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1. Introduction

Thermal conduction in solids is governed by the well-established, phenomenological Fourier
Law, which in one-dimension is expressed as

Q = −κ
∂T

∂z
, (1)

where the thermal flux, Q, is related to the change in temperature, T, along the direction
of thermal propagation, z, through the thermal conductivity, κ. The thermal conductivity is a
temperature dependent material property that is unique to any given material. Figure 1 shows
the measured thermal conductivity of two metals - Au and Pt - and two semiconductors - Si
and Ge (Ho et al., 1972). In these bulk materials, the thermal conductivities span three orders
of magnitude over the temperature range from 1 - 1,000 K. Temperature trends in the thermal
conductivities are similar depending on the type of material, i.e., Si and Ge show similar
thermal conductivity trends with temperature as do Au and Pt. These similarities arise due to
the different thermal energy carriers in the different classes of materials.
In metals, heat is primarily carried by electrons, whereas in semiconductors, heat moves
via atomic vibrations of the crystalline lattice. The macroscopic average of these carriers’
scattering events, which is related to the thermal conductivity of the material, gives rise to
the spatial temperature gradient in Eq. 1. This temperature gradient is established from the
energy carriers traversing a certain distance, the mean free path, before scattering and losing
their thermal energy. In bulk systems, this mean free path is related to the intrinsic properties
of the materials. However, in material systems with engineered length scales on the order
of the mean free path, additional scattering events arise due to energy carrier scattering
with interfaces, inclusions, grain boundaries, etc. These scattering events can substantially
change the thermal conductivity of nanostructured systems as compared to that of the bulk
constituents (Cahill et al., 2003). In fact, in any given material in which the physical size is
less than the mean free path, the carrier scattering events will only occur at the boundaries of
the material. Therefore, there will be no temperature gradient established in the material and
Eq. 1 will no longer be valid.
Typical carrier room temperature mean free paths in metals and semiconductors are about 10 -
100 nm, respectively (Tien et al., 1998). Clearly, with the wealth of technology and applications
that rely on material systems with characteristic lengths scales in the sub-1.0 μm regime (Wolf,
2006), the need to understand thermal conduction at the nanoscale is immensely important
for thermal management and engineering applications. In this chapter, the basic concepts of
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2 Heat Transfer

nanoscale thermal conduction are introduced at the length scales of the fundamental energy
carriers. This discussion will begin by introducing the kinetic theory of gases, specifically
mean free path and scattering time, and how these concepts apply to thermal conductivity.
Then, the properties of solids will be discussed and the concepts of lattice vibrations and
density of states will be quantified. The link from this microscopic, individual energy carrier
development to bulk properties will come with the discussion of statistical mechanics of
the energy carriers. Finally, transport properties will be discussed by quantifying carrier
scattering times in solids, which will lead to the derivation of the thermal conductivity from
the individual energy carrier development in this chapter. In the final section, this expression
for thermal conductivity will be used to model the thermal conductivity of nanosystems by
accounting for energy carrier scattering times competing with boundary scattering effects.

2. Kinetic theory

Heat transfer involves the motion of particles, quasi-particles, or waves generated by
temperature differences. Given the position and velocity of any of these energy carriers, their
motion determines the heat transfer. If energy carriers are treated as particles, as will be the
focus of this chapter, then the heat transfer can be analyzed through the Kinetic Theory of
Gases (Vincenti & Kruger, 2002). For a discussion of nanoscale thermal conduction by waves,
see Chapter 5 of Chen (2005).
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Fig. 1. Measured thermal conductivity of two metals (aluminum and platinum) and two
semiconductors (silicon and germanium) (Ho et al., 1972).
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Introduction to Nanoscale Thermal Conduction 3

Consider a one-dimensional flow of energy across an imaginary surface perpendicular to the
energy flow direction. The net heat flux across this surface is the difference between the
thermal fluxes of the carriers flowing in the positive and negative directions, Q+z and Q−z

respectively. The carriers with energy ε will travel a distance before experiencing a scattering
event that causes the carriers to change direction and/or transfer energy; this distance is called
the mean free path, λ = vzτ, where vz is the particle velocity in the z-direction (direction of
heat flow) and τ is the relaxation time, or the average time a heat carrier travels before it is
scattered and changes direction and/or transfers energy. Therefore, given a volumetric carrier
number density, n, the net heat flux in the z-direction is

Qz = Q+z + Q−z =
1

2

(

(nǫvz)|vz+λ
+ (−nǫvz)|vz−λ

)

, (2)

which can be re-expressed as

Qz = −vzτ
∂(nǫvz)

∂z
. (3)

Now, given an isotropic medium, the average velocity is v2
z = v2/3, and thus, the average flux

is given by

Qz = − v2

3
τ

∂(nǫ)

∂z
. (4)

Defining a volumetric energy density, or internal energy, as U = nǫ, and applying the chain
rule to the derivative in z yields

Qz = − v2

3
τ

dU

dT

dT

dz
. (5)

The temperature derivative of the internal energy is defined as the volumetric heat capacity,
C = dU/dT, and with this, comparing Eq. 5 with Eq. 1 yields

κ =
1

3
Cv2τ =

1

3
Cvλ. (6)

Equation 6 defines the thermal conductivity of a material based on the properties of the energy
carriers in the solid. To calculate the thermal conductivity of the individual energy carriers in a
solid, and therefore understand how κ changes on the nanoscale, the volumetric heat capacity,
carrier velocity, and scattering times must be known. This will be the focus of the remainder
of this chapter.

3. Energy states

The allowed energies of thermal carriers in solids are dictated by the periodicity of the atoms
that comprise the solid. Atoms in a crystal are arranged in a basic primitive cell that is
repeated throughout the crystalline volume. The atoms that comprise the primitive cell are
called the basis of the crystal, and the arrangement in which this basis is repeated is called
the lattice. As a full treatment of the solid state crystallography is beyond the scope of this
chapter, the reader is directed to more information on crystallography and solid lattices in any
introductory solid state physics (Kittel, 2005) or crystallography text (Ziman, 1972). However,
the important thing to remember is that, for the development in this section, periodicity in the
atomic arrangement gives rise to the available energy states in a solid.
At this point, the discussion is focused on the primary thermal energy carriers in a solid, i.e.,
electrons and lattice vibrations (phonons). In the subsections that follow, the fundamental
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4 Heat Transfer

equations governing the motion of electron and lattice waves through a one-dimensional
crystalline lattice will be introduced, and then the effects of periodicity will be discussed.
This will give to rise the allowed energy states of the electrons and phonons, which are
fundamental to determining κ.

3.1 Electrons

The starting point for describing the allowed motion of electrons through a solid is given by
the Schrödinger Equation (Schrödinger, 1926)

− h̄2

2m

∂2Ψ

∂z2
+ VΦ = ih̄

∂Ψ

∂t
, (7)

where h̄ is Planck’s constant divided by 2π (Planck’s constant is h = 6.6262× 10−34 J s), m is the
mass of the electron, Ψ is the electron wavefunction which is dependent on time and space,
V is the potential that is acting on the electron system, and t is the time. Equation 7 is the
fundamental equation governing the field of quantum mechanics, and only a basic discussion
of this equation will be provided in this chapter in order to understand introductory nanoscale
thermal conduction. To delve more into this equation, the reader is encouraged to read any
text on introductory quantum mechanics (Griffiths, 2000).
For the solid systems of interest in this chapter, the potential V is the interatomic potential,
which is related to the force between the atoms in a crystal (or the “glue” that holds the
lattice in a periodic arrangement), and can be assumed as independent of time. With this in
mind, separation of variables can be performed on Eq. 7 to determine a spatial and temporal
solution. The starting point of this is to assume that the wavefunction can be separated into
independent spatial and temporal components (which, again, is valid since V is assumed
as independent of time), Ψ(z, t) = ψ(z)φ(t) = ψφ, where the functionality of the spatial and
temporal solutions are dropped for convenience. Substituting this solution into Eq. 7 yields

[

− h̄2

2m

∂2ψ

∂z2
+ Vψ

]

1

ψ
= ih̄

∂φ

∂t

1

φ
= ǫ, (8)

where ǫ is a constant eigenvalue solution to Eq. 8. Equation 8 can be immediately solved for
φ yielding

φ ∝ exp
[

−i
ǫ

h̄
t
]

. (9)

It is interesting to note that the form of the expression describing a classical plane wave
oscillating in time is given by exp [−iωt], where ω is the angular frequency of the wave
defined as ω = 2π f , where f is the frequency of oscillation of the wave, which is of the same
form as Eq. 9. From inspection, the Eigenvalues of the electron waves are ǫ ∝ h̄ω, i.e., the
Eigenvalues are the electron energy states. The governing equation for the spatial component,
which is called the time-independent Schrödinger Equation, is given by

− h̄2

2m

∂2ψ

∂z2
+ (V − ǫ)ψ = 0. (10)

Given that the solution to Eq. 7 is the solution to the steady state portion multiplied by Eq. 9,
the solution of Eq. 10 contains all the pertinent information about the electronic energy states
in a periodic crystal.
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Introduction to Nanoscale Thermal Conduction 5

To understand the effects of a periodic interatomic potential acting on the electron waves,
consider a simple, yet effective, model for the potential experienced by the electrons in a
periodic lattice. This model, the Kronig-Penny Model, assumes there is one electron inside
a square, periodic potential with a period distance equal to the interatomic distance, a,
mathematically expressed as

V =

{

0 for 0 < z ≤ b
V0 for −c ≤ z ≤ 0

, (11)

subjected to the periodicity requirement given by V(z + b + c) = V(z), where a = b + c.
Solutions of Eq. 10 subjected to Eq. 11 are

ψ =

{

D1 exp[iMz] + D2 exp[−iMz] for 0 < z ≤ b
D3 exp[iLz] + D4 exp[−iLz] for −c ≤ z ≤ 0

, (12)

where D1, D2, D3, and D4 are constants determined from boundary conditions,

ǫ =
h̄2 M2

2m
, (13)

and

V − ǫ =
h̄2L2

2m
, (14)

with M and L related to the electron energy.
Although the full mathematical derivation of the predicted allowed electron energies will not
be pursued here (see, for example, Griffiths (2000)), one important part of this formalism is
recognizing that the periodicity in the lattice gives rise to a periodic boundary condition of the
wavefunction, given by

ψ(z + (b + c)) = ψ(z)exp[iz(b + c)] = ψ(z)exp[ika], (15)

where k is called the wavevector. Equation 15 is an example of the Bloch Theorem. The
wavevector is defined by the periodicity of the potential (i.e., the lattice), and therefore, the
goal is to determine the allowed energies defined in Eq. 13 as a function of the wavevector. The
relationship between energy and wavevector, ǫ(k), known as the dispersion relation, is the
fundamental relationship needed to determine all thermal properties of interest in nanoscale
thermal conduction.
After incorporating the Bloch Theorem and continuity equations for boundary conditions of
Eq. 12 and making certain simplifying assumptions (Chen, 2005), the following dispersion
relation is derived for an electron subjected to a periodic potential in a one-dimensional lattice:

A

K
sin[Mc] + cos[Mc] = cos[kc]. (16)

Here, A is related to the electron energy and atomic potential V, and from Eq. 13

M =

√

2mǫ

h̄2
, (17)

such that Eq. 16 becomes

A

√

h̄2

2mǫ
sin

[
√

2mǫ

h̄2
c

]

+ cos

[
√

2mǫ

h̄2
c

]

= cos[kc]. (18)
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6 Heat Transfer

Note that the right hand side of Eq. 18 restricts the solutions of the left hand side to only exist
between -1 and 1. However, the left hand side of Eq. 18 is a continuous function that does
in fact exist outside of this range. An energy-wavevector combination that results in the left
hand side of Eq. 18 to evaluating to a number outside of the range from [-1,1] means that an
electron cannot exist for that energy-wavevector combination, indicating that electrons can
only exist at very specific energies related to the interatomic potential between the atoms in
the crystalline lattice. In addition, there is periodicity in the solution to Eq. 18 that arises on
an interval of k = 2π/c. If the interatomic potential is symmetric, then b = c = 2a, and the
periodicity arises on a length scale of k = π/a and is symmetric about k = 0. This length of
periodicity is called a Brillouin Zone and, in a symmetric case as discussed here, only the first
Brillouin Zone from k = 0 to k = π/a need be considered due to symmetry and periodicity.
To simplify this picture, now consider the case where the electrons do not ”see” the crystalline
lattice, i.e., the electrons can be considered free from the interatomic potential. In this case, the
electrons are called free electrons. For free electrons, Eqs. 13 and 14 are identical (L = M) and
A = 0, thus Eq. 18 becomes

cos

[
√

2mǫ

h̄2
c

]

= cos[kc]. (19)

From inspection, the free electron dispersion relation is given by

ǫ =
h̄2k2

2m
. (20)

This approach of deriving the free electron dispersion relation given by Eq. 20 is a bit
involved, as the Schrödinger Equation was solved for some periodic potential, and the result
was simplified to the free electron case by assuming the electrons did not ”feel” any of the
interatomic potential (i.e., V = 0). A bit more straightforward way of finding this free electron
dispersion relation is to solve the Schrödinger Equation assuming V = 0. In this case, the
time-independent version of the Schrödinger Equation (Eq. 10) is given by

− h̄2

2m

∂2ψ

∂z2
− ǫψ = 0. (21)

This ordinary differential equation is easily solvable. Rearranging Eq. 21 yields

∂2ψ

∂z2
+

2mǫ

h̄2
ψ = 0. (22)

The solution to the above equation takes the form

ψ = D5 exp

[

−i

√

2mǫ

h̄2
z

]

+ D6 exp

[

i

√

2mǫ

h̄2
z

]

, (23)

where the wavevector of this plane wave solution is given by k =
√

2mǫ/h̄2, which yields
the same dispersion relationship as given in Eq. 20. Note that the dispersion relationship
for a free electron is parabolic (ǫ ∝ k2). For every k in the dispersion relation, there are
two electrons of the same energy with different spins. Although this is not discussed in
detail in this development, it is important to realize that since two electrons can occupy the
same energy at a given wavevector k (albeit with different spins), the electron energies are
considered degenerate, or more specifically, doubly degenerate.
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Introduction to Nanoscale Thermal Conduction 7

Although the mathematical development in this work focused on the free electron dispersion,
it is important to note the role that the interatomic potential will have on the dispersion.
Following the discussion below Eq. 18, the potential does not allow certain energy-wavevector
combinations to exist. This manifests itself at the Brillouin zone edge and center as a
discontinuity in the dispersion relation. This discontinuity is called a band gap. In practice, for
electrons in a single band, the dispersion is often approximated by the free electron dispersion,
since only at the zone center and edge does the electron dispersion feel the effect of the
interatomic potential. This is a important consideration to remember in the discussion in
Section 4.
Where the dispersion gives the allowed electronic energy states as a function of wavevector,
how the electrons fill the states defines the material as either a metal or a semiconductor. At
zero temperature, the filling rule for the electrons is that they always fill the lowest energy
level first. Depending on the number of electrons in a given material, the electrons will fill
up to some maximum energy level. This topmost energy level that is filled with electrons at
zero Kelvin is called the Fermi level. Therefore, at zero temperature, all states with energies
less than the Fermi energy are filled and all states with energies greater than the Fermi energy
are empty. The location of the Fermi energy dictates whether the material is a metal or a
semiconductor. In a metal, the Fermi energy lies in the middle of a band. Therefore, electrons
are directly next to empty states in the same band and can freely flow throughout the crystal.
This is why metals typically have a very high electrical conductivity. For this reason, the
majority of the thermal energy in a metal is carried via free electrons. In a semiconductor, the
Fermi energy lies in the middle of the band gap. Therefore, electrons in the band directly
below the Fermi energy are not adjacent to any empty states and cannot flow freely. In
order for electrons to freely flow, energy must be imparted into the semiconductor to case
an electron to jump across the band gap into the higher energy band with all the empty
states. This lack of free flowing electrons is the reason why semiconductors have intrinsically
low electrical conductivity. For this reason, electrons are not the primary thermal carrier in
semiconductors. In semiconductors, heat is carried by quantized vibrations of the crystalline
lattice, or phonons.

3.2 Phonons

A phonon is formally defined as a quantized lattice vibration (elastic waves that can exist only
at discrete energies). As will become evident in the following sections, it is often convenient
to turn to the wave nature of phonons to first describe their available energy states, i.e., the
phonon dispersion relationship, and later turn to the particle nature of phonons to describe
their propagation through a crystal.
In order to derive the phonon dispersion relationship, first consider the equation(s) of motion
of any given atom in a crystal. To simplify the derivation without losing generality, attention is
given to the monatomic one-dimensional chain illustrated in Fig. 2a, where m is the mass of the
atom j, K is the force constant between atoms, and a1 is the lattice spacing. The displacement
of atom mj from its equilibrium position is given by,

uj = xj − xo
j , (24)

where xj is the displaced position of the atom, and xo
j is the equilibrium position of the atom.

Likewise, considering similar displacements of nearest neighbor atoms along the chain and
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8 Heat Transfer

applying Newtown’s law, the net force on atom mj is

Fj = K
(

uj+1 − uj

)

+ K
(

uj−1 − uj

)

. (25)

Collecting like terms, the equation of motion of atom mj becomes

müj = K
(

uj+1 − 2uj + uj−1

)

, (26)

where üj refers to the double derivative of uj with respect to time. It is assumed that wavelike
solutions satisfy this differential equation and are of the form

uj ∝ exp [i (ka1 − ωt)] , (27)

where k is the wavevector. Substituting Eq. 27 into Eq. 26 and noting the identity cos x =
2(eix + e−ix) yields the expression

mω2 = 2K (1 − cos [ka1]) . (28)

Finally, the dispersion relationship for a one-dimensional monatomic chain can be established
by solving for ω,

ω(k) = 2

√

K

m

∣

∣

∣

∣

sin

[

1

2
ka1

]∣

∣

∣

∣

. (29)

Just as was the case with electrons, attention is paid only to the solutions of Eq. 29 for
−π/a1 ≤ k ≤ π/a1, i.e., within the boundaries of the first Brillouin zone. A plot of the
dispersion relationship for a one-dimensional monatomic chain is shown in Fig. 3a. It is
important to notice that the solution of Eq. 29 does not change if k = k + 2πN/a1, where

c3

o

M

o o o

c4

o

M

O o O

*c+

*d+

l/3 l l-3 l-4

l/3 l/3 l l

o o

l-5 l-6

o O

l-3 l-3

Fig. 2. Schematics representing (a) monatomic and (b) diatomic one-dimensional chains.
Here, m and M are the masses of type-A and type-B atoms, a1 and a2 are the respective lattice
constants of the monatomic and diatomic chains, and K is the interatomic force constant.
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Fig. 3. (a) Phonon dispersion relationship of a one-dimensional monatomic chain as
presented in Eq. 29. Also plotted is the corresponding Debye approximation. Note that not
only does the Debye approximation over-predict the frequency of phonons near the zone
edge, but it also predicts a non-zero slope, and thus, a non-zero phonon group velocity at the
zone edge. (b) Phonon dispersion relationship of a one-dimensional diatomic chain as
presented in Eq. 35. In the case where M = m, the dispersion is identical to that plotted in (a),
but is represented in a “zone folded” scheme. The size of the phononic band gap depends
directly on the difference between the atoms comprising the diatomic chain.

N is an integer. This indicates that all vibrational information is contained within the first
Brillouin zone.
A phonon dispersion diagram concisely describes two essential pieces of information required
to describe the propagation of lattice energy in a crystal. First, as is obvious from Eq. 29, the
energy of a given phonon, h̄ω, is mapped to a distinct wavevector, k (in turn, this wavevector
can be related to the phonon wavelength). As might be expected, longer wavelength phonons
are associated with lower energies. Second, the group velocity, or speed at which a “packet”
of phonons propagates, is described by the relationship

vg =
∂ω

∂k
, (30)

where vg is the phonon group velocity. Additional insight can be gained if focus is turned to
two particular areas of the dispersion relationship: the zone center (k = 0) and the zone edge
(k = π/a1).
Discussion of phonons at the zone center is referred to as the long-wavelength limit.
Evaluating the limit

lim
k→0

∂ω

∂k
= a1

√

K

m
, (31)

and noting that both ω and k equal 0 at the zone center, it is found that

ω = a

√

K

m
k = ck, (32)

where c is the sound speed in the one-dimensional crystal. In this limit, the wavelength of
the elastic waves propagating through the crystal are infinitely long compared to the lattice
spacing, and thus, see the crystal as a continuous, rather than discrete medium.
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10 Heat Transfer

Keeping this in mind, a common simplification can be made when considering phonon
dispersion: the Debye approximation. The Debye approximation was developed under the
assumption that a crystalline lattice could be approximated as an elastic continuum. While
elastic waves can exist across a range of energies in such a medium, all waves propagate at the
same speed. This description exactly mimics the zone center limit described in the previous
paragraph, where phonons with wavelengths infinitely long relative to the lattice spacing
travel at the sound speed within the crystal. Naturally, then, under the Debye approximation,
Eq. 32 holds for phonons of all wavelengths, and hence, all wavevectors. The accuracy of the
Debye approximation depends largely on the temperature regime one is working in. In Fig. 3a,
both the slopes and the values of the Debye and real dispersion converge at the zone center.
As a result, the Debye approximation is most accurate describing phonon transport in the
low-temperature limit, where low energy, low frequency phonons dominate (to be discussed
in Section 5).
At the zone edge, a second limit can be established and evaluated,

lim
k→π/a

∂ω

∂k
= 0, (33)

indicating that phonons at the zone edge do not propagate. In this short wavelength limit, the
wavelengths of the elastic waves in the crystal are equal to twice the atomic spacing. Here,
atoms vibrate entirely out-of-phase with each other, leading to the formation of a standing
wave. Advanced texts address the formation of this standing wave further, noting that at
k = π/a, the Bragg reflection condition is satisfied (Srivastava, 1990). Consequently, the
coherent scattering and subsequent interference of the incoming wave creates the standing
wave condition.
At this point, discussion has been limited to monatomic crystals. However, many materials
of technological interest (semiconductors in particular) have polyatomic basis sets. Thus,
attention is now given to the diatomic one-dimensional chain illustrated in Fig. 2b. Here, m
is the mass of the “lighter” atom, and M is the mass of the “heavier” atom, such that M > m.
Due to the diatomic nature of this system, equation(s) of motion must be formulated for each
type of atom in the system,

müj = K
(

wj − 2uj + wj−1

)

(34a)

mẅj = K
(

uj+1 − 2wj + uj

)

. (34b)

Substituting wavelike solutions to these differential equations and isolating ω2 yields

ω2 = K

(

1

m
+

1

M

)

± K

(

(

1

m
+

1

M

)2

− 4

mM
sin2 ka2

)

. (35)

Perhaps the most unique feature of Eq. 35 is that for each wavevector k, two unique values of
ω satisfy the expression. As a result, as the two solutions ω1 and ω2 are plotted against each
unique k, two distinct phonon branches form: the acoustic branch, and the optical branch.
The distinction between these branches is illustrated in Fig. 3. At the zone center, in the branch
of lower energy, atoms mj and Mj move in phase with each other, exhibiting the characteristic
sound wave behavior discussed above. Thus, this branch is called the acoustic branch. On
the other hand, in the branch of higher energy, atoms mj and Mj move out of phase with
each other. If these atoms had opposite charges on them, as would be the case in an ionic
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Introduction to Nanoscale Thermal Conduction 11

crystal, this vibration could be excited by an electric field associated with the infrared edge of
visible light spectrum (Srivastava, 1990). As such, this branch is called the optical branch. The
phononic band gap between these branches at the zone edge is proportional to the difference
in atomic masses (and the effective spring constants). In the unique case where m = M, the
solution is identical to that of the monatomic chain.
Extending the one-dimensional cases described above to two or three dimensions is
conceptually simple, but is often no trivial task. For each atom of the basis set, n equations
of motion will be required, where n represents the dimensionality of the system. Generally,
solutions for the resulting dispersion diagrams will yield n acoustic branches and B(n −
1) optical branches, where B is the number of atoms comprising the basis. While in
the one-dimensional system above we considered only longitudinal modes (compression
waves), in three-dimensional systems, two transverse modes will exist as well (shear waves
due to atomic displacements in the two directions perpendicular to the direction of wave
propagation). Rigorous treatments of such scenarios are presented explicitly in advanced
solid-state texts (Srivastava, 1990; Dove, 1993).

4. Density of states

A convenient representation of the number of energy states in a solid is through the density
of states formulation. The density of states represents the number of states per unit space
per unit interval of wavevector or energy. For example, the one-dimensional density of states
of electrons represents the number of electron states per unit length per dk or per dǫ in the
Brillouin zone. Similarly, the three dimensional density of states of phonons represents the
number of phonon states per unit volume per dk or per dω in the in the Brillouin zone
(for phonons ǫ = h̄ω). The general formulation of the density of states in n dimensions
considers the number of states contained in the n − 1 space of thickness dk per unit space
Ln. Consequently, the density of states has units of states divided by length raised to the
n divided by the differential wavevector or energy. For example, the density of states of a
three-dimensional solid considers the number of states contained in the volume represented
by the two-dimensional surface multiplied by the thickness dk per unit volume L3, where L
is a length, per dk or dǫ. In this section, the density of states will be derived for one-, two-,
and three-dimensional isotropic solids. The representation of an isotropic solid implies that
periodicity arises on a length scale of k = π/a and is symmetric about k = 0, as discussed in
the last section. This means, that for the isotropic case considered in this chapter, the total
distance from one Brillouin Zone edge to the other is 2π/a. This general derivation yields a
density of states of the n-dimensional solid per interval of wavevector given by

DnD =
(n-1 surface of n-dimensional space)dk

(

2π
a

)n
Lndk

, (36)

or per interval of energy given by

DnD =
(n-1 surface of n-dimensional space)dk

(

2π
a

)n
Lndǫ

, (37)

where Ln is the ”volume” of unit space n. Note that an = Ln. In practice, the density of states
per interval of energy is more conceptually intuitive and is directly input into expressions for
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12 Heat Transfer

the thermal properties, so the starting point for the examples discussed in the remainder of
this section will be Eq. 37.
This general density of states formulation can then be recast into energy space via the electron
or phonon dispersion relations. This is accomplished by solving the dispersion relation for k.
For example, the electron dispersion relation, given by Eq. 20, can be rearranged as

k =

√

2mǫ

h̄2
, (38)

and from this

∂k =
1

2

√

2m

h̄2ǫ
∂ǫ. (39)

Similarly, assuming the phonon dispersion relation given by Eq. 32 (i.e., the Debye relation)
yields

k =
ω

vg
, (40)

and from this

∂k =
∂ω

vg
. (41)

Note that recasting Eq. 37 into energy space via a dispersion relation yields the number of
states per unit Ln per energy interval. In the remainder of this section, the specific derivation of
the one-, two- and three-dimensional electron and phonon density of states will be presented.
This abstract discussion of the density of states will become much more clear with the specific
examples.

4.1 One-dimensional density of states

The starting point for the density of states of a one-dimensional system, as generally discussed
above, is to consider the number of states in contained in a zero dimensional space multiplied
by dk divided by the one-dimensional space of distance 2π/a. Therefore, the one-dimensional
density of states is given by

D1D =
dk

(

2π
a

)

Ldǫ
. (42)

From Eq. 39, the one-dimensional electron density of states is given by

De,1D = 2 × a

2πLdǫ

1

2

√

2m

h̄2ǫ
dǫ =

1

2π

√

2m

h̄2ǫ
, (43)

where the subscript e denotes the electron system and the factor of 2 in front of the middle
equation arises due to the double degeneracy of the electron states, as discussed in Section 3.1
. From Eq. 41, the one-dimensional phonon density of states is given by

Dp,1D =
a

2πLh̄dω

h̄dω

vg
=

1

2πvg
, (44)

where the subscript p denotes the phonon system. Since a Debye model is assumed, the
phonon group velocity is equal to the speed of sound (i.e., vg = c), as discussed in Section 3.2.
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4.2 Two-dimensional density of states

For the density of states in a two-dimensional (2D) system, the starting point is to consider the
number of states along the surface of a circle with radiusk multiplied by dk divided by the 2D

space of area (2π/a)2. Therefore, the 2D density of states is given by

D2D =
2πkdk

(

2π
a

)2
L2dǫ

. (45)

From Eq. 38 and 39, the 2D electron density of states is given by

De,2D = 2 × a2

(2π)2 L2dǫ
2π

√

2mǫ

h̄2

1

2

√

2m

h̄2ǫ
dǫ =

1

π

m

h̄2
. (46)

Note that the 2D density of states for electrons is independent of energy. From Eq. 40 and 41,
the 2D phonon density of states is given by

Dp,2D = 2 × a2

(2π)2 L2h̄dω
2π

ω

vg

h̄dω

vg
=

ω

πv2
g

. (47)

where the factor of 2 in front of the middle equation arises due to the second dimension, which
introduces a transverse polarization in addition to the longitudinal polarization, as discussed
in Section 3.2. In the discussions in this chapter, equal phonon velocities and frequencies (i.e.,
dispersions) are assumed for each phonon polarization.

4.3 Three-dimensional density of states

The density of states in three-dimensions (3D) will be extensively used in the remainder of
this chapter to discuss nanoscale thermal processes. Following the previous discussions in
this section, the 3D density of states is formulated by considering the the number of states
contained on the surface of a sphere in k-space multiplied by the thickness of the sphere dk

divided by the 3D space of volume (2π/a)3. Therefore, the 3D density of states is given by

D3D =
4πk2dk

(

2π
a

)3
L3dǫ

. (48)

From Eq. 38 and 39, the 3D electron density of states is given by

De,3D = 2 × a3

(2π)3 L3dǫ
4π

2mǫ

h̄2

1

2

√

2m

h̄2ǫ
dǫ =

1

2π2

(

2m

h̄2

)
3
2

ǫ
1
2 . (49)

From Eq. 40 and 41, the 3D phonon density of states is given by

Dp,3D = 3 × a3

(2π)3 L3h̄dω
4π

ω2

v2
g

h̄dω

vg
=

3ω2

2π2v3
g

, (50)

where the factor of 3 in front of the middle equation arises due to the three dimensions, which
introduces two additional transverse polarizations along with the longitudinal polarization,
as discussed in Section 3.2.
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5. Statistical mechanics

The principles of quantum mechanics discussed in the previous two sections give the
allowable energy states of electrons and phonons. However, this development did not discuss
the way in which these thermal energy carriers can occupy the quantum states. The bridge
connecting the allowable and occupied quantum states to the collective behavior of the energy
carriers in a nanosystem is provided by statistical mechanics. Through statistical mechanics,
temperature enters into the picture and physical properties such as internal energy and heat
capacity are defined.
It turns out that the thermal energy carriers in nature divide into two classes, fermions and
bosons, which differ in the way they can occupy their respective density of states. Electrons
are fermions that follow a rule that only one particle can occupy a fully described quantum
state (where there are two quantum states with different spins per energy, as discussed in
Section 3.1). This rule was first recognized by Pauli and is called the Pauli exclusion principle.
In a system with many states and many fermion particles to fill these states, particles first
fill the lowest energy states, increasing in energy until all particles are placed. As previously
discussed in Section 3.1, the highest filled energy is called the Fermi energy, ǫF. Phonons are
bosons and are not governed by the Pauli exclusion principle. Any number of phonons can
fall into exactly the same quantum state.
When a nanophysical system is in equilibrium with a thermal environment at temperature T,
then average occupation expectation values for the quantum states are found to exist. In the
case of electrons (fermions), the occupation function is the Fermi-Dirac distribution function,
given by

fFD =
1

exp
[

ǫ−ǫF
kBT

]

+ 1
, (51)

where kB is Boltzmann’s constant (Boltzmann’s constant is kB = 1.3807 × 10−23 J K−1). For
phonons (bosons), the corresponding occupation function is the Bose-Einstein distribution
function, given by

fBE =
1

exp
[

h̄ω
kBT

]

− 1
. (52)

Figure 4a and b show plots of Eqs. 51 as a function of electron energy and 52 as a function
phonon frequency, respectively, for three different temperatures, T = 10, 500, and 1000K.
Given the distribution of carriers, the number of electrons/phonons in a bulk solid at a given
temperature is defined as

ne/p =
∫

ǫ

De/p fFD/BE dǫ, (53)

where the dimensionality of the system is driven by the dimensionality of the density of states
of the electrons or phonons derived in Section 4. The total number of electrons and phonons is
mathematically expressed by Eq. 53. The total number of electrons in a bulk solid is constant
as the Fermi-Dirac distribution only varies between zero and one, as seen in Fig. 4a; this is also
conceptually a consequence of the Pauli exclusion principle previously mentioned. Although
the distribution of electron energies change, the number density stays the same. The phonon
number density, however, which has no restriction on number of phonons per quantum
states, continues to increase with increasing temperature. Note that at low temperatures,
the majority of the phonons exist at low frequencies (low energy/long wavelengths). These
phonons correspond to phonons near the center of the Brillouin zone (k = 0). As temperature
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Fig. 4. (a) Fermi-Dirac and (b) Bose-Einstein expectation values calculated from Eqs. 51 and
52, respectively, for three different temperatures, T = 10, 500, and 1000K. Note that the
expectations values of the Fermi-Dirac distribution function vary from zero to unity, and
therefore represent the probability of an electron being at a certain energy state.

is increased, the proportion of higher frequency (higher energy/shorter wavelength) phonons
that exist increases; these phonons correspond to phonons that are closer to the Brillouin zone
edge (k = π/a). With the number of electrons/phonons defined in Eq. 53 and following the
discussion in Section 2, the internal energy of the electron/phonon system is defined as

Ue/p =
∫

ǫ

ǫDe/p fFD/BE dǫ. (54)

Now that the internal energies of the electrons and phonons are defined in terms of the
properties of the individual energy carriers, their correspond heat capacities are given by the
temperature derivative of the internal energies, as discussed in Section 2; that is,

C =
∂U

∂T
. (55)

The heat capacities of electrons and phonons for one-, two-, and three-dimensional solids will
be studied in the remainder of this section.

5.1 Electron heat capacity

Since the zero temperature state of a free electron gas does not correspond to a zero internal
energy system (i.e., U(T = 0) �= 0)), care must be taken when defining the integration limits
in the calculation of the heat capacity. To begin, the internal energy of the T = 0 state of a free
electron gas is given by

Ue(T = 0) =

ǫF
∫

0

ǫDe fFD dǫ. (56)
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As temperature increases, the electrons redistribute themselves to higher energy levels and
the internal energy is calculated by considering electrons over all energy states, given by

Ue(T = 0) =

∞
∫

0

ǫDe fFD dǫ. (57)

Therefore, the change in internal energy of the electron system given some arbitrary δT is
determined by subtracting Eq. 56 from 57, yielding

δUe =

∞
∫

0

(ǫ − ǫF)De(δ fFD)dǫ. (58)

Following Eq. 55, the electronic heat capacity is given by

Ce =

∞
∫

0

(ǫ − ǫF)De
∂ fFD

∂T
dǫ. (59)

At this point, the various electronic density of states defined in Section 4 will be inserted
into Eq. 59 to study the effects of dimensionality on electronic thermal storage. For
convenience, the electronic heat capacity discussion will be limited to metals since electrons
are the dominant thermal carriers in metals and convenient simplifications in the heat
capacity derivations can be made to elucidate the interesting thermophysics. Mainly, at
low-to-moderate temperatures, the density of states in metals can be considered constant and
evaluated at the Fermi energy. This simplifying assumption means that the density of states
can be taken out of the integral in Eq. 59. Therefore, Eq. 59 can be rewritten as

Ce = De(ǫF)

∞
∫

0

(ǫ − ǫF)
∂ fFD

∂T
dǫ = De(ǫF)

∞
∫

0

(ǫ − ǫF)
2

kBT2

exp
(

ǫ−ǫF
kBT

)

(

exp
(

ǫ−ǫF
kBT

)

+ 1
)2

dǫ. (60)

Making the substitution of x ≡ (ǫ − ǫF)/(kBT), Eq. 60 can be re-expressed as

Ce = De(ǫ = ǫF)kBT2

∞
∫

− ǫF
kB T

x2 exp(x)

(exp(x) + 1)2
dx. (61)

To simplify this integral, consider the lower bound of −ǫF/(kBT). At low to moderate
temperatures, the magnitude of this quantity is very large, meaning that this lower bound
extends to very large negative numbers. Therefore, the lower bound of Eq. 61 can be
approximated as negative infinity, so that Eq. 61 can be recast as

Ce = De(ǫ = ǫF)kBT2

∞
∫

−∞

x2 exp(x)

(exp(x) + 1)2
dx. (62)

This integral can now be solved exactly. By recognizing that

∞
∫

−∞

x2 exp(x)

(exp(x) + 1)2
dx =

π2

3
, (63)
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the electronic heat capacity is given by

Ce =
π2

3
k2

BTDe(ǫ = ǫF). (64)

Now to study the electronic heat capacity of electronic systems with different
dimensionalities, the various electronic densities of states derived in Section 4 just need be
inserted into Eq. 64.
Consider the 3D electron density of states given by Eq. 49. Plugging this into Eq. 64 yields

Ce,3D =
π2

3
k2

BT
1

2π2

(

2m

h̄2

)
3
2

ǫ
1
2

F =
k2

BT

6

(

2m

h̄2

)
3
2

ǫ
1
2

F . (65)

To simplify this expression further, consider Eq. 53 for a 3D system of electrons. Since, as
previously mentioned, Eq. 53 is constant for electrons, this expression can be evaluated exactly
at T = 0 to give analytical expression for the electron number density. At zero temperature,
Eq. 53 for electrons becomes

ne,3D =

ǫF
∫

0

De,3D fFD(T = 0)dǫ =

ǫF
∫

0

De,3D dǫ =
1

3π2

(

2m

h̄2

)
3
2

ǫ
3
2

F . (66)

and from this, it is apparent that for free electrons in a 3D metallic system

(

2m

h̄2

)
3
2

=
3π2ne,3D

ǫ
3
2

F

. (67)

Inserting Eq. 67 in 65 yields

Ce,3D =
π2k2

Bne,3D

2ǫF
T, (68)

showing that for a 3D system of free electrons, the heat capacity is directly related to
the temperature, where the proportionality constant is related to material properties. The
electronic heat capacity of Au is plotted in Fig 5.
To examine the electronic heat capacity of a 2D electronic system, consider the 2D electron
density of states given by Eq. 46. Substituting this 2D density of states into Eq. 64 yields

Ce,2D =
π2

3
k2

BT
1

π

m

h̄2
=

πk2
BT

3

m

h̄2
. (69)

Following the development for the 3D heat capacity, Eq. 53 for a 2D system of electrons is
given by

ne,2D =

ǫF
∫

0

De,2D fFD(T = 0)dǫ =

ǫF
∫

0

De,2D dǫ =
1

π

m

h̄2
ǫF. (70)

From this, it is apparent that for free electrons in a 2D metallic system

m

h̄2
=

πne,2D

ǫF
. (71)
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Inserting Eq. 71 in 69 yields

Ce,2D =
π2k2

Bne,2D

3ǫF
T, (72)

which has a similar dependence on temperature and material properties as the electronic heat
capacity in 3D.
Finally, for a one-dimensional electronic system, consider the one-dimensional density of
states given by Eq. 43. Plugging this into Eq. 64 yields

Ce,1D =
π2

3
k2

BT
1

2π

√

2m

h̄2ǫF

=
π

6
k2

BT

√

2m

h̄2ǫF

. (73)

The number density of a one-dimensional system of electrons is given by

ne,1D =

ǫF
∫

0

De,1D fFD(T = 0)dǫ =

ǫF
∫

0

De,1D dǫ =
1

2π

√

2mǫF

h̄2
. (74)

From this
√

2m

h̄2
=

2πne,1D√
ǫF

, (75)

which yields

Ce,1D =
π2k2

Bne,1D

3ǫF
T, (76)

which is also directly proportional to temperature. As apparent from the derivations of
the electronic heat capacities in different dimensionalities of electron systems, the electronic
heat capacity is always directly related to the temperature, regardless of the electron system
dimension.

5.2 Phonon heat capacity

Unlike electrons (fermions), the zero temperature state of phonons (bosons) does not
correspond to a zero internal energy state (i.e., U(T = 0) �= 0) since at T = 0, the lattice is
not vibrating so phonons do not exist. Therefore, the change in internal energy of the phonon
system given some arbitrary δT is determined by evaluating

δUp =

ωmax
∫

0

h̄ωDp(δ fBE)dω. (77)

Following Eq. 55, the phonon heat capacity is given by

Cp =

ωmax
∫

0

h̄ωDp
∂ fBE

∂T
dω =

ωmax
∫

0

h̄2ω2

kBT2
Dp

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω. (78)

Since the Debye assumption is employed for the phonon dispersion in these examples, the
maximum phonon frequency is defined as ωmax = vgπ/a1.
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The 3D phonon heat capacity is derived by plugging in the expression for the 3D phonon
density of states (Eq. 50) in Eq. 78 which gives

Cp,3D =

ωmax
∫

0

h̄2ω2

kBT2

3ω2

2π2v3
g

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω =

ωmax
∫

0

3h̄2ω4

2π2v3
gkBT2

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω. (79)

The 3D phonon heat capacity of Au is plotted in Fig. 5 along with the electronic heat capacity.
Note that the phonon system heat capacity approaches a constant values at high temperatures.
This limit of constant phonon heat capacity is called the Dulong and Petit limit. The onset of
this Dulong and Petit limit (i.e., the onset of the constant phonon heat capacity) occurs around
a material property called the Debye temperature. The Debye temperature is approximately
the equivalent temperature in which all phonon modes in a solid are excited; this Debye
temperature concept will be quantified in more detail below. Also, note that at very low
temperatures (T ≈ 1 K), the electron system heat capacity is larger than that of the phonon
system. However, for the majority of the temperature range in which Au is solid (the melting
temperature of gold is about 1,300 K), the phonon heat capacity is several orders of magnitude
larger than that of the electrons. Note also the low temperature trend of the phonon heat
capacity is different than the liner trend in temperature exhibited by the electron system. For
the remainder of this section, the low temperature trends in the phonon heat capacity, and the
effect of dimensionality on this trend, will be explored.
To examine the low temperature trends in phonon heat capacity, it is convenient to make the
variable substitution x ≡ h̄ω/(kBT). With this, the 3D phonon heat capacity becomes

Cp,3D =
3k4

B

2π2v3
g h̄3

T3

xmax≡θD/T
∫

0

x4 exp[x]

(exp[x]− 1)2
dx, (80)

where the upper limit is redefined as the Debye temperature, θD, divided by the temperature.
Note that θD = h̄ωmax/kB, which is, as previously conceptually discussed, directly related
to the maximum phonon frequency in a solid. In this low temperature limit, T ≪ θD and
xmax −→ ∞, so that the integral in Eq. 80 can be evaluated exactly. Recognizing that

∞
∫

0

x4 exp[x]

(exp[x]− 1)2
dx =

4π4

15
, (81)

the low temperature heat capacity in a 3D phonon system becomes

Cp,3D =
2π2k4

B

5v3
g h̄3

T3, (82)

showing that for a 3D system of phonons, the heat capacity is directly related to the cube of
the temperature at low temperatures, where the proportionality constant is related to material
properties.
Following a similar derivation for a 2D phonon system, plugging Eq. 47 in Eq. 78 gives

Cp,2D =

ωmax
∫

0

h̄2ω2

kBT2

ω

πv2
g

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω =

ωmax
∫

0

h̄2ω3

πv2
gkBT2

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω. (83)
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Fig. 5. 3D electron and phonon heat capacities of Au calculated from Eq. 68 and 80,
respectively. For these calculations, the Au material parameters are assumed as
ne,3D = 5.9 × 1028 m−3, ǫF = 5.5eV = 8.811 × 10−19 J, and vg = 3,240m s−1.

Making the above mentioned x-substitution yields

Cp,2D =
k3

B

piv2
g h̄2

T2

θD/T
∫

0

x3 exp[x]

(exp[x]− 1)2
dx, (84)

As with the 3D case, at low temperatures, the integration can be extended to infinity.
Recognizing that

∞
∫

0

x3 exp[x]

(exp[x]− 1)2
dx = 6ζ[3], (85)

where ζ[3] is the Zeta function evaluated at 3, the low temperature heat capacity in a 2D
phonon system becomes

Cp,2D =
6ζ[3]k3

B

πv2
g h̄2

T2, (86)

showing that for a 2D system of phonons, the heat capacity is directly related to the square of
the temperature at low temperatures, where the proportionality constant is related to material
properties.
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Following a above derivations, the heat capacity of a one-dimensional phonon system is
derived by plugging Eq. 44 in Eq. 78 which gives

Cp,1D =

ωmax
∫

0

h̄2ω2

kBT2

1

2πvg

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω =

ωmax
∫

0

h̄2ω2

2πvgkBT2

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

dω. (87)

Making the above mentioned x-substitution yields

Cp,1D =
k2

B

2πvg h̄
T

θD/T
∫

0

x2 exp[x]

(exp[x]− 1)2
dx, (88)

As with the previous cases, at low temperatures, the integration can be extended to infinity.
Recognizing that

∞
∫

0

x2 exp[x]

(exp[x]− 1)2
dx =

π2

3
, (89)

the low temperature heat capacity in a one-dimensional phonon system becomes

Cp,1D =
πk2

B

6vg h̄
T, (90)

showing that for a one-dimensional system of phonons, the heat capacity is directly and
linearly related to the the temperature at low temperatures, where the proportionality constant
is related to material properties. Note that, unlike the electron systems which in which the
temperature trend in heat capacity does not change with dimensionality, an n-dimensional
phonon system has a temperature dependency of Tn.

6. Thermal conductivity

In the preceding sections, the quantum energy states of electrons and phonons were derived,
and from this, expressions for heat capacities of these thermal energy carriers were presented.
With this, given a particle velocity and scattering time, the thermal conductivity can be
calculated via Eq. 6. In this final section, the thermal conductivity of electrons and phonons
will be calculated from the quantum derivations of heat capacity. The discussion will be
limited to systems in which a 3D density of states can still be assumed and the electrons and
phonons are treated as particles experiencing scattering events, as in the Kinetic Theory of
Gases discussion in Section 2. This approximation of particle transport typical holds true until
characteristic dimensions of nanosystems get below about 10 nm at elevated temperatures
(T > 50K). Taking the particle approach, and referring to Eq. 6, the thermal conductivity is
given by

κe/p =
1

3
Ce/p,3Dv2

e/pτe/p =
∫

ǫ

ǫDe/p
∂ fFD/BE

∂T
v2

e/pτe/p dǫ. (91)

As previously discussed, electrons are the dominant thermal carrier in metals where phonons
are the dominant thermal carrier in semiconductors; therefore, the derivation of electron
thermal conductivity will focus on gold for example calculations and the phonon thermal
conductivity calculations will focus on silicon.
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The final two quantities needed to determine the thermal conductivity of electrons and
phonons are their respective scattering times and velocities. In our particle treatment, the
electrons and phonons can scatter via several different mechanisms, which will be discussed
in more detail later in this section. However, the total scattering rate used in Eq. 91 is related
to the individual scattering processes of each thermal carrier via Matthiessen’s Rule, given by
(Kittel, 2005)

1

τ
= ∑

m

1

τm
, (92)

where m is an index representing a specific scattering process of an electron or a phonon.
As for the velocities of the carriers, the phonon velocity was previous defined in Section 3.2,
specifically Eq. 30. Typical phonon group velocities are on the order of vg = 103 − 104 m s−1.
The electron velocities can be calculated from the Fermi energy. As the electronic thermal
conductivity is related to the temperature derivative of the Fermi-Dirac distribution, only
electrons around the Fermi energy will participate in transport. Approximating all the
electrons participating in transport to have energies of about the Fermi energy, the velocity
of the electrons at the Fermi energy, the Fermi velocity, can be calculated from the common
expression for kinetic energy of a particle so that the electron Fermi velocity is given by

vF =

√

2ǫF

m
. (93)

Typical Fermi velocities in metals are on the order of 106 m s−1.

6.1 Electron thermal conductivity

To calculate the thermal conductivity of the electron system via Eq. 91, the final piece of
information that must be known is the electron scattering time. At moderate temperatures,
electrons can lose energy by scattering with other electrons and with the phonons. In metals,

the electron-electron and electron-phonon scattering processes take the form τee =
(

AeeT2
)−1

and τep =
(

BepT
)−1

, respectively, where A and B are material dependent constants related
to the electrical resistivity (Kittel, 2005). From Eq. 94, the total scattering time at moderate
temperatures in metals is given by

1

τ
=

(

1

τee
+

1

τep

)

= AeeT2 + BepT. (94)

From this, the electron thermal conductivity is given by

κe =
v2

F

AeeT2 + BepT

∞
∫

−∞

(ǫ − ǫF)De,3D(ǫF)
∂ fFD

∂T
dǫ =

π2k2
Bne,3Dv2

F

2ǫF

(

AeeT + Bep
) , (95)

where the simplification on the right hand side comes from the development in Section 5.1.
The electron thermal conductivity of Au as a function of temperature predicted via Eq. 95
is shown in Fig. 6a along with the data from Fig. 1. Since the forms of the scattering times
in metals discussed above are only valid for temperatures around and above the Debye
temperature, the thermal conductivity is shown in the range from 100 − 1000 K. Below this
range, additional electron and phonon iterations affect the conductivity that are beyond the
scope of this chapter. The scattering constants, Aee and Bep are used to fit the model in Eq. 95
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to the data, and the resulting constants, listed in the figure caption, are in excellent agreement
with previously published values (Ivanov & Zhigilei, 2003). In addition, the temperature
trends agree remarkably well even with the simplified assumptions involved in the derivation
of Eq. 95, showing the power of modeling electron thermal transport from a fundamental
particle level.
With this approach, the effects of nanostructuring on thermal conductivity can now be
calculated. When the sizes of a nanomaterial are on the same order as the mean free path of
the thermal carriers, in the case of metals, the electrons, an additional scattering mechanism
arises due to electron boundary scattering. This boundary scattering time is related to the
length of the limiting dimension, d, in the nanosystem through τeb = d/vF. Using this
with Matthiessen’s Rule (Eq. 94), the thermal conductivity of a metallic nanosystem can be
calculated by (Hopkins et al., 2008)

κe =
π2k2

Bne,3Dv2
FT

2ǫF

(

AeeT2 + BepT + vF
d

) . (96)

Note that when d is very large, Eq. 96 reduces to Eq. 95. Fig. 6a shows the predicted thermal
conductivity as a function of temperature for Au nanosystems with limiting d indicated in the
figure. Due to electron-boundary scattering, the thermal conductivity of metallic nanosystems
can be greatly reduced by nanostructuring.

6.2 Phonon thermal conductivity

As with the electron thermal conductivity, to calculate the thermal conductivity of the
phonon system via Eq. 91, the phonon scattering times must be known. The major
phonon scattering processes, valid at all temperatures, are phonon-phonon scattering,
phonon-impurity scattering, and phonon-boundary scattering. Note that phonon boundary
scattering exists even in bulk samples since phonons exist as a spectrum of wavelengths,
some of which can be larger than bulk samples. These processes take the form of τpp =
(

ATω2 exp [−B/T]
)−1

for phonon-phonon scattering, τpi =
(

Cω4
)−1

for phonon-impurity

scattering, and τpb =
(

vg/d
)−1

for phonon-boundary scattering. Note that this boundary
scattering term represents the bulk boundaries. From this, the total scattering time for
phonons is given by

1

τ
=

(

1

τpp
+

1

τpi
+

1

τpb

)

= ATω2 exp

[

− B

T

]

+ Cω4 +
vg

d
. (97)

and the phonon thermal conductivity can be calculated via

κe =

ωmax
∫

0

h̄ωDp,3D
∂ fBE

∂T
v2

g

(

ATω2 exp

[

− B

T

]

+ Cω4 +
vg

d

)−1

dω

=

ωmax
∫

0

3h̄2ω4

2π2vgkBT2

exp
[

h̄ω
kBT

]

(

exp
[

h̄ω
kBT

]

− 1
)2

(

ATω2 exp

[

− B

T

]

+ Cω4 +
vg

d

)−1

dω. (98)

where the simplification on the right hand side comes from the development in Section 5.2.
The phonon thermal conductivity of Si as a function of temperature predicted via Eq. 98 is
shown in Fig. 6b along with the data from Fig. 1. The scattering time coefficients A and
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Fig. 6. (a) Electron thermal conductivity of Au as a function of temperature for bulk Au and
for Au nanosystems of various limiting sizes indicated in the plot. The bulk model
predictions, calculated via Eq. 95, are compared to the experimental data in Fig. 1. For these

calculations, Aee = 2.4 × 107 K−2 s−1 and Bep = 1.23 × 1011 K−1 s−1 were assumed, in
excellent agreement with literature values (Ivanov & Zhigilei, 2003). Additional
thermophysical parameters used for this calculation are listed in the caption of Fig. 5. The
various Au nanosystem thermal conductivity is calculated via Eq. 96. (b) Phonon thermal
conductivity of Si as a function of temperature for bulk Si and for Si nanoysstems of various
limiting sizes in indicated in the plots. The bulk model predictions, calculated via Eq. 98, are
compared to the experimental data in Fig. 1. For these calculations, the scattering coefficients

were A = 1.23 × 10−19 s K−1, B = 140K, and C = 1.32 × 10−45 s3. In addition, the group
velocity of Si is taken as the speed of sound, vg = 8,433m s−1, and the lattice parameter of Si

is a = 5.430 × 10−10 m. To fit the bulk data, d = 8.0 × 10−3 m. To examine the effects of
nanostructuring, d is varied as indicated in the plot.

B were iterated to match the data after the maximum and C was taken from the literature
(Mingo, 2003). The boundary scattering constant, d, is used as a fitting parameter to match the
data at temperatures lower than the maximum. The resulting coefficients were in excellent
agreement with the literature values for bulk Si (Mingo, 2003). Note that the model using
Eq. 98 fits the data and captures the temperature trends extremely well showing the power
of modeling the bulk phonon thermal conductivity from a fundamental energy carrier level.
To examine the effects of nanostructuring on the phonon thermal conductivity, d is varied
to dimensions indicated in Fig. 6b. Nanostructruing greatly reduces the phonon thermal
conductivity, especially at low temperatures where phonon mean free paths are long.

7. Summary

Modern devices, with feature sizes on the length scale of electron and phonon mean
free paths, require thermal analyses different from that of the phenomenological Fourier
Law. This is due to the fact that the scattering of electrons and phonons in such systems
occurs predominantly at interfaces, inclusions, grain boundaries, etc., rather than within
the materials comprising the device themselves. Here, electrons and phonons have been
described in terms of their respective dispersion diagrams, calculated via the Schrördinger
equation for electrons and atomic equations of motion for phonons. Using this information
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and density of states expressions, energy storage properties, i.e., internal energy and heat
capacity, have been formulated. Lastly, applying the Kinetic Theory of Gases, the thermal
conductivity expressions for metals and semiconductors have been derived. It has been
shown that limiting feature sizes can result in a significant reduction in thermal conductivity.
This, then, once again reinforces the idea that thermal transport on the nanoscale requires an
altogether different approach from that at the macroscale.
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