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1. Introduction

Heat transport problems arise in many fields of civil engineering e.g. indoor climate comfort,
building insulation, HVAC (heating, ventilating, and air conditioning) or fire prevention to
name a few. An a priori and precise knowledge of the thermal behavior is indispensable
for an efficient optimization and planning process. The complex space-time behavior of
heat transfer in 3D domains can only be achieved with extensive computer simulations (or
prohibitively complex experiments). In this article we describe approaches to simulate the
transient coupled modes of heat transfer (convection, conduction and radiation) applicable
to many fields in civil engineering. The numerical simulation of these coupled multi-scale,
multi-physics problems are still very challenging and require great care in modeling the
different spatio-temporal scales of the problem. One approach in this direction is offered by
the Lattice-Boltzmann method (LBM) which is known to be a viable Ansatz for simulating
physically complex problems. For the simulation of radiation a radiosity method is used
which also has already proven its suitability for modeling radiation based heat transfer. The
coupling and some typical applications of both methods are discussed in this chapter.

2. Modeling thermal flows with Lattice-Boltzmann

In the last two decades the Lattice-Boltzmann-Methods (LBM) has matured as an efficient
alternative to discretizing macroscopic transport equations such as the Navier-Stokes
equations describing coupled transport problems such as thermal flows. The Boltzmann
equation describes the dynamics of a propability distribution function of particles with
a microscopic particle velocity under the influence of a collision operator. Macroscopic
quantities such as the fields of density, flow velocities, energy or heat fluxes are consistently
computed as moments of ascending order from the solution. For flow problems the Boltzmann
equation can be drastically simplified by discretizing the microscopic velocity space and by
using a simplified collision operator. A non-trivial yet algorithmically straight forward Finite
Difference discretization for this set of PDEs results in the Lattice-Boltzmann equations. For
the simulation of thermal driven flows using the LB method a hybrid thermal LB model
(Hybrid TLBE) has been established, i.e. an explicit coupling between an athermal LBE
scheme for the flow part and a separate Lattice-Boltzmann equation for the temperature
equation.
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2 Heat Transfer

2.1 An overview of the physical background of lattice Boltzmann models

The origin of the physical modeling process is the fact that the physical scope of validity of
the Boltzmann equation includes the Navier-Stokes equations as well. In the framework of the
kinetic gas theory it can be shown that the Navier-Stokes equations can be derived from the
Boltzmann equation in the limit of small Knudsen numbers if the hydrodynamic momentum
and pressure fields are described as low order moments of the primary variables of the
Boltzmann equation (i.e. probability distributions). This implies that approximate solutions
of the Boltzmann equations and their resulting moments can be used to calculate approximate
solutions for the corresponding Navier-Stokes equations (Succi, 2001; He & Luo, 1997b;
Bhatnagar et al., 1954). A direct discretization of the full Boltzmann equation is neither useful
nor necessary for most macroscopic flow problems; therefore, the following simplifications are
typically made: First, the collision operator in the so-called BGK or Multiple-Relaxation-Time
(MRT) approximation is considered, which assumes that the particle system is statistically
close to a kinetic equilibrium. Furthermore, the microscopic velocity space is discretized
to develop a system of discrete Boltzmann equations, instead of the Boltzmann equation in
BGK-approximation. These discrete equations contain a constant prefactor in the convective
term, which suggests a discretization along the corresponding characteristics. This system of
discrete Boltzmann equations can be numerically discretized in different ways. The model
relationships are outlined in Figure 1.
Historically, LBM originated from the lattice gas automata [LGA], which can be considered as
a simplified, fictitious molecular dynamics in which space, time, and particle velocities are all
discrete. However, it was discovered that LGA suffers from several inherent defects including

Chapman-Enskog expansion

Chapman-Enskog-Expansion

small Knudsen number

Bhatnagar-Gross-Krook-Approximation (BGK)

Discretization in space and time

small Knudsen number

small Mach number

Discretization in velocity space

mass continuity equation

@u

@t
+ (u5)u= ¡

1

½
5 p+

´

½
¢u

Navier-Stokes equations:

5u= 0

Boltzmann equation

@fi

@t
+ ei

@fi

@x
= ¡

1

¿

³
fi ¡ f

eq
i

´
discrete Boltzmann equation

fi(t+¢t; x+ei¢t) = fi(t; x)¡
¢t

¿

³
fi(t; x)¡f

eq
i (t; x)

´

@f

@t
+ »

@f

@x
= ¡

1

¿

³
f ¡ feq

´
simplified Boltzmann equation

Ω@f

@t
+ »

@f

@x
= (f; f 0)

Lattice Boltzmann equation

impulse transport equation

Fig. 1. From the Boltzmann equation to Navier-Stokes

166 Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology

www.intechopen.com



Efficient Simulation of Transient HeatyTransfer Problems in Civil Engineering 3

the lack of Galilean invariance (except for ρ = constant), the presence of statistical noise and
the absence of exponential complexity for three-dimensional lattices. The main motivation
for the transition from LGA to LBM was the desire to remove statistical noise by replacing
the Boolean particle number in a lattice direction with its ensemble average, the so-called
density distribution function. Accompanying this replacement, the discrete collision rules
also have to be modified as a continuous function - the collision operator. The first LBM has
been proposed by (McNamara & Zanetti, 1988) and improved by (Higuera & Jiménez, 1989;
Higuera et al., 1989). However, the connection to the Boltzmann equation (introduced by the
Austrian physicist Ludwig Boltzmann in 1872) has been proven afterwards (He & Luo, 1997b;
Sterling & Chen, 1996). The Boltzmann equation describes the statistical distribution of one
particle in a fluid and the probability to encounter this particle at time t with velocity ξξξ at
location x (Cercignani et al., 1994; Cercignani & Penrose, 1998):

∂ f

∂t
+ ξξξ ·

∂ f

∂x
+ F ·

∂ f

∂ξξξ
= Ω( f , f ′) (1)

In the LBM development, an important simplification is the approximation of the collision
operator with the Bhatnagar-Gross-Krook (BGK) relaxation term. This lattice BGK (LBGK)
model renders simulations more efficient and allows flexibility of the transport coefficients.
On the other hand, it has been shown that the LBM scheme can also be considered as a
special discretized form of the continuous Boltzmann equation. Through a Chapman-Enskog
expansion (Frisch et al., 1987; Qian et al., 1992) or an asymptotic analysis (Junk et al., 2005),
one can recover the governing continuity and Navier-Stokes equations (Equation 2) from the
LBM algorithm (Qian et al., 1992).

∂u

∂t
+ (u∇)u= −

1

ρ
∇p +

μ

ρ
∆u, (2a)

∇u= 0 (2b)

In addition, the pressure field is also directly available from the density distributions as p =
c2

S ρ where cs is the speed of sound and hence there is no additional Poisson equation to be
solved as in traditional CFD methods.
A particularly effective form of discretization is obtained if the spatial grid is being chosen
so that the advection of the distribution functions follows exactly the characteristics defined
by the microscopic particle velocities, i.e. if the physical discretization of the microscopic
velocity space (after multiplying it with the appropriate local time step) is congruent with the
numerical grid. This leads to a relatively simple Finite-difference approach. With the help of
an appropriate multi-scale expansion it can be shown that the moments of zero to second
order are approximate solutions of the velocity and pressure tensor of the Navier-Stokes
equations, given that the relaxation time included in the BGK-operator is defined as a linear
function of the kinematic viscosity. Yet, this scheme would not be competitive without
further modifications. Theoretical analysis allows to determine a global constant numerical
viscosity, which can be eliminated by appropriate scaling, resulting in a method of quadratic
accuracy in space for the Navier-Stokes equations. A detailed description of the underlying
derivations can be found in (Qian et al., 1992; Chen & Doolen, 1998; Succi, 2001; Dellar,
2003; He & Luo, 1997a;b; Bhatnagar et al., 1954) The accuracy of the method in the fluid
depends, like for all transport problems mainly on the quality of the boundary conditions.
In contrast to the direct discretization of the Navier-Stokes equations corresponding initial-
and boundary conditions must be specified for the probability distributions within LBM.
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4 Heat Transfer

Different approaches have been developed regarding accuracy and consistency and have been
analyzed in the corresponding literature see e.g. (Junk et al., 2005; Ginzburg & d’Humières,
1996; d’Humières et al., 2002). Since typical LBM discretizations are based on Cartesian
grids, it represents a curved surface only with first order accuracy. For second order accurate
fluid/wall boundary conditions it is necessary to compute the projection of the node links
to the surface of the geometry and incorporate them into the discretization scheme for the
boundary conditions. If MRT approaches (d’Humières et al., 2002) are used, boundary
conditions for pressure and velocities can be enforced with second order accuracy. The
application of hierarchical Cartesian grid allows the use of tree type data structures and
enables a hierarchical time-step procedure with an optimal Courant number of one at each
grid level, i.e. on coarse grid cells only a correspondingly coarser time step is necessary ( Tlke
et al., 2006). The issue of efficiency of the LB method in direct comparison with state-of-the-art
FE and FV-discretizations of the Navier-Stokes equations is discussed e.g. in (Geller et al.,
2006).
Unlike the traditional computational fluid dynamics (CFD), which numerically solves the
conservation equations of macroscopic properties (i. e., mass, momentum, and energy), LBM
models the fluid consisting of fictitious particles, which perform consecutive propagation and
collision processes over a discrete lattice. Due to its particulate nature and local dynamics,
LBM is very efficient when dealing with complex boundaries and the incorporation of
microscopic interactions.

2.2 A short introduction to the lattice Boltzmann method

The LB method is a numerical method to solve the Navier-Stokes equations Frisch et al.
(1987); Benzi et al. (1992); Chen & Doolen (1998), where density distributions propagate and
collide on a regular lattice. A common labeling for different lattice Boltzmann models is
DdQq (Qian et al., 1992), where d is the space dimension and q the number of microscopic
velocities. Besides the most common D3Q19 models (Figure 2) one can often find D3Q15
stencils (Figure 2) in 3D and D2Q9 in 2D (Figure 3) as well as non local stencils like D3Q27
or D3Q39. D3Q13 uses a reduced set of velocities, however it is very promising due to an
excellent ratio between accuracy and computational requirements (d’Humières et al., 2001;
Tlke & Krafczyk, 2008).
In the following section x represents a 3D vector in space and fff a b-dimensional vector, where
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Fig. 2. D3Q19- and D3Q15 stencils, the most common representatives in 3D
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Efficient Simulation of Transient HeatyTransfer Problems in Civil Engineering 5
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Fig. 3. D2Q9 stencil commonly used for 2D LBM and D3Q13 - the smallest stencil for a space
filling grid in 3D

b is the number of microscopic velocities. The 19 velocities are given as

ei, i = 0, . . . ,18} =
⎛

⎝

0 c −c 0 0 0 0 c −c c −c c −c c −c 0 0 0 0
0 0 0 c −c 0 0 c −c −c c 0 0 0 0 c −c c −c
0 0 0 0 0 c −c 0 0 0 0 c −c −c c c −c −c c

⎞

⎠

where c is a constant microscopic reference velocity related to the speed of sound by c2
s =

c2/3. The microscopic velocities define a space-filling computational lattice where a node is
connected to the neighboring nodes through the vectors {∆tei, i = 0, . . . ,18}. The generalized
lattice Boltzmann equation (GLBE) using the Multiple-Relaxation-Time model introduced by
(d’Humières, 1992; Lallemand & Luo, 2000) is given by

fi(t + ∆t,x+ ei∆t) = fi(t,x) + Ωi, i = 0, . . . ,b − 1, (3)

where fi are mass fractions (unit kg m−3) propagating with velocities ei, ∆t is the time step,
the grid spacing is ∆x = c∆t, and the collision operator of the Multiple-Relaxation-Time model
(MRT) is given by

Ω =M
−1

S ((M fff )− mmmeq) . (4)

The matrix M is used to transform the distributions into moment space. The resulting
moments mmm =M fff are labeled as

mmm = (δρ, e,ǫ, jx,qx, jy,qy, jz,qz,3pxx,3πxx, pww,πww, pxy, pyz, pxz,mx,my,mz),

where δρ is a density variation related to the pressure variation δp by

δp =
c2

3
δρ. (5)

and where (jx, jy, jz) = ρ0(ux,uy,uz) is the momentum and ρ0 is a constant reference
density. The moments e, pxx, pww, pxy, pyz, pxz of second order are related to the stress tensor
(Equation 6). The other moments of higher order are related to higher order derivatives of the
flow field and have no direct physical impact with respect to the incompressible Navier-Stokes
equations.
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6 Heat Transfer

σαβ = −pδαβ + ρν(
∂uα

∂xβ
+

∂uβ

∂xα
) (6)

The matrix S is a diagonal collision matrix composed of relaxation rates {si,i, . . . ,b − 1}, also

called the eigenvalues of the collision matrix M−1SM. The rates different from zero are

s1,1 = −se

s2,2 = −sǫ

s4,4 = s6,6 = s8,8 = −sq

s10,10 = s12,12 = −sπ

s9,9 = s11,11 = s13,13 = s14,14 = s15,15 = −sν

s16,16 = s17,17 = s18,18 = −sm.

The relaxation rate sν is related to the kinematic viscosity ν by

sν =
1

3 ν
c2∆t

+ 1
2

. (7)

The remaining relaxation rates se, sǫ, sq, sπ and sm can be freely chosen in the range of [0,2] and
may be tuned to improve accuracy as well as stability (Lallemand & Luo, 2000) of the model.
The optimum values depend on the specific system under consideration (geometry, initial,
and boundary conditions) and can therefore not be computed in advance for general cases.
In summary it may be noted that if one uses either a Chapman-Enskog expansion (Frisch
et al., 1987) or an asymptotic expansion using the diffusive scaling (Junk et al., 2005), it can be
shown that the lattice Boltzmann method is a scheme of first order in time and second order
in space for the incompressible Navier-Stokes equations.

2.3 Thermal flows

During the last decade different approaches for the simulation of thermal driven flows using
the LB method have been developed (Alexander et al., 1993; Vahala et al., 2000; Shan, 1997;
Qian, 1993; Filippova & Hänel, 2000; Lallemand & Luo, 2003). Energy conserving thermal
LB equation models (TLBE) use a larger set of discrete velocities than the standard method
(Qian et al., 1992) to include a thermal variable, such as temperature. The internal energy is
defined by a second-order moment of the distribution function, and the collision operator is
chosen to satisfy local energy conservation. However, these thermal flow simulations utilizing
the thermal lattice Boltzmann equation (TLBE) are hampered by numerical instabilities
caused by an algebraic coupling among different modes of the linearized collision operator,
independently of the number of discrete velocities used in the model (Lallemand & Luo, 2003).
To avoid the limitations of TLBE a hybrid scheme was developed in (Lallemand & Luo, 2003)
by coupling the energy mode of the athermal LB model to the temperature field. This method
has been extended for turbulent flows by (van Treeck et al., 2006) and is usually referred to as
hybrid thermal lattice Boltzmann equation (HTLBE).
In this work the temperature equation is discretized by the following finite difference (FD)
scheme:

Ti,j,k(t + ∆tFD)− Ti,j,k(t)

∆tFD
= −�ji,j,k(t)∇

(h)
i,j,kTi,j,k(t) + α △

(h)
i,j,k Ti,j,k(t) (8)

170 Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology

www.intechopen.com



Efficient Simulation of Transient HeatyTransfer Problems in Civil Engineering 7

where α is the thermal diffusivity. For computing the difference operators ∇
(h)
i,j,k and △

(h)
i,j,k

a 6 point stencil is used. The coupling of both schemes is explicit, meaning that the velocity
field obtained by the MRT scheme is inserted into the energy equation while the solution of the
latter is used to compute the buoyant force Fz(�x, t) in the sense of a Boussinesq approximation.
For a given Rayleigh number

Ra =
Prgzβ∆TL3

ν2
(9)

and Prandtl number Pr = ν/α and by setting β = 1/T0, the parameters viscosity ν and
diffusivity α are obtained and the relaxation coefficients can be determined with the formulae
given in (Lallemand & Luo, 2003), while ν has to fulfill the stability constraints of the MRT
scheme. L is a characteristic length scale of the dimensionless system, i.e. given in lattice
units. The coupling of the temperature field to the energy mode of the LB model is done by
inserting the temperature into the equilibrium moments (Tlke, 2006):

m
eq
1 = ((3T − 1) + (u2

x + u2
y + u2

z))ρ0 (10)

m
eq
2 = (1 − 1.8T)ρ0 (11)

where T = T(t, i, j,k) is a dimensionless temperature varying in space and time.
In order to simulate more realistic engineering applications, such as convective heat transport
in buildings, simulations with Reynolds numbers of more than 106 have to be performed.
At this scale DNS simulations become too expensive and therefore it is necessary to extend
the standard HTLBE by a turbulence model. Large-eddy (LES) approaches are regarded as a
promising compromise between explicit modeling of all scales of the turbulent spectrum and
direct numerical simulation (DNS). In LES the large scale motions of the flow are calculated,
while the effect of the smaller universal scales (the so called sub-grid scales) are modeled
using a sub-grid scale (SGS) model. The most commonly used SGS model is the Smagorinsky
model. It compensates for the unresolved turbulent scales through the addition of a so-called
eddy viscosity into the governing equations.
In the context of lattice Boltzmann, the LES approach has first been used by (Hou et al.,
1994) in 2D and in (Krafczyk et al., 2003) in 3D. As an inherent property of the LBE scheme,
components of the momentum flux tensor, here expressed in terms of moments,

Παβ = ∑
i

eiαeiβ fi (12)

are given as local quantities and do not have to be computed from derivatives of
hydrodynamic quantities. Therefore, the local strain tensor is obtained by the relation

ǫ̃αβ =
sxx

2ρC2
s
(C2

s ρδαβ + ρuαuβ − Παβ) (13)

as previously shown by (Krafczyk et al., 2003). Consequently, the molecular and turbulent
viscosities can be added to form a total viscosity νtotal = ν0 + νT which substitutes the material
property by a space and time-dependent quantity. Having computed a local value for νT , the
relaxation parameter s′xx for the second order moments related to the stress tensor components
pxx, pww, pxy, pyz and pzx can be determined by
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8 Heat Transfer

s′xx =
1

3(ν0 + νT) +
1
2

, (14)

where νT is either related to the same time step or the last time step before propagation of
the explicit scheme. Due to consistency reasons a subgrid model is also used for heat flux as
proposed in (van Treeck et al., 2006).

3. Radiative heat transfer using the Radiosity-method

In this section an approach for radiative heat transfer in 3d domains based on the hierarchical
radiosity method coupled to the LB method is presented. The radiosity method assumes
radiative exchange between gray, diffuse surfaces in a radiatively non-participating medium.
The idea is to hierarchically subdivide surfaces forming a quad-tree structure until a
refinement criterion is reached. The fundamental underlying operation of the radiosity
method is visibility detection which can be solved efficiently by using a space partitioning
approach for the input surfaces. For this reason a kd-tree is chosen which is the most
efficient method for visibility detection on irregularly distributed surfaces. These approaches
dramatically decrease the complexity of the radiation problem from O(n3) to O((k2 + n) logk),
where k is the number of input surfaces and n is the number of refined surfaces. For
validations of these approach for several non-trivial examples, demonstrating that this scheme
is second-order accurate see (Bindick et al., 2010).

3.1 Modeling radiative heat transfer

Heat flux from a body induced by thermal radiation solely depends on the local surface
temperature and is not bound to molecular transport. This implies that every body is not
only interacting with its direct neighbors but with all visible elements. Thermal radiation
incident to a surface may be partially absorbed, reflected or transmitted. Here the absorbed
part will be transformed into thermal energy. The complex radiative processes at a solid body
are depicted in Fig.4.
The energy flux M(λ, T) emitted from a surface with the temperature T and the wavelength
λ can be described through the Planck’s law of black-body radiation:
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Fig. 4. Radiative processes at a solid body
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Efficient Simulation of Transient HeatyTransfer Problems in Civil Engineering 9

M(λ, T) =
2πc2

0

h4

A

e(hc0/kλT) − 1
dλ [W], (15)

with the Planck constant h = 6,626 · 10−34 J · s, the speed of light c0 and the Boltzmann constant
k = 1,381 · 10−23 J/K. This energy distribution is not constant over the spectrum and rises with
increasing wavelength until a maximum at λmax is reached (Siegel & Howell, 2002).
The energy flux leaving or entering a body depending on the direction in space can be
described by the irradiance (E), the radiant energy arriving at a surface:

E =
∫

Ω
Ia cos(Θ) dΩ

[

W

m2

]

(16)

with the radiative intensity Ia depending on the wavelength and cos(Θ) dΩ representing
the projection of the solid angle. Analogously, the radiosity B (the radiant energy leaving
a surface) can be written as:

B =
∫

Ω
Il cos(Θ) dΩ

[

W

m2

]

. (17)

In the following sections we describe how to solve the corresponding equations for a full
radiant energy exchange in an enclosed 3d domain using the radiosity method (Goral et al.,
1984).
The fundamentals of radiative heat transfer are explained in detail in e.g. (Siegel & Howell,
2002), (Modest, 2003), (Baehr & Stephan, 2006) and (Welty et al., 2001).

3.2 The classical radiosity method

The full energy exchange between diffuse surfaces can be calculated by forming an energy
equilibrium for Eq. (16) and Eq. (17) in an enclosed environment. This approach leads
to the radiosity method (based on the zonal method (Hottel & Cohen, 1958)) often used in
the field of computer graphics to compute the inter-reflections of light (global illumination)
(Goral et al., 1984). The radiosity method has long been an active field of research and many
improvements could be found to reduce the algorithmic complexity of the problem. The
radiosity method comes with the assumption that all bodies are gray diffusive reflectors,
emitters and absorbers, (i.e. the same amount of radiant energy is reflected, emitted and
absorbed in all directions) which is a common approximations for real bodies. Another
assumption is that the radiative heat transfer between surfaces is separated by vacuum
(radiatively nonparticipating), without considering the absorbing, scattering and emitting
effects of the medium. This is a common approach for the relatively low pressures and
temperatures that occur in many engineering applications. By subdividing the geometry
surfaces into small planar patches, with homogeneous material properties, the discrete
radiosity equation can be written as the sum of the patch radiation Ei and the radiosity Bj

of all other n patches multiplied with the diffuse reflectivity ρd:

Bi = Ei + ρd

n

∑
j=1

BjFij, (18)

with the configuration factor Fij depending on the geometrical relation between two patches
(see Fig.5).
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Fig. 5. Radiosity method

The configuration factor Fij (also known as form factor or view factor) appearing in Eq. (18)
describes the fraction of diffuse energy leaving a surface and directly reaching another surface
(Goral et al., 1984). The configuration factor can be calculated by the following double integral
which describes the relative position and orientation between two patches pi and pj:

Fij =
1

Ai

∫

Ai

∫

Aj

cos(Θi)cos(Θj)

πr2
V(pi, pj) dAi dAj, (19)

with the approximation of the solid angle
cos(Θi)cos(Θj)

πr2 , the area Ai and Aj of surface i and j
and a binary visibility function V(pi, pj) to describe the visibility between two surfaces:

V(pi, pj)
{

1 if pi and pj are visible to each other

0 else

}

. (20)

An analytic solution for Eq. 19 can only be found for very simple geometric configurations. A
catalog of 300 known radiation configuration factors was published by Howell (Howell, 1982).
The configuration factors for complex 3d geometries can not be determined analytically and
in general have to be computed numerically as described below.
The kernel of Eq. (19), which is called differential form of the configuration factor, corresponds
to the differential area of two patches, illustrated in Figure 6:

Fij =
cos(Θi)cos(Θj)

πr2
dAj. (21)

This expression represents the simplest approximation of the configuration factor and is only
applicable for small patches with large distances to other patches and causes singularity
problems.
Finding a general and accurate solution for the configuration factor Fij has long been an
active field of research (Tampieri, 1992; Cohen & Greenberg, 1985; Pianykh et al., 1998; Siegel
& Howell, 2002). For this reason several numerical approaches to approximately solve the
configuration factor integral exist. Early methods used a hemicube (Cohen & Greenberg, 1985)
which comes with high memory requirements and makes it unusable for simulations with
complex geometry models. A better approach combines adaptive mesh refinement (explained
in detail in the following Sec. 3.3) with a point-to-disk approximation of the configuration
factor (Wallace et al., 1989; Pianykh et al., 1998; Pellegrini, 1995; Siegel & Howell, 2002).
Considering the configuration factor between a differential area and an arbitrarily oriented
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Fig. 6. Notation for configuration factor

disk Eq. (19) changes to:

Fij = V(pi, pj)
cos(Θi)cos(Θj)Aj

πr2 + Ai
, (22)

where r is the distance between the patches. This approach was first introduced by Wallace
(Wallace et al., 1989) and has been established as a practical approximation technique to
solve the form factor double integral. Here we use the ray tracing algorithm to compute
the visibility between two surfaces V(pi, pj) where a ray is shot from the center point of the
emitter to the center point of the receiver. Each ray must be tested for intersections with all
objects in the environment. The ray tracing process can be accelerated substantially by using
optimized hierarchical data structures based on kd-trees (see Sec. 3.4), so that logarithmic
complexity as a function of the number of scene primitives can be achieved.
For a full radiative exchange in a closed environment Eq. (18) has to be solved simultaneously
for all patches. These n equations form the following system of linear equations:

⎛

⎜

⎜

⎝

1 − ρ1F11 −ρ1F12 ... −ρ1F1n

−ρ2F21 1 − ρ2F22 ... −ρ2F2n

... ... ... ...
−ρnFn1 −ρnFn2 ... 1 − ρnFnn

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

B1

B2

...
Bn

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

E1

E2

...
En

⎞

⎟

⎟

⎠

(23)

Solving this equation system yields the average radiosity value for each patch. Here an
efficient solution technique called progressive refinement has been established, where the
energy from a single patch is iteratively shot to the rest of the domain (Cohen et al., 1988).
After the first iteration step only the patches in direct line of sight of an emitting patch
will be affected. With every further step the indirectly irradiated patches will receive more
energy. The shooting method utilizes the diagonal dominance of the interaction matrix and
has proven to be an efficient solution technique (Cohen et al., 1988).

3.3 Hierarchical radiosity

The adaptive hierarchical radiosity method reduces the complexity of the standard radiosity
method O(n2) (where all patches are in interaction with each other) to O(k2 + n) (where k is
the number of input (root) patches and n is the number of refined patches) (Hanrahan et al.,
1991). The basic idea of this approach is to use fewer and coarser interactions between patches
depending on a specified solution accuracy. Receiver and emitter patches are hierarchically
subdivided forming a quad-tree structure until a refinement criterion (often called oracle) is
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Fig. 7. Adaptive hierarchical subdivision for surfaces with high energy gradients

reached (see Fig.7). The goal is to establish links between patches that can be used for the
energy transfer.
The hierarchical radiosity algorithm consists of three steps:

1. Initial linking: The configuration factor (using the disk approximation of Eq. 22) is
evaluated for each pair of input patches. If the configuration factor is greater than a
specified form factor threshold (Fε) and a defined area threshold (Eε) (depending on the
required solution accuracy) a recursive subdivision routine is applied for the patch with the
larger area. Here the subdivision process increases the accuracy of the solution. Otherwise,
if the configuration factor is less than the thresholds a link is created which represents the
energy transfer between these two patches. Links can be established between different
levels and represent the interactions between groups of patches. This approach decreases
the number of patches interacting with each other to O(k2 + n) where the visibility
procedure is defined in section 3.4).

2. Energy gathering: For each patch the energy is repeatedly gathered over the incoming links
until a convergence criterion is reached.

3. Push-pull: Energy arriving at a patch has to be propagated through the complete patch
hierarchy to reach a consistent state after each iteration step. This can be achieved by
pushing down the energy from the upper nodes to the leaf nodes and then pulling the
weighted energy of the leafs to the upper ones.

A more detailed description of the hierarchical radiosity method can be found in, e.g. (Shaw,
1997) and (Schäfer, 2000) and for parallel approaches in, e.g. (Bohn & Garmann, 1995), (Podehl
et al., 1998) and (Sinop et al., 2005).

3.4 Fast visibility computations based on kd-trees

The ray tracing algorithm is a fundamental operation in the radiosity method for visibility
detection between surfaces and is the critical factor to develop a fast radiative heat transport
method. Ray tracing can be solved efficiently by using a space partitioning data structure
generated in a preprocessing step. Over the past few decades different space subdivision
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Fig. 8. Kd-tree example in 2D

schemes e.g. regular grids (Fujimoto et al., 1986), octrees (Glassner, 1984) or kd-trees (Havran,
2000) have been examined. Meanwhile kd-trees for ray tracing even for animated scenes have
been established as the best known acceleration structure (Havran, 2000; Szirmay-Kalos et al.,
2002; Shevtsov et al., 2007).
A kd-tree is a particular form of a Binary Space Partitioning (BSP) tree which always splits
the space in axis-aligned cuboids. Each tree node is associated with such a cuboid and stores
informations about its physical position in space (center point and length of the edges). The
kd-tree root node contains all patches of the scene. The kd-tree is built over the bounding
boxes of the surface polygons (mostly triangles or rectangles), often called patches). In each
recursive construction step, two child nodes of the current node are created. The cuboid
associated with the current node is split into two parts, which are then associated with the
child nodes, a long with all the patches that overlap them (see Figure 8). A child node with no
patches will be deleted immediately. The ray tracing algorithm on a kd-tree runs in log n time
(where n is the number of primitives) and uses linear memory space.
This process is repeated down to the leaf nodes until a termination criterion is reached (e.g. a
maximum tree depth, a minimum number of leaf patches or an automatic termination criteria
(based on a heuristic cost function)).
The main benefit of the kd-tree structure compared to other space subdivision schemes is the
improved adaptability to the geometry. The tree quality can be influenced significantly by
the position of the splitting plane. Here a heuristic approach called surface area heuristic
(SAH) has been established for the kd-tree splitting (Havran, 2000; Havran & Bittner, 2002).
This method maximizes the empty space to construct an optimal kd-tree by minimizing a cost
function (MacDonald & Booth, 1990). The cost function is based on the fact that the geometric
probability of a ray intersecting any tree node P(V′|V) is equal to the surface area of the node
SA(V′) divided by the surface area of the upper node SA(V):

P(V′|V) =
SA(V′)

SA(V)
, (24)

where V′ is the child node of V and the corresponding surface area SA. The cost function
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Fig. 9. Kd-tree example in 3D

is based on the following assumptions that the ray origins and directions are uniformly
distributed, the cost of a traversal step Ct and a patch intersection Ci are known and the cost
of intersecting n patches is directly proportional to the number of patches. Thus, the costs
CN(V) for an inner tree node V can be calculated with the following equation:

CN(V) = Ct + nlCiP(Vl |V) + nrCiP(Vr|V)

= Ct + Ci

(

nl
SA(Vl)

SA(V)
+ nr

SA(Vr)

SA(V)

)

, (25)

where nl is the number of patches overlapping the left node and analogously nr is the number
of patches overlapping the right node. In each recursive construction step, the cost function
Eq. (25) can be evaluated for a certain number of possible split candidates. Here the best split
position is coincident with the bounding box projection of the patch. So the cost function only
needs to be evaluated at the triangle boundaries. With this approach the number of checked
possible split candidates can be decreased dramatically. The best split position minimizes
CN(V) Eq. (25). Fig.9 shows a three dimensional (3d) kd-tree example.
For the fast construction of heuristic optimized kd-trees a technique based on the sweeping
algorithm has established, which works with a complexity of O(n log2 n) (Szécsi, 2003; Pharr
& Humphreys, 2004). This approach also includes an automatic termination criterion (ATC),
based on the cost model, to decide whether to stop splitting or to continue subdividing a tree
node (Havran & Bittner, 2002). An optimal kd-tree can thus be built without ad hoc defined
constants.
The visibility detection between patches is processed by shooting rays on the kd-tree. As the
traversal process starts at the root node, the child nodes are recursively tested for intersection
with the ray until a leaf node is reached. All patches referenced from this leaf node are checked
iteratively for intersection (fast ray-triangle and ray-box intersection tests can be found in e.g.
(Badouel, 1990; Möller & Trumbore, 1997; Wald et al., 2001)). This approach allows to solve
the visibility problem in O(log n).

4. Preliminary applications

In this section some results of heat transfer and coupled heat transport simulations are shown.
In the first application the energy distribution in porous asphalt induced by solar radiation is
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Fig. 10. Radiative energy distribution for different sun positions in a sample of porous
asphalt with 50 million leaf triangles

simulated for different positions of the sun. Simulating the thermal behavior can help to
optimize the composition and characteristics of asphalt. The geometric model is obtained
by using a tomography scanner, which leads to complex models with very high resolutions
(Ahrenholz, 2009). In this case a scan with 400x400x350 voxels is used, which is triangulated
to a surface mesh (using e.g. the marching cubes method) with 10 million triangles. These
high resolutions are necessary to represent the fine porous structure of the asphalt. The input
surface mesh is adaptively refined during the hierarchical radiosity process to 50 million leaf
triangles. Fig.10 shows the energy distribution over the surfaces for an equilibrium condition
for two different sun position. The CPU time for this setup was about 700 seconds on an Intel
Core2 Q9550 Quad-Cores, 8GB DDR2 Memory and Windows 7 64-bit.
A coupled variant is shown in Figure 11. Here, the surface temperatures are computed using
the radiosity method introduced in section 3. These parameters are used as input values for the
hTLBM simulation described in subsection 2.3. In this example the temperature distribution
in a machine hall housing a server farm is simulated. This setup aims on the optimization of
cooling and the identification of hot spots which can cause an overheating which potentially
leads to malfunctioning server devices.
Another example demonstrating a combined simulation of radiation induced thermal energy
and the resulting flow pattern also known as convection is shown in Figure 12. The aim of this
simulation was to estimate the efficiency of three different versions of fassade constructions
The simulation of the three different variants have been performed assuming worst case
scenarios of the weather conditions (35◦ Celsius outside temperature, no wind). In order to
obtain reasonable input data relative to the initial temperature distribution and the insertion
of thermal energy into the system, the radiative heat transfer simulation section 3 has been
performed in advance. Here, the surface temperature of all materials exposed to direct
sunlight is determined and used as input data for LB simulations.
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Fig. 11. Temperature distribution isosurfaces in a machine hall; the contours show the
temperature boundary of 28◦ Celsius

5. Conclusion and outlook

With the radiosity-method the radiative heat transfer problem especially for applications in
civil engineering can be efficiently and accurately simulated. Here, the hierarchical adaptive
subdivision of the surfaces combined with a kd-tree based acceleration structure for the
visibility detection dramatically decreases the runtime complexity of the radiation problem.
Lattice Boltzmann fluid dynamics have been established as an alternative tool to solve
different transport problems, including turbulent thermal flows. Its explicit numerical
approach allows a straightforward coupling to other models representing structural dynamics
or radiation and an efficient parallel implementation. The coupling between LBM and a
radiation driven problem like convection has been succesfully demonstrated in the examples
above.

Fig. 12. Convection inside one floor of a buildings double fassade
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Presently the bidirectional coupling of radiation induced heat and heat transport in fluid and
solid is under investigation. Also the adaptation to special purpose hardware like GPUs is
planed which is expected to deliver the accuracy of 3D transient transport simulations without
the use of expensive supercomputers.

6. References

Ahrenholz, B. (2009). Massively parallel simulations of multiphase- and multicomponent flows using
lattice Boltzmann methods, PhD thesis, Technischen Universität Carolo-Wilhelmina zu
Braunschweig.

Alexander, F., Chen, S. & Sterling, J. (1993). Lattice Boltzmann thermohydrodynamics, Physical
Review E 47: R2249.

Badouel, D. (1990). An efficient ray-polygon intersection, Academic Press Professional, Inc., San
Diego, CA, USA.

Baehr, H. & Stephan, K. (2006). Heat and Mass Transfer, Springer Verlag.
Benzi, R., Succi, S. & Vergassola, M. (1992). The lattice Boltzmann equation: theory and

applications, Physics Reports 222(3): 147–197.
Bhatnagar, P. L., Gross, E. P. & Krook, M. (1954). A Model for Collision Processes in Gases.

I. Small Amplitude Processes in Charged and Neutral One-Component Systems,
Physical Review 94: 511–525.

Bindick, S., Stiebler, M. & Krafczyk, M. (2010). Fast kd-tree based hierarchical radiosity for
radiative heat transport problems, submitted to: International Journal for Numerical
Methods in Engineering -: –.

Bohn, C.-A. & Garmann, R. (1995). A parallel approach to hierarchical radiosity, University of
West Bohemia, pp. 26–35.

Cercignani, C., Illner, R. & Pulvirenti, M. (1994). The Mathematical Theory of Dilute Gases, Vol.
106 of Applied Mathematical Sciences, Springer Verlag, Berlin, Germany; New York,
U.S.A.

Cercignani, C. & Penrose, R. (1998). Ludwig Boltzmann: The Man Who Trusted Atoms, Oxford
University Press.

Chen, S. & Doolen, G. (1998). Lattice Boltzmann method for fluid flows, Annual Review of Fluid
Mechanics 30: 329–364.

Cohen, M. F., Chen, S. E., Wallace, J. R. & Greenberg, D. P. (1988). A progressive refinement
approach to fast radiosity image generation, SIGGRAPH Comput. Graph. 22(4): 75–84.

Cohen, M. F. & Greenberg, D. P. (1985). The hemi-cube: a radiosity solution for complex
environments, SIGGRAPH ’85: Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, ACM, New York, NY, USA, pp. 31–40.

d’Humières, D., Bouzidi, M. & Lallemand, P. (2001). Thirteen-velocity three-dimensional
lattice boltzmann model, Physical Review E 63(6): 066702.

Dellar, P. (2003). Incompressible limits of lattice boltzmann equations using multiple
relaxation times, Journal of Computational Physics 190: 351–370.

d’Humières, D. (1992). Generalized lattice-Boltzmann equations, in B. D. Shizgal & D. P.
Weave (eds), Rarefied Gas Dynamics: Theory and Simulations, Vol. 159 of Prog. Astronaut.
Aeronaut., AIAA, Washington DC, pp. 450–458.

d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. (2002).
Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philosophical
Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences
360: 437–451.

181Efficient Simulation of Transient Heat Transfer Problems in Civil Engineering

www.intechopen.com



18 Heat Transfer

Filippova, O. & Hänel, D. (2000). A novel lattice BGK approach for low Mach number
combustion, Journal of Computational Physics 158: 139.

Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. & Rivet, J.-P. (1987).
Lattice gas hydrodynamics in two and three dimensions, Complex Systems pp. 75–136.

Fujimoto, A., Tanaka, T. & Iwata, K. (1986). Arts: Accelerated ray-tracing system, IEEE
Comput. Graph. Appl. 6(4): 16–26.

Geller, S., Krafczyk, M., Tölke, J., Turek, S. & Hron, J. (2006). Benchmark computations based
on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows,
Computers & Fluids 35: 888–897.

Ginzburg, I. & d’Humières, D. (1996). Local second-order boundary methods for lattice
Boltzmann models, Journal of Statistical Physics 84: 927–971.

Glassner, A. S. (1984). Space subdivision for fast ray tracing, IEEE Computer Graphics &
Applications 4(10): 15–22.

Goral, C. M., Torrance, K. E., Greenberg, D. P. & Battaile, B. (1984). Modeling the interaction
of light between diffuse surfaces, SIGGRAPH Comput. Graph. 18(3): 213–222.

Hanrahan, P., Salzman, D. & Aupperle, L. (1991). A rapid hierarchical radiosity algorithm,
SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, pp. 197–206.

Havran, V. (2000). Heuristic Ray Shooting Algorithms, Ph.d. thesis, Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague.

Havran, V. & Bittner, J. (2002). On Improving KD-Trees for Ray Shooting, In Proc. of WSCG
2002 Conference, pp. 209–217.

He, X. & Luo, L. S. (1997a). A priori derivation of the lattice boltzmann equation, Physical
Review E 55(6): R6333–R6336.

He, X. & Luo, L.-S. (1997b). Theory of the lattice Boltzmann method: from the Boltzmann
equation to the lattice Boltzmann equation, Physical Review E 56: 6811.

Higuera, F. J., Succi, S. & Benzi, R. (1989). Lattice Gas Dynamics with Enhanced Collisions,
Europhysics Letters 9(4): 345–349.
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