 

 ( )

b bt

b b

b b br

b b b

T

aib i aib b aib ai air

ai i ai

vb

b b b

vi

i i i

d L L

dt

d L L L

dt

d L L L

dt

d L dΦ dL

dt d d

d L dΦ dL

dt d d

×

× ×

× × ×

∂ ∂
+ =

∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂
+ + + =

∂ ∂ ∂

∂
+ − =

∂

∂
+ − =

∂

⎧ ⎛ ⎞
⎜ ⎟⎪
⎝ ⎠⎪

⎪ ⎛ ⎞
⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞⎪
⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞⎪ ⎜ ⎟
⎪ ⎝ ⎠
⎪ ⎛ ⎞⎪ ⎜ ⎟
⎩ ⎝ ⎠

ω

� �

� �

ω Q
v v

v ω Q
ω v ω

A v A ω A ω Q
ω v

Q
q q q

Q
q q q⎪

 (17) 

where L is the Lagrange function of system, L T U= − , T is the kinetic energy of system, 
is the potential energy of system, is the dissipated energy of system; 

b
v ,

b
ω respectively are 
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the spacecraft central body coordinate system velocity and angular velocity coordinates in 

b b b bo x y z relative to the inertial coordinate system; 
ai
v is the velocity coordinate in 

b b b bo x y z of the floating coordinate system of flexible body i relative to the inertial 
coordinate system; 

ai
ω is the angular velocity coordinate in b b b bo x y z of the floating 

coordinate system of flexible body i relative to the inertial coordinate system; 
b
q is the 

modal coordinate of the central body
1
B ; 

i
q is the modal coordinate of the flexible body

i
B ; 

bt
Q is the generalized force corresponding to the translation of spacecraft central body; 

br
Q is the generalized moment corresponding to the rotation of spacecraft central body; 

air
Q is the generalized moment corresponding to the rotation of flexible body 

i
B ; 

vb
Q is the 

generalized force corresponding to the modal coordinate 
b
q ; 

vi
Q is the generalized force 

corresponding to the modal coordinate 
i
q ; 

aib
A is the conversion matrix from b b b bo x y z  

to
ai ai ai ai
o x y z ; for an arbitrary 3 1× column array [ ]

1 2 3

T

x x x=x , 
×
x  represents the skew 

symmetric matrix as follows: 

 

3 2

3 1

2 1

0

0

0

×

−

= −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x

x x

x x

x  (18) 

2.4.2 Lagrange function 
Using Lagrange equations to found the system dynamics model, firstly, we should calculate 
the kinetic energy and potential energy of each body in the system, then add them together 
in order to get the total kinetic and potential energy of the system, finally obtain the 
Lagrange function. 

2.4.2.1 Kinetic energy of system 

The kinetic energy of flexible body i expressed by generalized velocity is as follows: 

 
1

2

T

i i i i
T = Mυ υ  (19) 

The generalized velocity 
i

υ in the above formula is defined as: 

 ( )T
T T

i i ai i
= � �R qυ ω  (20) 

where 
i

�R is the floating coordinate system origin velocity of the flexible body i ; 
ai

ω is the 
floating coordinate system origin angular velocity of the flexible body i ; 

i
q is the 

deformation modal coordinate of the flexible body i . 
i

M  is the mass matrix of the flexible 
body i , which is defined as: 

 

i i i

RR R Rf

i i i

i R f

i i i

Rf f ff

ω

ω ωω ω

ω

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

m m m

M m m m

m m m

 (21) 

www.intechopen.com



Fuzzy Attitude Control of Flexible Multi-Body Spacecraft 

 

479 

The specific expression of each sub-matrix can be found in reference written by Lu. 
Upon that the kinetic energy of the flexible body i can be written as follows: 

 
1

( 2 2 2 )
2

ω ωω ω= + + + + +� � � � � � � �T i T i T i T i T i T i

i i RR i i R ai i Rf i ai ai ai f i i ff i
T R m R R m R m q m m q q m qω ω ω ω  (22) 

The entire kinetic energy of the system can be expressd as: 

 

1

1
( 2 2 2 )

2

1
( 2 2 2 )

2

1
( 2 2

2

ω ωω ω

ω ωω ω

ω

=

= + + + + +

= + + + + +

+ + +

∑ � � � � � � � �

� � � � � � � �

� � � � �

n

T i T i T i T i T i T i

i RR i i R ai i Rf i ai ai ai f i i ff i

i

T b T b T b T b T b T b

b RR b b R b b Rf b b b b f b b ff b

T i T i T i

i RR i i R ai i Rf

T R m R R m R m q m m q q m q

R m R R m R m q m m q q m q

R m R R m R m q

ω ω ω ω

ω ω ω ω

ω
2

2 )ωω ω
=

+ + +∑ � � �
n

T i T i T i

i ai ai ai f i i ff i

i

m m q q m qω ω ω

 (23) 

2.4.2.2 Potential and dissipated energy of system 

Define 
bm
p is the 

th
m  order natural frequency of the central body, then the elastic energy of 

the central body can be expressed as: 

 
T1

2
b b b b

U = q K q  (24) 

where 
b
K is the rigidity matrix of the central body, 

2 2 2

1 2
diag( , , , )

b b b bM
p p p= "K . 

Define 
im
p is the 

th
m  order natural frequency of the flexible body

i
B , then the elastic energy 

of the flexible body i can be expressed as: 

 
T1

2
i i i i

U = q K q  (25) 

where 
i
K is the rigidity matrix of the flexible body i , 

2 2 2

1 2
diag( , , , )

i i i iM
p p p= "K . 

If we only consider about the deformation energy of the spacecrfta structure, the potential 
energy of the system can be expressed as: 

 
T T T T

2

1 1 1 1

2 2 2 2
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2 3
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q q q q  (28)     

Define 
bm
ξ is the damping coefficient corresponding to  

bm
p  of the central body

1
B , then the 

dissipated energy of the central body can be expressed as: 
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2
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Φ = � �q D q  (29) 

where
b
D is the damping matrix of the central body, 

1 1 2 2
diag(2 , 2 , , 2 )ξ ξ ξ= "

b b b b b bM bM
p p pD . 

Define 
im
ξ is the damping coefficient corresponding to  

im
p  of the flexible body

i
B , then the 

dissipated energy of the flexible body 
i
B  can be expressed as: 
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2
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Φ = � �q D q  (30) 

where 
i
D  is the damping matrix of the flexible body

i
B ,

1 1 2 2
diag(2 , 2 , , 2 )

i i i i i iM iM
p p pξ ξ ξ= "D . 

Upon that the dissipated energy of the system can be expressed as: 
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where 
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2.4.3 Dynamics equations of the system 

2.4.3.1 Translation equations of the central body 
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Substitute Eq. (33)-Eq. (35) into the first formula of Eq. (17), the translation equations of the 

central body is obtained as follows: 
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(36)               

2.4.3.2 Rotation equations of the central body 
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Substitute Eq. (37)-Eq. (40) into the second formula of Eq. (17), the rotation equations of the 
central body is obtained as follows: 
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2.4.3.3 Rotation equations of the flexible body i  
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Substitute Eq. (42)-Eq. (44) into the third formula of Eq. (17), the rotation equations of the 

flexible body i is obtained as follows: 
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2.4.3.4 Vibration equations of the central body 
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Substitute Eq. (46)-Eq. (49) into the fourth formula of Eq. (17), the vibration equations of the 
central body is obtained as follows: 
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2.4.3.5 Vibration equations of the flexible body i  
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Substitute Eq. (51)-Eq. (54) into the fifth formula of Eq. (17), the vibration equations of the 

flexible body i is obtained as follows: 
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 (55) 

2.4.4 Acquisition of generalized extraneous force 

In order to acquire the explicit equations of the system dynamics, we need to express the 

generalized force in Lagrange equations (17) by actual force and moment. Assuming that the 

column array in 
b
f of actual force and moment on the central body respectively are

b
F  

and
b
T , the column array in 

ai
f of the driving moment on the gemel is

ai
T , the column array 
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in 
ai
f of the distributed force on the flexible appendages is 

ai
F . Calculate the generalized 

extraneous force according to the priciple of virtual work, we firstly obtain the virtual 

displacement in 
b
f of an arbitrary volum differential element 

ai
dV  in flexible body 

i
B  as 

follows: 

 
( )

( )

ai bi b bai bai ai aib bai ai aib b

bai ai ai ai b b bak ak ak

δ δ δ

δ δ δ

× × ×

× ×

= − + +

− + + +

R A R R A R A A u A

A R u q A q

ϕ

ϕ φ φ
 (56) 

 

where 
bai
R is the component column array in 

b
f of the position vector from 

b
o to

ai
o ; 

ai
R is 

the component column array in
ai
f  of the position vector from

ai
o when the flexible body 

i
B has not been deformed to the mass differential element

ai
dm ; 

ai
u is the component 

column array in 
ak
f of the elastic displacement vector of the mass differential element

ai
dm ; 

b
δ R ,

b
δϕ ,

ai
δϕ ,

b
δq and

ai
δq  are the virtual displacements of the generalized coordinates. 

The virtual work of the system expressed by actual force and moment can be written as: 

 

( )

( )

TT T T T

2 2

TT T T T

2 2
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( ) ( )

n n

b bi b b b ai ai b b b bai ai ai ai
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i i
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i i

bai bai ai aib bai ai aib b bai ai ai ai b b bai

W dVδ δ δ δ δ δ

δ δ δ δ δ

δ δ δ

= =

= =

× × × × ×

= + + + +

= + + + +

− + + − + + +

∑ ∑∫

∑ ∑∫

F A R T T F q A F R

F A R T T F q A F A R

R A R A A u A A R u q A

ϕ ϕ φ

ϕ ϕ φ

ϕ ϕ φ φ
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1 1
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N N

bt b br b air ak vb b vi ak

i i

dVδ

δ δ δ δ δ
= =

= + + + +∑ ∑

q

Q R Q Q Q q Q qϕ ϕ

 (57) 

 

From Eq. (57), we can obtain the expression of the generalized extraneous force as follows: 

 
2

n

bt ib b iai ai ai
ai

i

dV
=

= +∑∫Q A F A F  (58) 

 
2

( )
n

br b bai bai bai ai bai ai ai ai
ai

i

dV
× × ×

=

= + + +∑∫Q T R A A R A u F  (59) 

 ( )
air ai ai ai ai ai

ai
dV

× ×= + +∫Q T R u F  (60) 

 

T T

2

n

vb b b b ai ai
ai

i

dV
=

= +∑∫Q F Fφ φ    (61) 

 
T

vi ai ai ai
ai

dV= ∫Q Fφ  (62) 
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3. Design and analysis of variable universe fractal fuzzy controller  

After several decades of effort, we have achieved great success in terms of the research on 
the attitude control of flexible multi-body spacecraft. However, it still need to base on the 
precise mathematical model. On one hand, this kind of spacecraft has complicated dynamics 
characteristics including low rigidity, high flexibility, weak damping, low first order and 
intensive modal due to the launch weight limit and the configuration symmetry; On the 
other hand, it is difficult to establish the precise mathematical of flexible multi-body 
spacecraft. All about these factors challenge the classical and modern control theory which 
depends on precise mathematical model. However, the fuzzy control theory does not need 
the accurate model of system, which is suitable for the control problem of complicated large 
system. Nevertheless, the main disadvantages of general fuzzy control are the limited 
control accuracy and adaptive ability. Upon that, fuzzy control theory only has a few 
applications in astrospace fields. 
Variable universe fuzzy control is a primary method for improving the performance of the 
fuzzy controller (Li, 1995). Input and output variables values change in rationally in the 
variable universe fuzzy control system. Adaptive variable universe fuzzy control problems 
have already been researched on (Si & Li, 2007). In that research real-time calculating 
shrinkage parameters are applied. However, real-time calculation of the shrinkage 
parameters will lead to the real-time shrinkage of the universe, consequently it can not 
constrain the future input signals by rules, which practicality requires future research. 
Aiming at this problem, variable universe fractal fuzzy control method is introduced into 
the fuzzy control system, which could avoid the real-time calculating of the shrinkage 
parameters, make the contracted universe practical. 

3.1 Attitude dynamics simulation model of spacecraft system 

The dynamics equations of flexible multi-body spacecraft with topological tree 
configuration obtained in section 2 is strongly nonlinear. In this section we only research on 
the spacecraft attitude control problems. In order to design the attitude controller 
conveniently, we usually form such hypotheses as follows: 
1. Consider the central body of large complicated configuration flexible spacecraft as rigid. 
2. The central body coordinate system has its origin at the mass centre, so the 

displacement and velocity of the mass centre has little effect on attitude of spacecraft. 
3. There is not any distributed control force on the flexible appendages usually in project. 
4. The angular velocity of the central body, the angular velocity of the flexible appendages 

relative to the central body and the vibration velocity of the flexible appendages usually 
are very small, so we could ignore the high order nonlinear coupling item caused by 
them. 

Through all above simplification, we obtain the finally spacecraft dynamics equations with 
uncertain moment of inertial as follows: 

 
( ) ( )[ ]

0
T

I I I I C C u w

D K C

ω ω ω η η

η η η ω

×+ Δ + + Δ + + = +

+ + + =

� � ��

�� � �
 (63) 

where I is the moment of inertial matrix of spacecraft; IΔ is the uncertain increment of 

moment of inertial caused by rotation of the solar panel; C is the coupling coefficient 
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between the central body and the flexible appendages; u is the control torque of three axes; 

η is the disturbing torque; is the flexible modal coordinate; 2D ξ= Λ ,
2

K = Λ , ξ is the 

modal damping coefficient matrix of flexible appendages, Λ is the modal frequency matrix 

of flexible appendages, assume thatD  and K  are both positive. 
In order to avoid the large angle singular problem caused by using Euler angle, we adopt 
Modified Rodrigues Parameters (Crassidis & Markley, 1996) to describe the spacecraft 
kinematics as follows: 

 ( ) ( ){ } ( )
3 3

1
1 2

4

T T
p p p I p pp F pω ω×

×
= − + + =�  (64) 

where [ ]
1 2 3

Tω ω ω ω= is the angular velocity of spacecraft; [ ]
1 2 3

T

p p p p= is 

Modified Rodrigues Parameters of spacecraft relative to inertial space, p
×
represent the 

skew-symmetric matrix of vector p . 
From the flexible spacecraft dynamics and kinematics equations we know that the rigid 
attitude motion and the flexible vibration interact with each other. On one hand, extraneous 
force makes the attitude changed, at the same time, it also cause the flexible deformation. On 
the other hand, any deformation of the flexible body could cause the attitude angular 
changes. Otherwise, there is also some disturbing torque directly influence the rigid attitude 
motion, such as gravity gradient moments, atmosphere resistance moments, solar pressure 
moments and geomagnetic moments. Upon that, in order to ensure the attitude control 
accuracy, the designed controller is supposed to have the ability to suppress the disturbance 
efficiently and have the adaptation in the interaction between the rigid and flexible bodies.  

3.2 Variable universe fractal attitude fuzzy controller 
3.2.1 Variable universe fuzzy controller 

 

μ

e

eEeE−
0

1ZRNSNMNB PS PM PB

 

Fig. 3. Initial universe and fuzzy division 

Variable universe ideology is proposed by Professor Li H. X. firstly. The control effect could 

be improved by changing the input and output universe values reasonably. Take the two 

inputs and one output fuzzy control system as an example. Assuming that the input 

variable is 
T

[ ]e e e=
G � , which has the initial universe as [ ],

e e
E E− and[ ],

ec ec
E E− , 

,
e ec
E E are real numbers. Usually we use seven rules to divide the universe as figure 3, 

variable universe means that the input universe ( , )
e ec

E E E=
G

and the output universe U  of 

the fuzzy controller could adjust reasonably with the changing of the input e
G

and the 
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output u . Among recent researches, this kind of universe adjustment is realised by using 

shrinkage parameters: 

 
( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

[ , ]

[ , ]

i i i i i
E e e E e E

U u u U u U

α α

β β

= −

= −

G G G
 (65) 

where ( )
i
eα
G

and ( )uβ are called shrinkage parameters. By the effect of the shrinkage 

parameters, the expansion and compression of the universe can be shown as figure 4: 
 

μ

e

( ) ee Eα( ) ee Eα− 0

1ZRNSNMNB PS PM PB

μ

e

( )' ee Eα( )' ee Eα− 0

1ZRNSNMNB PS PM PB

expansion

compression

 

Fig. 4. The expansion and compression of the universe 

Several common shrinkage parameters of variable universe control are given as follows: 
1. Proportion index form 

 

( )

( ) ( )
1 2 1 2

1 2

( / ) , (0 1)

1
, , (0 , 1)

2

e

e ec e ec

e e E

e e e e
e e e e

E E E E

τ

τ τ τ τ

α τ

β β τ τ

= < <

= = + < <
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

� �
� �或 ，

 (66) 

2. Natural index form 

 
( ) ( )
( ) ( )

2

1

2

2

1 exp

1 exp

e k e

e k e

α

β

= − −

= − −� �
 (67) 
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3. Modified natural index form 

 
( ) ( )
( ) ( )

2

1 1 1

2

2 2 2

1 exp , (0 1)

1 exp , (0 1)

e c k e c

e c k e c

α

β

= − − < <

= − − < <� �
 (68)  

 
 

There is some research on the efficiency of several kinds of shrinkage parameters in the 

literature written by Pan X. F. The conclusion is that these several kinds of common 

shrinkage parameters can not improve the fuzzy controller performance efficiently. In order 

to avoid the real-time contracting problem of universe, we try to introduce the fractal 

control strategy into the variable universe fuzzy control system. 

3.2.2 Fractal control strategy 

A kind of fractal control strategy has been proposed by literature written by Xu J. B., which 

is formulated beforehand, and has only finite times fractal. Therefore, it can not obtain high 

interpolation accuracy. 

The improved fractal control strategy in our research is proposed as follows:  

First of all, define the initial universe of the inputs ,e e� and output u as
0 0

[ , ]
e e
E E− , 

0 0
[ , ]

ec ec
E E− and

0 0
[ , ]U U− according to experience. Through the process of the program 

operation, when 0e =� , namely when the error e achieves extreme value, system has one 

time fractal automatically, make the absolute value of present error 
1
e as the present 

universe of input variable e , written as: 

 
1 1 1 1

[ , ] [ , ]
e e
E E e e− = −  (69) 

 

The universe of error derivation can be written as: 

 
1 0 1 0

1 1

0 0

[ , ] [ , ]
ec ec ec ec

ec ec

e e

c e E c e E
E E

E E
− = −  (70) 

 

The universe of output variable can be written as: 

 
1 0 1 0

1 1

0 0

[ , ] [ , ]
u u

e e

c e U c e U
U U

E E
− = −  (71) 

 

The subscript 1 in above formulas represent the first time fractal, 
ec
c and 

u
c are adjustable 

design parameters. After the fractal the program continue running until 0e =� happens 

again, system has the second time fractal. Write the present error as
2
e , the universe of input 

and output variable respectively adjust as follows: 
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2 2 2 2

[ , ] [ , ]
e e
E E e e− = −   (72) 

 
2 1 2 1

2 2

1 1

[ , ] [ , ]
ec ec ec ec

ec ec

e e

c e E c e E
E E

E E
− = −   (73) 

 
2 1 2 1

2 2

1 1

[ , ] [ , ]
u u

e e

c e U c e U
U U

E E
− = −   (74) 

 

To this analogize, through the process of the program operation, system will has infinite 

times fractal until the accuracy satisfies the requirement. 

This fractal strategy has advantages in following aspects: 

1. The time to have a fractal and the expansion and compression scale of universe are 

determined according to the variation of input error value, not chosen beforehand by 

person, so it has a certain degree of universality to different control sysems. 

2. Infinite times of fratal makes the distance between the interpolation points of the 

interpolator as the mathematical essence of fuzzy controller enough small, therefore the 

interpolation precision could meet an arbitrary given 0ε > , achieve the effect of 

dynamic pointwise convergent interpolator, suitable for any high precision control 

preblems. 

3. The universe variation of the error derivation and the output variable are related to the 

universe expansion and compression of the error. Under the same control rules, 

multistage microform of the overall control information is realised, truly achieve the 

effect of combining the multistage coarse control with the fine control. Avoiding the 

complicated derivation of adaptive law and provement of stability in adaptive 

controllers, the stable high precision control with a certain degree of robustness can also 

be accomplished by using this approach. 

3.3 Numerical simulation 

In order to demonstrate the effectiveness of the proposed control strategy, we discuss a 
large angle attitude maneuver problem of a flexible multi-body spacecraft. We supposed 

that the spacecraft initial attitude is 
T

0
[0.020 0.322 0.288]p = , and the target attitude 

is 
T

[0 0 0]
t
p = . If the attitude is expressed by Euler angles with the transform order as 

3-2-1, the initial roll is
0

35ϕ = D
, the initial pitch is

0
60θ = D

, the initial yaw is
0

50ψ = D
, the 

target attitude is 0
t t t

ϕ θ ψ= = = D
. The initial angular velocity is chosen as 

0
[0.03 0.02 0.04] / sω = D

. The initial modal coordinate and its derivation are 

suppoosed to be zero. Spacefrat moment of inertial I , coupling coefficient matrix between 

the central body and the flexible appendagesC , modal damping coefficient matrix of 

flexible appendagesξ , modal frequency matrix of flexible appendagesΛ  are given in Table 

1 as below: 
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Moment of inertial I  
2

( )kg mi  

1070000 25000 1700

25000 29200 3100

1700 3100 1080000

− −

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Coupling parameterC  
2 1/ 2

( )kg mi  

64.8 0 0.007

0 69.7 0

1.3 1.7 22.3

−

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Modal damping ratio 

ξ  

0.046 0 0

0 0.031 0

0 0 0.019

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Modal frequency 

Λ ( / )rad s  

0.542 0 0

0 0.798 0

0 0 1.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Table 1. Related parameters in the spacecraft system simulation   

The input and output of the controller both has 7 fuzzy subsets, respectively expressed by 
NB, NM, NS, ZR, PS, PM, PB. Because choosing linear or nonlinear membership functions 
has little influence on the fuzzy control effect, meanwhile using triangle has advantage of 
convenient and quick for calculating (Kruse, 1994), we adapt triangle membership function 
in our simulation, coincidence degree of neighbour fuzzy subsets is 0.5, Table 2 is the 
classical fuzzy control rule base used in the system. 
 

Derivation of error 
input 

NB NM NS ZR PS PM PB 

NB PB PB PB PB PM ZR ZR 

NM PB PB PB PB PM ZR ZR 

NS PM PM PM PM ZR NS NS 

ZR PM PM PS ZR NS NM NM 

PS PS PS ZR NM NM NM NM 

PM ZR ZR NM NB NB NB NB 

error 

PB ZR ZR NM NB NB NB NB 

Table 2. Fuzzy control rule base 
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Simulation results are shown in follow figures, in order to make a comparison, the control 
effect of the fixed universe controller is given at the same time. Fig. 5 and Fig. 6 give the 
variation of the spacecraft attitude angles and modal coordinates of flexible appendages 
with time, and the control effect when the spacecraft moment of inertial increases 20 percent 
under the action of variable universe fractal fuzzy controller. Fig. 7 and Fig. 8 give the 
variation of the spacecraft attitude angles and modal coordinates of flexible appendages 
with time, and the control effect when the spacecraft moment of inertial increases 20 percent 
under the action of fixed universe fuzzy controller. 
Take the actual attitude angles and attitude angular velocity of 2000-6000 seconds when the 

system has been stable as statistical data, calculate the 3σ value of attitude control accuracy 

and attitude stability under the action of two kinds of fuzzy controller both in the normal 
condition and in the condition when the moment of inertial increases 20 percent as shown in 
Table 3. 
 

( )3σ
 

Variable universe fractal fuzzy 
control 

General fuzzy control 

e  [ ]0.0032 0.0404 0.0543
D

 
[ ]0.5309 0.0311 1.1964

D

 

ec  [ ] 4

0.0141 0.1335 0.0982 10 s
−× D

 
[ ] 3

1.5028 0.0553 1.2592 10 s
−× D

 

 
 
I 

eta  [ ] 4

0.1271 0.0399 0.0034 10
−×

 
[ ] 4

0.4487 0.0458 0.0182 10
−×

 

e  [ ]0.0030 0.0476 0.0452
D

 
[ ]1.4163 0.0652 2.1949

D

 

ec  [ ] 4

0.0157 0.1210 0.0859 10 s
−× D

 
[ ] 3

7.1558 0.1637 3.0126 10 s
−× D

 

 
 

II 

eta  [ ] 4

0.0947 0.0502 0.0031 10
−×

 
[ ] 4

1.1131 0.0647 0.0512 10
−×

 

 

Table 3. The control accuracy of the attitude angle, attitude angular velocity and vibration 
modal (I represent the normal condition, II represent the condition of moment of inertial 
increasing 20 percent) 

From the simulation results, we know that the variable universe fractal fuzzy control has 
shorter dynamic adjusting time, faster response, smaller overshoot and higher static 
precision compared to the fixed universe fuzzy control. Meanwhile, it is insensitive to the 
variation of moment of inertial parameters, in other words, it has good robustness and 
adaptability to the model uncertainty of spacecraft. Besides, it could suppress the vibration 
of flexible appendages due to the attitude maneuver efficiently, then assure the attitude 
control precision of spacecraft. 
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(a) Simulation results of the attitude angles     
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(b) Simulation results of the modal coordinates 

Fig. 5. The control effect of the variable universe fractal controller 
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(a) Simulation results of the attitude angles   
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 (b) Simulation results of the modal coordinates 

Fig. 6. The control effect of the variable universe fractal controller when the moment of 
inertia of the spacecraft increases 20 percent 
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(a) Simulation results of the attitude angles  
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(b) Simulation results of the modal coordinates 

Fig. 7. The control effect of the fixed universe controller 
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(a) Simulation results of the attitude angles  
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(b) Simulation results of the modal coordinates 

Fig. 8. The control effect of the fixed universe controller when the moment of inertia of the 
spacecraft increases 20 percent 
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4. Conclusion 

In this chapter, we research on the flexible multi-body spacecraft attitude dynamics and 
control problem. By using quasi-Lagrange equations, we have established the attitude 
dynamic equations of flexible multi-body spacecraft with topological tree configuration in 
section 2. The information of the system configuration has been introduced into the process 
of modelling, therefore the proposed attitude dynamic equations are universal and 
programmable. Then variable universe fractal fuzzy control method is developed in 
section3. The strongly nonlinear attitude dynamics equations are simplified under several 
reasonable hypothesizes. In order to avoid the disadvantage of using shrinkage factor, 
fractal control strategy is introduced into variable universe fuzzy control system. Finally we 
have demonstrated the effectiveness of the proposed control method through numerical 
simulation. The simulation results show that variable universe fractal fuzzy controller could 
accomplish the flexible multi-body spacecraft attitude control mission with good dynamic 
performance and high static precision. 
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