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1. Introduction

Dynamic inversion (DI) is a transformation from a nonlinear system to an equivalent linear
system, performed by means of a change of variables and through feedback. The theory of DI
was initially formalized in (Su, 1982) and (Hunt et al., 1983), and its first reported application
to spacecraft attitude control problem is due to (Dwyer III, 1984). The methodology is widely
accepted among control system practitioners because it substantially facilitates control system
design. Additionally, it preserves the nonlinear nature of plant’s dynamics and thus it avoids
limitations of linearizing approximations.
Classical DI is based on constructing inverse mapping of the controlled plant and augmenting
it within the feedback control system. Therefore the linearizing transformation depends
heavily on nature of the plant, and it becomes difficult or impossible as complexity of the plant
increases. For this reason it may become necessary to introduce simplifying approximations
to the plant’s mathematical model in order to obtain the DI linearizing transformation, which
adversely affects closed loop control system stability and performance characteristics in real
implementations of the transformation. Additionally, DI in particular situations must be local
in state space, as it is the case for spacecraft attitude dynamics (Dwyer III, 1984).
A paradigm shift was made to DI in (Paielli & Bach, 1993) in the context of spacecraft
attitude control. Their approach aims to impose a prescribed dynamics on the errors of
spacecraft attitude variables from their desired trajectory values. Rather than inverting the
mathematical model of the spacecraft, the desired attitude error dynamics is inverted for the
control variables that realize the dynamics. The transformation is global and does not involve
deriving inverse equations of motion. It involves simple mathematical inversions of terms
that include motion variables and control system design parameters, and therefore it is easier
and more systematic than its counterpart.
Nevertheless, a common feature between the above mentioned DI approaches is that the
linearizing transformation eliminates nonlinearities from the transformed closed loop system
dynamics without distinguishing between types of nonlinearities. For instance, a nonlinearity
may cause the spacecraft at a particular time instant to accelerate in a manner that is in favor
of the control objective, e.g., in performing a desired maneuver. Yet a needless control effort
is made to eliminate that nonlinearity, and an additional control effort is made to satisfy the
control objective. This can be extremely disadvantageous as large control signals may cause
actuator saturation and control system’s failure.
It is therefore desirable to come up with a dynamic inversion control designmethodology that
provides a global linearizing transformation, alleviates the difficulty of plant’s mathematical
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2 Advances in Spacecraft Technologies

model inversion, and requires less control effort to perform the inversion by avoiding blind
cancelation of dynamical system’s nonlinearity. These features are offered by generalized
dynamic inversion (GDI) control. Some basic elements of GDI were introduced in
(Bajodah et al., 2005; Bajodah, 2008; 2009), together with particular GDI control designs. Every
design exhibits different characteristics in terms of closed loop system stability, performance,
and control signal behavior.
The GDI control combines the flexibility of non-square inversion with the simplicity of DI by
observing that the inverse system dynamics problem is in general a problemwith non-unique
solution, i.e., there exist infinite control strategies that realize a prescribed outer system
dynamics, and infinite ways by which the system’s inner states evolve in time to realize that
outer dynamics. Therefore, the original philosophy of dynamic inversion is quite restrictive,
and there must exist infinite inverse control laws that realize a servo-constraint dynamics, i.e.,
the differential equation in system’s variables which has its steady state solution satisfies the
control design objective.
A GDI spacecraft control design begins by defining a norm measure function of attitude
error from desired attitude trajectory. An asymptotically stable linear time varying
second-order differential equation in the norm function is prescribed, resembling the desired
servo-constraint dynamics. The differential equation is then transformed to a relation
that is linear in the control vector by differentiating the norm measure function along the
trajectories defined by solution of the spacecraft’s state space mathematical model. The
Greville formula (Greville, 1959; Ben-Israel & Greville, 2003) is utilized thereafter to invert
this relation for the control law required to realize the desired stable linear servo-constraint
dynamics.
The Greville formula is capable of modeling solution nonuniqueness to problems where
requirements can be satisfied in more than one course of action. For that reason, the formula
had remarkable contributions towards advancements in science and engineering. In the arena
of robotics, it has been extensively used in analysis and design of kinematically redundant
manipulators (Siciliano & Khatib, 2008). Utilization of the formula in the field of analytical
dynamics was made by deriving the Udwadia-Kalaba equations of motion for constrained
dynamical systems (Udwadia & Kalaba, 1996). Other applications include the evolving
subject of pointwise optimal control in the sense of Gauss’ principle of least constraints (Gauss,
1829), e.g., (De Sapio et al., 2008; Udwadia, 2008; Peters et al., 2008).
The GDI control law exhibits useful geometrical features of generalized inversion. It consists
of auxiliary and particular parts, residing in the nullspace of the inverted matrix and the
complementary orthogonal range space of its transpose, respectively. The particular part
involves the standard Moore-Penrose generalized inverse (MPGI) (Moore, 1920; Penrose,
1955), and the auxiliary part involves a free null-vector that is projected onto nullspace of
the inverted matrix by means of a nullprojection matrix.
Orthogonality of the two parts composing the GDI control law makes it possible for the
control system to satisfy multi-design objectives in a noninterfering manner, and makes it
possible to merge dynamic inversion with other control design methodologies to enhance
closed loop system design features. This is achieved through construction of the null-control
vector that appears explicitly in the auxiliary part of the control law. In the present context,
the null-control vector provides by its affine parametrization of controls coefficient’s nullspace
a convenient way to stabilize the inner dynamics of the closed loop control system without
affecting servo-constraint realization.
The geometric structure of the GDI control law motivates employing the controls coefficient’s
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Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers 3

nullprojection matrix to simplify designing the null-control vector. Hence, a positive
semidefinite control Lyapunov function that involves the nullprojection matrix is utilized
for this purpose. It is shown in Refs. (Iqqidr et al., 1996; Bensoubaya et al., 1999) that a
semi-definite Lyapunov function is usable to show stability of a dynamical system if some
conditions on system trajectories in the null value of the Lyapunov function are satisfied.
Applying Lyapunov direct method (Khalil, 2002) yields a controls coefficient null-projected
Lyapunov equation. The equation is solved to obtain a simple control law for global
asymptotic stability of inner spacecraft dynamics.
Generalized inversion singularity is a well-known problem in the applications of an MPGI
with dynamic matrix elements, and it has been thoroughly investigated in the subject
of inverse kinematics, e.g., (Baker &Wampler II, 1988). The reason for MPGI singularity
is that a matrix with continuous function elements has discontinuous MPGI function
elements. These discontinuities occur whenever the inverted matrix changes rank. Moreover,
these discontinuous elements approach infinite values at discontinuities. Accordingly, the
corresponding solutions provided by the Greville formula must also be discontinuous and
unbounded.
The MPGI singularity forms an obstacle in the way of utilizing the Greville formula in
engineering solutions. Several remedies for the problem of generalized inversion instability
due to MPGI singularity have been offered in the literature of robotics and control moment
gyroscopic devices, in what has become known as the singularity avoidance problem.
Remedies are either nullspace parametrization-based, made by proper choices of the
null-vector in the auxiliary part of the Greville formula, e.g., (Liegeois, 1977; Mayorga et al.,
1995; Yoon & Tsiotras, 2004), or approximation-based,made bymodifying the definition of the
generalized inverse itself in the particular part of the formula, e.g., (Nakamura & Hanafusa,
1986; Wampler II, 1986; Oh & Vadali, 1991).
A series of solutions to the GDI closed loop instability due to MPGI singularity have been
provided in the context of GDI control. One solution is made by deactivating the particular
part of the GDI control law in the vicinity of singularity, resulting in discontinuous control
laws (Bajodah, 2006). Another solution is presented in (Bajodah, 2008), made by modifying
the definition of MPGI by means of a damping factor, resulting in uniformly ultimately
bounded attitude trajectory tracking and a tradeoff between generalized inversion stability
and closed loop system performance.
The concept of dynamically scaled generalized inversion for GDI singularity avoidance is
introduced in (Bajodah, 2010). The concept is based on replacing the MPGI in the particular
part of the GDI control law by a growth-controlled dynamically scaled generalized inverse
(DSGI), such that the DSGI elements converge uniformly to the standard MPGI elements.
The DSGI is constructed by adding a dynamic scaling factor to each denominator of MPGI’s
elements. The dynamic scaling factor is the pth integer power of a vector p norm of the
difference between spacecraft body angular velocity and reference angular velocity. The
null-control vector in the auxiliary part of the control law is designed to nullify the dynamic
scaling factor such that the DSGI recovers the structure of the MPGI. This causes the particular
part of the control law to converge to its projection on the range space of the controls
coefficient’s MPGI, which drives the attitude variables to satisfy desired servo-constraint
stable dynamics, resulting in global attitude trajectory tracking.
This work adopts a generalization of the concept of dynamically scaled generalized inversion,
based on augmenting an integrator of the dynamic scaling factor to increase the order of
the closed loop dynamics and cause a delay in the scaling factor dynamics. The augmented
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4 Advances in Spacecraft Technologies

stable mode is driven by the spacecraft angular velocity error’s norm from reference angular
velocity, and is designed to be fast compared to spacecraft dynamics. The dynamic scaling
delay caused by the augmented stable mode enhances singularity avoidance performance of
dynamic scaling.
The attitude error norm function reduces the order of attitude dynamics from three to one.
This feature in addition to skew symmetry of the angular velocity cross product matrix makes
the proposed GDI control law totally independent from the inertia matrix. Furthermore, the
GDI control methodology does not involve inertia matrix identification in the control design.
Two spacecraft attitude maneuvers with different desired asymptotic behaviors are used to
illustrate the present GDI control methodology. The first is a rest-to-rest slew maneuver that
aims to reorient the spacecraft from an initial attitude to another prescribed attitude. The
second is a sinusoidal angular velocity-commanded attitude quaternion trajectory tracking
maneuver. Asymptotic tracking is achieved for the first maneuver because the spacecraft
angular velocity components asymptotically converge to the reference angular velocity
components.
However, since the steady state reference trajectories for the second maneuver are time
varying, then spacecraft angular velocity components continue to exhibit small errors from
reference angular velocity components during steady state phase of closed loop response.
Hence, the stable augmented mode continues to get excited, and asymptotic quaternion
attitude tracking is lost. Instead, a practical ultimately bounded tracking is achieved.
This chapter reformulates the GDI spacecraft attitude control methodology in terms of
multiplicative quaternion attitude errors that accommodate for spacecraft maneuvers with
big changes in attitude angles. Time-varying linear attitude deviation servo-constraint is
used to reduce the control load at initial stage of closed loop response. Additionally, a new
nullprojection control Lyapunov design is made for constructing the null-control vector, and
a modified dynamic scaling factoring is used for improved singularity-free GDI quaternion
attitude trajectory tracking.

2. Spacecraft mathematical model

The unit quaternion attitude vector q that represents the attitude of spacecraft body reference
frame B relative to the inertial reference frame I is defined as (Wertz, 1980)

q =
[

qT q4
]T

(1)

where q ∈ R
3 is given by

q =
[

q1 q2 q3
]T

(2)

and q4 ∈ R. The four attitude unit quaternion scalars q1, . . . ,q4 are constrained such that

qTq = 1. (3)

The skew-symmetric cross product matrix ζ× that corresponds to a vector ζ =
[

ζ1 ζ2 ζ3
]T

is defined as

ζ× =

⎡

⎣

0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

⎤

⎦ . (4)

388 Advances in Spacecraft Technologies

www.intechopen.com



Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers 5

The spacecraft attitude dynamics is governed by the following system of kinematical
differential equations (Wertz, 1980)

q̇ =

[

q̇
q̇4

]

=
1

2

[

(q× + q4 I3×3)
−qT

]

ω, q(0) = q0 (5)

where ω ∈ R
3×1 is the vector of angular velocity of B relative to I expressed in B and I3×3 is

the identity matrix. The spacecraft inner (angular velocity) dynamics is given by the following
system of dynamical differential equations

ω̇ = −J−1ω× Jω + τ, ω(0) = ω0 (6)

where J ∈R
3×3 is the spacecraft’s body-fixedmoments of inertia matrix, and τ := J−1u∈R

3×1

is the vector of scaled control torques, where u ∈ R
3×1 contains the applied gas jet actuator

torque components about the spacecraft’s body axes.

3. Attitude deviation dynamics

The orthogonal rotation transformation matrix R ∈ SO(3) will be used to quantify large
spacecraft attitude changes. The matrix R is expressed in terms of the unit quaternion
components as (Wertz, 1980)

R(q) = (q24 − qTq)I3×3 + 2qqT − 2q4q
×. (7)

Let qd(t) =
[

qTd (t) qTd4(t)
]T

be a twice continuously differentiable unit quaternion vector
trajectory that represents the prescribed attitude of desired spacecraft frame D relative to
the attitude of I , where qd(t) and qd4(t) are such that qT

d (t)qd(t) = 1. The corresponding
rotation transformation R(qd) is composed of two consecutive rotation transformations; the
transformation R(q) that brings the attitude of I to the current attitude of B, followed by the
attitude error transformation R(qe) that brings the attitude of B to that ofD. Therefore,R(qd)
is given by

R(qd) = R(qe)R(q). (8)

Solving for R(qe) yields

R(qe) = R(qd)(R(q))
−1 = R(qd)R

T(q). (9)

In terms of quaternion products, the attitude quaternion error vector qe(q, t) is equivalently
given by

qe(q, t) = q−1 ⊗ qd(t), ∀ t ∈ [0,∞) (10)

where q−1 is the spacecraft conjugate attitude quaternion given by

q−1 =
[

−qT q4
]T

. (11)

For convenience, the quaternion product given by (10) is written in the compact form
(Show & Juang, 2003)

qe(q, t) =

[

qe
qe4

]

=

[

qd4(t)q− q4qd(t)− q×d (t)q
q4qd4(t) + qTqd(t)

]

. (12)
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It can be easily verified that the above expression satisfies the quaternion constraint
(Show & Juang, 2003)

qT
e (q, t)qe(q, t) = (qTq+ q24)(q

T
d (t)qd(t) + qd4(t)

2) = 1. (13)

Let ωr(t) : [0,∞)→ R
3 be the prescribed angular velocity vector of D relative to I expressed

in B. The quaternion error kinematical differential equations are given by

q̇e =

[

q̇e
q̇e4

]

=
1

2

[

q×e + qe4 I3×3

−qTe

]

ωe (14)

where ωe := ω − ωr(t). The reference angular velocity vector ωr(t) satisfies

ω̇r(t) = −J−1ω×
r (t)Jωr(t). (15)

Therefore,

ω̇e = ω̇ − ω̇r(t) (16)

= −J−1ω× Jω + J−1ω×
r (t)Jωr(t) + τ. (17)

A scalar attitude deviation norm measure function φ : [−1,1]→ [0,1] is defined as

φ(qe4) = 1− q2e4 (18)

and the control objective is to enforce the servo-constraint

φ(qe4) ≡ 0. (19)

From (13), the same servo-constraint requirement can also be written as

qe ≡ 03×1. (20)

The first two time derivatives of φ along the spacecraft error trajectories given by the solutions
of (14) and (17) are

φ̇ = qe4q
T
e ωe (21)

and

φ̈ =
1

2
ωT
e

(

q2e4 I3×3 − qeq
T
e

)

ωe + qe4q
T
e (−J−1ω× Jω + J−1ω×

r Jωr + τ). (22)

Skew symmetries of the cross product matrices ω× and ω×
r imply that the corresponding

terms in φ̈ are zeros. Hence, the expression of (22) reduces to

φ̈ =
1

2
ωT
e

(

q2e4 I3×3 − qeq
T
e

)

ωe + qe4q
T
e τ. (23)

A desired dynamics of φ that leads to asymptotic realization of the servo-constraint given by
(19) is described to be stable second-order in the general functional form given by

φ̈ = L(φ, φ̇, t) (24)

where L is continuous in its arguments. A special choice of L(φ, φ̇, t) is

L(φ, φ̇, t) = −c1(t)φ̇ − c2(t)φ (25)

390 Advances in Spacecraft Technologies
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Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers 7

where c1(t) and c2(t) are continuous scalar functions. With this choice of L(φ, φ̇, t), the stable
attitude deviation servo-constraint dynamics given by (24) becomes linear in the form

φ̈ + c1(t)φ̇ + c2(t)φ = 0. (26)

With φ, φ̇, and φ̈ given by (18), (21), and (23), it is possible to write (26) in the pointwise-linear
form

A(qe)τ = B(qe,ωe), (27)

where the vector valued the controls coefficient function A(qe) is given by

A(qe) = qe4q
T
e (28)

and the scalar valued controls load function B(qe,ωe) is given by

B(qe,ωe) = −
1

2
ωT
e

(

q2e4 I3×3 − qeq
T
e

)

ωe − c1(t)qe4q
T
e ωe − c2(t)(1− q2e4). (29)

4. Generalized dynamic inversion attitude control

The MPGI-based Greville formula is used now to obtain a preliminary form of GDI spacecraft
attitude control laws.

Proposition 1 (Linearly parameterized attitude control laws) The infinite set of all control laws
that globally realize the attitude deviation servo-constraint dynamics given by (26) by the spacecraft
equations of motion is parameterized by an arbitrarily chosen null-control vector y ∈ R

3×1 as

τ =A+(qe)B(qe,ωe) + P(qe)y (30)

where “A+” stands for the MPGI of the controls coefficient (abbreviated as CCGI), and is given by

A+(qe) =

{

AT(qe)
A(qe)AT(qe)

, A(qe) �= 01×3

03×1, A(qe) = 01×3

(31)

and P(qe) is the corresponding controls coefficient nullprojection matrix given by

P(qe) = I3×3 −A+(qe)A(qe). (32)

Proof 1 Multiplying both sides of (30) by A(qe) recovers the algebraic system given by (27).
Therefore, τ enforces the attitude deviation servo-constraint dynamics given by (26) for all A(qe) �=
01×3.

The controls coefficient nullprojector P(qe) projects the null-control vector y onto the
nullspace of the controls coefficient A(qe). Therefore, the choice of y does not affect
realizability of the linear attitude deviation norm measure dynamics given by (26).
Nevertheless, the choice of y substantially affects transient state response and spacecraft inner
stability, i.e., stability of the closed loop dynamical subsystem

ω̇ = −J−1ω× Jω +A+(qe)B(qe,ωe) + P(qe)y (33)

obtained by substituting (30) in (6).

391Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers
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5. Generalized inverse instability

The expression given by (28) for the controls coefficient implies that if the dynamics given by
(26) is realizable by spacecraft equations of motion, then

lim
φ→0

A(qe) = 01×3. (34)

Accordingly, the discontinuous expression ofA+(qe) given by (31) implies that for any initial
condition A(qe) �= 01×3, state trajectories of a continuous closed loop control system in the
form given by (5) and (33) must evolve such that

lim
φ→0

A+(qe) = ∞3×1. (35)

That is,A+(qe)must go unbounded as the spacecraft dynamics approaches steady state. This
is a source of instability for the closed loop system because it causes the control law expression
given by (30) to become unbounded. One solution to this problem is made by switching the
value of the CCGI according to (31) to A+(qe) = 03×1 when the controls coefficient A(qe)
approaches singularity, which implies deactivating the particular part of the control law as
the closed loop system reaches steady state, leading to a discontinuous control law (Bajodah,
2006).
Alternatively, a solution is made by replacing the Moore-Penrose generalized inverse in (30)
by a damped generalized inverse (Bajodah, 2008), resulting in uniformly ultimately bounded
trajectory tracking errors, and a tradeoff between generalized inversion stability and steady
state tracking performance. A solution to this problem that avoids control law discontinuity
and improves singularity avoiding trajectory tracking is presented in (Bajodah, 2010), made
by replacing the MPGI in (30) by a growth-controlled dynamically scaled generalized inverse.
A generalization of the dynamically scaled generalized inverse is presented in the following
section.

6. Generalized inverse singularity avoidance by stable mode augmentation

The dynamically scaled generalized inverse provides the necessary generalized inversion
singularity avoidance to the GDI control design.

Definition 1 (Dynamically scaled generalized inverse) The DSGI A+
s (qe,ν) is given by

A+
s (qe,ν) =

AT(qe)

A(qe)AT(qe) + ν
(36)

where ν satisfies the asymptotically stable dynamics

ν̇ = −aν + ‖ωe‖
p
p, a > 0, p ∈ Z

+. (37)

The positive integer p is the generalized inversion dynamic scaling index, and ‖.‖p is the vector p
norm.

Properties of dynamically scaled generalized inverse

The following properties can be verified by direct evaluation of the CCGI A+(qe) given by
(31) and its dynamic scaling A+

s (qe,ν) given by (36).

392 Advances in Spacecraft Technologies
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Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers 9

1. A+
s (qe,ν)A(qe)A+(qe) =A+

s (qe,ν)

2. A+(qe)A(qe)A+
s (qe,ν) =A+

s (qe,ν)

3. (A+
s (qe,ν)A(qe))T =A+

s (qe,ν)A(qe)

4. lim
‖ωe‖p→0

A+
s (qe,ν) =A+(qe).

7. Dynamically scaled generalized inverse control

The dynamically scaled generalized inverse control law is obtained by replacing the CCGI in
the particular part of the expression given by (30) by the DSGI as

τs =A+
s (qe,ν)B(qe,ωe) + P(qe)y (38)

resulting in the following spacecraft closed loop dynamical equations

ω̇ = −J−1ω× Jω +A+
s (qe,ν)B(qe,ωe) + P(qe)y. (39)

Proposition 2 (Asymptotic Attitude Trajectory Tracking) If the null-control vector y in the
control law expression given by (38) is chosen such

lim
t→∞

ωe = 03×1 (40)

then
lim
t→∞

qe = 03×1. (41)

Proof 2 Let φs be a norm measure function of the attitude deviation obtained by applying the control
law given by (38) to the spacecraft equations of motion (5) and (6), and let φ̇s, φ̈s be its first two time
derivatives. Therefore,

φs := φs(qe) = φ(qe) (42)

φ̇s := φ̇s(qe,ωe) = φ̇(qe,ωe) (43)

φ̈s := φ̈s(qe,ωe,τs) = φ̈(qe,ωe,τ) +A(qe)τs −A(qe)τ (44)

where τ and τs are given by (30) and (38), respectively. Adding c1(t)φ̇s + c2(t)φs to both sides of (44)
yields

φ̈s + c1(t)φ̇s + c2(t)φs = φ̈ + c1(t)φ̇ + c2(t)φ +A(qe)τs −A(qe)τ (45)

= A(qe)[τs − τ]. (46)

Therefore, boundedness of the expression ofA(qe) given by (28) in addition to satisfaction of (40) imply
that

lim
t→∞

[

φ̈s + c1(t)φ̇s + c2(t)φs

]

= lim
t→∞

[

A(qe)[τs − τ]
]

= 0 (47)

resulting in
lim
t→∞

φs = 0 (48)

and therefore, (41) follows for all permissible initial attitude quaternion vectors q0 ∈ R
3. The same

conclusion is obtained by multiplying both sides of (38) by A(qe), resulting in

A(qe)τs =A(qe)A
+
s (qe,ν)B(qe,ωe) (49)

393Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers
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where

A(qe)A
+
s (qe,ν) =

A(qe)AT(qe)

A(qe)AT(qe) + ν
. (50)

Therefore,
0<A(qe)A

+
s (qe,ν) ≤ 1 (51)

and
lim

ωe→03×1

A(qe)A
+
s (qe,ν) = 1. (52)

Dividing both sides of (49) by A(qe)A+
s (qe,ν) yields

A(qe)τ̄ = B(qe,ωe) (53)

where A(qe) and B(qe,ωe) are the same controls coefficient and controls load in (27), and

τ̄ =
τs

A(qe)A
+
s (qe,ν)

. (54)

Furthermore, (52) implies that
lim

ωe→03×1

τ̄ = lim
ωe→03×1

τs = τ. (55)

Therefore, τ̄ in the algebraic system given by (53) asymptotically converges to τ, recovering the
algebraic system given by (27), and resulting in asymptotic convergence of φs(t) to φs = φ = 0, and q
to qd(t).

Proposition 2 states that using the DSGI A+
s (qe,ν) in the attitude control law yields the same

attitude convergence property that is obtained by using the CCGI A+(qe), provided that the
condition given by (40) is satisfied. A design of the null-control vector y is made in the next
section to guarantee global satisfaction of the condition given by (40).

Remark 1 It is well-known that topological obstruction of the attitude rotation matrix precludes the
existence of globally stable equilibria for the attitude dynamics (Bhat & Bernstein, 2000). Therefore,
although the servo-constraint attitude deviation dynamics given by (26) is globally realizable, there
exists no null-control that renders the spacecraft attitude dynamics globally stable. In particular, if
qd(t) ≡ 03×1 then for any null-control vector y there exists an attitude vector q0 such that the closed
loop system given by (5) and (39) is unstable in the sense of Lyapunov.

8. Nullprojection Lyapunov control design

A Lyapunov-based design of null-control vector y is introduced in this section to enforce
spacecraft inner stability. Let y be chosen as

y = Kωe(t) (56)

where K ∈ R
3×3 is a matrix gain that is to be determined. Hence, a class of control laws

that realize the attitude deviation norm measure dynamics given by (26) is obtained by
substituting this choice of y in (38) such that

τs =A+
s (qe,ν)B(qe,ωe) + P(qe)Kωe(t). (57)

394 Advances in Spacecraft Technologies
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Inertia-Independent Generalized Dynamic Inversion Control of Spacecraft Attitude Maneuvers 11

Consequently, a class of spacecraft closed loop dynamical subsystems that realize the
servo-constraint dynamics given by (26) is obtained by substituting the control law given by
(57) in (6), and it takes the form

ω̇ = −J−1ω× Jω +A+
s (qe,ν)B(qe,ωe) + P(qe)Kωe(t) (58)

and the closed loop error dynamics ω̇e is obtained from (17) as

ω̇e = −J−1ω× Jω + J−1ω×
r Jωr +A+

s (qe,ν)B(qe,ωe) + P(qe)Kωe. (59)

The matrix gain K is synthesized by utilizing the positive-semidefinite control Lyapunov
function

V(qe,ωe) = ωe
TP(qe)ωe. (60)

Evaluating the time derivative of V(qe,ωe, ) along solution trajectories of the error dynamics
given by (59) yields

V̇(qe,ωe) = 2ωT
e P(qe)

[

− J−1ω× Jω + J−1ω×
r (t)Jωr(t)

+A+
s (qe,ν)B(qe,ωe)

]

+ 2ωT
e P(qe)Kωe + ωT

e Ṗ(qe,ωe)ωe (61)

where Ṗ(qe,ωe) is obtained by differentiating the elements of P(qe) along attitude trajectory
solutions of the closed loop kinematical subsystem given by (14). Skew symmetry of the
cross product matrix [·]×, the nullprojection property of P(qe), and the second property of
A+

s (qe,ωe) imply that the first term in the above equation is zero. Therefore,

V̇(qe,ωe) = 2ωT
e P(qe)Kωe + ωT

e Ṗ(qe,ωe)ωe. (62)

Because V(qe,ωe) is only positive semidefinite, it is impossible to design a matrix gain K
that renders V̇(qe,ωe) negative definite. Nevertheless, a matrix gain K that renders V̇(qe,ωe)
negative semidefinite guarantees Lyapunov stability of ωe = 03×1 if it asymptotically stabilizes
ωe = 03×1 over the invariant set of qe and ωe values on which V(qe,ωe) = 0. Moreover,
the same gain matrix asymptotically stabilizes ωe = 03×1 if and only if it asymptotically
stabilizes ωe = 03×1 over the largest invariant set of qe and ωe values on which V̇(qe,ωe) =
0 (Iqqidr et al., 1996).

Proposition 3 Let K = K(qe,ωe) be a full-rank normal matrix gain, i.e., KKT = KTK for all t ≥ 0.
Then the equilibrium point ωe = 03×1 of the closed loop error dynamics given by (59) is asymptotically
stable over the invariant set of qe, and ωe values on which V(qe,ωe) = 0.

Proof 3 Since the matrix P(qe) is idempotent, the function V(qe,ωe) can be rewritten as

V(qe,ωe) = ωT
e P(qe)ωe = ωT

e P(qe)P(qe)ωe (63)

which implies that
V(qe,ωe) = 0⇔P(qe)ωe = 03×1. (64)

Therefore,
V(qe,ωe) = 0⇔ ωe ∈ N (P(qe)) (65)
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where N (·) refers to matrix nullspace. Since the matrix K(qe,ωe) is normal and of full-rank, it
preserves matrix range space and nullspace under multiplication. Accordingly,

N (P(qe)) =N (P(qe)K(qe,ωe)) (66)

which implies from (64) that

V(qe,ωe) = 0⇔P(qe)K(qe,ωe)ωe = 03×1. (67)

Therefore, the last term in the closed loop error dynamics given by (59) is the zero vector, and the closed
loop error dynamics becomes

ω̇e = −J−1ω× Jω + J−1ω×
r (t)Jωr(t) +A+

s (qe,ν)B(qe,ωe). (68)

On the other hand, since
N (P(qe)) =R(AT(qe)) (69)

it follows from (65) that

V(qe,ωe) = 0⇔ ωe ∈ R(AT(qe)). (70)

Accordingly, V(qe,ωe) = 0 if and only if there exists a continuous scalar function a(t), t ≥ 0,
satisfying

0<| a(t) |< ∞ (71)

such that
ωe = a(t)AT(qe). (72)

Since the expression of A(qe) given by (28) is bounded for all values of qe, it follows from (72) that
ωe is also bounded. Therefore, the trajectory of ωe must remain in a finite region, and it follows from
the Poincare-Bendixon theorem (Slotine & Li, 1991) that the trajectory goes to the equilibrium point
ωe = 03×1.

Theorem 1 (CCNP Lyapunov control design) Let the nullprojection gain matrix K(qe,ωe) be

K(qe,ωe) = −Ṗ(qe,ωe)− σmax(Ṗ(qe,ωe))I3×3 − Q (73)

where σmax(·) denotes the maximum singular value, and Q ∈ R
3×3 is arbitrary positive definite.

Then the equilibrium point ωe = 03×1 of the closed loop error dynamics given by (59) is globally
asymptotically stable, and

lim
t→∞

qe = 03×1. (74)

Proof 4 Let Q(qe,ω) : R
4×1 × R

3×1 → R
3×3 be a positive semidefinite matrix function. Then, a

matrix gain K that enforces negative semidefiniteness of V̇(qe,ωe) is obtained by setting

V̇(qe,ωe) = 2ωT
e P(qe)Kωe + ωT

e Ṗ(qe,ωe)ωe = −2ωT
e Q(qe,ωe)ωe. (75)

Hence, K satisfies the following Lyapunov equation

2P(qe)K+ Ṗ(qe,ωe) + 2Q(qe,ωe) = 03×3. (76)

Consistency of the above-written nullprojection equation implies that every term maps intoP(qe). The
range space of Ṗ(qe,ωe) is a subset of the range space of P(qe). This is shown by writing

P(qe) = P(qe)P(qe)⇒ Ṗ(qe,ωe) = 2P(qe)Ṗ(qe,ωe) (77)
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so that
R[Ṗ(qe,ωe)] =R[P(qe)Ṗ(qe,ωe)] ⊆R[P(qe)] (78)

where R(·) refers to matrix range space. Moreover, for Q(qe,ωe) to map into the range space of
P(qe), then there must exist a positive definite matrix function Q̄(qe,ωe) : R

4×1 × R
3×1 → R

3×3

such that a polar decomposition of Q(qe,ωe) is given by

Q(qe,ωe) = P(qe)Q̄(qe,ωe). (79)

By substituting the expressions of Ṗ(qe,ωe) and Q(qe,ωe) given by (77) and (79) in (76), a solution
for K that renders V̇(qe,ωe) negative semidefinite is obtained as

K(qe,ωe) = −Ṗ(qe,ωe)− Q̄(qe,ωe). (80)

Furthermore, it follows from Proposition 3 that K guarantees asymptotic stability of ωe = 03×1 over
the invariant set of qe, and ωe values on which V(qe,ωe) = 0 if K remains nonsingular for all t ≥ 0.
This is achieved by choosing Q̄(qe,ωe) as

Q̄(qe,ωe) = σmax(Ṗ(qe,ωe))I3×3 +Q (81)

so that K(qe,ωe) remains negative definite. Substituting the above written expression for Q̄(qe,ωe) in
(80) results in the expression of K(qe,ωe) given by (73). Therefore, in addition to rendering V̇(qe,ωe)
negative semidefinite, K(qe,ωe) guarantees asymptotic stability of ωe = 03×1 over the invariant set of
qe and ωe values on which V(qe,ωe) = 0, and Lyapunov stability of ωe = 03×1 follows (Iqqidr et al.,
1996). Since V(qe,ωe) is radially unbounded with respect to ωe, Lyapunov stability of ωe = 03×1

is global. Moreover, it is noticed from the expression of V̇(qe,ωe) given by (61) and from (78) that
the largest invariant set of qe and ωe on which V̇(qe,ωe) = 0 is the same invariant set on which
V(qe,ωe) = 0, implying global asymptotic stability of the equilibrium point ωe = 03×1 (Iqqidr et al.,
1996). Global asymptotic convergence of the attitude vector q to the desired attitude vector qd(t) follows
from Proposition 2.

9. Damped controls coefficient nullprojector

Although the CCNP P(qe) has bounded elements, dependency of CCNP on the unbounded
vector A+(qe) may cause undesirable behavior of the auxiliary part in the control law τs
during steady state tracking response of time varying trajectories. For this reason, a damped
controls coefficient nullprojector (DCCN) Pd(qe,ǫ) is used in place of P(qe) in (57). The
DCCN is defined as

Pd(qe,ǫ) := I3×3 −A+
d (qe,ǫ)A(qe) (82)

where ǫ is a small positive number, and A+
d (qe,ǫ) is given by

A+
d (qe,ǫ) :=

AT(qe)

A(qe)AT(qe) + ǫ
. (83)

Therefore,
lim
φ→0

A+
d (qe,ǫ) = 03×1 (84)

and consequently,
lim
φ→0

Pd(qe,ǫ) = I3×3. (85)

Hence, the DCCN maps the null-control vector to itself in steady state phase of response,
during which the auxiliary part of the control law converges to the null-control vector.
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Fig. 1. Schematic of GDI spacecraft attitude control system

Independency of nullprojection on the attitude state of the spacecraft substantially eliminates
unnecessary abrupt behavior of the control vector. Replacing P(qe) by Pd(qe,ǫ) in the control
expression given by (57) yields the following form of the GDI control law

τsd =A+
s (qe,ν)B(qe,ωe) + Pd(qe,ǫ)Kωe(t). (86)

A schematic of the GDI spacecraft attitude control system is shown in Fig. 1.

10. Tuning the GDI control design parameters

When the second-order deviation dynamics given by (26) is chosen to be time invariant, then
increasing the value of the constant c1 increases the damping ratio of closed loop spacecraft
dynamics. Additionally, increasing the value of c2 improves steady state trajectory tracking
accuracy. Nevertheless, excessively large values of c1 and c2 require large control torque
inputs and cause large amplitude oscillations of spacecraft body angular velocity components,
particularly during the initial phase of response when the state deviation variable φ and its
time derivative φ̇ are at their biggest magnitudes, i.e., when the controls load B(qe,ωe) has
a large value. Accordingly, to increase damping and to improve steady state tracking with
simultaneous avoidance of these drawbacks, the coefficients c1(t) and c2(t) are chosen to be of
the form c1(t) = C1(1− e−α1t) and c2(t) = C2(1− e−α2t), where C1, C2, α1, and α2 are positive
constants. Hence, c1(0) = 0 and c2(0) = 0, which substantially decreases the magnitude of
B(qe,ωe).

11. Numerical simulations

The spacecraft model has inertia scalars I11 = 200 Kg.m2, I22 = 150 Kg.m2, I33 = 175 Kg.m2,
I12 = −100 Kg.m2, I13 = I23 = 0 Kg.m2. The first maneuver considered is a rest-to-rest slew
maneuver, aiming to reorient the spacecraft at the initial attitude given by q(0) = q0 to a
different attitude given by qd(T), where T is duration of the maneuver. It is required that
the spacecraft quaternion attitude variables follow the trajectories given by the following
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transition functions (McInnes, 1998)

qd(t) = qd(0) +

[

10

(

t

T

)3

− 15

(

t

T

)4

+ 6

(

t

T

)5
]

[qd(T)− qd(0)] (87)

q4d(t) =
√

1− qTd (t)qd(t). (88)

The desired quaternion attitude variables and their derivatives satisfy the differential
equations

q̇d(t) =

[

q̇d(t)
q̇4d(t)

]

=
1

2

[

(qd
×(t) + q4d(t)I3×3)

−qTd (t)

]

ωd(t) (89)

where ωd(t) is the angular velocity of D relative to I expressed in D. Equations (89) can be
inverted to calculate ωd(t) as (Behal et al., 2002)

ωd(t) = 2(q4d(t)q̇d(t)− qd(t)q̇4d(t))− 2qd
×(t)q̇d(t). (90)

Accordingly, ωr(t) is obtained as

ωr(t) = R(q)RT(qd)ωd(t) (91)

and is used in the control expression τsd given by (86). Values of second-order attitude
deviation dynamics functions are chosen to be c1(t) = 20(1 − e−0.07t) and c2(t) = 10(1 −
e−0.07t). With qd(0) = [0.7 − 0.4 0.5]T, qd(T) = [0 0 0]T, T = 60 sec., Q= 0.1× I3×3, a= 100,
p= 2, ǫ = 10−4 and an arbitrary initial attitude, Fig. 2 shows the excellent asymptotic tracking
of attitude quaternion variables q1, . . . ,q4 trajectories. Figs. 3 and 4 show the corresponding
time histories of spacecraft’s angular velocity components ω1,ω2,ω3 and the GDI control
variables u1,u2,u3.
The second maneuver considered is a trajectory tracking maneuver. The reference trajectory
is determined via a sinusoidal trajectory generator at the angular velocity level that is given
by

ωd(t) =
[

cos(0.1t) −cos(0.2t) sin(0.3t)
]

. (92)

Values of second-order attitude deviation dynamics functions are chosen to be c1(t) = 45(1−
e−0.40t) and c2(t) = 40(1 − e−0.02t). With Q = 0.1 × I3×3, a = 200, p = 2, ǫ = 10−4 and
arbitrary initial conditions, Fig. 5 shows the attitude quaternion error variables qe1, . . . ,qe4
trajectories. Figs. 6 and 7 show the corresponding time histories of spacecraft’s angular
velocity components ω1,ω2,ω3 and the GDI control variables u1,u2,u3.

12. Conclusion

Despite that the attitude parametrization provided by quaternion attitude variables is
nonminimal, quaternion algebraic properties and multiplicative attitude quaternion error
dynamics simplify the expressions of controls coefficient and controls load functions, and
therefore simplify the GDI control law. Lyapunov control system design is well-known to
consume less energy than classical DI design. The geometric properties of the GDI control law
makes it possible to combine DI with Lyapunov control to reduce the control energy required
to perform DI.
The choice of desired stable servo-constraint dynamics has its tangible effect on closed loop
system response. For instance, choosing the linear servo-constraint dynamics coefficients to
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Fig. 2. Quaternion attitude parameters vs. Time: rest-to-rest slew maneuver
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Fig. 3. Angular velocity components vs. Time: rest-to-rest slew maneuver

be time varying with vanishing values at initial time substantially reduces the magnitude of
controls load function, and hence substantially reduces initial control signal magnitude.
The null-control vector in the auxiliary part of the control law is designed to be linear in
angular velocity’s error vector. A novel construction of the state dependent linearity gain
matrix is made bymeans of positive semidefinite control Lyapunov function and nullprojected
control Lyapunov equation that utilize geometric features of the GDI control law’s structure.
The generalized inversion stable mode augmentation generalizes the concept of dynamic
scaling, and it effectively overcomes controls coefficient generalized inversion singularity. If
the augmented mode is designed to be very fast, then the delayed DSGI closely approximates
the instantaneous DSGI. For problems involving time invariant steady state trajectory
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Fig. 4. Control variables vs. Time: rest-to-rest slew maneuver

tracking, the particular part of the control law asymptotically converges to its projection on
the range space of the controls coefficient’s MPGI, leading to asymptotic realization of desired
servo-constraint stable dynamics. Practically stable trajectory tracking control is achieved
otherwise.

0 50 100 150
−1

−0.5

0

0.5

1

 

 

qe1
qe2
qe3
qe4

t (sec)

q
e

1
,

q
e

2
,

q
e

3
,

q
e

4

Fig. 5. Quaternion attitude parameters errors vs. Time: trajectory tracking maneuver
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