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1. Introduction

Space mission success depends on adequate attitude control system performance. High
precision pointing control design for flexible spacecraft with large appendages requires special
care (Yamada & Yoshikawa, 1996; Nagashio, 2010). Many linear control schemes such as
LQR, LQG, QFT, H∞, and µ-synthesis have been used to guarantee robust stability against
both vibrations and parameter uncertainties. Future advanced space missions will involve
control system design techniques with novel architectures, technologies, and algorithms. Next
generation of microcomputers will allow one to use more sophisticated control algorithms.
Pontryagin’s theory of linear differential games (Pontryagin, 1981) is a natural tool to solve
local stabilization problems under conditions of uncertainty. The corresponding mathematical
model involves a linear differential equation

ẋ = Ax − u + v, (1)

with two control parameters u ∈ P and v ∈ Q belonging to bounded sets. One can choose
the control u so as to bring the point x into the terminal set S , while the term v represents
the disturbances caused by the model uncertainties, vibration of flexible elements, and state
estimation errors. Differential games of stabilization (Smirnov, 2002) have some characteristic
features that distinguish them from other differential games. Namely, the terminal set S
should be invariant (see Sec. 3). Moreover, the zero equilibrium position of the linear
differential equation

ẋ = Ax, (2)

is assumed to be asymptotically stable. Equation (2) can be obtained applying standard linear
stabilization techniques to the control system under consideration. The trajectories of the
closed-loop system

ẋ = Ax + v, (3)

subject to the disturbance v, approach a limit set Ω and not tend to zero. The aim of the
differential game approach is to construct a smaller invariant set S ⊂ Ω, to bring the trajectory
x(t) into S , and to maintain it there.
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2 Advances in Spacecraft Technologies

The idea to use differential game methods to solve stabilization problems with uncertainties
is not new (see (Gutman & Leitmann, 1975a; Gutman & Leitmann, 1975b), for example).
However, the previous studies are based on Lyapunov functions (Gutman, 1979) or solutions
to the Hamilton-Jacobi-Isaacs-Bellman equation (Isaacs, 1965; Kurzhanski & Varaiya, 2002;
Mitchell et al., 2005). In this chapter we discuss theoretical and computational aspects
of differential games of stabilization considered in the framework of Pontryagin’s
approach. Theoretically both approaches are equivalent (Kurzhanski & Melnikov, 2000). But,
from the computational point of view, the geometric language of Pontryagin’s method
(alternating integral, support functions, etc.) proves more efficient in constructing the
stabilizing control than the approach based on Lyapunov functions or the solution to
Hamilton-Jacobi-Isaacs-Bellman equation. Since a local stabilization problem is considered,
linear model (1) suffices to adequately describe the system behaviour. Although the dynamics
is linear, the approach itself is based on the usage of nonlinear methods such as convex
analysis and nonlinear programming.
This chapter is organized in the following way. First we give a short introduction to the theory
of linear differential games and describe numerical methods developed for the alternating
integral approximation. We also address the problem of construction of a minimal invariant
set. Next, we apply the developed techniques to the problem of high precision attitude
stabilization of spacecrafts with large flexible elements.

2. Mathematical background

Throughout this chapter we denote the set of real numbers by R and the usual n-dimensional
space of vectors x = (x1, . . . , xn), where xi ∈ R, i = 1,n, by Rn. The inner product of two vectors
x and y in Rn is expressed by

〈x,y〉 = x1y1 + . . . + xnyn.

The norm of a vector x ∈ Rn is defined by ‖x‖ = 〈x, x〉1/2. Let A be a linear operator from Rn

to Rm. If A is an m × n real matrix corresponding to the linear operator A (we use the same
symbol), then the transposed matrix A∗ corresponds to the adjoint operator. The unit linear
operator from Rn to Rn will be denoted by In. We denote the unit ball in Rn by Bn:

Bn = {x ∈ Rn | ‖x‖ ≤ 1}.

Let C ⊂ Rn. The distance function d(·,C) : Rn → R is defined by

d(x,C) = inf{‖x − c‖ | c ∈ C}, x ∈ Rn.

Let λ ∈ R. Then put by definition

λC = {λc | c ∈ C}.

For two sets C1 and C2 in Rn their sum is defined by

C1 + C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}.

A set C ⊂ Rn is said to be convex if λx + (1 − λ)y ∈ C whenever x ∈ C, y ∈ C, and λ ∈ [0,1].
From definition it follows that an intersection of any number of convex sets is a convex set,
and if C1 ⊂ Rn, C2 ⊂ Rn are convex, and α1 and α2 are real numbers, then the set α1C1 + α2C2

is convex. Let C ⊂ Rn. The intersection of all convex sets containing C is called the convex
hull of C and is denoted by coA.
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All convex sets C ⊂ Rn considered in this chapter are assumed to be symmetric, i.e., C = −C.
This family is enough for our goals. The function S(·,C) : Rn → R defined by

S(ϕ,C) = sup{〈x, ϕ〉 | x ∈ C}

is called the support function of C. The distance function can be expressed via support
function:

d(x,C) = sup{〈x, ϕ〉 − S(ϕ,C) | ϕ ∈ Bn}. (4)

Moreover, the support function allows one to express the inclusion x ∈ C in an analytical form.
Namely, x ∈ C if and only if 〈x, ϕ〉 ≤ S(ϕ,C) for all ϕ ∈ Bn.
Another description of a compact convex set C can be obtained in terms of the Minkowski
function. A point x ∈ C if and only if µ(x,C) ≤ 1, where

µ(x,C) = inf{t > 0 | t−1x ∈ C}

is the Minkowski function of the set C.
Let C1 and C2 be convex sets in Rn. The Minkowski difference of these sets is defined by

C1

∗
− C2 = {c | c + C2 ⊂ C1}.

If C1 is convex and closed and C2 is compact, then C1

∗
− C2 is closed and convex. It is easy to

see that the following relations hold

(C1

∗
− C2) + C2 ⊂ C1,

and

(C1 + C2)
∗
− C2 = C1.

Moreover if C3 is compact and convex, then we have

(C1

∗
− C2) + C3 ⊂ (C1 + C3)

∗
− C2.

The Hausdorff distance between two sets C1, C2 ⊂ Rn is defined as

h(C1,C2) = min{h ≥ 0 | C1 ⊂ C2 + hBn, C2 ⊂ C1 + hBn}.

A set-valued map F : Rn → Rm with compact values is called continuous at x0 ∈ Rn if for any
ǫ > 0 there exists δ > 0 such that h(F(x), F(x0)) < ǫ, whenever x ∈ x0 + δBn.
Let F : [a,b] → Rn be a set-valued map with compact convex values. Its Riemann integral
∫ b

a F(t)dt is defined as a limit in the sense of the Hausdorff distance of the integral sums

∑k F(ξk)(tk+1 − tk), where a = t0 < t1 < . . . < tN = b, is a partition of the interval [a,b] and ξk ∈
[tk, tk+1]. The integral exists whenever F is continuous at all points of the interval. Moreover,
it coincides with the set of all integrals of integrable selections f (t) ∈ F(t)

∫ b

a
F(t)dt =

{

∫ b

a
f (t)dt | f (t) ∈ F(t), t ∈ [0, T]

}

(see (Castaing & Valadier, 1977)) and

S

(

ϕ,
∫ b

a
F(t)dt

)

=
∫ b

a
S(ϕ, F(t))dt

for all ϕ ∈ Rn. This equality allows one to compute integrals of set-valued maps.
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4 Advances in Spacecraft Technologies

3. Linear differential games of pursuit

Differential games are control problems in a conflict situation. For example, if one aircraft
pursuits another one we have such a situation. The dynamics of the system is described by a
differential equation depending on two control parameters

ẋ = f (x,u,v), u ∈ P, v ∈ Q.

One player controls the parameter u and the other one controls the parameter v. The aim of
the first player is to drive the system to a terminal set S while the aim of the second player is to
avoid this event. The solution to this problem consists in determination of functions u = u(x)
and v = v(x), known as strategies (Krasovski & Subbotin, 1987), guaranteeing

1. the fastest arrival to the terminal set S for the first player;

2. the latest arrival to the terminal set S for the second player.

In this form the problem is extremely involved because the functions u(x) and v(x) can
be discontinuous and the differential equation ẋ = f (x,u(x),v(x)) may have no solution in
the classical sense. This difficulty can be overcome introducing the concept of Pontryagin’s
ǫ-strategy. The differential game is considered as a pursuit game or an evasion game.
In the first case we identify ourself with the first player. At the initial moment of time t0 the
second player communicates to the first player a number ǫ0 > 0 and his control v(t) defined in
the time interval [t0, t0 + ǫ0]. The first player uses this information to choose his own control
u(t), t ∈ [t0, t0 + ǫ0]. Next, at the moment of time t1 = t0 + ǫ0 the second player communicates
to the first player a number ǫ1 > 0 and his control v(t) defined in the time interval [t1, t1 + ǫ1].
The first player uses this information to choose his control u(t), t ∈ [t1, t1 + ǫ1], and so on.
In the case of evasion games we identify ourself with the second player and the first one
communicates us numbers ǫk > 0 and controls u(t), t ∈ [tk, tk + ǫk].
Here we study only pursuit games for linear control systems

ẋ = Ax − u + v (5)

and without the objective to reach the terminal set S in an optimal time. Our aim is to finish
the game in a time T not necessarily optimal. The sets P and Q are assumed to be compact and
convex. The terminal set S is closed and convex. Moreover, the number ǫ from the definition
of the ǫ-strategy is assumed to be fixed.

Differential games of stabilization have some characteristic features that distinguish them
from other differential games. Namely, the terminal set S should be invariant, i.e., if x0 ∈ S ,
then for any control v(t) ∈ Q there should exist a control u(t) ∈ P such that it maintains the
trajectory x(t, x0,u(·),v(·)) in the set S . There are many possibilities to formalize the concept
of invariance. We say that a set S is ǫ-invariant if the following inclusion holds

ΛǫS +Qǫ ⊂ S + Pǫ. (6)

Here we use the notations

Λǫ = eǫA, Pǫ =
∫ ǫ

0
etAPdt, and Qǫ =

∫ ǫ

0
etAQdt. (7)
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Let x ∈ S and v(t) ∈ Q, t ∈ [0,ǫ], be an admissible disturbance. After a change of variable in
integrals (7) we obtain

Pǫ =
∫ ǫ

0
e(ǫ−t)APdt and Qǫ =

∫ ǫ

0
e(ǫ−t)AQdt (8)

From (6) and (8) we see that there exists an admissible control u(t) ∈ Q, t ∈ [0,ǫ] such that

x(ǫ) = eǫAx −
∫ ǫ

0
e(ǫ−t)Au(t)dt +

∫ ǫ

0
e(ǫ−t)Av(t)dt ∈ S ,

i.e., starting at S we always return to it after time ǫ.
The zero equilibrium position of the linear differential equation

ẋ = Ax, (9)

is assumed to be asymptotically stable. This implies that there exists a positive definite
symmetric matrix V satisfying the Lyapunov equation

VA + A∗V = −In.

If α > 0 is sufficiently large and ǫ is sufficiently small, then the ellipsoid αE, where

E = {x | 〈x,Vx〉 ≤ 1} (10)

is ǫ-invariant.

Consider the sets Ik ⊂ Rn defined by I0 = S ,

Ik+1 = (Ik + Pǫ)
∗
−Qǫ, k = 0, N − 1.

The sets Ik are known as Pontryagin alternating sums. Fix T > 0 and set ǫ = T/N. The limit
of the Pontryagin alternating sums as N goes to infinity,

IT = lim
N→∞

IN ,

is called Pontryagin alternating integral. The inclusion Λǫx ∈ Ik+1 implies that for any
admissible disturbance v(t) ∈ Q, t ∈ [0,ǫ], there exists an admissible control u(t) ∈ Q, t ∈ [0,ǫ]
such that

x(ǫ) = eǫAx −
∫ ǫ

0
e(ǫ−t)Au(t)dt +

∫ ǫ

0
e(ǫ−t)Av(t)dt ∈ Ik.

By induction we see that if ΛN
ǫ x ∈ IN , then the game can be finished in time Nǫ, i.e., that the

first player can choose an ǫ-strategy in order to guarantee the inclusion x(Nǫ) ∈ I0 = S . The
set

FT = e−TAIT

is known as Pontryagin-Pshenichnyj pursuit operator and consists of all initial points x0 such
that the game starting from x0 can be finished in time less than or equal to T independently
on the ǫ-strategy of the second player. Instead of the Pontryagin alternating sums we shall
use the Pontryagin-Pshenichnyj pursuit ǫ-operators defined by F0 = S ,

Fk = F k
ǫ (S), k = 0, N, (11)
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where

Fǫ(C) = Λ−1
ǫ

(

(C + Pǫ)
∗
−Qǫ

)

.

If the set Fk is ǫ-invariant (see (6)), then the set Fk+1 is also invariant. Indeed, from the
inclusion

ΛǫFk +Qǫ ⊂ Fk + Pǫ,

we have

Fk ⊂ Λ−1
ǫ

(

(Fk + Pǫ)
∗
−Qǫ

)

= Fk+1. (12)

This implies

ΛǫFk+1 +Qǫ =

(

(Fk + Pǫ)
∗
−Qǫ

)

+Qǫ ⊂ Fk + Pǫ ⊂ Fk+1 + Pǫ.

Therefore the operators Fk form a monotone family, provided that the terminal set S is
ǫ-invariant.
To construct an absorbing family of Pontryagin-Pshenichnyj operators, suppose that the
terminal set is strictly invariant, i.e.,

Λǫ(S + E) +Qǫ ⊂ S + Pǫ,

where the ellipsoid E satisfies the inclusion ΛǫE ⊂ E (see (10)). The strict invariance of S
implies the inclusion S + E ⊂ Fǫ(S). Observe that

Λǫ(Fǫ(S) + E) +Qǫ = ((S + Pǫ)
∗
−Qǫ) + ΛǫE +Qǫ) ⊂ S + Pǫ + E ⊂ Fǫ(S) + Pǫ.

From this we obtain
S + 2E ⊂ Fǫ(S) + E ⊂ F2

ǫ (S).

By induction we have S + kE ⊂ F k
ǫ (S). Therefore

⋃

k≥0 F
k
ǫ (S) = Rn.

4. Computational aspects

To numerically compute the pursuit operator and the stabilizing control, the considered sets
should be approximated by polyhedrons. In this section we briefly present the computational
geometry tools necessary for this purpose.
Fix two sets of unit vectors {ϕm}M

m=1 and {ξl}
L
l=1. An exterior polyhedral approximation, C,

of a convex compact set C ⊂ Rn is given by

C ⊂ C = {x | 〈ϕm, x〉 ≤ S(ϕm,C), m = 1, M},

and an interior polyhedral approximation, C, of a convex compact set C ⊂ Rn is given by

C ⊃ C = co
{

(µ(ξl ,C))
−1ξl | l = 1, L

}

.

We shall use the notations σm = S(ϕm,C) and µl = µ(ξl ,C) for the values of the support
function and of the Minkowski function, respectively. The vectors σ = (σ1, . . . ,σM) and
µ = (µ1, . . . ,µL) define the exterior and interior approximations of a compact convex set C.
We say that the exterior and interior approximations are consistent if the following conditions
are satisfied:

428 Advances in Spacecraft Technologies
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1. 〈ξl , ϕm〉 ≤ µlσm, for all l = 1, L and m = 1, M,

2. for any l = 1, L there exists m(l) such that 〈ξl , ϕm(l)〉 = µlσm(l),

3. for any m = 1, M there exists l(m) such that 〈ξl(m), ϕm〉 = µl(m)σm.

If exterior and interior descriptions σ = (σ1, . . . ,σM) and µ = (µ1, . . . ,µL) are not consistent,
they can be made consistent using one of adjustment operators µ → Aσ(µ) and σ → Aµ(σ)
defined by

Aσ(µ) = (σ1(µ), . . . ,σM(µ)), σm(µ) = max
l=1,L

µ−1
l 〈ξl , ϕm〉

and

Aµ(σ) = (µ1(σ), . . . ,µL(σ)), µl(σ) =

⎛

⎜

⎝
min
m=1,M

〈ξl ,ϕm〉>0

σm

〈ξl , ϕm〉

⎞

⎟

⎠

−1

.

Let C1 and C2 be two convex compact sets, and let σ(C1) and σ(C2) be the vectors defining
their exterior approximations. Since S(ϕ,C1 + C2) = S(ϕ,C1) + S(ϕ,C2), it is natural to define
the exterior approximation vector σ(C1 + C2) for the sum as

σ(C1 + C2) = σ(C1) + σ(C2).

The evaluation of the approximation for the Minkowski difference C1

∗
− C2 is more involved.

The point is that the difference of support functions S(ϕ,C1)− S(ϕ,C2) may be not a support
function of a convex set and some correction is needed. This correction is done using the
interior description. Namely, we set

σ(C1

∗
− C2) =Aσ(Aµ(σ(C1)− σ(C2))).

If the vectors {ϕm}M
m=1 and {ξl}

L
l=1 form rather fine meshes in the unite sphere, the above

exterior approximations of the sum and the Minkowski difference given by

{x | 〈x, ϕm〉 ≤ σm(C1 + C2), m = 1, M}

and

{x | 〈x, ϕm〉 ≤ σm(C1

∗
− C2), m = 1, M}

tend to C1 + C2 and C1

∗
− C2, respectively, as M and L go to infinity. Some estimates for the

precision of the approximations can be found in (Polovinkin et al., 2001).
The approximation of the set ΛC, where Λ : Rn → Rn is a linear operator, is based on the
following property of support functions:

S(ϕ,ΛC) = S(Λ∗ϕ,C) = ‖Λ∗ϕ‖S

(

Λ∗ϕ

‖Λ∗ϕ‖
,C

)

and is computed as

S(ϕm,ΛC) = ‖Λ∗ϕm‖S
(

ϕλ(m),C
)

,

where the vector ϕλ(m) satisfies the condition

∥

∥

∥

∥

ϕλ(m) −
Λ∗ϕm

‖Λ∗ϕm‖

∥

∥

∥

∥

= min
m′=1,M

∥

∥

∥

∥

ϕm′ −
Λ∗ϕm

‖Λ∗ϕm‖

∥

∥

∥

∥

.
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Now, consider the problem of a minimal invariant set construction. Let P ⊂ Rn and Q ⊂ Rn

be convex compact sets, and let Λ : Rn → Rn be a linear operator. The condition of a convex
set S invariance,

ΛS +Q⊂ S + P , (13)

in terms of support functions takes the form

S(ϕ,ΛS) + S(ϕ,Q) ≤ S(ϕ,S) + S(ϕ,P), for all ϕ, ‖ϕ‖ = 1. (14)

We say that an invariant set S is minimal, if for any S ′ ⊂ S , S ′ = S , we have ΛS ′ + Q ⊂
S ′ + P . Note that the minimal invariant set may be not unique and that the intersection of
two invariant sets may be not invariant. Indeed, consider the following example in R2. Let
Λ = 1

2 I2, P = co{(0,2), (0,−2)}, and Q = co{(1,1), (1,−1), (−1,1), (−1,−1)}. It is easy to see
that any set Sa = {(x, ax) | x ∈ [−2,2]}, a ∈ [−1,1], is minimal invariant. The intersection
Sa1 ∩ Sa2 = {0}, a1 = a2, is not invariant.
To restrict the set of invariant sets, we introduce the following definition. Put

r(S) = min{r > 0 | S ⊂ rBn}.

An invariant set S is said to be r-minimal, if for any S ′ satisfying r(S ′)< r(S), we have ΛS ′ +
Q ⊂ S ′ + P . In the previous example a unique r-minimal invariant set is co{(1,0), (−1,0)}.
Note that in general the r-minimality does not define a unique invariant set, as it is clear from
the following example. Set

Λ =
1

2

(

0 1
−1 0

)

,

P = co{(0,1), (0,−1)}, and Q = co{(1,1), (1,−1), (−1,1), (−1,−1), (0,2), (0,−2)}. It is easy
to see that the sets S1 = 2B2 and S1 = co{(1,0), (−1,0), (0,1), (0,−1)} are both r-minimal
invariant.
Although the property of r-minimality does not define a unique invariant set, it is quite
suitable from the practical point of view.
We developed the following algorithm to compute a minimal invariant set. Let S0 be an
invariant set. (Recall that in the case of a differential game of stabilization there always exists
an invariant ellipsoid (see Sec. 3).) Then we obtain an interior approximation of S0 described

by a vector µ(0) = (µ
(0)
1 , . . . ,µ

(0)
L ) and set S0 = co

{

±(µ
(0)
1 )−1ξ1, . . . ,±(µ(0))−1

L ξL

}

. Let δ > 0.

The current invariant set Sk is successively shrunk going through the vectors ξl , l = 1, L, and
considering the sets

S l
k = co

{

±(µ
(0)
1 )−1ξ1, . . . ,±(µ

(0)
l + δ)−1ξl , . . . ,±(µ

(0)
L )−1ξL

}

.

If the set S l
k is invariant, we put Sk+1 = S l

k. After passing through all vectors ξl , l = 1, L, the

algorithm turns to the vector ξ1. The algorithm stops if none of the modified sets S l
k, l = 1, L,

is invariant. This algorithm is very simple and efficient. However, in general, it does not lead
to a r-minimal invariant sets.
The problem of r-minimal invariant set construction is more involved and can be solved using
nonlinear programming techniques. The invariance condition (14) implies that the vector σr =
(σr

1, . . . ,σr
M) giving the external description of a r-minimal invariant set has to be a solution to
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the following linear programming problem

r → min,

‖Λ∗ϕm‖σλ(m) + qm ≤ σm + pm, m = 1, M,

0 ≤ σm ≤ r, m = 1, M,

where pm = S(ϕm,P), qm = S(ϕm,Q), and σm, m = 1, M, and r are the unknown variables.
Unfortunately the solution to this problem is not unique and a vector σ, solving the problem,
may be not a vector of a support function values. For this reason it is necessary to use inner
approximations for the invariant set and solve the following nonlinear programming problem

r → min,

max
l=1,L

〈µ−1
l Λξl , ϕm〉+ qm ≤ max

l=1,L
〈µ−1

l ξl , ϕm〉+ pm, m = 1, M,

0 ≤ µ−1
l ≤ r, l = 1, L,

with the variables µl , l = 1, L, and r.
A very important issue is the stabilizing control u construction. Assume that the current
position of the system xk belongs to the set FN−k. To determine the stabilizing control u(t)
defined on the interval [kǫ, (k + 1)ǫ] we numerically solve the optimal control problem

d

(

eǫAxk −
∫ ǫ

0
e(ǫ−t)Au(kǫ + t)dt +

∫ ǫ

0
e(ǫ−t)Av(kǫ + t)dt,FN−k−1

)

→ min,

u(kǫ + t) ∈ P.

The distance function is calculated using representation (4) and the control u(t), t ∈ [kǫ, (k +
1)ǫ], is considered to be a piece-wise constant function, u(t) = uj, t ∈ [(k − j/J)ǫ, (k − (j +

1)/J)ǫ], j = 0, J − 1. Approximating the set P by a polyhedron, we get the linear programming
problem

r → min
〈

eǫA −
ǫ

J

J

∑
j=1

eǫ(1−j/J)Auj +
∫ ǫ

0
e(ǫ−t)Av(kǫ + t)dt, ϕm

〉

− S(ϕm,FN−k−1) ≤ r, m = 1, M

〈uj, ϕm〉 ≤ S(ϕm, P), m = 1, M, j = 1, J.

Here uj, j = 1, J, and r are the unknown variables. This problem can be solved using the
simplex-method or an interior-point method. Since the difference between the problems on
the adjacent time intervals is rather small, the solution uj, j = 1, J, obtained at the moment
t = kǫ can be used as an initial point to solve the linear programming problem on the next
time interval.

5. Robust Pontryagin-Pshenichnyj operator

At the instant t = kǫ the disturbance v(t) defined on the interval [kǫ, (k + 1)ǫ], needed to
construct the control u(t), t ∈ [kǫ, (k + 1)ǫ], is not available. For this reason we use the
disturbance v(t) defined on the interval [(k − 1)ǫ,kǫ]. It turns out that this can cause serious
problems and the construction of the Pontryagin-Pshenichnyj operator should be modified in
order to overcome them. To clarify this issue we need some notations. Let T(x0) be such that
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x0 ∈FT(x0) and x0 ∈ Ft, t < T(x0). By u(t,v(t− ǫ), x0) denote the control u(t), t ∈ [kǫ, (k+ 1)ǫ],

computed using the disturbance v(t) defined on the interval [(k − 1)ǫ,kǫ], and by u(t,v(t), x0)
denote the control u(t), t ∈ [kǫ, (k + 1)ǫ], computed using the disturbance v(t) defined on the
interval [kǫ, (k + 1)ǫ]. The corresponding solutions of system (5) we denote by

X−ǫ(x0) = eǫAx0 −
∫ ǫ

0
e(ǫ−t)Au(t,v(t − ǫ), x0)dt +

∫ ǫ

0
e(ǫ−t)Av(t)dt

and

Xǫ(x0) = eǫAx0 −
∫ ǫ

0
e(ǫ−t)Au(t,v(t), x0)dt +

∫ ǫ

0
e(ǫ−t)Av(t)dt.

The controls u(t,v(t − ǫ), x0) and u(t,v(t), x0), t ∈ [kǫ, (k + 1)ǫ], are constructed to minimize
the distances d(X−ǫ(x0),FT(x0)−ǫ) and d(Xǫ(x0),FT(x0)−ǫ), respectively. It turns out that,
in general, in the first case the trajectory rapidly zigzags in the vicinity of the equilibrium
position and in the second case its behaviour is more regular.
Consider the following example. The control system

ẍ = −βẋ − αx − u + v, |u| ≤ umax, |v| ≤ vmax (15)

describes the motion of a harmonic oscillator with friction. The control resource of the first
player is enough to compensate any disturbance. The control v(t) takes alternating values
±vmax on the intervals [kǫ, (k+ 1)ǫ]. The influence of the delay can be seen comparing Figures
1 and 2. It is clear that the presence of delay causes violent oscillations of the trajectories.

−6 −4 −2 0 2 4 6 8 10

x 10
−4

−6

−5

−4

−3

−2

−1

0

1
x 10

−3

Fig. 1. Trajectory (x, ẋ): motion without delay.

To overcome this difficulty we introduce a robust Pontryagin-Pshenichnyj ǫ-operator. The
definition of ǫ-invariant set also should be revised. We say that a convex set S is robustly
ǫ-invariant if S = S0 + 2Qǫ and

ΛǫS0 + 2ΛǫQǫ +Qǫ ⊂ S0 + Pǫ. (16)
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Fig. 2. Trajectory (x, ẋ): motion with delay.

This definition implies the inclusion

ΛǫS +Qǫ ⊂ (S
∗
− 2Qǫ) + Pǫ. (17)

The robust Pontryagin-Pshenichnyj ǫ-operator is defined by G0 = S ,

Gk = Gk
ǫ (S), k = 0, N, (18)

where

Gǫ(C) = Λ−1
ǫ

(((

C
∗
− 2Qǫ

)

+ Pǫ

)

∗
−Qǫ

)

.

If x0 ∈ Gk+1 and we choose the control u(t,v(t− ǫ), x0) to guarantee the inclusions X−(ǫ, x0) ∈

Gk

∗
− 2Qǫ, then we have

Xǫ(x0) = eǫAx0 −
∫ ǫ

0
e(ǫ−t)Au(t,v(t − ǫ), x0)dt +

∫ ǫ

0
e(ǫ−t)Av(t − ǫ)dt

−
∫ ǫ

0
e(ǫ−t)Av(t − ǫ)dt +

∫ ǫ

0
e(ǫ−t)Av(t)dt ∈

(

Gk

∗
− 2Qǫ

)

+ 2Qǫ ⊂ Gk. (19)

A trajectory generated by the robust Pontryagin-Pshenichnyj ǫ-operator for the above example
can be seen in Fig. 3. It is more regular although the limit set is larger. The latter can
be reduced diminishing the parameter ǫ. From the qualitative point of view, the difference
between the behaviours of the trajectories generated by the usual Pontryagin-Pshenichnyj
ǫ-operator and the robust one can be explained as follows. The inclusion x0 ∈ Fk+1 does not
imply the inclusion Xǫ(x0) ∈ Fk. In general, we need much time than ǫ to achieve the set Fk

and the search of the way to the set Fk results in zigzags of the trajectories. On the other hand,
the inclusion x0 ∈ Gk+1 always imply (19).
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Fig. 3. Trajectory (x, ẋ): motion generated by the robust Pontryagin-Pshenichnyj ǫ-operator.

6. High precision attitude stabilization of spacecrafts with large flexible elements

Satellites with flexible appendages are modelled by hybrid systems of differential equations

ẍ = f (x, g(y, ẏ, ÿ),u), (20)

ÿ = G(x, ẋ, ẍ,y), (21)

where x ∈ Rn, y ∈ Y is vector in a Hilbert space, and g : Y3 → Rm is an integral operator
(Junkins & Kim, 1993). Equation (20) is an ordinary differential equation describing the
motion of the satellite and depending on the control u ∈ U, while (21) is a partial differential
equation modelling the dynamics of flexible appendages. We illustrate the stabilization
techniques based on the differential game approach by a model example.
Consider a spacecraft composed of a rigid body with a flexible appendage (a beam, see Fig.
4). The satellite is modelled as a cylinder. The distance between its longitudinal axis and the
point c where the beam is cantilevered is denoted by r0. The length of the beam is denoted
by l. We use two systems of coordinates: the inertial one denoted by OXYZ and the system
oxyz rigidly connected to the satellite. The axis oz is directed along the satellite longitudinal
axis, and the axis ox passes through the point c. The position of the point o is described by
the coordinates (X0,Y0), and the position of the axis ox relatively to the inertial coordinate
system is defined by the angle θ. The deflection of the beam from the axis ox is described by
the function y(t, x) (see Fig. 5). We assume that the oscillations of the flexible appendage are
small and can be described in the framework of linear theory of elasticity. We consider only a
rotation of the satellite around its longitudinal axis.
To obtain the Lagrange equations for this system we write down the Lagrangian function

L =
1

2
m(Ẋ2

0 + Ẏ2
0 ) +

1

2
Iθ̇2 +

ρ

2

∫ r0+l

r0

(

(Ẋ0 − (ẏ + xθ̇)sinθ)2 + (Ẏ0 + (ẏ + xθ̇)cosθ)2
)

dx
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Fig. 4. Satellite with a flexible appendage.

−
1

2
EI

∫ r0+l

r0

(y′′)2dx.

Here m is the mass of the satellite, I is its moment of inertia about the longitudinal axis, ρ is the
mass/unit length of the beam, EI is the bending stiffness of the beam. ’Dot’ is used to denote
the derivatives with respect to time, while ’prime’ stands for the derivative with respect to x.
The Lagrangian equations of free oscillations of the system have the form

(m + lρ)Ẍ0 −
ρ

2
((r0 + l)2 − r2

0)(θ̈ sinθ + θ̇ cosθ)

−ρ

∫ r0+l

r0
(ÿsinθ + θ̇ẏcosθ)dx = 0,

(m + lρ)Ÿ0 +
ρ

2
((r0 + l)2 − r2

0)(θ̈ cosθ − θ̇ sinθ)

+ρ

∫ r0+l

r0
(ÿcosθ − θ̇ẏsinθ)dx = 0,

Iθ̈ −
ρ

2
((r0 + l)2 − r2

0)(Ẍ0 sinθ − Ÿ0 cosθ)

+ρ

∫ r0+l

r0
x(ÿ + xθ̈)dx + ρ

∫ r0+l

r0
(Ẋ0ẏcosθ + Ẏ0ẏsinθ)dx = 0,

ρ(−Ẍ0 sinθ + Ÿ0 cosθ − Ẋ0 θ̇ cosθ − Ẏ0 θ̇ sinθ + ÿ + xθ̈) + EIy′′′′ = 0.

Linearizing these equations in the vicinity of the zero equilibrium position X0 = Y0 = θ = 0,
y(·, ·) ≡ 0, we get

(m + lρ)Ẍ0 = 0,

(m + lρ)Ÿ0 +
ρ

2
((r0 + l)2 − r2

0)θ̈ + ρ

∫ r0+l

r0

ÿdx = 0,

(

I +
ρ

3
((r0 + l)3 − r3

0)
)

θ̈ +
ρ

2
((r0 + l)2 − r2

0)Ÿ0 + ρ

∫ r0+l

r0

xÿdx = 0,

ρxθ̈ + ρÿ + ρŸ0 + EIy′′′′ = 0.
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Fig. 5. Transversal section of the satellite with a flexible appendage.

The function y = y(t, x) satisfies the following boundary conditions:

y(r0, t) = y′(r0, t) = y′′(r0 + l, t) = y′′′(r0 + l, t) = 0.

Adding the control moment M, |M| ≤ Mmax, and the internal viscous friction, we obtain the
following system of differential equations:

(m + lρ)Ẍ0 = 0, (22)

(m + lρ)Ÿ0 +
ρ

2
((r0 + l)2 − r2

0)θ̈ + ρ

∫ r0+l

r0

ÿdx = 0, (23)

ρ

2
((r0 + l)2 − r2

0)Ÿ0 +
(

I +
ρ

3
((r0 + l)3 − r3

0)
)

θ̈ + ρ

∫ r0+l

r0

xÿdx = M, (24)

ρŸ0 + ρxθ̈ + ρÿ + EIy′′′′ + EIχẏ′′′′ = 0, (25)

where χ is the coefficient of internal viscous friction.
Using the Galerkin method we approximate y(t, x) by a linear combination

y(t, x) = ∑qi(t)Φi(x − r0) (26)

of eigenfunctions Φi(x) of the differential operator d4/dx4 with the boundary conditions
Φ(0) = Φ′(0) = Φ′′(l) = Φ′′′(l) = 0. Substituting (26) to system (23) - (25), multiplying (25) by
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Fig. 6. The disturbance v(t) caused by the flexible appendage.

Φi(x) and integrating in x ∈ [r0,r0 + l], we get a system of ordinary differential equations for
the variables X0,Y0,θ, and qi.
For simplicity consider the approximation involving the first natural mode only:

y(t) = q(t)Φ(x − r0),

where

Φ(x) = cosh(βx)− cos(βx)−
cosh(βl) + cos(βl)

sinh(βl) + sin(βl)
(sinh(βx)− sin(βx)),

and β ≈ 1.875/l. Then from system (22) - (25) we obtain

(m + lρ)Ẍ0 = 0, (27)

(m + lρ)Ÿ0 +
ρ

2
((r0 + l)2 − r2

0)θ̈ + ρJ1lq̈ = 0, (28)

ρ

2
((r0 + l)2 − r2

0)Ÿ0 +
(

I +
ρ

3
((r0 + l)3 − r3

0)
)

θ̈ + ρ(J2l2 + J1lr0)q̈ = M, (29)

ρJ1lŸ0 + ρ(J2l2 + J1lr0)θ̈ + ρJ3lq̈ + EIβ4 J3lq + EIχβ4 J3lq̇ = 0, (30)

where J1 = 0.7829, J2 = 0.5688, J3 = 0.9998. System (28) - (30) can be written in the matrix form
as

d2

dt2

⎛

⎝

Y0

θ
q

⎞

⎠ =

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

−1 ⎛

⎝

0
M

−EIβ4 J3l(q + χq̇)

⎞

⎠ ,

where
⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ =

⎛

⎝

(m + lρ)
ρ
2 ((r0 + l)2 − r2

0) ρJ1l
ρ
2 ((r0 + l)2 − r2

0)
(

I +
ρ
3 ((r0 + l)3 − r3

0)
)

ρ(J2l2 + J1lr0)
ρJ1l ρ(J2l2 + J1lr0) ρJ3l

⎞

⎠ .
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Fig. 7. Rest-to-rest manoeuvre: the discrepancy of the attitudes θr(t) and θ f (t) between the
motion of the rigid system and the flexible one.

Denote this matrix by A. Thus, the angular dynamics of the satellite near the zero equilibrium
position is described by the linear control system

θ̈ =
(

A−1
)

22
M − D

(

A−1
)

23
(q + χq̇), (31)

q̈ =
(

A−1
)

32
M − D

(

A−1
)

33
(q + χq̇), (32)

where D = EIβ4 J3l.
In our numerical simulations we use a model example with the following values of
parameters: m = 10, l = 10, r0 = 3, ρ = 0.5, I = 45, EI = 3.5, and χ = 0.1 (SI units).
The influence of the flexible appendages can be rather significant. Consider a rest-to-rest
manoeuvre for the model under study. We apply the moment +M and then −M during the
same time and compare the motion of the configuration considering the appendage as flexible
with low stiffness (EI = 3.5) and as rigid. The disturbance caused by the appendage is shown
in Fig. 6, while the difference between the angular positions of the satellite with flexible and
rigid appendages is shown in Fig. 7. It is quite large. Therefore a high-precision attitude
stabilization system should take into account the flexibility.
To stabilize system (31) and (32) we use the linear stabilizer

M = aθ + bθ̇ (33)

with the coefficients a and b determined from the condition of the maximum degree of stability
of the closed-loop system

θ̈ =
(

A−1
)

22
(aθ + bθ̇)− D

(

A−1
)

23
(q + χq̇),

q̈ =
(

A−1
)

32
(aθ + bθ̇)− D

(

A−1
)

33
(q + χq̇).
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Fig. 8. Trajectories (θ, θ̇) with high precision stabilizer (a) and without it (b).

If the angular position θ and the angular velocity θ̇ are known with some errors δθ and δθ̇,
respectively, we obtain the following differential game:

Θ̈ =
(

A−1
)

22
(aΘ + bΘ̇)− u + v,

where Θ = θ + δθ, v = −
(

A−1
)

22 (aδθ + bδθ̇)− D
(

A−1
)

23 (q + χq̇), and q is governed by the
differential equation

q̈ =
(

A−1
)

32

(

(aθ + bθ̇)−
(

A−1
)−1

22
u

)

− D
(

A−1
)

33
(q + χq̇).

The differential game approach to the stabilizer design problem presumes that the controls
u and v satisfy the restrictions |u| ≤ umax and |v| ≤ vmax, respectively. To determine the
values umax and vmax and the neighborhood of the equilibrium position where the differential
game stabilizer works we use the following method. Consider the vector x = (θ, θ̇,q, q̇)T . Its
behaviour is described by the differential equation

ẋ = Bx + b, (34)

where

B =

⎛

⎜

⎜

⎝

0 1 0 0
(

A−1
)

22 a
(

A−1
)

22 b −D
(

A−1
)

23

(

A−1
)

23 χ

0 0 0 1
(

A−1
)

32 a
(

A−1
)

32 b −D
(

A−1
)

33

(

A−1
)

33 χ

⎞

⎟

⎟

⎠

and
b = (0,−u +

(

A−1
)

22
aδθ +

(

A−1
)

22
bδθ̇,0,−

(

A−1
)

32
umax/

(

A−1
)

22
)T .

If |δθ| ≤ δθmax and |δθ̇| ≤ δθ̇max, then the estimate

‖b‖ ≤ b(umax)
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Fig. 9. Trajectories (θ, θ̇) with high precision stabilizer (a) and without it (b): the robust
Pontryagin-Pshenichnyj stabilizer.

=

(

(

umax +
∣

∣

∣

(

A−1
)

22

∣

∣

∣ (|a|δθmax + |b|δθ̇max)
)2

+

(

(

A−1
)

32

(

A−1
)−1

22
umax

)2
)1/2

holds. Let V be a symmetric (4 × 4) matrix satisfying the Lyapunov equation

BTV + VB = −I4.

The solution x(t) to differential equation (34) satisfies the following differential inequality:

d

dt
〈x(t),Vx(t)〉 = −‖x(t)‖2 + 2〈Vx(t),b(t)〉 ≤ −‖x(t)‖2 + 2‖V‖‖x(t)‖b(umax) ≤ 0,

whenever 2‖V‖b(umax) ≤ ‖x(t)‖. Define the family of ellipsoids

Ec = {x | 〈x,Vx〉 ≤ c}

and put
c(umax) = min{c | 2‖V‖b(umax)B4 ⊂ Ec}.

Obviously x(t) ∈ Ec(umax), whenever t is large enough. Thus, the differential game of
stabilization is playable if the Pontryagin-Pshenichnyj ǫ-operators are contained in Ec(umax)
and the following conditions are satisfied:

vmax < umax,

vmax ≤
∣

∣

∣

(

A−1
)

22

∣

∣

∣ (|a|δθmax + |b|δθ̇max)

+max
{∣

∣

∣
D
(

A−1
)

23

∣

∣

∣
|q + χq̇| | (θ, θ̇,q, q̇) ∈ Ec(umax)

}

,

and
max{|aθ + bθ̇| | (θ, θ̇,q, q̇) ∈ Ec(umax)}+ umax ≤ Mmax.
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Typical trajectories generated by a linear feed-back and by a high-precision stabilizer with
the Pontryagin-Pshenichnyj ǫ-operator and the robust Pontryagin-Pshenichnyj ǫ-operator,
respectively, are shown in Fig. 8 and 9. (The disturbance v in the numerical simulations is
a periodic function.) The differential game method of stabilization yields significantly smaller
limit set (marked by box) than the simple linear stabilizer (33).

7. Conclusion

We present here a new approach to stabilization of mechanical systems with uncertainties
in parameters and/or state data. This approach considers the perturbations caused by these
uncertainties as an evader control in a linear pursuit differential game. We describe the general
theoretical basis and the numerical algorithms for implementation of the described differential
game stabilizer. Estimates for the amplitude of the evader control should be obtained for any
specific case of control system using its mechanical properties.
We consider here an application of the suggested method to the stabilization problem for
a satellite with large flexible appendages. The estimates for the evader control caused by
uncertainties are deduced applying the method of Lyapunov functions. We construct a
high-precision stabilizer using the differential game approach and the above estimates for
the evader control.
The principal advantage of the suggested method is that, to achieve a high-precision
stabilization, it requires only the satellite attitude data and does not need any estimation for
the flexible elements’ state and/or unknown system parameters.
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critical contributions from renowned international researchers to provide an outstanding survey of recent

advances in spacecraft technologies. The first section includes nine chapters that focus on innovative

hardware technologies while the next section is comprised of seven chapters that center on cutting-edge state

estimation techniques. The final section contains eleven chapters that present a series of novel control

methods for spacecraft orbit and attitude control.
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