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1. Introduction  

In modeling heat transfer in gas-solid processing systems, five interphase thermal processes 
are to be considered: gas-particle, gas-wall, particle-particle, particle-wall and wall-environ-
ment. In systems with intensive motion of particles, the particle-particle and particle-wall 
heat transfers occur through inter-particle and particle-wall collisions so that both 
experimental and modeling study of these collision processes is of primary interest.  
For modeling and simulation of collisional heat transfer processes in gas-solid systems, an 
Eulerian-Lagrangian approach, with Lagrangian tracking for the particle phase (Boulet et al., 
2000, Mansoori et al., 2002, 2005, Chagras et al., 2005), population balance models (Mihálykó 
et al., 2004, Lakatos et al., 2006, 2008), and CFD simulation in the framework of Eulerian-
Eulerian approach (Chang and Yang, 2010) have been applied. 
The population balance equation is a widely used tool in modeling the disperse systems of 
process engineering (Ramkrishna, 2000) describing a number of fluid-particle and particle-
particle interactions. This equation was extended by Lakatos et al. (2006) with terms de-
scribing also the direct exchange processes of extensive quantities, such as mass and heat 
between the disperse elements as well as between the disperse elements and solid surfaces 
by collisional interactions (Lakatos et al., 2008).  
The population balance model for describing the collisional particle-particle and particle-
surface heat transfers was developed on the basis of a spatially homogeneous perfectly 
mixed system (Lakatos et al., 2008). In order to take into consideration also the spatial 
inhomogeneities of particles in a processing system a compartment/population balance 
model was introduced (Süle et al., 2006) which has proved applicable to model turbulent 
fluidization and the gas-solid fluidized bed heat exchangers (Süle et al., 2008). However, the 
spatial transport of gas and particles in turbulent fluidized beds usually is modeled by 
continuous dispersion models (Bi et al., 2000) thus, in order to achieve easier correlations of 
the constitutive variables, it has appeared reasonable to formulate the population balance 
combining it with the axial dispersion model (Süle et al., 2009 2010).  
Particle-particle and particle-wall heat transfers may result from three mechanisms: heat 
transfers by radiation, heat conduction through the contact surface between the collided 
bodies, and heat transfers through the gas lens at the interfaces between the particles, as 
well as between the wall and particles collided with that. Heat conduction through the 
contact surface was modeled by Schlünder (1984), Martin (1984) and Sun and Chen (1988) 
developing analytical expressions for particle-particle and particle-wall contacts. Often, 
however, the conductive heat exchange can hardly be isolated from the mechanism 
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occurring through the gas lens at the interfaces of the colliding bodies. Based on this 
mechanism, Vanderschuren and Delvosalle (1980) and Delvosalle and Vanderschuren (1985) 
developed a deterministic model for describing particle-particle heat transfer, while a model 
for heat transfer through the gas lens between a surface and particles was derived by 
Molerus (1997). Mihálykó et al. (2004) and Lakatos et al. (2008), based on the assumption that 
most factors characterizing the simultaneous heat transfer through the contact point and the 
gas lens are stochastic quantities described the collisional interparticle heat transfer by 
means of an aggregative random parameter.  
In this chapter, a generalized population balance model is formulated to analyze heat 
transfer processes in gas-solid processing systems with inter-particle and particle-wall inter-
actions by collisions, taking into consideration the thermal effects of collisions and the gas-
solid, gas-wall and wall-environment heat transfers. The population balance equation is 
developed for describing the spatial variation of temperature distribution of the particle 
population, and that of the gas and wall. The heat effects of energy change by collisions are 
included as a heat source in the particles. An infinite hierarchy of moment equations is 
derived, and a second order moment equation model is applied to analyze the thermal 
properties and behavior of bubbling fluidization by simulation.  

2. The population balance approach 

Consider a large population of solid particles being in intensive, turbulent motion in the 
physical space of a process vessel under the influence of some gas carrier. If the particulate 
phase is dense then particle collisions show significant effects on the behavior of the system 
therefore particle-particle and particle-surface heat transfer by collisions also may play 
important role in forming the thermal properties of system.  
Let us assume that follow. 
1) The two phase system is operated under developed hydrodynamic conditions. 
2) Particles are mono-disperse and their size does not change during the course of the 
process. 
3)  Only thermal processes occur in the system without any mass transfer effects. 
4) The temperature inside a particle can be taken homogeneous. 
5) Heat transfer between the gas and particles, the wall and gas, as well as the wall and 
environment of the process vessel are continuous processes modeled by linear forces. 
6) Heat transfer by radiation is negligible. 

Under such conditions the state of a particle at time t is given by the vector ( ), ,p p pTx u  
where px  denote the space coordinates, pu  are the velocities along the space coordinates, 
and Tp stands for the temperature of particles. The space coordinates, according to the 
nomenclature of population balance approach (Lakatos et al., 2006) are external properties of 
particles, while the particle velocities and temperature are internal ones.  
Since a dense gas-solid system consists of a sufficient number of particles in the vicinity of 
each space coordinate x therefore discontinuities can be smoothed out by introducing the 
population distribution function ( ) ( ), , , , , ,T t N T t→x u x u  by the following 

Definition. Let ˆ ( , , , )N T tx u  be a monotone non-decreasing function such that for every 

integrable and bounded function g: X→R the equality 

  ( ) ( )( ) ( )1
ˆ

ˆˆ, , ( , , , ) , , , , ,
n t n n n n n n

p p p p p pn
g T N d d dT t g T T

=
=

= ∈∑∫ x u x u x u x u
N

X

X  (1) 
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holds where the triplet ( ), ,n n n
p p pTx u  denotes the space coordinates, velocities and temperature 

of the nth particle, X ˆ stands for the state space of coordinates, velocities and temperature, 

and  ( )tN  is the total number of particles in  a unit volume at the moment of time t.  

For practical reasons, instead of the population distribution function usually the population 

density function ( ) ( )ˆ, ,T,t n , ,T,t→x u x u  is applied that is determined as 

 x u
x u

x u

7 ˆ ( , , , )
ˆ( , , , )

N T t
n T t

T

∂
=

∂ ∂ ∂
 (2) 

by means of which ( )n̂ , ,T,t d d dTx u x u  denotes the number of particles in the region 

( ),ǅx xV  of physical space from the domain ( ),δu uV  of velocity and interval of 

temperature ( ),T T dT+  at time t.  

From the density function ( )n̂ , ,T,tx u  we obtain a reduced population density function 

 ˆ( , , ) ( , , , )n T t n T t d= ∫x x u u

U

 (3) 

by means of which ( )n ,T,t d dTx x  denotes the number of particles of all velocities in the 

region ( ),ǅx xV  of physical space and interval of temperature ( ),T T dT+  at time t.  

The population density functions ( )ˆ . .n , ,.,t  and ( ). .n , ,t , depending on the practical reasons, 

are interpreted as the states of particle populations.  

3. Population balance equation 

3.1 Integral forms with transition measures 

According to the assumptions of former section particles are in intensive, stochastic motion 

in some domain X⊆R7 of the metric space R7 of external and internal properties therefore the 

time variation of particle state is described by the set of stochastic differential equations 

 ( ) ( )p pd t t dt=x u  (3) 

 ( ) ( ) ( ) ( ) ( ),
ˆ

, , ,
pp p p p p p p pm d t t dt dt d t t d d dTα= − + + + Ξ∑ ∫u u

u u f σ W u x u

X

N  (4) 

 ( ) ( ) ( ) ( )
ˆ

, , ,
pp p p p T p p p pm c dT t T t dt T t d d dTβ= + Ξ∫ x u

X

N  (5) 

subject to the appropriate initial conditions. In Eqs (3)-(5), ∑f  are deterministic forces 

while ( )tW  is a Wiener process, inducing motion of particles in the physical space, ǂ and ǃ 

are deterministic functions characterizing the continuous motion in the physical and 

temperature subspace, while the integrals in Eqs (4) and (5) describe jump-like stochastic 

changes of internal properties. Here, function ( ).N  determines the conditions of collisions of 

particles, while functions ( )
p pΞ
u
u  and ( )

pT pTΞ  denote, respectively, the velocity and 

temperature jumps induced by those. 
The set of stochastic differential equations (3)-(5) describes the behavior of the population of 

particles entirely by tracking the time evolution of the state of each particle individually. 

However, numerical solution of Eqs (3)-(5) is a crucial problem although it would provide 
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detailed information about the life of each particle. Monte Carlo simulation means a good 

method for solving this system but to generate realistic results rather a large sample of 

particle population is required leading to long computer times.  

However, for engineering purposes we usually are interested only in the behavior of the 

particle population as a whole. Naturally, this information would be generated also by 

solving the system of stochastic differential equations (3)-(5) but we can obtain it directly 

applying the population balance approach. Namely, taking into consideration that the 

system of stochastic equations (3)-(5) induces a Markov process ( ) ( ) ( ){ }
0

, ,p p p
t

t t T t
≥

x u  

having continuous sample paths with finite jumps (Gardiner,1983, Sobczyk,1991), the 

particulate system exhibits all the properties of interactive disperse systems (Lakatos et al., 

2006) for which we can derive a conditional transition measure ˆ
cP  by means of which the 

variation of the state of population of particles is described by the transformation 

 

( ) ( ) ( )

( ) ( )
( )

ˆ ˆ

1 ˆˆ , , , , ', ', '; , , , ", ", "

ˆ ˆ', ', ', ", ", ", ' " ' " ' "

ˆ                                                                    ; , ,

cn T t P s T t T T
s

n T s n T s d d d d dT dT

t s T

= ×

×

> ∈

∫ ∫x u x u x u x u

x u x u x x u u

x u

N
X X

X

 (6) 

where ( )sN  denotes the number of particles in the given domain at time s 

 ( ) ( )
ˆ

ˆ , , ,s n T s d d dT= ∫ x u x uN

X

. (7) 

In Eq.(6), expression 

 
( ) ( )1

ˆ ", ", ", " " "n T s d d dT
s

x u x u
N

 (8) 

is interpreted as the probability that there exists a solid particle in the state domain 

( )", ", ", " ", " ", " "T d d T dT+ + +x u x x u u  possibly interacting with a particle of state ( )', ', 'Tx u  

and the result of this interaction event is expressed by the conditional transition measure ˆ
cP .  

The properties of the conditional transition measure ˆ
cP  are determined by the physical-

chemical processes of the system that induce motion and/or formation of particles under 

given operational conditions. When the action of these processes can be described by means 

of some vector of random parameters θ with distribution function Fθ(.), and all particles are 

moved and/or formed under the same conditions then a lot of different realisations, 

described by the distribution function of the random parameters θ, can act on the particles. 

As a result, the final population is formed as expectation for the vector of parameters θ so 

that Eq.(6) can be rewritten using randomization: 

 

( ) ( )

( ) ( )
( )

ˆ ˆ

1
ˆ , , , , ', ', '; , , , ", ", ",

( )

ˆ ˆ', ', ', ", ", ", ' " ' " ' " ( )

ˆ                                          ; , ,

cn T t P s T t T
s

n T s n T s d d d d dT dT F d

t s T

= ×

×

> ∈

∫ ∫ ∫
Θ

θ

x u x u x u c x u θ

x u x u x x u u θ

x u

#
N

X X

X

 (9) 
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Eq.(9) is, in principle, a multidimensional, i.e. (3+4)D population balance equation written in 

integral form by means of the transition measure defined on the basis of transition pro-

bability of Markov processes. Here, indicating the dimension of the equation the first 

number denotes the external variables while the second one gives number of internal 

variables. The parameterized conditional transition measure cP#  of the particulate system 

involves, in principle, all information about the properties and behavior of the particle 

population and precision of the nature and components of motions along the property 

coordinates of population state makes possible to derive the corresponding population 

balance equation. However, this multidimensional population balance equation seems to be 

too complex; simplification is obtained by deriving a population balance equation for the 

ensemble of particles of all velocities 

 ( ) ˆ, , ( , , , )n T t n T t d= ∫x x u u

U

 (10) 

modeling motion of particles in the physical space by using convection-dispersion models.  

Rewriting the population density function in the conditional form 

 
( ) ( ) ( ) ( )1 1

ˆ( , , , ) Prob , , ,n T t T n T t
s s

=x u u x x
N N

 (11)  

where ( )Prob ,Tu x  denotes the probability that a particle, residing at space coordinate x 

and having temperature T possesses velocity u, introducing (11) into Eq.(9) and integrating 

both sides of Eq.(9) over variable u we obtain 

 

( ) ( )

( ) ( )
( )

1
, , , ', '; , , ", ",

( )

', ', ", ", ' " ' " ( )

                                          ; ,

cn T t P s T t T T
s

n T s n T s d d dT dT F d

t s T

= ×

×

> ∈

∫ ∫

θ

x x x x θ

x x x x θ
x

X X

X

N

 (12) 

where 

 

( ) ( )

( ) ( )

, ', '; , , ", ", , ', ', '; , , , ", ", ",

Prob ' ', ' Prob " ", " ' "

c cP s T t T T P s T t T T

T T d d d

= ×

×

∫ ∫ ∫x x x θ x u x u x u θ

u x u x u u u

#
U U U  (13) 

Here, expression (13) denotes the transition measure by means of which transformation 

(12) provides the amount of particles of all velocities which are converted into the state 

domain ( ), , ,T d T dT+ +x x x  to time t of particles of all velocities being in X̂  at time s 

under the conditions of interactions with particles of the same state domain of any 

velocities. As a consequence, transformation (12) describes motion of particles with 

possible heat exchange interactions in the 3+1 dimensional subspace of physical and 

temperature coordinates determined over a given, fully developed velocity field. Eq.(12) 

is a reduced form of the multidimensional population balance equation (9), given also in 

integral form.  
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3.2 Integral-differential equation form 

Taking into account the conditions assumed and following the steps of derivation of the 

population balance equation of interactive disperse systems as it was presented by Lakatos 

et al.(2006), the population balance equation describing the behavior of population of the 

particles in the system is obtained from Eq.(9) in the form 

 

[ ] [ ]
[ ]

max

min

min

ˆ( , , , )
ˆ ˆ( , , , ) ( , , , )

ˆ ˆ( , , , ) ( , , , )

ˆ( , , , ) ˆ ˆ( , ', ') ( , ', ', ) ' '
( , )

1 ˆˆ ( ', ' ", ") ( ', , ', ", ", )
( , )

T

T

ppT

pp ppT

n T t
G n T t n T t

t T

n T t n T t

n T t
S T T n T t dT d

t

S T T b T T T
t

∂ ∂
+ +∇ ⋅ =

∂ ∂
= ∇ ⋅ ∇ −∇ ⋅ −

− +

+ ×

∫ ∫

u u

x x x x x

x u
x u G x u

D x u G x u

x u
u u x u u

x

u u u u u θ
x

N

N

U

max max

min

ˆˆ ˆ( , ', ', ) ( , ", ", ) ' " ' " ( )

T T

T

n T t n T t dT dT d d F d×

∫ ∫ ∫ ∫ ∫
Θ

θx u x u u u θ
U U

 (14) 

subject to the appropriate boundary and initial conditions. Here, ( ),txN  denotes the total 

number of particles in the vicinity of position x of the physical space at the moment of  

time t.  

The second and third terms on the left hand side of Eq.(14), next to the accumulation term 

describe variation of the population density function n̂  due to continuous thermal and 

velocity interactions of particles with the carrier gas environment, respectively, while the 

first and second terms on the right hand side describe motion of particles in the physical 

space. Here, the rate expressions TG , u
G  and x

G  are interpreted as convective terms of 

motion along the temperature, velocity and physical coordinates, and 
x

D  denotes the 

dispersion tensor of motion of particles in the physical space.  

The last two terms on the right hand side of Eq.(14) describe the momentum and heat 

exchange between particles interacting with each other by collisions during their motion in 

the physical space. Namely, the third term describe the rate of decrease of number of 

particles of temperature T and velocity u collided with particles of temperature T’ and 

velocity u’, whereas the last term provides the rate of increase of number of particles having 

temperature T and velocity u resulted in collision interactions of particles of temperature T’ 

and T” as well as of velocity u’ and u”. The collision interactions are described by means of a 

product of two operators: the activity and conversion functions ˆ
ppS  and ˆ

ppb , respectively. 

In the present model, the activity function ˆ
ppS  characterizes the intensity of collision 

interactions between the particles inducing temperature change, being, in turn, a product of 

the frequency of collisions ˆ ( , ', ')colS T Tu u  and the efficiency term ˆ ( , ', ')exS T Tu u , written as 
ˆ ˆ ˆ( , ', ') ( , ', ') ( , ', ')pp col exS T T S T T S T T= ⋅u u u u u u . Here, ˆ ( , ', ')exS T Tu u  expresses the ratio of all 

events which are to be successful in inducing also heat and momentum exchange events. 

Naturally, since heat diffusion, deciding at this level on homogenization of temperature is a 

spontaneous process, while momentum exchange by collision of two solid bodies also 

occurs the efficiency term is equal to unity identically, i.e. ˆ ( , ', ') 1exS T T ≡u u . Finally, 

function ˆ ( ', , ', ", ", )ppb T T Tu u u θ , called conversion density function, describes the results of 

events inducing changes of temperature and velocity of particles, i.e. 
ˆ ( ', , ', ", ", )ppb T T T dTdu u u θ u  expresses the fraction of particles that become of temperature 
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(T,T+dT) and ( ), d+u u u  as a result of interactions of all particles of temperature T' and T" 

and velocity u’ and u”  in a unit time. 

The (3+4) dimensional population balance equation (14) is a so called cognitive model that 

describes the behavior of particle population in detail taking into account also the velocity 

distribution of particles. However, a simplified population balance equation can be obtained 

from Eq.(12) for the population density function ( ), ,n T tx  not including the explicit velocity 

dependence into the model. Indeed, again following the steps of derivation of the popu-

lation balance equation of interactive disperse systems we obtain 

 

[ ] ( ) ( )

max

min

max max

min min

( , , )
( , , ) , , , ,

( , , )
( ') ( , ', ) '

( , )

1
( ', ", ) ( ' ") ( , ', ) ( , ", ) ' " ( )

( , )

T

T

ppT

T T

pp ppT T

n T t
G n T t n T t n T t

t T
n T t

S T T n T t dT
t

b T T T S T T n T t n T t dT dT F d
t

∂ ∂
+ = ∇ ⋅ ∇ −∇ ⋅ ⎡ ⎤⎣ ⎦∂ ∂

− +

+

∫

∫ ∫ ∫

x x x x x

θ
Θ

x
x D x G x

x
x

x

θ x x θ
x

N

N

 (15) 

subject to the appropriate boundary and initial conditions. Here, the constitutive expres-

sions in Eq.(15) have similar meanings as it was described regarding Eq.(14) excluding the 

explicit velocity dependence. Note that in this simplified form the effects of collisions on 

motion of particles in the physical space can be taken into consideration by applying 

empirical models for the convective and dispersion terms  x
G  and  x

D , respectively. 
In the context of the population balance equation (15), the particle-solid surface boundary 

condition is relevant that can be formulated as the heat exchange rate between the particle 

population and solid surface at a space coordinate x of surface S 

 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

max

min

max

min

, , , , , ( , , ) ( )

, , , , , , ( )

T

wp wp w wp wT

T

wp w wp wT

dQ t S T t T b T t z T n z t dzF d dt

S T t z b T t T z n z t dzF d dt

= − +

+

∫ ∫

∫ ∫

θ
Θ

θ
Θ

x x x θ x θ

x x θ x θ

S

S

S

 (16) 

where Tw(x,t) denotes the temperature of surface S at position x at time t.  
Eq.(15) with the boundary condition is an applicative or, in other words, a purpose-oriented 

partially distributed population balance model aimed for describing thermal processes in 

fluid-solid particulate systems. Introducing the constitutive expressions and making use of 

appropriate symmetric conditions it can be applied for determining spatially low dimen-

sional population balance models. Here, the one-dimensional axial dispersion/population 

balance and the zero-dimensional well stirred vessel/population balance model will be 

presented to describe thermal processes in gas-solid particulate systems.  

4. Constitutive equations for particle-particle heat transfer by collisions 

4.1 Heat effects of particle-particle collisions 

To close the population balance equation (15) the constitutive equations, first of all those 
characterizing the collision interactions are to be determined. In developing we consider 
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only binary collisions as it is shown schematically in Figs 1 and 2. Here we assumed that 
particles in the particulate system are of the same volume and mass but their shape usually 
are irregular. As a consequence, in this case the collision events are of random nature 
therefore practically all processes induced by collisions, among others the change of kinetic 
energy and exchange of extensive quantities between the colliding particles should be 
treated as random.  
Let us now consider the encounter of two solid particles of mass mj and mk as it is shown in 
Fig.1. If the velocity vectors of these bodies are given by uj and uk, and their difference is 
denoted by ujk=uj-uk then the translational kinetic energy change during collision ƦE is 

 ( ) ( )2 2 2 21 1
' 1

2 2

j k j k
jk jk jk

j k j k

m m m m
E u u e u

m m m m
Δ = − = −

+ +
 (17) 

where e is assumed to be a random coefficient of restitution. If the two particles are of equal 
mass, i.e. mj=mk=mp then  

 
( )2 21

4

p
jk

m
E e uΔ = −

, 

(18)

 

and accounting for the probability that a particle is colliding with an another particle in the 
time interval (t,t+Δt) the energy change is expressed as 

 
( )
( )

2

2
1

ˆ( , ) ( , , , )
4 ,

p

jk jk jk

m e
E t u n T t d dT t

t ×

−
Δ = ⋅Δ∫∫x x u u

x
T

N
U

 (19) 

Applying the Maxwellian distribution for particles 

 

2

3
2

22

( , , )
ˆ( , , , ) exp

2
2

3
3

jk
jk

n T t
n T t

π

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

⎝ ⎠

ux
x u

u
u

 (20) 

and taking into consideration that the coefficient of restitution is a random variable with the 
probability density function fe, independent from the velocities, the mean value of energy 
change can be expressed as 

 
( )

( )

1 2 2
20

3
2

22

1 ( )
( , ) ( , , ) exp

2
2

34 ,
3

p e jk
jk jk

m e f e de
E t n T t u d dT t

t π
×

⎛ ⎞
− ⎜ ⎟

Δ = − ⋅ Δ⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

⎝ ⎠

∫
∫∫

u
x x u

u
x u

T

N
U

. (21) 

With complete spherical symmetry 

 

24jk jk jkd u duπ=u
 

(22)
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we have 

 
( )

( )

1 2 2
40

3
2

22

4 1 ( )
( , ) ( , , ) exp

2
2

34 ,
3

p e jk
jk jk

m e f e de
E t n T t u du dT t

t

π

π
×

⎛ ⎞
− ⎜ ⎟

Δ = − ⋅ Δ⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

⎝ ⎠

∫
∫∫

u
x x

u
x u

T

N
U

 (23) 

Making use of evaluation of the definite integral (Gidaspow, 1994) 

 
( )

5
1 4 2 2
0

3
exp

8
x ax dx

π α
−

− =∫
 (24) 

we obtain 

 ( ) ( )12 2

0
( , ) 1 ( ) ( , , )

4 ,

p
e

m
E t e f e de n T t dT t

t
Δ = − ⋅ Δ∫ ∫x u x

x
T

N
 (25) 

As a consequence, assuming that this heat arise in particles as it was generated by an in-

ternal heat source we can write 

 ( )12 2

0

1 ( , )
1 ( )

2 8

p
p p e

mdT dE t
c m e f e de

dt dt
= = −∫

x
u  (26) 

that results in the following rate of temperature change for a particle 

 ( )
2

1 2

0
1 ( )

8
e

p

dT
e f e de

dt c
= −∫
u

. (27) 

4.2 Heat transfer by collisions of two particles 

Let us consider the heat transfer process induced by collision of two solid bodies, shown 

schematically in Fig. 1, as described by the set of simple first order differential equations 

with linear driving forces 

 
( )( )

( ) ( )
j

j j k j

dT t
m c T t T t

dt
β= −

 

(28a)

 

and 

 ( )( )
( ) ( )k

k k k j

dT t
m c T t T t

dt
β= − −  (28b) 

subject to the initial conditions 

 ( ) ( )0 00 ,       0j j k kT T T T= =  (29) 
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where ǃ is a not specified aggregated heat transfer coefficient. 

 

mj, uj, Tj 

mk, uk, Tk 

mj, uj’, Tj’ 

mk, uk’, Tk’ Contact surface 

Gas lens 

 

Fig. 1. Collision of two particles of irregular shape 

Eqs (28) are of such forms as the temperature of particles would be uniform. However it is 

not the case so that these equations have to be interpreted as they were written for the mean 

values. In this case the variables are, in essence, mean values, i.e. 

 
1

( ) , ,T t T dV j k
v

ι ι
ι

ι= =∫  (30) 

Since the temperature of a particle is not uniform the actual temperature values in the 

driving force in Eq.(28) are uncertain so that this should be treated also as random. There-

fore the left hand sides of Eq.(28) are random and we allocate this randomness into the ǃ 

transfer coefficient.  

The solutions of the first order differential equations (28) at time θ become 

( ) ( )0 0 0 0 0 0

1 1
( ) 1 expk k

j j k j j j k j
j j k k j j k k

m c
T T T T T p T T

m c m c m c m c
θ βθ ω

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟= + − − − + = + −⎨ ⎬⎜ ⎟+ ⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 (31a) 

and 

( ) ( )0 0 0 0 0 0

1 1
( ) 1 exp

j j
k k k j k k k j

j j k k j j k k

m c
T T T T T p T T

m c m c m c m c
θ βθ ω

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟= − − − − + = − −⎨ ⎬⎜ ⎟+ ⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 (31b) 

where 

 : 1 exp
j j k k

j j k k

m c m c

m c m c
ω βθ

⎡ ⎤⎛ ⎞+
⎢ ⎥⎜ ⎟= − −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, k k

j
j j k k

m c
p

m c m c
=

+
, 

j j
k

j j k k

m c
p

m c m c
=

+
. (32) 
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Here θ denotes the contact time which is, in principle, also a random quantity. As a 

consequence, parameter [ ]0,1ω∈ , characterizing the efficiency of heat exchange between 

the colliding bodies is a random function of variables ǃ and θ, and its distribution is entirely 

determined by their distribution functions.  

Let us now assume that the two bodies suffering collisions are two particles with equal 

masses and heat capacities. Then, 
j j k k p pm c m c m c= =  and 1

2
j kp p= = . Introducing the nota-

tion 0 'j pT T= , 0 "k pT T=  we can write 

 
2

1 exp
pp pp pp

pp
p p

h a

m C

θ
ω ω

⎡ ⎤−
= = − ⎢ ⎥

⎢ ⎥⎣ ⎦
 (33) 

and 

 ( ) ' ( " ')
2

pp
p p p pT T T T

ω
θ = + − ⋅  (34) 

from which 

 
( )2 '

' "
p p

p p
pp

T T
T T

ω

−
+ =  (35) 

Interpretation of Eq.(12) is that in heat transfer process characterized with parameter ωpp a 

particle with temperature Tp’ has to collide with particle of temperature Tp” to achieve final 

temperature Tp. Taking now into consideration the definitions of conversion functions, the 

conversion distribution function of particle-particle heat transfer takes the form 

  ( ) ( )2 '
', | ", 1 ' "

p

p p

pp p p p pp T p p
pp

T T
B T T T T Tω

ω

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= + −
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (36) 

so that the corresponding density function is 

 ( ) ( )2 ' 2
', | ", ' "

p

p p

pp p p p pp p T p p p
pp pp

T T
b T T T dT T T dTω δ

ω ω

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= + −
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (37) 

4.3 Heat transfer through the gas lens and the contact surface 

Heat transfer between two particles may be considered as a combination of transfers 

through the gas lens between the particles and through the contact surface as it is shown in 

Fig. 1. These processes depend strongly on the shapes and velocities of the colliding bodies 

that is why the parameters ǃ and θ are treated as random variables. However, under 

symmetrical conditions for particles of regular spherical forms explicit expressions have 

been determined. 
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The heat flow rate through the gas lens between two particles with diameter dp in the angle 

( )max max,α α− +  was developed by Delvosalle and Vanderschuren (1985) in the form 

 ( )
( )

max
2

0

sin

2 1 cos
h k j

p

d
q hd T T

s

R

α α απ
α α

= −
⎡ ⎤+ −⎢ ⎥⎣ ⎦

∫  (38) 

where 2s denotes the width of the gas lens. At this flow rate the temperature of the jth 
particle during the time interval (0, θ) increases to the value 

 ( )( )0 0 0j j k jT T T Tθ= + Γ −  (39) 

where 

 ( )
( )

max
2

2 0

3 sin
1 exp

2 1 cosp p p

h d

sc d
R

α α αθ θ
ρ α α

⎛ ⎞
⎜ ⎟
⎜ ⎟Γ = −

⎡ ⎤⎜ ⎟+ −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∫  (40) 

In the case of intensive motion of particles, the parameters h, s and ǂmax in Eq.(38) as well as 
the contact time θ are, in principle, random quantities therefore ƥ is also a random function 
of these arguments.  
The heat flow rate through the contact surface was studied by Sun and Chen (1988) develop-
ing an approximate expression in the form 

 ( )
1

2

2

p p p

h k j

c k t
q T T

ρ

π

−

= −  (41) 

by means of which the total temperature increase in the jth particle during the time interval 
(0,θ) is expressed as 

 ( )
1

2

0 0 0

0.87
( )

2

p p p c

j j k j
p p

c k a
T T T T

m c

ρ θ
θ = + −  (42) 

where ac denotes the maximum contact area. Again, in Eq.(42) the maximum contact area 
and contact time depend on the velocities of collided particles so that these quantities are to 
be treated also as random variables. 
Comparing the equations (31), (39) and (42) all these are expressed by linear driving forces 
so that the overall heat transfer flow can be given as superposition of the heat flows through 
the gas lens and the contact surface. 

5. Constitutive equations for particle-wall heat transfer by collisions 

5.1 Heat effects of particle-wall collisions 

Let us consider again the encounter of two solid bodies of mass mj and mk as it is shown in 
Fig. 2 from which now the second is a no moving solid surface. In this case the velocity 
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vector uk=0 so that the velocity difference is ujk=uj then the translational kinetic energy 
change ƦE is given as 

 ( ) ( ) ( )
12 2 2 2

0

1
' 1

2 2

p w
j j j e

p w

m m m
E u u u e f e de

m m
Δ = − = −

+ ∫  (43) 

where, again, e is a random coefficient of restitution and ( )/p w p wm m m m m= + . 
 

mj, u j Tj 

mj, u j’, Tj’

Contact surface

Gas lens

mk, uk = 0 ,  Tj

mk, uk’ =0, Tk’

 

 

Fig. 2. Collision of an irregular particle with the wall 

Now accounting for the probability that a particle is colliding with the surface in the time 
interval (t,t+Δt) 

 
( ) ( ) ( )

1 2 2

0
ˆ( , ) 1 ( , , , )

2 ,
e j j j

m
E t e f e de u n T t d dT t

t ×

Δ = − ⋅Δ∫ ∫∫x x u u
x

T
N

U

 (44) 

Making use of the Maxwellian distribution and the hemi-spherical symmetry 

  22j j jd u duπ=u  (45) 

we obtain 

 ( )
( ) ( )

( )

( )
1 2 2

40
3

2
22

1
, , , exp

2
2

3,
3

e j
j j

U T

m e f e de u
E x t n x T t u du dT t

u
N x t u

π

π
×

⎛ ⎞
− ⎜ ⎟

Δ = − ⋅ Δ⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

⎝ ⎠

∫
∫∫  (46) 

that results in the following rate of temperature change for a particle and the wall 

 ( )
2

1 2

0
1 ( ) , ,

8
e

mdT
e f e de p w

dt m cι ι
ι= − =∫

u
 (47) 

5.2 Particle-wall heat transfer by collisions  
When a particle and the wall are two colliding bodies, as it shown in Fig. 2, then introducing 
the notation 
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 j j p pm c m c= , k k w wm c m c= , w w
j p

p p w w

m c
p p

m c m c
= =

+
, 

p p
k w

p p w w

m c
p p

m c m c
= =

+
 (48) 

as well as  0 'j pT T=  and 0 'k wT T= , we can write 

 
( )

: : : 1 exp
pw pw pw p p w w

pw wp
p p w w

h a m c m c

m c m c

θ
ω ω ω

⎡ ⎤− +
⎢ ⎥= = = −
⎢ ⎥
⎣ ⎦

 (49) 

Now, instead of Eq. (34) we have 

 ( ) ( )' ' 'p w pw w p pT p T T Tθ ω= − +  (50) 

from which 

 

'
' '

p p
p w

w pw

T T
T T

p ω

−
+ =

 

(51)

 

Eq.(51) expresses the fact that in heat transfer process between a particle and the wall, 

characterized with parameter ωpw, the temperature Tp’ of the particle becomes Tp if the tem-

perature of the wall was Tw’. As a consequence, the conversion distribution function of the 

particle-wall heat transfer for particles takes the form 

 ( ) '
', | ', ' '

p

p p
pw p p w pw T p w

w pw

T T
B T T T T T

p
ω

ω

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= + −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1  (52) 

thus the density function becomes 

 
' 1

( ', | ", ) ' '
p

p p
pw p p w pw p T p w p

w pw w pw

T T
b T T T dT T T dT

p p
ω δ

ω ω

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= + −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (53) 

Finally, in the particle-wall collisional heat transfer we consider the process from the side of 

the wall. Then Eq.(34) is rewritten as 

 
'

' 'w w
w p

p pw

T T
T T

p ω
−

+ =  (54) 

based on which, since the change of the wall temperature is related to Tw(t) which is fixed at 

the moment t the conversion distribution function becomes 

 ( ) '
', | ', ' '

w

w w
wp w w p wp T w p

p wp

T T
B T T T T T

p
ω

ω

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= + −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1  (55) 

while the conversion density function 
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 ( ) ' 1
', | ', ' '

w

w w
wp w w p wp w T w p w

p wp p wp

T T
b T T T dT T T dT

p p
ω δ

ω ω

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= + −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (56) 

At this moment all collisional constitutive expressions have been derived and the heat 

balance model of the process, applying the population balance equation (15) can be 

determined. 

6. Moment equation model 

Substituting the constitutive equations into the (3+1)D population balance equation (15) we 

obtain 

 

( ) ( )

( )max

min

1

0

( , , )
( , , ) , , , ,

2 2
( , , ) , , ( , , ) ( )

( , ) pp

Tpp
pp pp ppT

pp pp

n T t dT
n T t n T t n T t

t T dt

S T y
S n T t n y t n y t f dyd

x t
ω ω ω

ω ω

∂ ∂ ⎡ ⎤+ = ∇ ⋅ ∇ −∇ ⋅ ⎡ ⎤ −⎣ ⎦⎢ ⎥∂ ∂ ⎣ ⎦
⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟− + +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫

x x x x x

x
x D x u x

x x x
N

 (57) 

where the second term describes the change of population density function due to con-

tinuous thermal interactions of particles with gas and energy dissipation generated by 

particle-particle collisions 

 ( ) ( )
2

1 2

0
, 1 ( )

8

pg pg
g e

p p p

a hdT
T t T e f e de

dt m c c
⎡ ⎤= − + −⎣ ⎦ ∫

u

x  (58) 

Similarly, for the solid surface the boundary condition (16) becomes 

 
1

0

( )( , )
( , ) ( , , ) ,

1 1

pw pww pw w
pw pw p p pw

w pw w pw

fT p T t
dQ t S c m n T t n t d dt

p p

ω ωω
ω

ω ω

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= − +

⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦
∫

x
x x

SS

S

 (59) 

while the boundary condition for surfaces playing the role of input and output of the system 

takes the form 

 ( ) ( ) ( ), , , , , ,T t n T t n T t= − ⋅∇
x x x

x u x D x
S S

n  (60) 

where ( ), ,T txn  is a given function stimulating the system or specifying the surface con-

ditions.  
This is a boundary value problem of the (3+1)D integral-differential equation (57). This is 

still a cognitive model and it appears to be too complex for numerical solution. However, 

accounting for the constitutive expressions of the collision heat transfer terms a useful 

closed moment equation hierarchy can be determined introducing the moments with 

respect to the temperature variable 

 ( ) max

min

, ( , , ) , 0,1,2...
T k

k T
t T n T t dT kμ = =∫x x  (61) 
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where ( ) ( )0, ,t tμ=x xN  and ( ) ( ) ( )1 0, , / ,T t t tμ μ=x x x  denote, respectively, the total 

number and the mean temperature of particles in the vicinity of position x at time t. In this 

case the first two moments have physical meaning while by means of the higher order ones 

the temperature distribution can be specified more exactly. 
The infinite set of moment equations becomes 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

0
0

,
, , , ,

, , ,

, , , 0,1,2,...
,

pg pg ppk
k g k kcoll

p p p p

k k pp k

kpp pp
j k jjkj

ka ht k
t T t t H t

t c m c m

t t S t

S
b t t k

t

μ
μ μ μ

μ μ μ

μ μ
μ

− −

−=

∂ ⎡ ⎤− − − Δ =⎣ ⎦∂

= ∇ ⋅ ∇ −∇ ⋅ ⎡ ⎤ − +⎣ ⎦

+ =∑

x x x x x

x
x x x x

D x u x x

x x
x

 (62) 

subject to the initial conditions 

 ( ) ( ),0,0 , 0,1,2,...k k kμ μ= =x x  (63) 

In Eqs (62) pp
collHΔ  denotes the internal heat source generated by particle-particle collisions, in 

correspondence with Eq.(27), and the coefficients of the collision terms are 

  ( )1

0
1 , 0,1,2,..., 1,2,...

2 2 pp

j k j
pp pppp

pp ppjk

k
b f d k j k

j ω
ω ω

ω ω
−

⎛ ⎞ ⎛ ⎞⎛ ⎞
= − = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
∫  (64) 

while the boundary conditions become 

 ( ) ( ) ( )
0

, , , , 0,1,2,...
k pw k j

k pw j wjkj
d t S b t T t dt kμ μ −

=
= ⋅ =∑x x x

S
S

 (65) 

and 

 ( ) ( ) ( ), , ,k k kt t tμ μ μ= − ⋅∇
x x x

x u x D x
S S

 (66) 

where 

 ( ) ( ) ( )1

0
1 , 0,1,2,..., 1,2,...

pw

j k jpw
w pw w pw pw pwjk

k
b p p f d k j k

j ωω ω ω ω
−⎛ ⎞

= − = =⎜ ⎟
⎝ ⎠

∫  (67) 

Here ( ),k tμ x  denotes the kth order moment of a given function stimulating the system 

across the inlet surface and that providing the outlet surface conditions. 
Specifying the appropriate symmetry conditions for the spatial terms in Eq.(62) results in 
3D, 2D and 1D applicative, i.e. purpose-oriented moment equation models for different gas-
particle processing systems. 
When applying the moment equation model, the computational results are assessed by 
means of the first three of the normalized moments 

  ( ) ( )
( )0

,
, , 0,1,2

,
k

k

t
m t k

t

μ
μ

= =
x

x
x

. (68) 
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Here, beside the zero order and the normalized first order moments, i.e. the total number 
and mean temperature of particles, the variance defined as 

 ( ) ( )
( )

( )
( ) ( ) ( )

2

2 12 2
2 1

0 0

, ,
, , ,

, ,

t t
t m t m t

t t

μ μ
σ

μ μ
⎛ ⎞

= − = −⎜ ⎟⎜ ⎟
⎝ ⎠

x x
x x x

x x
 (69) 

is used for characterizing the temperature distribution of particles.  

7. Heat transfer in bubbling fluidized beds 

Gas-solid fluidized beds may operate in several different flow regimes: bubbling, slug flow, 
turbulent and fast fluidization. With increasing superficial velocity there is a transition 
between the lower velocity bubbling and higher velocity turbulent fluidization states 
(Thompson et al., 1999, Bi et al., 2000). In the bubbling regime, as the gas flow rate increases 
the total volume of bubbles also increases and accounting for their coalescence and 
breakage, the bubble phase can be described by an axial dispersion model containing no 
particles. The bubbling regime, however, is characterized by intensive pressure fluctuations 
so that the dense emulsion phase, containing the particle population and being in intensive 
motion can be modeled as a perfectly stirred part of the bed as it is shown schematically in 
Fig. 3. At higher velocities, because of disappearance of bubbles the amplitudes of pressure 
fluctuations decrease significantly, and the distribution of particles along the height of the 
vessel becomes smoother. In this case the spatial distribution of particles is described by an 
axial dispersion model too, as it was analyzed by Süle et al. (2010). 
 

- heat flux 

nin(Tp,τ), qp 

Tg(ξ,τ), εgV 

Tg,in(τ), qg 

n(Tp, τ), εeV 

εgqg εeqg 

Tg(ξ=1,τ), qg 

n(Tp, τ), qp 
ξ

ξ=0 

ξ=1 

Tenv(τ) 

Tw(τ), mw 

Emulsion 
phase: 

Bubble phase: 

Te(τ), εeV 

Tl,in(τ), ql 

Tl,out(τ), ql 

 

Fig. 3. Schematics of a bubbling fluidized bed 
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As regards the model of bubbling fluidization we start with the following assumptions. 

• The bubble phase is described by an axial dispersion model, and is connected thermal-
ly with the emulsion phase through the gas and with the wall. 

• The emulsion phase is a perfectly stirred cell containing the homogeneously distri-
buted particle population. Inside the emulsion phase heat transfer occurs between the 
gas and particles, and there exists thermal connection of the gas and particles of the 
emulsion phase and the wall. 

• Homogeneous temperature distribution is assumed in the wall through which the bed 
is connected thermally with the jacket filled with liquid.  

• Liquid through the jacket flows with constant flow rate and is assumed to be thermally 
homogeneous. 

• The bubbling fluidized bed is operated continuously. 
Introducing the dimensionless variables and parameters 

x

X
ξ = , e

p
p

V
t

q

ε
= , 

p

t

t
τ = , b

b
b

u X
Pe

D
= , 

b
b

X
t

u
=  

the axial dispersion model for the bubble phase is written as 

 
( )

( ) ( )

1

0

1

0

( , ) ( , )1
( , ) ( , ) ( )

( , ) ( , ) ,     0, 0,1

pb b
b be p b e

b b

bw p b w

tT T
T K t T T d

t Pe

K t T T

ξ τ ξ τ ξ τ ξ τ τ ξ
τ ξ ξ

ξ τ ξ τ τ ξ

⎛ ⎞∂ ∂∂
= − − −⎜ ⎟

∂ ∂ ∂⎝ ⎠

− − > ∈

∫

∫
 (70) 

while the corresponding boundary conditions take the forms 

 ,
,

(0 , )1
( ) (0 , )b in b

b in b
b b

u T
T T

u Pe

τ
τ τ

ξ
∂ +

= + −
∂

,  
(1 , )

0bT τ
ξ

∂ −
=

∂
 (71) 

In Eq. (70) 

be be
be

g g

a h
K

cρ
=  and bw bw

bw
g g

a h
K

cρ
=  

denote the coefficients of heat transfers between the bubbles and, respectively, the emulsion 
phase and the wall. 
Integrating both sides of Eq. (57) over the volume of the emulsion phase ǆeV and taking into 
consideration the boundary conditions we obtain for the population of particles of the 
emulsion phase 

 

( ) ( ) ( )
( )max

min

m

min

1

0

( , )
( , ) , , ( , )

22
, ( , ) ( )

( )

( )
, ( )

1 1

pp

pw

p
in pp pw

e

Tpp
pp ppT

pp pp

Tpw w pw w
pw pwT

w pw w pw

qn T t dT
n T t n T t n T t S S n T t

t T dt V

S T y
n y t n y t f dyd

t

S y p T t
n t f dyd

p p

ω

ω

ε

ω ω
ω ω

ω
ω ω

ω ω

∂ ∂ ⎡ ⎤+ = ⎡ − ⎤ − +⎣ ⎦⎢ ⎥∂ ∂ ⎣ ⎦
⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟+ + +
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞−
⎜ ⎟+
⎜ ⎟− −⎝ ⎠

∫ ∫
N

ax1

0∫ ∫

 (72) 

www.intechopen.com



Population Balance Model of Heat Transfer in Gas-Solid Processing Systems   

 

427 

where 

 ( ) ( )1
, , ,

e
e V

n T t n x T t dV
V εε

= ∫  (73) 

and 

 ( )pe pe
e

p p p p

a hdT H
T t T

dt m c m c

Δ
= ⎡ − ⎤ +⎣ ⎦  (74) 

where pp pw
coll collH H HΔ = Δ + Δ  is the overall heat effects generated by the particle-particle and 

particle-wall collisions, in correspondence with Eqs. (27) and (47). Naturally, when the 

particles are homogeneously distributed in the emulsion phase then ( , ) ( , , )n T t n T t≡ x . 

In this case the moment equations (62), taking into account Eq. (72) and written using the 

dimensionless variables and parameters are as follows. 

Zero order moment: 

 0
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d

d

μ τ μ τ μ τ
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First order moment: 
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Second order moment: 
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 (77) 

where the coefficients of terms representing the collision particle-particle and particle-wall 

heat transfers are expressed by means of expectations and variances of random parameters 

ωpp and ωpw. In Eqs. (75) and (76), we have 
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p p

a h
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m c
=  and 

2
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1, 1
2 2

pp pp

pppp

m
m

ω ω
ω

σ
κ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (78) 

The differential equation for the gas contents in the emulsion phase is given as 
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where 
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Finally the balance equation for the wall takes the form: 
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where 
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while for the liquid we have: 
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where 

 

wl wl
wl

l l

a h
K

cρ
=

 

(84)

 

8. Simulation results and discussion 

Numerical experiments for studying the behavior of bubbling fluidized bed were carried 

out in MATLAB environment. The basic process parameters and hydrodynamic properties 

of the fluidized bed were computed using the values and correlations given by Lakatos  

et. al. (2008) while the heat source generated by the energy loss due to collisions was taken 

constant. The details of numerical experimentation will be presented elsewhere.  

Fig. 4. presents the time evolution and steady state values of the variance of temperature of 

particles, defined by Eq. (69), depending on the interparticle collision frequency Spp. Initially 

the temperature of particle population was homogeneous but the particle temperature input 

was generated as a step function having two different temperatures (1) o
, 20p inT C=  and 

(2) o
, 160p inT C= , respectively, which were totally segregated from each other. Such 

temperature distribution is described by the input population density function having the 

form 
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( ) ( ) ( )(1) (2)

0, 0,, (1 ) , 0 1in in inin inn T M T T M T Tτ φ δ φ δ ϕ= − + − − ≤ ≤
 

(85)
 

where M0,in=108/m3 is the total number of particles in a unit volume, and  φ=0.6 is the ratio 
of particles having different temperatures.  
Fig. 4 shows that there may remain rather significant inhomogeneities in the temperature 
distribution of particles in the bed. These inhomogeneities are decreasing with increasing 
interparticle collision frequency therefore the particle-particle interaction play important 
role in homogenization of temperature inside the population of particles. 
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Fig. 4. Time evolution of the variance of temperature distribution of the particle population 

Fig. 5 presents the time evolution of the temperatures of characteristic parts of the bubbling 
bed, i.e. mean temperature of particles, the temperatures of the bubble phase and the gas in 
the emulsion phase, as well as the temperatures of the wall and liquid in the jacket. In this 
case the input temperature of gas was 180 ºC and the initial temperature of gas in the 
emulsion and bubble phases were of the same values. It is seen how the temperature 
profiles vary in interconnections of the different parts of the bed. In steady state, under the 
given heat transfer resistance conditions of the particle population, the wall and liquid is 
heated practically only by the gas in the emulsion phase while the bubbles flow through the 
bed without losing heat assuring only the well stirred state of the emulsion phase. 
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Fig. 5. Time evolution of the temperatures of characteristic parts of the bubbling bed in inter-
relations with each other  
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In Fig. 5, bubble temperature transient is shown only for the bed output indicating here a 

rather sharp front. Naturally, the temperature front of bubbles evolves progressively along 

the bed as it shown in Fig. 6 at different axial coordinates showing that in transient states the 

bubble phase also plays role in the heating process. 

However the bubble evolves transient states 

 

10
-6

10
-4

10
-2

10
0

10
2

80

100

120

140

160

180

 

 

data1

data2

data3

data4

data5

Tb(ξ)

τ

0.1  
0.3  
0.6  
0.8 
1.0 

ξ

 

Fig. 6. Progression of evolution of the temperature front of the bubble phase along the axial 
coordinate of the bed  
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Fig. 7. Time evolution of the mean temperature of particle population as a function of the 
particle-wall collision frequency 

Eq. (76) shows clearly that when the number of particles is constant, i.e. under steady state 

hydrodynamic conditions interparticle heat transfer does not influence the mean value of 

temperature of the particle population but, as it is demonstrated by Fig. 4, it affects the 

variance. However, as Fig. 7 gives an evidence of that the mean value of temperature of the 

particle population depends on the particle-wall collision frequency. This figure indicates 

also that because of the heat transfer interrelations of different parts of the bed oscillations 

may arise in the transient processes which becomes smoothed as the particle-wall collision 

frequency decreases. At the same time, in this case the particle-wall collision frequency 

affects also the variance of temperature distribution of the particle population as it is shown 

in Fig. 8. It is seen that with increasing particle-wall collision frequency the variance de-
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creases. i.e. increasing particle-wall heat transfer intensity gives rise to smaller inhomoge-

neites in the temperature distribution of particles. 
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Fig. 8. Time evolution of the variance of temperature distribution of the particle population 
as a function of the particle-wall collision frequency 

9. Conclusion 

The spatially distributed population balance model presented in this chapter provides a tool 

of modeling heat transfer processes in gas-solid processing systems with interparticle and 

particle-wall interactions by collisions. Beside the gas-solid, gas-wall and wall-environment 

heat transfers the thermal effects of collisions have also been included into the model. The 

basic element of the model is the population density function of particle population the 

motion of which in the space of position and temperature variables is governed by the 

population balance equation. 

The population density function provides an important and useful characterization of the 

temperature distribution of particles by means of which temperature inhomogeneities and 

developing of possible hot spots can be predicted in particulate processes. In generalized 

form the model can serve for cognitive purposes but by specifying appropriate symmetry 

conditions useful applicative, i.e. purpose-oriented models can be obtained.  

The second order moment equation model, obtained from the infinite hierarchy of moment 

equations generated by the population balance equation, as an applicative model can be 

applied successfully for analyzing the thermal properties of gas-solid processing systems by 

simulation. The first two moments are required to formulate the heat balances of the 

particulate system while the higher order moments are of use for characterizing the process 

in more detail. 

Applicability of the second order moment equation model was demonstrated by modeling 

and studying the behavior of bubbling fluidization by numerical experiments. It has proved 

that collision particle-particle and particle-wall heat transfers contribute to homogenization 

of the temperature of particle population to a large extent. The particle-particle heat transfer 

no affects the mean temperature of particle population and, in fact, no influences any of 

temperatures of the system whilst the particle-wall heat transfer collisions exhibits 

significant influence not only on the steady state temperatures but on the transient processes 

of the system as well. It has been demonstrated that the second order moment equation 
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model can be effectively used to analyze both the dynamical and steady state processes of 

bubbling fluidization 
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11. Symbols 

a – surface area, m2 
c – specific heat, J kg-1 K-1 
D – dispersion coefficient, m2 s-1, bed diameter, m 
e – coefficient of restitution 
f – probability density function 
h – enthalpy, J; heat transfer coefficient W m-2 K-1 

K – aggregate rate coefficient of heat transfer 
k – thermal conductivity, W m-1 K-1 
m – mass, kg 
mk – normalized kth order moment of particle temperature 
N – number of particles, no m-3 
n – population density function, no m-3 K-1 

pp – weight parameter  
pw – weight parameter  
Pe – Peclet number 
q – volumetric flow rate, m3 s-1 

S – frequency of collisions, s-1 

T – temperature, K 
t – time, s 
u – linear velocity, m s-1 
v – volume, m3 

V – volume, m3 

x – axial coordinate, m 

t   mean residence time, s 

.   mean value 

1 - Heaviside function 
 
Greek symbols 

β – aggregate heat transfer coefficient 

ρ – density, kg m-3 

δ – Dirac delta function 

κ – parameter 

ω – random variable characterizing collision heat transfer 
μk – kth order moment of particle temperature 

ε – volumetric fraction  
ξ – dimensionless axial coordinate 
τ – dimensionless time 
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σ2 – variance of the temperature of particle population 
Subscripts and superscripts 
c – critical value 
e – emulsion phase; coefficient of restitution 
g – gas 
in – input 
b – bubble 
max  –  maximal value 
min   – minimal value 
p – particle 
pg – particle-gas 
pp – particle-particle 
pw – particle-wall 
w – wall 
wb – wall-gas 
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