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Institut de Recherche MAthématique de Rennes (IRMAR), Rennes
France

1. Introduction

1.1 Terminology and methods

The physicists, biologists or chemists control, in general, their experimental devices by using
a certain number of functions or parameters of control which enable them to optimize and
to stabilize the system. The work of the engineers consists in determining theses functions
in an optimal and stable way in accordance with the desired performance. We can note that
the three main steps in the area of research in control of dynamical systems are inextricably
linked, as shown below:

To predict the response of dynamic systems from given parameters, data and source terms
requires a mathematical model of the behaviour of the process under investigation and
a physical theory linking the state variables of the model to data and parameters. This
prediction of the observation (i.e. modeling) constitutes the so-called direct problem (primal
problem, prediction problemor also forward problem) and it is usually defined by one ormore
coupled integral, ordinary or partial differential systems and sufficient boundary and initial
conditions for each of the main fields (such as temperature, concentration, velocity, pressure,
wave, etc.). Initial and boundary conditions are essential for the design and characterization
of any physical systems. For example, in a transient conduction heat transfer problem, in
order to define a ”direct heat conduction problem”, in addition to the model which include
thermal conductivity, specific heat, density, initial temperature and other data, temperature,
flux or radiating boundary conditions are applied to each part of the boundary of the studied
domain.
Direct problems are well-posed problem in the sense of Hadamard. Hadamard claims that
a mathematical model for a physical problem has to be well-posed or properly problem in
the sense that it is characterized by the existence of a unique solution that is stable (i.e. the
solution depends continuously on the given data) to perturbations in the given data (material
properties, boundary and initial conditions, etc.) under certain regularity conditions on data
and additional properties. The requirement of stability is the most important one, because if
this property is not valid, then the problem becomes very sensitive to small fluctuations and
noises (chaotic situation) and consequently it is impossible to solve the problem.
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2 Heat Transfer

If any of the conditions necessary to define a direct problem are unknown or rather badly
known, an inverse problem (control problem or protection problem) results, typically when
modeling physical situations where the model parameters (intervening either in the boundary
conditions, or initial conditions or equations model itself) or material properties are unknown
or partially known. Certain parameters or data can influence considerably the material
behavior or modify phenomena in biological or medical matter; then their knowledge (e.g.
parameter identification) is an invaluable help for the physicists, biologists or chemists who,
in general, use a mathematical model for their problem, but with a great uncertainty on its
parameters. The resolution of the inverse problems thus provides them essential informations
which are necessary to the comprehension of the various processes which can intervene in
these models. This resolution need some regularity and additional conditions, and partial
informations of some unknown parameters and fields (observations) given, for example, by
experiment measurements.
In all cases the inverse problem is ill-posed or improperly posed (as opposed to the well-posed
or properly problem in the sense of Hadamard) in the sense that conditions of existence
and uniqueness of the solution are not necessarily satisfied and that the solution may be
unstable to perturbation in input data (see (Hadamard, 1923)). The inverse problem is
used to determine the unknown parameters or control certain functions for problems where
uncertainties (disturbances, noises, fluctuations, etc.) are neglected. Moreover the inverse
problems are not always tolerant to changes in the control system or the environment. But it is
well known that many uncertainties occur in the most realistic studies of physical, biological
or chemical problems. The presence of these uncertainties may induce complex behaviors,
e.g., oscillations, instability, bad performances, etc. Problems with uncertainties are the most
challenging and difficult in control theory but their analysis are necessary and important for
applications.
If uncertainties, stability and performance validation occur, a robust control problem results.
The fundament of robust control theory, which is a generalization of the optimal control
theory, is to take into account these uncertain behaviours and to analyze how the control
system can deal with this problem. The uncertainty can be of two types: first, the errors (or
imperfections) coming from the model (difference between the reality and the mathematical
model, in particular if some parameters are badly known) and, second, the unmeasured noises
and fluctuations that act on the physical, biological or chemical systems (e.g. in medical
laser-induced thermotherapy (ILT), a small fluctuation of laser power can affect considerably
the resulting temperature distribution and thus the cancer treatment). These uncertainty terms
can have additive and/or multiplicative components and they often lead to great instability.
The goal of robust control theory is to control these instabilities, either by acting on some
parameters to maintain the system in a desired state (target), or by calculating the limit of
these parameters before the system becomes unstable (”predict to act”). In other words,
the robust control allows engineers to analyze instabilities and their consequences and helps
them to determine the most acceptable conditions for which a system remains stable. The
goal is then to define the maximum of noises and fluctuations that can be accepted if we
want to keep the system stable. Therefore, we can predict that if the disturbances exceed this
threshold, the system becomes unstable. It also allows us, in a system where we can control
the perturbations, to provide the threshold at which the system becomes unstable.
Our robust control approach consists in setting the problem in the worst-case disturbances
which leads to the game theory in which the controls and the disturbances (which destabilize
the dynamical behavior of the system) play antagonistic roles. For more details on this new
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approach and its application to different models describing realistic physical and biological
process, see the book (Belmiloudi, 2008).
We shall now present the process of our control robust approach.

1.2 General process of the robust control technique

In contrast with the inverse (or optimal control) problems1, the relation between the problems
of identification, regulation and optimization, lies in the fact that it acts, in these cases, to
find a saddle point of a functional calculus depending on the control, the disturbance and
the solution of the direct perturbation problem. Indeed, the problems of control can be
formulated as the robust regulation of the deviation of the systems from the desired target; the
considered control and disturbance variables, in this case, can be in the parameters or in the
functions to be identified. This optimization problem (aminimax problem), depending on the
solution of the direct problem, with respect to control and disturbance variables (intervening
either in the initial conditions, or boundary conditions or equation itself), is the base of the
robust control theory of partial differential equations (see (Belmiloudi, 2008)).
The essential data used in our robust control problem are the following.

• A known operator F which represents the dynamical system to be controlled i.e. F is the
model of the studied boundary-value problem such that

F (x, t, f , g,U) = 0, (1)

where (x, t) are the space-time variables, ( f , g) ∈ X represents the input of the system
(initial conditions, boundary conditions, source terms, parameters and others) and U ∈ Z
represents the state or the output of the system (temperature, concentration, velocity,
magnetic field, pressure, etc.), where X and Z are two spaces of input data and output
solutions, respectively, which are assumed to be, for example, Hilbert and Banach spaces,
respectively. We assume that the direct problem (1) is well-posed (or correctly-set) in
Hadamard sense.

• A “control” variable ϕ in a set Uad ⊂ U1 (known as set of “admissible controls”) and a
“disturbance” variable ψ in a set Vad ⊂ U2 (known as set of “admissible disturbances”),
where U1 and U2 are two spaces of controls and disturbances, respectively, which are
assumed to be, for example, Hilbert spaces.

• For a chosen control-disturbance (ϕ,ψ), the perturbation problem, which models
fluctuations (ϕ,ψ,u) to the desired target ( f , g,U) (we assume that ( f + B1ϕ, g+ B2ψ,U +
u) is also solution of (1)) and which is given by

F̃ (x, t, ϕ,ψ,u) = F (x, t, f + B1ϕ, g+ B2ψ,U+ u)−F (x, t, f , g,U) = 0, (2)

where the operator F̃ , which depends on U, is the perturbation of the model F of the
studied system and Bi, for i = 1,2, are bounded linear operators from Ui into Z . In the
sequel we denote by u =M(x, t, ϕ,ψ) the solution of the direct problem (2).

• An “observation” uobs which is supposed to be known exactly (for example the desired
tolerance for the perturbation or the offset given by measurements).

1Inverse problem corresponds to minimize or maximize a calculus function depending on the control
and the solution of the direct problem.
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4 Heat Transfer

• A “cost” functional (or “objective” functional) J(ϕ,ψ) which is defined from a real-valued
and positive function G(X,Y) by (so-called the reduced form)

J(ϕ,ψ) = G((ϕ,ψ),M(., ϕ,ψ)).

The goal is to find a saddle point of J, i.e., a solution (ϕ∗,ψ∗) ∈ Uad ×Vad of

J(ϕ,ψ∗)≤ J(ϕ∗ ,ψ∗) ≤ J(ϕ∗,ψ) ∀(ϕ,ψ) ∈Uad ×Vad,

i.e. find (ϕ∗,ψ∗,u∗) ∈ Uad × Vad × Z such that the cost functional J is minimized with
respect to ϕ and maximized with respect to ψ subject to the problem (2) (i.e. u∗(x, t) =
M(x, t, ϕ∗,ψ∗)).

We lay stress upon the fact that there is no general method to analyse the problems of robust
control (it is necessary to adapt it in each situation). On the other hand, we can define a process
to be followed for each situation.

(i) solve the direct problem (existence of solutions, uniqueness, stability according to the data,
regularity, etc.)

(ii) define the function or the parameter to be identified and the type of disturbance to be
controlled

(iii) introduce and solve the perturbed problem which plays the role of the direct
problem (existence of solutions, uniqueness, stability according to the data, regularity,
differentiability of the operator solution, etc.)

(iv) define the cost (or objective) functional, which depends on control and disturbance
functions

(v) obtain the existence of an optimal solution (as a saddle point of the cost functional) and
analyse the necessary conditions of optimality

(vi) characterize the optimal solutions by introducing an adjoint (dual or co-state)model (the
characterization include the direct problem coupled with the adjoint problem, linked by
inequalities)

(vii) define an algorithm allowing to solve numerically the robust control problem.

Remark 1

1. In nonlinear systems the analysis of robust control problems is more complicated than in the case of
inverse problems, because we are interested in the robust regulation of the deviation of the systems
from the desired target state variables (while the desired power level and adjustment costs are taken
into consideration) by analyzing the full nonlinear systems which model large perturbations to the
desired target. Consequently the perturbations of the initial models, which show additional operators
(and then difficulties), generate new direct problem and then new adjoint problem which, often, seem
of a new type.

2. If there are no noises (i.e., B2 vanishes), the problem becomes an inverse problem or model
calibration, i.e., find ϕ in Uad such that the cost functional J0(ϕ) (in reduced form i.e. in place
of the form G0(ϕ,U = M(., ϕ))) is minimized subject to the well-posed problem

F (x, t, f0 + B1ϕ, g,U) = 0, (3)
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where data ( f0, g) are known (we have supposed that f is decomposed into a known function f0 and
the control ϕ) and M(., ϕ) = U is the solution of (3), corresponding to ϕ. Precisely, the problem is
: find (ϕ∗,U∗) ∈Uad ×Z solution of

J0(ϕ∗) = inf
ϕ∈Uad

J0(ϕ),

and U∗ = M(., ϕ∗).

2. Statement of the problem

2.1 Problem definition

Motivated by topics and issues critical to human health and safety of treatment, the problem
studied in this chapter derives from the modeling and stabilizing control of the transport of
thermal energy in biological systems with porous structures.
The evaluation of thermal conductivities in living tissues is a very complex process which
uses different phenomenological mechanisms including conduction, convection, radiation,
metabolism, evaporation and others. Moreover blood flow and extracellular water affect
considerably the heat transfer in the tissues and then the tissue thermal properties. The
bioheat transfer process in tissues is also dependent on the behavior of blood perfusion along
the vascular system. An analysis of thermal process and corresponding tissue damage taking
into account theses parameters will be very beneficial for thermal destruction of the tumor in
medical practices, for example for laser surgery and thermotherapy for treatment planning
and optimal control of the treatment outcome, often used in treatment of cancer. The first
model, taking account on the blood perfusion, was introduced by Pennes see (Pennes, 1948)
(see also (Wissler, 1998) where the paper of Pennes is revisited). The model is based on
the classical thermal diffusion system, by incorporating the effects of metabolism and blood
perfusion. The Pennes model has been adapted per many biologists for the analysis of
various heat transfer phenomena in a living body. Others, after evaluations of the Pennes
model in specifical situations, have concluded that many of the hypotheses (foundational
to the model) are not valid. Then these latter ones modified and generalized the model to
adequate systems, see e.g. (Chen & Holmes, 1980a;b);(Chato, 1980); (Valvano et al., 1984);
(Weinbaum & Jiji, 1985); (Arkin et al., 1986); (Hirst, 1989) (see also e.g. (Charney, 1992) for a
review on mathematical modeling of the influence of blood perfusion). Recently, some studies
have shown the important role of porous media in modeling flow and heat transfer in living
body, and the pertinence of models including this parameter have been analyzed, see e.g.
(Shih et al., 2002); (Khaled & Vafai, 2003); (Belmiloudi, 2010) and the references therein.
The goal of our contribution is to study time-dependent identification, regulation and
stabilization problems related to the effects of thermal and physical properties on the transient
temperature of biological tissues with porous structures. To treat the system of motion in
living body, we have written the transient bioheat transfer typemodel in a generalized formby
taking into account the nature of the porous medium. In paragraph 3.1, we have constructed
a model for a specific problem which has allowed us to propose this generalized model as
follows

c(φ,x)
∂U

∂t
= div(κ(φ,U,x)∇U)− e(φ,x)P(x, t)(U −Ua)

−d(φ,x)Kv(U) + r(φ,x)g(x, t) + f (x, t) in Q,

subjected to the boundary condition

(4)
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6 Heat Transfer

(κ(φ,U,x)∇U).n = −q(x, t)(U−Ub)
−λ(x)(L(U)− L(Ub)) + h(x, t) in Σ,

and the initial condition

U(x,0) = U0(x) in Ω,

under the pointwise constraints

a1 ≤ P ≤ a2 a.e. in Q,
b1 ≤ φ ≤ b2 a.e. in Ω,

(5)

where the state function U is the temperature distribution, the function Kv is the transport

operator in �ϑ direction i.e. Kv(U) = (�ϑ.∇)U, the function L is the radiative operator i.e.
L(U) =| U |3 U. The body Ω is an open bounded domain in IRm, m ≤ 3 with a smooth
boundary Γ = ∂Ω which is sufficiently regular, and Ω is totally on one side of Γ, the cylindreQ
isQ= Ω × (0,T) with T > 0 a fixed constant (a given final time), Σ = ∂Ω × (0,T), n is the unit
outward normal to Γ and ai, bi, for i = 1,2, are given positive constants. The quantity P is the
blood perfusion rate and φ ∈ L∞(Ω) describes the porosity that is defined as the ratio of blood
volume to the total volume (i.e. the sum of the tissue domain and the blood domain). The
volumetric heat capacity type function c(φ, .) and the thermal conductivity type function of
the tissue κ(φ,U, .) are assumed to be variable and satisfy ν ≥ κ(φ,U, .) = σ2(φ,U, .) ≥ μ > 0,
M1 ≥ c(φ, .) = x2(φ, .) ≥ M0 > 0 (where ν, μ, M0, M1 are positive constants). The second
term on the right of the state equation (4) describes the heat transport between the tissue
and microcirculatory blood perfusion, the third term Kv is corresponding to the directional
convective mechanism of heat transfer due to blood flow, the last terms are corresponding
to the sum of the body heating function which describes the physical properties of material
(depending on the thermal absorptivity, on the current density, on the electric field intensity,
that can be calculated from the Maxwell equations, and others) and the source terms that
describe a distributed energy source which can be generated through a variety of sources,
such as focused ultrasound, radio-frequency, microwave, resistive heating, laser beams and
others (depending on the difference between the energy generated by the metabolic processes
and the heat exchanged between, for example, the electrode and the tissue). The first term in
the right of the boundary condition in (4) describes the convective component and the second
term is the radiative component. The term h is the heat flux due to evaporation. The function
Ua is the arterial blood temperature, the function Ub is the bolus temperature and they are
assumed to be in L∞(Q) and in L∞(Σ), respectively.
The function u0 is the initial value and is assumed to be variable and λ = σBǫe is assumed
to be in L∞(Γ) where σB (Wm−2K−4) is Stefan-Boltzmann’s constant and ǫe is the effective

emissivity. The vector function �ϑ is the flow velocity which is assumed to be sufficiently
regular.

Remark 2

1. Emissivity of a material is defined as the ratio of energy radiated by a particular material to
energy radiated by a black body at the same temperature (the tissue is not a perfect black body).
It is a dimensionless quantity (i.e. a quantity without a physical unit). The emissivity of human
skin is in the range 0.98− 0.99.
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2. We consider only the boundary effect of the process of radiation, since radiative heat transfer
processes within the system are neglected.

3. In the physical case there is not absolute values under the boundary conditions (since the
temperature is non negative). For real physical and biological data, we can prove by using
the maximum principle that the temperature is positive and then we can remove the absolute
values.

4. For all �ϑ sufficiently regular (such e.g. the condition (17)), the linear operator satisfies the
following estimate:

there exists a constant γv ≥ 0 (depending on the norm of �ϑ) such that

‖ K(�ϑ,v) ‖L2(Ω)≤ γv ‖ v ‖H1(Ω),∀v ∈ H1(Ω). (6)

5. The nonlinear scalar function L : IR −→ IR is a C1(IR) function and its derivative is given by

L′(v) = 4 | v |3 . (7)

2.2 Basis for thermal therapy

Cells, vasculature (which supply the tissue with nutrients and oxygen through the flow
of blood) and extracellular matrix (which provides structural support to cells) are the
main constituents of tissue. Most living cells and tissues can tolerate modest temperature
elevations for limited time periods depending on the metabolic status of the individual cell
(so-called thermotolerance). Contrariwise, when tissues are exposed to very high temperature
conditions, this leads to cellular damage which can be irreversible.
Therapy by elevation of temperature is a thermal treatment in which pathological tissue
is exposed to high temperatures to damage and destroy or kill malignant cells (directly or
indirectly by the destruction of microvasculature) or to make malignant cells more sensitive
to the effects of another therapeutic option, such as radiation therapy, chemotherapy or
photodynamic therapy. Many scientists claim that this is due largely to the difference in
blood circulation between tumor and normal tissues. Moreover, local tissue properties, in
particular perfusion, have a significant impact on the size of treatment zone, for example,
highly perfused tissue and large vessels act as a heat sink (this phenomenon makes normal
tissue relatively more resilient to treatment than tumor tissue, since perfusion rates in tumors
are generally less than those in normal tissues). Consequently, the knowledge of the thermal
properties and blood perfusion of biological tissues is fundamental for accurately modeling
the heat transfer process during thermal therapy. The most commonly used technique for
heating of tumors is the interstitial thermal therapy, in which heating elements are implanted
directly into the treated zone, because energy can be localized to the target region while
surrounding healthy tissue is preserved. Different energy sources are employed to deliver
local thermal energy including laser, microwaves, radiofrequency and ultrasound.
The traditional hyperthermia is defined as a temperature greater than 37.5− 38.3oC, in general
in the interval of about 41 − 47oC. This thermal therapy is only useful for certain kinds of
cancer and is most effective when it is combined with the other conventional therapeutic
modalities. Though temperatures are not very high and then cell death is not instantaneous,
prolonged exposure leads to the thermal denaturation of non-stabilized proteins such as
enzymes and to their destruction, which ultimately leads to cell death. There are various types
of hyperthermia as alternative cancer therapy. These include: the regional (heats a larger part
of the body, such as an entire affected organ) and local (heats a small area, such as the tumor
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8 Heat Transfer

itself) hyperthermia, where temperatures reach between 42 and 44oC and the whole body
hyperthermia, where the entire body except for the head is overheated to a temperature of
about 39 to 41oC. Heat sensitivity of the tissue is lost at higher temperatures (above 44oC)
resulting in tumor and normal tissues destruction at the same rate. Consequently, in order
to minimize damage to surrounding tissues and other adverse effects, we must keep local
temperatures under 44oC, but requiresmore treatment-time (between 1 and 3 hours). At these
low temperatures damage can be reversible. Indeed damaged proteins can be repaired or
degraded and replaced with new ones.
For a rapid destruction of tissue, it is necessary to make a temperature rise of at least
exceed 50oC. During thermotherapy, which employs higher temperatures over shorter times
(seconds to minutes), than those used in hyperthermia treatment, several processes, as tissue
vaporization, carbonization and molecular dissociation, occur which lead to the destruction
or death of the tissue. At temperatures above 60oC, proteins and other biological molecules of
the tissue become severely denatured (irreversibly altered) and coagulate leading to cell and
tissue death. Temperatures above 100oC will cause vaporization from evaporation of water
in the tissue and in the intracellular compartments and lead to rupture or explosion of cells
or tissue components, and above 300oC tissue carbonization occurs. At these temperatures,
an elevated temperature front migrates through the tissue and structural proteins, such as
fibrillar collagen and elastin, begin to damage irreversibly causing visible whitening of the
tissue and then coagulation necrosis to the targeted tissue. Indeed, structural proteins are
more thermally stable than the intracellular proteins and enzymes (involved in reversible heat
damage), and consequently tissue coagulation signifies destruction of the lesion.
The actual level of thermal damage in cells and tissue is a function of both temperature
and heating time. Using the temperature history, the accumulation of thermal damage,
associated with injury of tissue, can be calculated by an approach (based on the well-known
Arrhenius model see e.g. (Henriques, 1947)) characterizing tissue damage, including cell kill,
microvascular stasis and protein coagulation. For this, we can use the Arrhenius damage
integral formulation, which assumes that some thermal damage processes follow first-order
irreversible rate reaction kinetics (from thermal chemical rate equations, see e.g. (Atkins,
1982)), for more details see e.g. (Tropea & Lee, 1992) and (Skinner et al., 1998):

D(x,τexp) = ln(
C(0)

C(τexp)
) = A

∫ τexp

0
exp(

−E

RU(x, t)
)dt, (8)

where D is the nondimensional degree of tissue injury, U is the temperature of exposure (K),
τexp is the duration of the exposure, C(0) is the concentration of living cells before irradiation
exposure and C(τexp) is the concentration of living cells at the end of the exposure time. The

parameter A is the molecular collision frequency (s−1) i.e. damage rate, the parameter E is the
denaturation activation energy (J.mol−1) and R is the universal gaz constant equal to 8.314
J.mol−1K−1. The two kinetic parameters A and E are dependent on the type of tissue and
must be determined by experiments a priori. The cumulative damage can be interpreted as
the fraction of hypothetical indicator molecules that are denatured and can play an important
role in the optimization of the treatment.
Other cell damage models are developed, in recent years, see for example the two-state model
of Oden et al. in (Feng et al., 2008) (which is based on statistical thermodynamic principles) as
follows:

D(x,τexp) =
∫ τexp

0

1

1+ exp(−Eo(t,U(x,t))
RU(x,t)

)
dt, (9)
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with the activation energy function E0(t,U) = (
ζ

U
+ at + b), where ζ, a and b are known

constants determined by in vitro cellular experiments.
In conclusion the cell damage model can be expressed by the following general form

D(x,τexp) = ln(
C(0)

C(τexp)
) =

∫ τexp

0
H(t,U(x, t))dt, (10)

where H is differentiable on the variable U.

2.3 Outline

We give now the outline of the rest of the chapter. First, the modeling of thermal transport
by perfusion within the framework of the theory of porous media is presented and the
governing equations are established. The thermal processes within the tissues are predicted
by using some generalized uncertain evolutive nonlinear bioheat transfer type models
with nonlinear Robin boundary conditions (radiative type), by taking into account porous
structures and directional blood flow. Afterwards the existence, the uniqueness and the
regularity of the solution of the state equation are presented as well as stability and maximum
principle under extra assumptions. Second, we introduce the initial perturbation problem
and give the existence and uniqueness of the perturbation solution and obtain a stability
result. Third, the real-time identification and robust stabilization problems are formulated,
in different situations, in order to reconstitute simultaneously the blood perfusion rate, the
porosity parameter, the heat transfer parameter, the distributed energy source terms and
the heat flux due to the evaporation, which affect the effects of thermal physical properties
on the transient temperature of biological tissues, and to control and stabilize the desired
online temperature and thermal damage provided by MRI (Magnetic Resonance Imaging)
measurements. Because, it is now well-known that a controlled and stabilized temperature
field does not necessarily imply a controlled and stabilized tissue damage. This work includes
results concerning the existence of the optimal solutions, the sensitivity problems, adjoint
problems, necessary optimality conditions (necessary to develop numerical optimization
methods) and optimization problems. Next, we analyse the case when data are measured
in only some points in space-time domain, and the case where the body Ω is constituted by
different tissue types which occupy finitely many disjointed subdomains. As in previous, we
give the existence of an optimal solution andwe derive necessary optimality conditions. Some
numerical strategies, based on adjoint control optimization (combining the obtained optimal
necessary conditions and gradient-iterative algorithms), in order to perform the robust
control, are also discussed. Finally, control and stabilization problems for a coupled thermal,
radiation transport and coagulation processes modeling the laser-induced thermotherapy in
biological tissues, during cancer treatment, are analyzed.
In the sequel, we will always denoted by C some positive constant which can be different at
each occurrence.

3. Mathematical modelling and motivation

3.1 Model development

3.1.1 Heat transfer equation

The blood-perfused tumor tissue volume, including blood flow in microvascular bed with
the blood flow direction, contains many vessels and can be regarded as a porous medium
consisting of a tumor tissue (a solid domain) fully filled with blood (a liquid domain), see

41Thermal Therapy: Stabilization and Identification
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10 Heat Transfer

Figure 1. Consequently the temperature distribution in biological tissue can be modelized by
analyzing a conjugate heat transfer problem with the porous medium theory. For the tumor
tissue domain, we use the Pennes bioheat transfer equation by taking account on the blood
perfusion in the energy balance for the blood phase. For the blood flow domain, we use the
energy transport equation. The system of equations of the model is then

cs(x)ρs(x)
∂Us

∂t
= div(κs(Us,x)∇Us)− cl(x)wl(x, t)(Us −Ua) + Qs(x, t) + QJ(x, t),

cl(x)ρl(x)(
∂Ul

∂t
+ (�ϑ.∇)Ul) = div(κl(Ul ,x)∇Ul) + QJ(x, t),

(11)

where cl , cs, ρl , ρs, Ul , Us, κl , κs, Qs, QJ are the specific heat of blood, the specific heat
of tissue, the density of blood, the density of tissue, the local blood temperature, local
tissue temperature, blood effective thermal conductivity tensor, tissue effective thermal
conductivity tensor, metabolic volumetric heat generation and energy source term (which is
also called the specific absorption rate, SAR (Wm−3)), respectively, and Ua is the temperature
in arterial blood. The term div(κl(Ul)∇Ul) is corresponding to the enhancement of thermal
conductivity in tissue due to the flow of blood within thermally significant blood vessels and

the term div(κs(Us)∇Us) is similar to Pennes model. The transport operator is �ϑ.∇ and is
corresponding to a directional convective term due to the net flux of the equilibrated blood.

Fig. 1. : Relationship between tumor vascular and blood flow direction

The volumetric averaging of the energy conservation principle is achieved by combining and
rearranging the first and the second part of the system (11) with the porous structure (regarded
as a homogeneous medium). Under thermal equilibrium and according to the modelization
of (Chen & Holmes, 1980a) (the model has been formulated after the analyzing of blood vessel
thermal equilibration length) we have then by multiplying the first equation by (1− φ) and
the second equation by φ

((1− φ)cs(x)ρs(x) + φcl(x)ρl(x))
∂U

∂t
+ div(((1− φ)κs(U,x) + φκl(U,x))∇U)

+φcl(x)ρl(x)(�ϑ.∇)U+ (1− φ)cl(x)wl(x, t)(U−Ua) = (1− φ)Qs(x, t) + QJ(x, t).
(12)

Our model incorporates the effect of blood flow in the heat transfer equation in a way that
captures the directionality of the blood flow and incorporates the convection features of the
heat transfer between blood and solid tissue.
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The model (12) is a particular case of the general equation in the system (4), by taking, in the
first relation of (4), the heat capacity type function c(φ,x) as (1− φ)csρs + φclρl , the thermal
conductivity capacity type function κ(φ,U,x) as (1− φ)κs + φκl , the function e(φ,x)P(x, t) as
(1− φ)clwl , the function d(φ,x) as φclρl , the function r(φ,x) as 1− φ, the function f as QJ and
the function g as Qs .
To close the model, we must specify boundary conditions.

3.1.2 Boundary conditions

Every body emits electromagnetic radiation proportional to the fourth power of the absolute
temperature of its surface. The total energy, emitted from a black body, ER (Wm−2) can be
given by the following Stefan-Boltzmann-Law:

ER = σBǫe(U
4 −U4

b ), (13)

where σB = 5.67.10−8Wm−2K−4 is the Stefan-Boltzmann constant, U and Ub (K) are the tissue
surface temperature and surrouding temperature, respectively and ǫ < 1 (since tissue is not a
perfect black body) is the emissivity coefficient.
Convection problems involve the exchange of heat between the surface of the body (the
conducting) and the surrounding air (convecting). The thermal energy EC (Wm−2) can be
given by Newton’s law of cooling:

EC = q(U−Ub), (14)

where, the proportionality function q (Wm−2K−1) is the coefficient of local heat convection
and Ub is the bulk temperature of the air (assumed to be similar as relation in (13)).
If we assume that the evaporation occurs mainly at the surface, the energy associated with the
phase change occurring during evaporation (the heat flux due to evaporation) can be given
by the following expression

EV = h f gmw = −h(x, t), (15)

where h f g is the latent heat of vaporization and mw is the mass flux of evaporating water.
According to the previous relations, the boundary condition can be imposed as follows:

− (κ(φ,U,x)∇U).n = ER + EC + EV = q(U−Ub) + λ(x)(L(U)− L(Ub))− h(x, t), (16)

where λ = σBǫe and L(v) =| v |3 v = v4 for all positive functions.
We recall now some biological and medical background and motivations to analyse the
identification, calibration and stabilization problem.

3.2 Background and motivation

Mathematical modeling of cancer treatments (chemotherapy, thermotherapy, etc) is an highly
challenging frontier of applied mathematics. Recently, a large amount of studies and research
related to the cancer treatments, in particular by chemotherapy or thermotherapy, have been
the object of numerous developments.
As an alternative to the traditional surgical treatment or to enhance the effect of
conventional chemotherapy, various problems associated with localized thermal
therapy have been intensively studied (see e.g. (Pincombe & Smyth, 1991);
(Hill & Pincombe, 1992); (Tropea & Lee, 1992); (Martin et al., 1992); (Seip & Ebbini,
1995); (Sturesson & Andersson-Engels, 1995); (Deuflhard & Seebass, 1998); (Xu et al.,
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1998); (Liu et al., 2000); (Marchant & Lui, 2001); (Shih et al., 2002); (He & Bischof, 2003);
(Zhou & Liu, 2004); (Zhang et al., 2005) and the references therein). In order to improve
the treatments, several approaches have been proposed recently to control the temperature
during thermal therapy. We can mention e.g. (Bohm et al., 1993); (Hutchinson et al., 1998);
(Köhler et al., 2001); (Vanne & Hynynen, 2003); (Kowalski & Jin, 2004); (Malinen et al., 2006);
(Belmiloudi, 2006; 2007) and the references therein. The essential of these contributions has
been the numerical analysis, MRI-based optimization techniques and mathematical analysis.
For the stabilization of the temperature treatment, see e.g. (Belmiloudi, 2008), in which the
author develops nonlinear PDE robust control approach in order to stabilize and control the
desired online temperature for a Pennes’s type model with linear boundary conditions.
An important application of all bioheat transfer models in interdisciplinary research areas,
in joining mathematical, biological and medical fields, is the analysis of the temperature
field which develops in living tissue when a heat is applied to the tissue, especially in
the clinical cancer therapy hyperthermia and in the accidental heating injury, such as
burns (in hyperthermia, tissue is heated to enhance the effect of an accompanying radio or
chemotherapy). Indeed the thermal therapy (performed with laser, focused ultrasound or
microwaves) gives the possibility to destroy the pathological tissues with minimal damage
to the surrounding tissues. Moreover, due to the self-regulating capability of the biological
tissue, the blood perfusion and the porosity parameters depend on the evolution of the
temperature and vary significantly between different patients, and between different therapy
sessions (for the same patient). Consequently, in order to have a very optimal thermal
diagnostics and so the result of the therapy being very beneficial to treatment of the patient, it
is necessary to identify the value of these two parameters.
The new feature introduced in this work concerns the estimation of the evolution of the
blood perfusion and the porosity parameters by using nonlinear optimal control methods,
for some generalized evolutive bioheat transfer systems, where the observation is the online
temperature control provided by Magnetic Resonance Imaging (MRI) measurements, see
Figure2 (MRI is a new efficient tool in medicine in order to control surgery and treatments).

(a) Control process (b) Applicator and measurements

Fig. 2. : Laser-induced thermotherapy and identification
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The introduction of the theory of porous media for heat transfer in biological tissues is
very important because the physical properties of material have power law dependence
on temperature (see e.g. (Marchant & Lui, 2001; Pincombe & Smyth, 1991)) and moreover
the porosity is one of the crucial factors determining distribution of temperature during
thermal therapies, for example in medical laser-induced thermotherapy (see e.g. the review
of (Khaled & Vafai, 2003)). Consequently we cannot neglect the influence of the porosity in
the model and then it is necessary to identify, in more of the blood perfusion, the porosity
of the material during thermal therapy in order to maximize the efficiency and safety of
the treatment. Moreover, the introduction of the nonlinear radiative operator including the
cooling mechanism of water evaporation in the model is very important, because the heat
exchange mechanisms at the body-air interface play a very important part on the total tissue
temperature distribution and consequently we cannot also neglect the influence of the surface
evaporation in the model (see e.g. (Sturesson & Andersson-Engels, 1995)). On the other hand
we will consider that the source term f and the heat flux due to evaporation h (in the model
(4)) are not accurately known.

4. Solvability of the state system

Now we give some assumptions, notations, results and an analysis of the state system (4)
which are essential for the following investigations.

4.1 Assumptions and notations

We use the standard notation for Sobolev spaces (see (Adams, 1975)), denoting the norm
of Wm,p(Ω) (m ∈ IN, p ∈ [1,∞]) by ‖ ‖Wm,p(Ω). In the special case p = 2 we use Hm(Ω)

instead of Wm,2(Ω). The duality pairing of a Banach space X with its dual space X′ is
given by < ., . >X′,X. For a Hilbert space Y the inner product is denoted by (., .)Y. For any
pair of real numbers r, s ≥ 0, we introduce the Sobolev space Hr,s(Q) defined by Hr,s(Q)=
L2(0,T,Hr(Ω)) ∩ Hs(0,T,L2(Ω)), which is a Hilbert space normed by

(‖ v ‖2L2(0,T,Hr(Ω)) + ‖v ‖2Hs(0,T,L2(Ω)))
1/2,

where Hs(0,T,L2(Ω)) denotes the Sobolev space of order s of functions defined on (0,T)
and taking values in L2(Ω), and defined by, for θ ∈ (0,1), s = (1− θ)m, m is an integer, (see
e.g. (Lions & Magenes, 1968)) Hs(0,T,L2(Ω)) = [Hm(0,T,L2(Ω)),L2(Q)]θ, H

m(0,T,L2(Ω)) =

{v ∈ L2(Q)| ∂jv
∂tj

∈ L2(Q),∀j= 1,m} .

We denote by V the following space: V = {v ∈ H1(Ω)|γ0v ∈ L5(Γ)} equipped with the norm
‖ v ‖=‖ v ‖H1(Ω) + ‖ γ0v ‖L5(Γ) for v ∈ V, where γ0 is the trace operator in Γ. The space V
is a reflexive and separable Banach space and satisfies the following continuous embedding:
V ⊂ L2(Ω) ⊂ V ′ (see e.g. (Delfour et al., 1987)). For Ω ⊂ IR2, the space H1(Ω) is compactly
embedded in L5(Γ) and then V = H1(Ω). We can now introduce the following spaces:

H(Q) = L∞(0,T,L2(Ω)),V(Q) = L2(0,T,V),W(Q) = {w ∈ L2(0,T,V)| ∂w
∂t ∈ L5/4(0,T,V

′
)}

and W̃(Q) = {v ∈W(Q)|v ∈ L5(Σ)}.

Remark 3 Let Ω ⊂ IRm, m ≥ 1, be an open and bounded set with a smooth boundary and q be a
nonnegative integer. We have the following results (see e.g. (Adams, 1975))
(i) Hq(Ω) ⊂ Lp(Ω), ∀p ∈ [1, 2m

m−2q ], with continuous embedding (with the exception that if 2q = m,

then p ∈ [1,+∞[ and if 2q > m, then p ∈ [1,+∞] ).
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(ii) (Gagliardo-Nirenberg inequalities) There exists C> 0 such that

‖ v ‖Lp≤ C ‖ v ‖θ
Hq‖ v ‖1−θ

L2
,∀v ∈ Hq(Ω),

where 0 ≤ θ < 1 and p = 2m
m−2θq (with the exception that if q− m/2 is a nonnegative integer, then θ

is restricted to 0).
2. If u ∈W(Q) ∩H(Q), then u is a weakly continuous function on [0,T] with values in L2(Ω) i.e.
u ∈ Cw([0,T],L2(Ω)) (see e.g. (Lions, 1961)).

Definition 1 A real valued function Φ defined on IRq × D, q ≥ 1, is a Carathéodory function iff
Φ(v, .) is measurable for all v ∈ IRq and Φ(y, .) is continuous for almost all y ∈ D.

We state the following hypotheses for the functions (or operators) c, d, e, r and κ appearing in
the model (4) :

(H1) The functions c= x2 > 0, d> 0, e> 0, r are Carathéodory functions from IR× Ω into IR+

and c(.,x), d(.,x), e(.,x), r(.,x) are Lipschitz and bounded functions for almost all x ∈ Ω,
where M1 ≥ c(φ, .) = x2(φ, .) ≥ M0 > 0 (where M0 and M1 are positive constants).

(H2) The function κ = σ2 > 0 is Carathéodory function from IR2 × Ω into IR+ and κ(.,x) is
Lipschitz and bounded functions for almost all x ∈ Ω,
where ν ≥ κ(φ,U, .) = σ2(φ,U, .)≥ μ > 0 (where ν and μ are positive constants).

(H3) The function c, d, e, r (resp. κ) are differentiable on ϕ (resp. on (φ,U)) and their partial
derivatives are Lipschitz and bounded functions.

We assume that the flow velocities �ϑ satisfy the regularity :

�ϑ ∈ L∞(0,T,W1,∞(Ω)) (17)

and we denote by K∗
v the adjoint operator of Kv i.e. K

∗
v(u) = −div(�ϑu) and we have:

∫

Ω
Kv(u)vdx =

∫

Ω
K∗
v(v)udx+

∫

Γ
uv�ϑ.ndΓ, ∀(u,v) ∈ (H1(Ω))2. (18)

Nota bene: For simplicity we denote the values h(ϕ, .) by h(ϕ), where the function h plays the
role of c, d, e or r, and the value κ(φ,U, .) by κ(φ,U).

4.2 Some fundamental inequalities and results

Our study involve the following fundamental inequalities, which are repeated here for review:
(i) Hölder’s inequality

∫

D
Πi=1,k fidx ≤ Πi=1,k ‖ fi ‖Lqi (D), where

‖ fi ‖Lqi (D)= (
∫

D
| fi |qi dx)1/qi and ∑

i=1,k

1

qi
= 1.

(ii) Young’s inequality (∀a,b > 0 and ǫ > 0)

ab ≤ ǫ

p
ap +

ǫ−q/p

q
bq, f or p,q ∈]1,+∞[ and

1

p
+

1

q
= 1.
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(iii) Gronwall’s Lemma

If
dΦ

dt
≤ g(t)Φ(t) + h(t), ∀t ≥ 0 then

Φ(t)≤ Φ(0)exp(
∫ t

0
g(s)ds) +

∫ t

0
h(s)exp(

∫ t

s
g(τ)dτ)ds, ∀t ≥ 0.

Lemma 1 For u, v, w sufficiently regular functions and D positive and bounded function we have for
all r ≥ 0
1. (D(| u |r u− | v |r v),u− v)Γ ≥ 0,
2. | (D | u |r u,v)Γ |≤ C ‖| u |r u ‖

L
r+2
r+1 (Γ)

‖ v ‖Lr+2(Γ)= C ‖ u ‖r+1
Lr+2(Γ)

‖ v ‖Lr+2(Γ),

3. | (D | u |r w,v)Γ |≤ C ‖| u |r w ‖
L

r+2
r+1 (Γ)

‖ v ‖Lr+2(Γ) and

‖| u |r w ‖
L

r+2
r+1 (Γ)

≤ C ‖ u ‖
r
2

Lr+2(Γ)
‖| u |r w2 ‖

1
2

L1(Γ)
.

Proof. For the proof see (Belmiloudi, 2007).

Definition 2 A function U ∈W(Q) is a weak solution of system (4) provided

< c(φ)
∂U

∂t
,v > +

∫

Ω
κ(φ,U)∇U.∇vdx +

∫

Ω
d(φ)Kv(U)vdx

+
∫

Ω
e(φ)P(U −Ua)vdx+

∫

Γ
q(U−Ub)vdΓ +

∫

Γ
λ(|U |3 U− |Ub |3 Ub)vdΓ

=
∫

Ω
r(φ)gvdx+

∫

Ω
f vdx+

∫

Γ
hvdΓ ∀v ∈ Vand a.e. in(0,T),

U(0) = U0 in Ω,

(19)

here < ., .> denotes the duality between V ′ and V.

4.3 State system

The solvability (existence, uniqueness and stability) of the state system (4) and the
boundedness of the solution are the content of the following results, where the existence
is proved by compactness arguments and Faedo-Galerkin method, and the boundedness is
derived from the maximum principle results. By using similar argument as in (Belmiloudi,
2007) and Lemma 1, combined with these of (Belmiloudi, 2010), we can prove the following
results. So, we omit the details.

Theorem 1 Let assumptions (H1)(H2) be fulfilled.
(i) Let be given the initial condition U0 in L2(Ω) and source terms (P,φ, f , g,h) in
Cpt × (L2(Q))2 × L2(Σ), where Cpt = {(P,φ) ∈ L2(Q)× L2(Ω) | a1 ≤ P ≤ a2 a.e. in Q and b1 ≤
φ ≤ b2 a.e. in Ω} is the set of functions describing the constraints (5). Then there exists a unique

solution U in W(Q) ∩H(Q) of (4) satisfying the following regularity: |U |3 U ∈ L
5
4 (Σ).

(ii) Let (Pi,φi, fi, gi,hi,U0i), i=1,2 be two functions of Cpt × (L2(Q))2 × L2(Σ) × L2(Ω). If
Ui ∈W(Q) ∩H(Q) is the solution of (4) corresponding to data (pi,φi, fi, gi,hi ,U0i), i=1,2, then

‖U ‖2H(Q)∩V(Q)≤ C1(‖ P ‖2L2(Q) + ‖ f ‖2L2(Q) + ‖ g ‖2L2(Q))

+C2(‖ φ ‖2L2(Ω) + ‖ h ‖2L2(Σ) + ‖ U0 ‖2L2(Ω)),

where U = U1 − U2,P = P1 − P2,φ = φ1 − φ2, f = f1 − f2, g = g1 − g2, h = h1 − h2 and U0 =
U01 −U02.

47Thermal Therapy: Stabilization and Identification

www.intechopen.com



16 Heat Transfer

If we suppose now that the functions h, q and Ub satisfy the following hypotheses:

(HS1): h is in R1(Σ) = {h| h ∈ L2(0,T,H1(Γ)), ∂h
∂t ∈ L2(0,T,L2(Γ))},

(HS2): Ub and q are in R2(Σ) = {v| v ∈ L∞(Σ), ∂v
∂t ∈ L2(0,T,L2(Γ))},

then the following theorem holds.

Theorem 2 Let assumptions (H1)(H2)(HS1)(HS2) be fulfilled. Let be given the initial condition U0

in H3/2(Ω) and data (P,φ, f , g) in Cpt × (L2(Q))2. Then the unique solution U of (4) satisfies the

following regularity: U ∈ S̃(Q), where

S̃(Q) = {v ∈ S(Q) such that v ∈ L∞(0,T,L5(Γ))},with
S(Q) = {v ∈ L∞(0,T,V) such that

∂v

∂t
∈ L2(Q)}. (20)

Remark 4 (HS1) implies that h ∈ C0([0,T],L2(Γ)).

Now, we establish a maximum principle under extra assumptions on the data. In addition to
(H1)(H2), we suppose, for a constant us such that 0≤ us, the following assumption:

(H4) 0≤ Ua ≤ us and 0≤ Ub ≤ us for all in Q and in Σ, respectively.

Then we have the following theorem.

Theorem 3 Let (H1),(H2) and (H4) be fulfilled. Suppose that the initial data u0 is such that 0 ≤
U0 ≤ us, a.e. in Ω and f + r(φ)g is a positive function and satisfies 0 ≤ f + r(ϕ)g ≤ M, a.e. in Q
and for all φ such that (5). Then, the weak solution U ∈ W(Q) of (4) satisfies, for all t ∈ (0,T),
0≤ U(., t) ≤ ms =max(us,M) a.e. in Ω.

Proof: Let us consider the following notations: r+ = max(r,0), r− = (−r)+ and then r =
r+ − r−.
We prove now that ifU0 ≥ 0, a.e. in Ω thenU(., t)≥ 0, for all t ∈ [0,T] and a.e. in Ω. According

to (Gilbarg & Trudinger, 1983), we have that U− ∈ L2(0,T,V) with ∂U−
∂x = − ∂U

∂x if U > 0 and
∂U−
∂x = 0 otherwise, a.e. inQ. Then, taking v=−U− in the equation (19) we have (a.e. in (0,T))

d

2dt
‖ x(φ)U− ‖2L2(Ω) +

∫

Ω
κ(φ,U) | ∇U− |2 dx+

∫

Ω
d(φ)Kv(U

−)U−dx

+
∫

Ω
e(φ)pUaU

−dx+
∫

Ω
e(φ)P(U−)2dx = −

∫

Ω
( f + r(φ)g)U−dx

+
∫

Γ
qUbU

−dΓ +
∫

Γ
q(U−)2dΓ

+
∫

Γ
λ | u |3 (U−)2dΓ +

∫

Γ
λ |Ub |3 UbU

−dΓ.

According to the assumption Ua,Ub ≥ 0 we find that

d

2dt
‖ x(φ)U− ‖2L2(Ω) +

∫

Ω
κ(φ,U) | ∇u− |2 dx ≤ −

∫

Ω
d(ϕ)Kv(U

−)U−dx

and then (according to (H1) and (6))

d

2dt
‖ x(φ)U− ‖2L2(Ω) +

ν

2

∫

Ω
| ∇u− |2 dx ≤ C ‖ x(φ)U− ‖2L2(Ω) .
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Using the assumption U0 ≥ 0 (then ‖ U−
0 ‖2

L2(Ω)= 0) and Gronwall’s lemma, we can deduce

that U(t, .)≥ 0 for all t ∈ (0,T) and a.e. in Ω.
To prove that, for all t ∈ (0,T), U(., t) ≤ ms a.e. in Ω, we choose v = (U − ms)+ ∈ V in the
equation (19) and we use the same technique as before by using the following estimate:

∫

Ω
( f + r(ϕ)g)(U−ms)

+dx =
∫

Ω
(( f + r(ϕ)g)−ms)(U −ms)

+dx

+
∫

[U≥ms]
ms(U−ms)

+dx ≤ C ‖ x(φ)(U−ms)
+ ‖2L2(Ω) . ✷

5. Uncertainties and perturbation problems

In clinical practice, measurements, material data, behavior of patients and other process
are highly disturbed and affected by noises and errors. Consequently, in order to obtain a
solution robust to the noises and fluctuations in input data and parameters, it is necessary to
incorporate these uncertainties in the modeling and to analyse the robust regulation of the
deviation of the model from the desired temperature distribution target, due to fluctuations.
In the following, the solution U of problem (4) will be treated as the target function. We are
then interested in the robust regulation of deviation of the problem from the desired target
U. So, we now formulate the perturbation problem. Precisely, we develop the full nonlinear
perturbation problem, which models fluctuations u to the target temperature therapy U, i.e.
we assume thatU satisfies the problem (4) with data (U0,P,φ, f , g,h,Ua,Ub) andU+ u satisfies
problem (4) with the data (U0 + u0,P+ p,φ + ϕ, f + ξ, g+ η,h+ π,Ua + ua,Ub + ub).
Hence we consider the following system (for a given U sufficiently regular):

c(φ + ϕ)
∂u

∂t
− div(κ(φ + ϕ,U+ u)∇u)− div((κ(φ + ϕ,U+ u)− κ(φ,U))∇U)

= −e(φ + ϕ)(p+ P)(u− ua)− d(φ + ϕ)Kv(u) + r(φ + ϕ)η + ξ

−(c(φ + ϕ)− c(φ))
∂U

∂t
− (e(ϕ + φ)(p+ P)− e(φ)P)(U −Ua)

−(d(ϕ + φ)− d(φ))Kv(U) + (r(ϕ + φ)− r(φ))g in Q,

subjected to the boundary condition

(κ(φ + ϕ,U+ u)∇u).n+ ((κ(φ + ϕ,U+ u)− κ(φ,U))∇U).n = −q(u− ub)
−λ(x)((L(U + u)− L(U))− (L(Ub + ub)− L(Ub))) + π in Σ,

and the initial condition

u(0) = u0 in Ω.

(21)

If we set : L̃(u) = L(U + u) − L(U), L̃b(ub) = L(Ub + ub) − L(Ub), and β̃(ϕ) = β(φ + ϕ),
κ̃(ϕ,u) = κ(φ + ϕ,U + u), where the function β plays the role of c, d, e or r, then System (21)
reduces to

c̃(ϕ)
∂u

∂t
− div(κ̃(ϕ,u)∇u)− div((κ̃(ϕ,u)− κ̃(0,0))∇U)

= −ẽ(ϕ)(p+ P)(u− ua)− d̃(ϕ)Kv(u) + r̃(ϕ)η + ξ

−(c̃(ϕ)− c̃(0))
∂U

∂t
− (ẽ(ϕ)(p+ P)− ẽ(0)P)(U −Ua)

−(d̃(ϕ)− d̃(0))Kv(U) + (r̃(ϕ)− r̃(0))g in Q,

(22)
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subjected to the boundary condition

(κ̃(ϕ,u)∇u).n+ ((κ̃(ϕ,u)− κ̃(0,0))∇U).n

= −q(u− ub)− λ(x)(L̃(u)− L̃b(ub)) + π in Σ,

and the initial condition

u(0) = u0 in Ω.

Remark 5 (i) We can easily verify that c̃, d̃, ẽ, r̃ and κ̃ satisfy the same hypothesis that c,d, e,r and κ
i.e. the assumptions (H1)-(H3).

(ii) For simplicity of future reference, we omit the “ ˜ ” on L̃, L̃b, c̃, d̃, ẽ, r̃ and κ̃ for the system (22).

In the sequel we assume that

(Ua,φ) ∈ L∞(Q)× L∞(Ω), (Ub,q) ∈ R2(Σ) and U ∈ S̃(Q). (23)

Nowwe show the existence and uniqueness of the solution to the problem (22), and give some
Lipschitz continuity results.

Theorem 4 Let assumptions (H1)(H2) be fulfilled (with remark 5) and (Ua,φ,Ub,q) be given such
that (23). We have the following results.
(i) For the initial condition u0 in L2(Ω) and source terms (p, ϕ,ξ,η,π) in L∞(Q) × L∞(Ω) ×
(L2(Q))2× L2(Σ). There exists a unique solution u inW(Q)∩H(Q) of (22) satisfying the following

regularity: | u |3 u ∈ L
5
4 (Σ).

(ii) Let (pi, ϕi,ξi,ηi,πi,u0i), i=1,2 be two functions of L∞(Q) × L∞(Σ) × (L2(Q))2 × L2(Σ) ×
L2(Ω). If ui ∈ W(Q) ∩ H(Q) is the solution of (22) corresponding to data (pi , ϕi,ξi,ηi,πi,u0i),
i=1,2, then

‖ u ‖2H(Q)∩V(Q)
≤ C1(‖ p ‖2

L2(Q)
+ ‖ ξ ‖2

L2(Q)
)

+C2(‖ ϕ ‖2L2(Ω) + ‖ η ‖2L2(Q) + ‖ π ‖2L2(Σ)) + C3 ‖ u0 ‖2L2(Ω),
(24)

where u = u1 − u2, p = p1 − p2, ϕ = ϕ1 − ϕ2, ξ = ξ1 − ξ2, η = η1 − η2, π = π1 − π2 and u0 =
u01 − u02.

Proof. The proof of this result can be obtained by using a similar technique as in the proof of
Theorem 1. So, we omit the details.

6. Robust control and regulation problems

In this section we formulate the robust control problem and study the existence and necessary
optimality conditions for an optimal solution.

6.1 Formulation of the control problem

Our problem in this section is to find the best admissible perfusion function p and distributed
energy source ξ in the presence of the worst disturbance in the porosity function ϕ, in the
evaporation term π and in the metabolic heat generation type term η. We then suppose that
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the control is in X = (p,ξ) and the disturbance is in Y = (ϕ,η,π). Therefore, the function u is
assumed to be related to the disturbance Y and control X through the problem

c(ϕ)
∂u

∂t
− div(κ(ϕ,u)∇u) + e(ϕ)(p+ P)(u− wa) + d(ϕ)Kv(u)

= div((κ(ϕ,u)− κ(0,0))∇U) + r(ϕ)η + ξ − (c(ϕ)− c(0))
∂U

∂t
+e(0)Pva − (d(ϕ)− d(0))Kv(U) + (r(ϕ)− r(0))g in Q,

subjected to the boundary condition

(κ(ϕ,u)∇u).n= −((κ(ϕ,u)− κ(0,0))∇U).n

−q(u− ub)− λ(x)(L(u)− Lb(ub)) + π in Σ,

and the initial condition

u(0) = u0 in Ω,

(25)

under pointwise constraints

τ1 ≤ p ≤ τ2 a.e. in Q,
δ1 ≤ ϕ ≤ δ2 a.e. in Ω, (26)

where va = U−Ua and wa = ua − va, and u0 ∈ L2(Ω) is assumed to be given.
Let Di, for i = 1,2 be the sets of functions describing the constraints (26) such that

D1 = {p ∈ L2(Q) : τ1 ≤ p ≤ τ2 a.e. in Q} and D2 = {ϕ ∈ L2(Ω) : δ1 ≤ ϕ ≤ δ2 a.e. in Ω},

and Ki for i = 1,2 be convex, closed, non-empty and bounded subset of L2(Q) and K3 be
convex, closed, non-empty and bounded subset of L2(Σ). The studied control problem is to
find a saddle point of the cost function J which measures the distance between the known
observations mobs and Dobs (or known offsets which are given by experiment measurements)
, corresponding to the online temperature control and thermal damage via radiometric
temperature measurement system, respectively, and the prognostic variables γu + δp (in
practice the parameters γ and δ satisfy γ ≈ δ in muscle and γ ≪ δ in fat) and the variation
of cell damage function (D(x,u+U)−D(x,U)) (see paragraph 2.2). Precisely we will study
the following robust control problem (SP).

find (X,Y) ∈ Uad × Vad such that the cost functional (in the reduced form)

J (X,Y) =
a

2
‖ (γu+ δp)−mobs ‖2L2(Q) +

b

2
‖
∫ T

0
H̃(t,u(., t))dt− Dobs ‖2L2(Ω)

+
α

2
‖ NX ‖2L2(Q)×L2(Q) −

β

2
‖MY ‖2L2(Ω)×L2(Q)×L2(Σ)

(27)

is minimized with respect to X = (p,ξ) and maximized with respect to Y = (ϕ,η,π)
subject to the problem (25),

where a + b > 0 and a,b ≥ 0, H̃(t,u) = H(t,u+U) −H(t,U) with the cell damage function

D(x,u) =
∫ T

0
H(t,u(., t))dt (see paragraph 2.2), the matrix N = diag(

√
n1,

√
n2) and M =
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diag(
√
m1,

√
m2,

√
m3), are predefined nonnegative weights such that n1 + n2 �= 0 and m1 +

m2 +m3 �= 0, Uad = D1 ×K1, Vad = D2 ×K2×K3 and (mobs,Dobs) is the target. The coefficient
α > 0 can be interpreted as the measure of the price of the control (that the engineer can afford)
and the coefficient β > 0 can be interpreted as the measure of the price of the disturbance (that
the environnement can afford). The parameters γ,δ are positive with space-time dependent
entries and are in L∞(Q).

Remark 6 Although D1 (respectively D2) is a subset of L∞(Q) (respectively of L∞(Ω)), we prefer
to use the standard norms of the space L2(Q) (respectively of L2(Ω)). The reason is that we would
like to take advantages of the differentiability of the latter norm away from the origin to perform our
variational analysis.

6.2 Fréchet differentiability and existence result

Let us introduce the following mapping F : Uad × Vad −→ Z = W̃(Q) ∩H(Q), which maps
the source term (X,Y) ∈ Uad×Vad of (25) into the corresponding solution u in Z , and assume,
in addition, that the assumption (H3) holds.
Following the development in (Belmiloudi, 2008), we start by calculating the variation of
the operator solution F . For this we suppose that the operator solution F is continuously
differentiable (in weak sense) on Uad × Vad and its derivative (at point (X,Y) = (p,ξ, ϕ,η,π))

F ′(X,Y) : (H,K) = (y,h,ψ,e,z) ∈ L∞(Q) × L2(Q) × L∞(Ω) × L2(Q) × L2(Σ) −→ w =

F ′(X,Y).(H,K) = lim
ǫ−→0

F (X+ ǫH,Y+ ǫK)

ǫ
, where (X+ ǫH,Y+ ǫK) ∈ Uad×Vad, is such that

w =
∂F
∂X

(X,Y)H +
∂F
∂Y

(X,Y)K is the unique weak solution of the following system

c′(ϕ)
∂(u+U)

∂t
ψ + c(ϕ)

∂w

∂t
− div(κ(ϕ,u)∇w)

−div((
∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇(u+U))

+e′(ϕ)ψ(p+ P)(u− wa) + e(ϕ)y(u− wa) + e(ϕ)(p+ P)w
+d′(ϕ)ψKv(u+U) + d(ϕ)Kv(w) = r′(ϕ)ψ(η + g) + r(ϕ)e+ h in Q,

subjected to the boundary condition

(κ(ϕ,u)∇w).n= −((
∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇(U+ u)).n

−qw− λ(x)L′(u)w+ z in Σ,

and the initial condition
w(0) = 0 in Ω,

(28)

where u=F (X,Y). If we putU1 = u+U, P1 = p+ P, Va = u−wa and G1 = η − g, the system
(28) can be written as

c(ϕ)
∂w

∂t
− div(κ(ϕ,u)∇w)− div((

∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇U1) + d(ϕ)Kv(w)

+e(ϕ)P1w+ e′(ϕ)ψP1Va + e(ϕ)yVa

+d′(ϕ)ψKv(U1) = −c′(ϕ)
∂U1

∂t
ψ + r′(ϕ)ψG1 + r(ϕ)e+ h in Q,

(29)
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subjected to the boundary condition

(κ(ϕ,u)∇w).n= −((
∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇U1).n

−qw− λ(x)L′(u)w+ z in Σ,

and the initial condition

w(0) = 0 in Ω.

Definition 3 The system (28) (or (29)) satisfied by w is called the tangent linear model (TLM) or
sensitivity problem and w is called sensitivity temperature.

Using the minimax formulation (of Ky Fan-von Neumann) in infinite dimensions presented in
chapter 5 of (Belmiloudi, 2008) (see also (Ekeland & Temam, 1976)), we have the following
sufficient and necessary conditions for the existence and characterisation of a saddle point.

1. Sufficient conditions for the objective functional J to admit a saddle point are :

a) The mapping PY : X −→ J (X,Y) is convex and lower semi-continuous (in a weak
topology), for all Y ∈ Vad.

b) The mapping RX : Y −→ J (X,Y) is concave and upper semi-continuous (in a weak
topology), for all X ∈ Uad.

2. Necessary optimality conditions for a saddle point (X∗ ,Y∗) ∈ Uad × Vad of J , if PY and
RX are Gâteaux differentiable, are

∂J
∂X

(X∗,Y∗).(X− X∗) ≥ 0 ∀X ∈ Uad,

∂J
∂Y

(X∗,Y∗).(Y− Y∗) ≤ 0 ∀Y ∈ Vad.

(30)

From the expression of the cost functional J , which is a composition of Gâteaux differentiable
mappings, it follows that PY and RX are Gâteaux differentiable. Consequently, in order to
prove the convexity of PY (respectively the concavity of RX), it is sufficient to show that for
all (X1,X2) ∈ Uad × Uad (respectively for all (Y1,Y2) ∈ Vad × Vad), we have

(P ′
Y(X1)−P ′

Y(X2)).(X1 − X2) ≥ 0 (respectively (R′
X(Y1)−R′

X(Y2)).(Y1 − Y2) ≤ 0)),

where for i = 1,2 and for all (H,K) ∈ Uad × Vad

P ′
Y(Xi)H = lim

ǫ−→0

J (Xi + ǫH,Y)−J (Xi,Y)

ǫ
, R′

X(Yi)K = lim
ǫ−→0

J (X,Yi + ǫK)−J (X,Yi)

ǫ
.

Using similar arguments as in Chapter 8 of (Belmiloudi, 2008), we can prove that : there exist
constants αl and βl such that for all α ≥ αl and β ≥ βl , the operators PY and RX are convex and
concave, respectively. We shall prove now that PY (respectively RX) is lower (respectively
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upper) semi-continuous for all Y ∈ Vad (respectively X ∈ Uad). Let Xk ∈ Uad be a minimizing
sequence of PY, i.e.,

liminf
k−→∞

J (Xk,Y) = inf
X∈(L2(Q))2

J (X,Y).

Then, according to the nature of the cost function J , we can deduce that Xk is uniformly
bounded in Uad and we can extract from Xk a subsequence also denoted by Xk such that
Xk ⇀ XY weakly in Uad. Therefore, by using the same technique as to obtain the estimate (24),
the function uk = F (Xk,Y) is uniformly bounded in W(Q) ∩H(Q). Consequently, since the
injection of W(Q) into L2(Q) is compact, these results make it possible to extract from uk a
subsequence also denoted by uk such that

uk ⇀ uY weakly in L2(0,T;V),
uk −→ uY strongly in L2(Q),
Xk ⇀ XY weakly in L2(Q) and XY ∈ Uad.

(31)

It is easy to prove that uY is a solution of (25) with data (XY ,Y) and according to the
uniqueness of the solution of the direct problem (25), we have then uY =F (XY,Y). Therefore,
since the norm is lower semi-continuous, we have that the map PY is lower semi-continuous
for all Y ∈ Vad. By applying similar argument as in the proof of the previous result we obtain
that RX is upper semi-continuous for all X ∈ Uad (in this case we consider a maximizing
sequence Xk ∈ Uad ofRX , i.e., limsup

k−→∞

J (Xk,Y) = sup
Y∈Y2

J (X ,Y), where Y2 = L2(Ω)× L2(Q)×

L2(Σ)).
In conclusion we have that: for α and β sufficiently large there exists an optimal solution (X∗ ,Y∗) ∈
Uad × Vad and u∗ ∈ Z such that (X∗ ,Y∗) is a saddle point of J and u∗ = F (X∗,Y∗).

Remark 7

– To obtain the uniqueness of the optimal solution we can use similar assumption about sufficiently
small final time T as e.g. in (Belmiloudi, 2005).

– If we assume in addition that the operator c,d, e,r and κ are twice differentiable, we can also derive
the uniqueness result by proving the strict convexity of the functional PY and the strict convexity of
the functional RX, which are equivalent to showing

Ψ′′
Y(ǫ)> 0 and Φ′′

X(ǫ)< 0 ∀ǫ ∈ [0,1],

where Ψ(ǫ) = J (ǫX+ (1− ǫ)X,Y), Φ(ǫ) = J (X,ǫY+ (1− ǫ)Y), for X,X given in Uad and
Y,Y given in Vad.More precisely,

”If the coefficients α,β are sufficiently large, i.e. if there exists (αL,βL) such that α ≥ αl ≥ αL and
β ≥ βl ≥ βL , then the robust control problem admits one unique solution.”

– According to the previous results, we can deduce that

”If there exists (αL,βL) such that α ≥ αl ≥ αL and β ≥ βl ≥ βL , or if the final time T is
sufficiently small, α ≥ αl and β ≥ βl , then the robust control problem admits one unique solution.”

In order to solve the saddle problem (27) it is necessary to derive the gradient J ′(X,Y) of the
cost functional J with respect to the control-disturbance (X,Y). To this end, let us introduce
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the directional derivative J ′(X,Y).(H,K), where X = (p,ξ), Y = (ϕ,η,π), H = (y,h) and K =
(ψ,e,z) by

J ′(X,Y).(H,K) =
d

ds
J (X+ sH,Y+ sK)|s=0

= a
∫ ∫

Q
((γu+ δp)−mobs)(γw+ δy) dxdt

+b
∫

Ω
(
∫ T

0
H̃(t,u(., t)) dt− Dobs)(

∫ T

0
H̃′(t,u(., t))w dt) dx

+α(n1

∫ ∫

Q
py dxdt+ n2

∫ ∫

Q
ξh dxdt)

−β(m1

∫

Ω
ϕψ dx+m2

∫ ∫

Q
ηe dxdt+m3

∫ ∫

Σ
πz dΓdt),

(32)

where w = F ′(X,Y).(H,K) is the solution of the sensitivity problem (6.2) and H̃′ is the
differential of H̃ at the second variable u.

Remark 8 Since H̃(t,u) =H(t,U+ u)−H(t,U) then H̃′(t,u) =H′(t,U+ u). Consequently, for

example in the case of Arrhenius model, we have that H̃′(t,u) =
E

R(U + u)2
H(t,U+ u).

It is clear from (32) that the main difficulty is the simplification of the directional derivative
J ′(X,Y).(H,K), which requires the introduction of the adjoint (or dual problem) to the
sensitivity state corresponding to the direct problem (25). The adjoint model and the
evaluation of the gradient of J are given in the next section.

6.3 Adjoint model and gradient

Let ũ be a sufficiently regular function such that ũ(T) = 0. Multiplying the first part of (29)
by ũ and integrating with respect to space and time, and using Green’s formula, we obtain
according to the second part of (29) (the boundary condition) that (since c(ϕ) is independent
on time)

∫ ∫

Q
−c(ϕ)

∂ũ

∂t
w dxdt+

∫

Ω
(c(ϕ)(ũ(T)w(T)− ũ(0)w(0)) dx

+
∫ ∫

Σ
(qw+ λ(x)L′(u)w− z)ũ dΓdt+

∫ ∫

Σ
κ(ϕ,u)∇ũ.nw dΓdt

+
∫ ∫

Q
(

∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇U1.∇ũ dxdt−

∫ ∫

Q
div(κ(ϕ,u)∇ũ)w dxdt

+
∫ ∫

Q
d(ϕ)Kv(w)ũ dxdt+

∫ ∫

Q
e(ϕ)P1ũw dxdt

= −
∫ ∫

Q
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ψũ dxdt

−
∫ ∫

Q
e(ϕ)Vaũy dxdt+

∫ ∫

Q
r(ϕ)ũe dxdt+

∫ ∫

Q
ũh dxdt.

(33)

According to (18) we can deduce that

∫ ∫

Q
d(ϕ)Kv(w)ũ dxdt =

∫ ∫

Q
K∗
v(d(ϕ)ũ)wdx+

∫ ∫

Σ
d(ϕ)ũ�ϑ.nw dΓdt. (34)
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Since ũ(T) = 0, w(0) = 0 and according to (34), we obtain (since ψ is independent on time)

∫ ∫

Q

(

−c(ϕ)
∂ũ

∂t
− div(κ(ϕ,u)∇ũ) + K∗

v(d(ϕ)ũ) + e(ϕ)P1ũ+
∂κ

∂u
(ϕ,u)∇U1.∇ũ

)

w dxdt

+
∫ ∫

Σ
(qũ+ λ(x)L′(u)ũ+ κ(ϕ,u)∇ũ.n+ d(ϕ)ũ�ϑ.n)w dΓdt

= −
∫

Ω

(

∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

)

ψ dx

−
∫

Ω

(

∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt

)

ψ dx

−
∫ ∫

Q
e(ϕ)Vaũy dxdt+

∫ ∫

Q
r(ϕ)ũe dxdt+

∫ ∫

Q
ũh dxdt+

∫ ∫

Σ
zũ dΓdt.

(35)

In order to simplify the problem (35), we assume that ũ satisfies the following so-called adjoint
problem (with initial value given at final time T)

−c(ϕ)
∂ũ

∂t
− div(κ(ϕ,u)∇ũ) + K∗

v(d(ϕ)ũ) + e(ϕ)P1ũ+
∂κ

∂u
(ϕ,u)∇U1.∇ũ

+aγ(γu+ δp−mobs) + b(
∫ T

0
H̃(t,u(., t)) dt− Dobs)H̃′(.,u) = 0 in Q,

subjected to the boundary condition

−κ(ϕ,u)∇ũ.n = qũ+ λ(x)L′(u)ũ+ d(ϕ)ũ�ϑ.n in Σ,

and the final condition

ũ(T) = 0 in Ω.

(36)

Remark 9

1. We point out that : if the function H̃ is a Carathéodory function from IR × IR into IR+ and H̃(t, .)
is Lipschitz, differentiable, bounded function and its partial derivative is Lipschitz and bounded
function (for almost all t ∈ (0,T)), the adjoint problem (36), which is backward in time, can be
transformed into an initial-boundary value problem by the time transformation t := T − t, which
allows to employ similar argument as in the proof of Theorem 1 for the existence of a unique solution
ũ of (36) for a sufficiently regular data. So, we omit the details.

2. In the sequel we denote by F⊥(X,Y) = ũ the solution of the adjoint problem (36) corresponding to
the direct solution u = F (X,Y).

Using the system (36), the problem (35) becomes

∫ ∫

Q
−
(

aγ(γu+ δp−mobs) + b(
∫ T

0
H̃(t,u(., t)) dt− Dobs)H̃′(.,u)

)

w dxdt

= −
∫

Ω

(

∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

)

ψ dx

−
∫

Ω

(

∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt

)

ψ dx

−
∫ ∫

Q
e(ϕ)Vaũy dxdt+

∫ ∫

Q
r(ϕ)ũe dxdt+

∫ ∫

Q
ũh dxdt+

∫ ∫

Σ
zũ dΓdt.

(37)
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According to the expression (32) of J ′(X,Y) we can deduce that

J ′(X,Y).(H,K) =
∂J
∂X

(X,Y).H+
∂J
∂Y

(X,Y).K

=
∫ ∫

Q
(e(ϕ)Vaũ+ αn1p+ aδ(γu+ δp−mobs))y dxdt+

∫ ∫

Q
(n2ξ − ũ)h dxdt

+
∫

Ω
(E(ϕ,U1, ũ)− βm1ϕ)ψ dx−

∫ ∫

Q
(r(ϕ)ũ+ βm2η)e dxdt

−
∫ ∫

Σ
(ũ+ βm3π)z dΓdt,

(38)

where

E(ϕ,U1, ũ) =
∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

+
∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt.

(39)

Consequently the gradient of J at point (X,Y), in weak sense, is

∂J
∂X

(X,Y) =

(

e(ϕ)Vaũ+ αn1p+ aδ(γu+ δp−mobs)
n2ξ − ũ

)

,

∂J
∂Y

(X,Y) =

⎛

⎝

E(ϕ,U1, ũ)− βm1ϕ
−(r(ϕ)ũ+ βm2η)
−(ũ+ βm3π)

⎞

⎠ .

(40)

We next wish to show the appropriate first-order necessary optimality conditions of the saddle
point (X∗ ,Y∗) of the functional J , by using the characterization (30).

6.4 First-order optimality conditions

Let (X∗ ,Y∗) ∈ Uad×Vad and u∗ ∈Z be an optimal solution such that (X∗,Y∗) is a saddle point
of J and u∗ =F (X∗,Y∗) is the solution of (22). Then according to (30) and the expression (38)
of J ′ we can deduce that, for all (X,Y) ∈ Uad × Vad

∂J
∂X

(X∗ ,Y∗).(X−X∗)=
∫ ∫

Q
(e(ϕ∗)V∗

a ũ
∗ + αn1p

∗ + aδ(γu∗ + δp∗ −mobs))(p− p∗)dxdt

+
∫ ∫

Q
(n2ξ∗ − ũ∗)(ξ − ξ∗) dxdt ≥ 0

∂J
∂Y

(X∗ ,Y∗).(Y−Y∗)=
∫

Ω
(E(ϕ∗,U∗

1 , ũ
∗)− βm1ϕ∗)(ϕ − ϕ∗) dx

−
∫ ∫

Q
(r(ϕ∗)ũ∗ + βm2η∗)(η − η∗) dxdt

−
∫ ∫

Σ
(ũ∗ + βm3π∗)(π − π∗) dΓdt≤ 0

(41)
where U∗

1 = u∗ + U, P∗
1 = p∗ + P, V∗

a = u∗ − wa, G
∗
1 = η∗ − g and ũ∗ = F⊥(X∗,Y∗) is the

solution of the adjoint problem (36).

6.5 Optimization procedure

By using the successive resolutions of both the direct problem and the adjoint problem, we can
therefore calculate the gradient of the objective function relative to the control-disturbance
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functions X and Y. Once the gradient of the objective function J , ∇J , is known, we can
seek a saddle point of J . For a given observation (mobs,Dobs) for the outline temperature and
thermal damage, the optimization algorithm is summarized in Table 1.

Control-disturbance
(X,Y)

−−−−→ Direct Problem
u = F (X,Y)

−−−−→ Measurement
for (mobs,Dobs)

X:=X−θ ∂J
∂X (X,Y)

	

⏐

⏐

	

⏐

⏐
Y:=Y+ζ ∂J

∂Y (X,Y)

⏐

⏐

�

Convergence test ←−−−− Gradient of J
( ∂J

∂X , ∂J
∂Y )(X,Y)

←−−−− Adjoint Problem

ũ = F⊥(X,Y)
⏐

⏐

�

convergence

Optimal solution
(X∗,Y∗), u∗ = F (X∗,Y∗)

Table 1. Optimization algorithm : J is optimized until some convergence criteria are
attained.

7. Finite number of measurements and different tissues

7.1 Finite number of measurements

In many situations, we can measure the online temperature mobs and the thermal damage
Dobs in only some points in space-time domain. Let now some points be in Ω × (0,T) where
we assume that we can measure (mobs,Dobs). Let xi ∈ Ω, i = 1, · · · l such that xi �= xj if i �= j,
0 < t1 < t2 < · · · < T, and assume that we measure quantity ǫij and di which are meant to be

the value of the functions (γu+ δp) at point (xi, tj) and
∫ T
0 H̃(t,u(., t))dt at point xi denoted

by M(xi , tj), for i = 1, . . . , l and j= 1, . . . ,N and D(xi), for i = 1, . . . , l, respectively. Let (Ωi)i=1,l

be a sequence of disjointed small ball in Ω such that xi ∈ Ωi, ∀i = 1, . . . , l. Let (Ij)j=1,N be
also a sequence of disjoint intervals in (0,T) such that tj ∈ Ij, ∀j = 1, . . . ,N. We introduce the
following average operators over the domains Ωi andQij = Ωi× Ij (for i= 1, . . . , l, j= 1, . . . ,N)
by

< v>ij=
1

meas(Qij)

∫

Qij

v(x, t)dxdt and < v >i=
1

meas(Ωi)

∫

Ωi

v(x)dx,

respectively, and we propose the following cost function ((X,Y) ∈ Uad × Vad)

J (X,Y) =
a

2 ∑
i=1,l

∑
j=1,N

|< M >ij −ǫij |2 +
b

2 ∑
i=1,l

|< D >i −di |2

+
α

2
‖ NX ‖2L2(Q)×L2(Q) −

β

2
‖MY ‖2L2(Ω)×L2(Q)×L2(Σ) .

(42)

Let χD be the usual characteristic function of a domain D i.e. χD = 1 on D, and 0 outside
of D. Let LT : L2(Q) −→ L2(Q) and LD : L2(Ω) −→ L2(Ω) be defined by (∀v ∈ L2(Q) and
w ∈ L2(Ω))

LT(v) = ∑
i=1,l

∑
j=1,N

1

meas(Qij)
χQij

< v >ij, LD(w) = ∑
i=1,l

1

meas(Ωi)
χΩi

< w>i (43)
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and

ǫ = ∑
i=1,l

∑
j=1,N

1

meas(Qij)
χQij

ǫij, d= ∑
i=1,l

1

meas(Ωi)
χΩi

di. (44)

By using the same technique as in the proof of the results of the previous section, we can prove
the existence theorem of the control problem and obtain necessary optimality conditions as
follows.

For α and β sufficiently large there exists an optimal solution (X∗ ,Y∗) ∈ Uad × Vad and
u∗ ∈ Z such that (X∗ ,Y∗) is a saddle point of J and u∗ = F (X∗,Y∗) is the solution of (25).
Moreover, the optimal solution (X∗,Y∗) is characterized by (for all (X,Y) ∈ Uad × Vad)

∂J
∂X

(X∗ ,Y∗).(X−X∗)=
∫ ∫

Q
(e(ϕ∗)V∗

a ũ
∗ + αn1p

∗ + aδ(LT(M
∗)− ǫ))(p− p∗)dxdt

+
∫ ∫

Q
(n2ξ∗ − ũ∗)(ξ − ξ∗) dxdt ≥ 0

∂J
∂Y

(X∗ ,Y∗).(Y−Y∗)=
∫

Ω
(E(ϕ∗,U∗

1 , ũ
∗)− βm1ϕ∗)(ϕ − ϕ∗) dx

−
∫ ∫

Q
(r(ϕ∗)ũ∗ + βm2η∗)(η − η∗) dxdt

−
∫ ∫

Σ
(ũ∗ + βm3π∗)(π − π∗) dΓdt≤ 0

where U∗
1 = u∗ + U, P∗

1 = p∗ + P, V∗
a = u∗ − wa, G

∗
1 = η∗ − g, E is given in (39) and

ũ∗ = F⊥(X∗ ,Y∗) is the solution of the following adjoint problem

−c(ϕ∗)
∂ũ∗

∂t
− div(κ(ϕ∗,u∗)∇ũ∗) + K∗

v(d(ϕ∗)ũ∗) + e(ϕ∗)P1ũ∗ +
∂κ

∂u
(ϕ∗,u∗)∇U∗

1 .∇ũ∗

+aγ(LT(M
∗)− ǫ) + b(LD(D

∗)− d)H̃′(.,u∗) = 0 in Q,

subjected to the boundary condition

−κ(ϕ∗,u∗)∇ũ∗.n = qũ∗ + λ(x)L′(u∗)ũ∗ + d(ϕ∗)ũ∗�ϑ.n in Σ,

and the final condition

ũ(T) = 0 in Ω.

7.2 Union of finite number of different tissue types

Suppose now that the body is constituted by different tissue types which occupy finitely many
disjointed subdomains Ωi, i = 1, ...,ND, of Ω, such that Ω =

⋃

i=1,ND
Ωi. Moreover we assume

that the perfusion acts continuously according to the temperature in each domain Ωi and
discontinuously at tissue boundaries. We propose the following cost function

J (X,Y) =
a

2
‖ (γu+ δp)−mobs ‖2L2(Q) +

b

2
‖
∫ T

0
H̃(t,u(., t))dt− Dobs ‖2L2(Ω)

+
α

2
‖ NX ‖2L2(0,T,R)×L2(Q) −

β

2
‖MY ‖2L2(Ω)×L2(Q)×L2(Σ)

where (X,Y) ∈ Ũad × Vad, Ũad = (L2(0,T,R) ∩D1)×K1 and R is the Hilbert space

{v ∈ L2(Ω), |v ∈ H1(Ωi), f or i = 1, ...,ND}
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equipped with the following norm and its corresponding scalar product:

‖ v ‖R= ( ∑
i=1,ND

(α1 ‖ v ‖2L2(Ωi)
+α2 ‖ ∇v ‖2L2(Ωi)

))1/2,

< v,w >R= ∑
i=1,ND

(α1

∫

Ωi

vw dΩi + α2

∫

Ωi

∇v.∇w dΩi),

with the fixed constants αi > 0 for i = 1,2.
Let the linear operator Λ : L2(Ω) −→R be defined by (∀v ∈ L2(Ω)) π = Λ(v) is the solution
of

−α2∆πi + α1πi = v|Ωi
, in Ωi

∂πi

∂n
= 0 on ∂Ωi,

(45)

where πi = π, a.e. in Ωi and v|Ωi
denotes the restriction of v on the subdomain Ωi, for i =

1, ...,ND.
By using the same technique as in the previous section, we can derived the existence of an
optimal solution and its necessary optimality conditions as follows.

For α and β sufficiently large there exists an optimal solution (X∗ ,Y∗) ∈ Ũad × Vad and
u∗ ∈ Z such that (X∗ ,Y∗) is a saddle point of J and u∗ = F (X∗,Y∗) is the solution of (25).
Moreover, the optimal solution (X∗,Y∗) is characterized by (for all (X,Y) ∈ Ũad × Vad)

∂J
∂X

(X∗,Y∗).(X−X∗)=
∫ T

0
< Λ(e(ϕ∗)V∗

a ũ
∗ + αn1p

∗ + aδ(M∗ −mobs)), p− p∗ >R dt

+
∫ ∫

Q
(n2ξ∗ − ũ∗)(ξ − ξ∗) dxdt ≥ 0

∂J
∂Y

(X∗,Y∗).(Y−Y∗)=
∫

Ω
(E(ϕ∗,U∗

1 , ũ
∗)− βm1ϕ∗)(ϕ − ϕ∗) dx

−
∫ ∫

Q
(r(ϕ∗)ũ∗ + βm2η∗)(η − η∗) dxdt

−
∫ ∫

Σ
(ũ∗ + βm3π∗)(π − π∗) dΓdt ≤ 0

where U∗
1 = u∗ +U, P∗

1 = p∗ + P, V∗
a = u∗ −wa, G

∗
1 = η∗ − g, M∗ = γu∗ + δp∗ , E is given

in (39) and ũ∗ = F⊥(X∗,Y∗) is the solution of the following adjoint problem

−c(ϕ∗)
∂ũ∗

∂t
− div(κ(ϕ∗,u∗)∇ũ∗) + K∗

v(d(ϕ∗)ũ∗) + e(ϕ∗)P1ũ∗ +
∂κ

∂u
(ϕ∗,u∗)∇U∗

1 .∇ũ∗

+aγ(M∗ −mobs) + b(D∗ − Dobs)H̃′(.,u∗) = 0 in Q,

subjected to the boundary condition

−κ(ϕ∗,u∗)∇ũ∗.n = qũ∗ + λ(x)L′(u∗)ũ∗ + d(ϕ∗)ũ∗�ϑ.n in Σ,

and the final condition

ũ(T) = 0 in Ω,

where D∗ =
∫ T

0
H̃(t,u∗(., t))dt.
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Remark 10 We can also combine the results of this paragraph with the results of the previous
paragraph, by replacing the first term of the function J as in (42), (M,D) by (LT(M),LD(D))
and (mobs,Dobs) by (ǫ,d) (see (43) and (44), respectively).

8. Stochastic robust control

In this section, we present formally a sketch of an extension of our robust control approach
to the stochastic process. Consider then a complete probability space T = (D,F,P), with D
the sample space of elementary events, F the minimal σ − algebra of D and P a probability
measure. In this context, a real-valued space-time stochastic process v(x, t) with a known
probability distribution can be written as a function v(x, t; f), where f denotes the dependence
on elementary events i.e. the process v can be interpreted as a function that maps each
point (x, t, f) ∈ (Q,D) to a corresponding point v(x, t; f) according to the probability measure.
For more details on the representation of random variables and stochastic processes see e.g.
(Loeve, 1977; Prato & Zabczyk, 1992).
Assume that the stabilization and regulation process are with random temperature
distribution, data, controls, disturbances and measurement. Then the perturbation problem
with random corresponding to (25) can be written as

c(ϕ; f)
∂u

∂t
− div(κ(ϕ,u; f)∇u) + e(ϕ; f)(p(x, t; f) + P(x, t; f))(u− wa(x, t; f)

+d(ϕ; f)Kv(u) = div((κ(ϕ,u; f)− κ(0,0; f))∇U) + r(ϕ; f)η(x, t; f) + ξ(x, t; f)

−(c(ϕ; f)− c(0; f))
∂U

∂t
+ e(0; f)Pva(x, t; f)

−(d(ϕ; f)− d(0; f))Kv(U)
+(r(ϕ; f)− r(0; f))g(x, t; f) in Q×D,

subjected to the boundary condition

(κ(ϕ,u; f)∇u).n = −((κ(ϕ,u; f)− κ(0,0; f))∇U).n − q(u− ub(x, t; f))

−λ(x)(L(u)− Lb(ub(x, t; f))) + π(x, t; f) in Σ ×D,

and the initial condition

u(x,0; f) = u0(x; f) in Ω ×D.

(46)

We propose the following cost function

J (X,Y) =
a

2

∫

D
‖ (γu(. ; f) + δp(. ; f))−mobs(. ; f) ‖2L2(Q) dP

+
b

2

∫

D
‖
∫ T

0
H̃(t,u(., t); f)dt− Dobs(. ; f) ‖2L2(Ω) dP

+
α

2

∫

D
‖ NX(. ; f) ‖2L2(0,T,R)×L2(Q) dP − β

2

∫

D
‖MY(. ; f) ‖2L2(Ω)×L2(Q)×L2(Σ) dP ,

where (X,Y) ∈ Ũad × Ṽad, with Ũad = L2(D;Uad) and Ṽad = L2(D;Vad), and
∫

D
. dP is an

integral with respect to the probability space T .
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If we assume that, for α and β sufficiently large, there exists an optimal solution (X∗ ,Y∗) ∈
Ũad × Ṽad and u∗ ∈ L2(D;Z) such that (X∗ ,Y∗) is a saddle point of J and u∗ = F (X∗,Y∗)
is the solution of (46), we can obtain, in the same way as to derive the necessary optimality
conditions (41), the following result.

The optimal solution (X∗ ,Y∗) is characterized by (for all (X,Y) ∈ Ũad × Ṽad)

∂J
∂X

(X∗ ,Y∗).(X−X∗)=
∫

D
(
∫ ∫

Q
(e(ϕ∗; f)V∗

a ũ
∗ + αn1p

∗ + aδ(M∗ −mobs))(p− p∗) dxdt)dP

+
∫

D
(
∫ ∫

Q
(n2ξ∗ − ũ∗)(ξ − ξ∗) dxdt)dP ≥ 0

∂J
∂Y

(X∗ ,Y∗).(Y−Y∗)=
∫

D

∫

Ω
(EP(ϕ∗,U∗

1 , ũ
∗)− βm1ϕ∗)(ϕ − ϕ∗) dx)dP

−
∫

D
(
∫ ∫

Q
(r(ϕ∗; f)ũ∗ + βm2η∗)(η − η∗) dxdt)dP

−
∫

D
(
∫ ∫

Σ
(ũ∗ + βm3π∗)(π − π∗) dΓdt)dP ≤ 0

where U∗
1 (x, t; f) = u∗ +U, P∗

1 (x, t; f) = p∗ + P, V∗
a (x, t; f) = u∗ − wa, G

∗
1 (x, t; f) = η∗ − g,

M∗(x, t; f) = γu∗ + δp∗ and

EP(ϕ∗,U∗
1 , ũ

∗) =
∫ T

0
(e′(ϕ∗; f)P∗

1V
∗
a + c′(ϕ∗; f)

∂U∗
1

∂t
+ d′(ϕ∗; f)Kv(U

∗
1 )− r′(ϕ∗; f)G∗

1 )ũ
∗dt

+
∫ T

0

∂κ

∂ϕ
(ϕ∗,u∗; f)∇U∗

1 .∇ũ∗dt,

with ũ∗(x, t; f) = F⊥(X∗ ,Y∗) the solution of the following adjoint problem

−c(ϕ∗; f)
∂ũ∗

∂t
− div(κ(ϕ∗,u∗; f)∇ũ∗) + K∗

v(d(ϕ∗; f)ũ∗)

+e(ϕ∗; f)P∗
1 ũ

∗ +
∂κ

∂u
(ϕ∗,u∗; f)∇U∗

1 .∇ũ∗

+aγ(M∗ −mobs(. ; f)) + b(D∗ − Dobs(. ; f))H̃′(.,u∗; f) = 0 in Q×D,

subjected to the boundary condition

−κ(ϕ∗,u∗; f)∇ũ∗.n = qũ∗ + λ(x)L′(u∗; f)ũ∗ + d(ϕ∗; f)ũ∗�ϑ.n in Σ ×D,

and the final condition

ũ(x,T; f) = 0 in Ω ×D,

where D∗(x; f) =
∫ T

0
H̃(t,u∗(x, t; f); f)dt.

9. Radiation transport and coagulation process

In this section, we present formally the stabilization and regulation of the thermotherapy
(by e.g. minimally invasive microwave or laser-induced thermal therapies) and radiation
transport. During the treatment, the power energy provided by, for example, the laser or
microwave, heats up the tumor to produce a coagulated region including the target cancer
cells. As progression of tissue coagulation, physical properties of the tissue change, so, it is
necessary to control the variation of the coagulated region.
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9.1 Formulation and perturbation problem

We denote by Θ (which measures the fraction of native tissue) the concentration of living cells
C which satisfy the relation (10) and we assume that the initial distribution of native tissue is
given by Θ(x, t = 0) = Θ0(x). So, the state Θ satisfies the following Cauchy equation (for a.e.
x ∈ Ω)

∂Θ

∂t
(x, t) =H(t,U(x, t))Θ(x, t) in (0,T)

Θ(x, t = 0) = Θ0(x),
(47)

where U is the temperature distribution.
We assume also that the sum of absorbed laser radiation, f , is given by

f (x, t) = ℵ(θ(x, t),x)Φ(x, t). (48)

Here Φ (W.m−2) is the irradiance and ℵ = ℵa − B where ℵa is the absorption coefficient and
B is the Planck emission function for the material. Then, according to (48), the problem (4)
becomes

c(φ,x)
∂U

∂t
= div(κ(φ,U,x)∇U)− e(φ,x)P(x, t)(U−Ua)

−d(φ,x)Kv(U) + r(φ,x)g(x, t) + ℵ(θ(x, t),x)Φ(x, t) in Q,

subjected to the boundary condition

(κ(φ,U,x)∇U).n = −q(x, t)(U−Ub)
−λ(x)(L(U)− L(Ub)) + h(x, t) in Σ,

and the initial condition

U(x,0) = U0(x) in Ω.

(49)

The irradiance Φ, which corresponds to the radiation transport through the tissue, can
be described by the following stationary diffusion equation (Niemz, 2002) (which is an
approximation of more general radiation transport equation (Ishimaru, 1978; Pomraning,
1973))

−div(X(Θ,x)∇Φ) + ℵ(Θ,x)Φ = 0 in Ω,

under the boundary conditions

−X(Θ,x)∇Φ.n+ sΦ = J in Γr,
−X(Θ,x)∇Φ.n+ sΦ = 0 in Γnr,

(50)

where s is a fixed constant, J is the power of the applied laser source and Γ = Γr ∪ Γnr such
that Γr ∩ Γnr = ∅. Boundary Γr denotes the boundary through which radiation is emmitted
and Γnr denotes the other boundary of the domain.
In the sequel, we assume that X and ℵ satisfy similar hypotheses as (H1)-(H3) and,
for simplicity, we denote the values ℵ(Θ, .), X(Θ, .) and H(.,U) by ℵ(Θ), X(Θ) and
H(U), respectively. In this context, we can formulate the perturbation problem
as follows. We assume that (U,Φ,Θ) satisfies the problem (49),(47), (50) with data
(U0,P,φ, g,h,Ua,Ub,Θ0,J) and (U + u,Φ + Ψ,Θ + θ) satisfies problem (49),(47), (50) with

63Thermal Therapy: Stabilization and Identification

www.intechopen.com



32 Heat Transfer

data (U0 + u0,P + p,φ + ϕ, g+ η,h+ π,Ua + ua,Ub + ub,Θ0 + θ0,J+ ξ). Hence we consider
the following systems (for a given (U,Φ,Θ) sufficiently regular) as follows.

Perturbation of the transient bioheat transfer type problem

c(φ + ϕ)
∂u

∂t
− div(κ(φ + ϕ,U+ u)∇u)− div((κ(φ + ϕ,U+ u)− κ(φ,U))∇U)

= −e(φ + ϕ)(p+ P)(u− ua)− d(φ + ϕ)Kv(u) + r(φ + ϕ)η + ℵ(Θ + θ)Ψ

−(c(φ + ϕ)− c(φ))
∂U

∂t
− (e(ϕ + φ)(p+ P)− e(φ)P)(U−Ua)

−(d(ϕ + φ)− d(φ))Kv(U) + (r(ϕ + φ)− r(φ))g
+(ℵ(Θ + θ)− ℵ(Θ))Φ in Q,

subjected to the boundary condition

κ(φ + ϕ,U+ u)∇u.n+ (κ(φ + ϕ,U+ u)− κ(φ,U))∇U.n = −q(u− ub)
−λ(x)((L(U + u)− L(U))− (L(Ub + ub)− L(Ub))) + π in Σ,

and the initial condition

u(0) = u0 in Ω.

(51)

Perturbation of the coagulated region type model

∂θ

∂t
=H(U+ u)θ + (H(U+ u)−H(U))Θ in (0,T),

θ(., t= 0) = θ0.
(52)

Perturbation of the radiation transport type problem

−div(X(Θ + θ)∇Ψ)− div((X(Θ + θ)−X(Θ))∇Φ) + ℵ(Θ + θ)Ψ
= −(ℵ(Θ + θ)− ℵ(Θ))Φ in Ω,

under the boundary condition

−X(Θ + θ)∇Ψ.n− (X(Θ + θ)−X(Θ))∇Φ.n+ sΨ = ξ in Γr,
−X(Θ + θ)∇Ψ.n− (X(Θ + θ)−X(Θ))∇Φ.n+ sΨ = 0 in Γnr.

(53)

If we set : L̃(u) = L(U+ u)− L(U), L̃b(ub) = L(Ub + ub)− L(Ub), H̃(u) =H(U+ u), X̃(θ) =
X(Θ+ θ), ℵ̃(θ) = ℵ(Θ+ θ), κ̃(ϕ,u) = κ(φ+ ϕ,U+ u), and β̃(ϕ) = β(φ+ ϕ), where the function
β plays the role of c, d, e or r, then System (51),(52), (53) reduces to

c̃(ϕ)
∂u

∂t
− div(κ̃(ϕ,u)∇u) + ẽ(ϕ)(p+ P)(u− wa) + d̃(ϕ)Kv(u)

= div((κ̃(ϕ,u)− κ̃(0,0))∇U) + r̃(ϕ)η + ℵ̃(θ)Ψ
−(c̃(ϕ)− c̃(0))

∂U

∂t
+ ẽ(0)Pva − (d̃(ϕ)− d̃(0))Kv(U)

+(r̃(ϕ)− r̃(0))g+ (ℵ̃(θ)− ℵ̃(0))Φ in Q,

(54)
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subjected to the boundary condition

κ̃(ϕ,u)∇u.n+ (κ̃(ϕ,u)− κ̃(0,0))∇U.n

= −q(u− ub)− λ(x)(L̃(u)− L̃b(ub)) + π in Σ,

and the initial condition

u(0) = u0 in Ω,

∂θ

∂t
= H̃(u)θ + (H̃(u)− H̃(0))Θ in (0,T),

θ(., t = 0) = θ0
(55)

and

−div(X̃(θ)∇Ψ)− div((X̃(θ)− X̃(0))∇Φ) + ℵ̃(θ)Ψ
= −(ℵ̃(θ)− ℵ̃(0))Φ in Ω,

under the boundary conditions

−X̃(θ)∇Ψ.n− (X̃(θ)− X̃(0))∇Φ.n+ sΨ = ξ in Γr,
−X̃(θ)∇Ψ.n− (X̃(θ)− X̃(0))∇Φ.n+ sΨ = 0 in Γnr,

(56)

where va = U−Ua and wa = ua − va.
For simplicity of future reference, we omit the “ ˜ ” on X̃,ℵ̃, L̃, L̃b, c̃, d̃, ẽ, r̃ and κ̃ for the system
(54),(55), (56).

9.2 Robust control problem

Similarly as in the section 6, the problem is to find the best admissible perfusion function p and
power of the applied laser source ξ in the presence of the worst disturbance in the porosity
function ϕ, in the evaporation term π and in the metabolic heat generation type term η. We
then suppose that the control is in X= (p,ξ) and the disturbance is in Y = (ϕ,η,π). Therefore,
the function (u,θ,Ψ) is assumed to be related to the disturbance Y and control X through the
problem (54),(55), (56) under the pointwise constraints (26).
Let K1 be convex, closed, non-empty and bounded subset of L2(Σr), K2 be convex, closed,
non-empty and bounded subset of L2(Q) and K3 be convex, closed, non-empty and bounded
subset of L2(Σ). The studied control problem is to find a saddle point of the cost function
J which measures the distance between the known observation mobs, corresponding to
the online temperature control via radiometric temperature measurement system and the
prognostic variables γu+ δp. Then we propose the following cost

J (X,Y) =
a

2
‖ (γu+ δp)−mobs ‖2L2(Q) +

α

2
‖ NX ‖2L2(Q)×L2(Σr)

− β

2
‖MY ‖2L2(Ω)×L2(Q)×L2(Σ)

(57)

where a > 0, α > 0, β > 0, the matrix N = diag(
√
n1,

√
n2) and M = diag(

√
m1,

√
m2,

√
m3),

are predefined nonnegative weights such that n1 + n2 �= 0 and m1 + m2 + m3 �= 0, Uad =
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D1 × K1, Vad = D2 × K2 × K3 and mobs is the target. The parameters γ,δ are positive with
space-time dependent entries and are in L∞(Q). Let us introduce the operator solution
F which maps the source term (X,Y) ∈ Uad × Vad of (54),(55), (56) into the corresponding
solution (u,θ,Ψ) = F (X,Y). We suppose that the operator solution F is continuously
differentiable (in weak sense) on Uad × Vad and its derivative (at point (X,Y) = (p,ξ, ϕ,η,π))

F ′(X,Y) : (H,K) = (y,h,ψ,e,z) ∈ L∞(Q)× L2(Σr)× L∞(Ω)× L2(Q)× L2(Σ)−→ (w,̟,Π) =

F ′(X,Y).(H,K) = lim
ǫ−→0

F (X+ ǫH,Y+ ǫK)

ǫ
, where (X+ ǫH,Y+ ǫK) ∈ Uad×Vad, is such that

(w,̟,Π) =
∂F
∂X

(X,Y)H+
∂F
∂Y

(X,Y)K is the unique weak solution of the following system

c(ϕ)
∂w

∂t
− div(κ(ϕ,u)∇w)− div((

∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇U1) + d(ϕ)Kv(w)

+e(ϕ)P1w+ e′(ϕ)ψP1Va + e(ϕ)yVa + d′(ϕ)ψKv(U1)

= −c′(ϕ)
∂U1

∂t
ψ + r′(ϕ)ψG1 + r(ϕ)e+ ℵ′(θ)̟Φ1 + ℵ(θ)Π in Q,

subjected to the boundary condition

(κ(ϕ,u)∇w).n = −((
∂κ

∂ϕ
(ϕ,u)ψ +

∂κ

∂u
(ϕ,u)w)∇U1).n

−qw− λ(x)L′(u)w+ z in Σ,

and the initial condition

w(0) = 0 in Ω,

(58)

∂̟

∂t
=H′(u)wΘ1 +H(u)̟ in (0,T),

̟(0) = 0
(59)

and
−div(X(θ)∇Π)− div(X′(θ)̟∇Φ1) + ℵ′(θ)̟Φ1 + ℵ(θ)Π = 0 in Ω,

under the boundary condition

−X(θ)∇Π.n−X′(θ)̟∇Φ1.n+ sΠ = h in Γr,
−X(θ)∇Π.n−X′(θ)̟∇Φ1.n+ sΠ = 0 in Γnr,

(60)

where (u,θ,Ψ) = F (X,Y), U1 = u+U, Θ1 = Θ + θ, Φ1 = Ψ + Φ, P1 = p+ P, Va = u−wa and
G1 = η − g. Moreover the derivative of J is given by

J ′(X,Y).(H,K) =
d

dλ
J (X+ λH,Y+ λK)|λ=0

= a
∫ ∫

Q
((γu+ δp)−mobs)(γw+ δy) dxdt

+α(n1

∫ ∫

Q
py dxdt+ n2

∫ ∫

Σr

ξh dΓdt)

−β(m1

∫

Ω
ϕψ dx+m2

∫ ∫

Q
ηe dxdt+m3

∫ ∫

Σ
πz dΓdt),

(61)

where (w,̟,Π) = F ′(X,Y).(H,K).
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We assume that, for α and β sufficiently large, there exists an optimal solution (X∗,Y∗)∈ Uad×
Vad and (u∗,θ∗,Ψ∗) such that (X∗,Y∗) is a saddle point of J and (u∗,θ∗,Ψ∗) = F (X∗,Y∗) is
the solution of (54),(55), (56). In order to derive the necessary optimality conditions for the
optimal solution (X∗,Y∗), we start by calculating the gradient of the cost J . For this, consider
a sufficiently regular function (ũ, θ̃, Φ̃) such that (ũ, θ̃)(T) = (0,0). Multiplying the system
(58),(59) and (60) by (ũ, θ̃, Φ̃), respectively and integrating with respect to space and time, and
using Green’s formula, we obtain according to the boundary and initial conditions, and the
relation (34) that (similarly as to obtain the relation (35))
∫ ∫

Q

(

−c(ϕ)
∂ũ

∂t
− div(κ(ϕ,u)∇ũ) + K∗

v(d(ϕ)ũ) + e(ϕ)P1ũ+
∂κ

∂u
(ϕ,u)∇U1.∇ũ

)

w dxdt

+
∫ ∫

Σ
(qũ+ λ(x)L′(u)ũ+ κ(ϕ,u)∇ũ.n+ d(ϕ)ũ�ϑ.n)w dΓdt

= −
∫

Ω

(

∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

)

ψ dx

−
∫

Ω

(

∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt

)

ψ dx

−
∫ ∫

Q
e(ϕ)Vaũy dxdt+

∫ ∫

Q
r(ϕ)ũe dxdt+

∫ ∫

Σ
zũ dΓdt

+
∫ ∫

Q
(ũℵ′(θ)Φ1)̟ dxdt+

∫ ∫

Q
(ũℵ(θ))Π dxdt,

(62)

∫ T

0
(− ∂θ̃

∂t
−H(u)θ̃)̟ dt =

∫ T

0
(H′(u)θ̃Θ1)w dt (63)

and
∫

Ω
(−div(X(θ)∇Φ̃) + ℵ(θ)Φ̃)Π dx+

∫

Γ
(X(θ)∇Φ̃.n− sΦ̃)Π dΓ

+
∫

Γr

hΦ̃ dΓ +
∫

Ω
(X′(θ)∇Φ1∇Φ̃ + ℵ′(θ)Φ̃Φ1)̟ dx = 0.

(64)

To simplify the relations (62), (63) and (64), we assume that (ũ, Φ̃, θ̃) satisfies the following
adjoint system

−c(ϕ)
∂ũ

∂t
− div(κ(ϕ,u)∇ũ) + K∗

v(d(ϕ)ũ) + e(ϕ)P1ũ+
∂κ

∂u
(ϕ,u)∇U1.∇ũ

+aγ(γu+ δp−mobs) +H′(u)θ̃Θ1 = 0 in Q,

subjected to the boundary condition

−κ(ϕ,u)∇ũ.n= qũ+ λ(x)L′(u)ũ+ d(ϕ)ũ�ϑ.n in Σ,

and the final condition

ũ(T) = 0 in Ω,

(65)

− ∂θ̃

∂t
=H(u)θ̃ + ũℵ′(θ)Φ1 +X′(θ)∇Φ1∇Φ̃ + ℵ′(θ)Φ̃Φ1 in (0,T)

θ̃(T) = 0
(66)
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and
−div(X(θ)∇Φ̃) + ℵ(θ)Φ̃ + ũℵ(θ) = 0 in Ω,

under the boundary condition

−X(θ)∇Φ̃.n+ sΦ̃ = 0 in Γ.

(67)

Using the system (36), the problem (35) becomes
∫ ∫

Q
− (

aγ(γu+ δp−mobs) +H′(u)θ̃Θ1

)

w dxdt

= −
∫

Ω

(

∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

)

ψ dx

−
∫

Ω

(

∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt

)

ψ dx

−
∫ ∫

Q
e(ϕ)Vaũy dxdt+

∫ ∫

Q
r(ϕ)ũe dxdt+

∫ ∫

Σ
zũ dΓdt

+
∫ ∫

Q
(ũℵ′(θ)Φ1)̟ dxdt+

∫ ∫

Q
(ũℵ(θ))Π dxdt,

−
∫ T

0
(H′(u)θ̃Θ1)w dt+

∫ T

0
(ũℵ′(θ)Φ1)̟ dt=−

∫ T

0
(X′(θ)∇Φ1∇Φ̃ + ℵ′(θ)Φ̃Φ1)̟ dt,

∫

Ω
(ũℵ(θ))Π dx =

∫

Γr

hΦ̃ dΓ +
∫

Ω
(X′(θ)∇Φ1∇Φ̃ + ℵ′(θ)Φ̃Φ1)̟ dx.

(68)

Integrating by time the third part of (68) and by space the second part (68), and adding the
first part, the second part and the third part of (68), we can deduce that

−
∫ ∫

Q
aγ(γu+ δp−mobs)w dxdt

= −
∫

Ω

(

∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

)

ψ dx

−
∫

Ω

(

∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt

)

ψ dx

−
∫ ∫

Q
e(ϕ)Vaũy dxdt+

∫ ∫

Q
r(ϕ)ũe dxdt+

∫ ∫

Σ
zũ dΓdt+

∫

Γr

hΦ̃ dΓ.

(69)

According to the expression (61) of J ′(X,Y) we can deduce that

J ′(X,Y).(H,K) =
∂J
∂X

(X,Y).H+
∂J
∂Y

(X,Y).K

=
∫ ∫

Q
(e(ϕ)Vaũ+ αn1p+ aδ(γu+ δp−mobs))y dxdt+

∫ ∫

Σr

(n2ξ − Φ̃)h dxdt

+
∫

Ω
(E(ϕ,U1, ũ)− βm1ϕ)ψ dx−

∫ ∫

Q
(r(ϕ)ũ+ βm2η)e dxdt

−
∫ ∫

Σ
(ũ+ βm3π)z dΓdt,

(70)

where

E(ϕ,U1, ũ) =
∫ T

0
(e′(ϕ)P1Va + c′(ϕ)

∂U1

∂t
+ d′(ϕ)Kv(U1)− r′(ϕ)G1)ũdt

+
∫ T

0

∂κ

∂ϕ
(ϕ,u)∇U1.∇ũdt.

(71)
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Consequently the gradient of J at point (X,Y), in weak sense, is

∂J
∂X

(X,Y) =

(

e(ϕ)Vaũ+ αn1p+ aδ(γu+ δp−mobs)
n2ξ − Φ̃

)

,

∂J
∂Y

(X,Y) =

⎛

⎝

E(ϕ,U1, ũ)− βm1ϕ
−(r(ϕ)ũ+ βm2η)
−(ũ+ βm3π)

⎞

⎠ .

(72)

We can now give the first-order optimality conditions for the robust control problem as
follows.

The optimal solution (X∗ ,Y∗) is characterized by (for all (X,Y) ∈ Uad × Vad)

∂J
∂X

(X∗,Y∗).(X−X∗)=
∫ ∫

Q
(e(ϕ∗)V∗

a ũ
∗ + αn1p

∗ + aδ(M∗ −mobs))(p− p∗) dxdt

+
∫ ∫

Σr

(n2ξ∗ − Φ̃∗)(ξ − ξ∗) dΓdt≥ 0

∂J
∂Y

(X∗,Y∗).(Y−Y∗)=
∫

Ω
(E(ϕ∗,U∗

1 , ũ
∗)− βm1ϕ∗)(ϕ − ϕ∗) dx

−
∫ ∫

Q
(r(ϕ∗)ũ∗ + βm2η∗)(η − η∗) dxdt

−
∫ ∫

Σ
(ũ∗ + βm3π∗)(π − π∗) dΓdt≤ 0

where (u∗,θ∗,Ψ∗) = F (X∗,Y∗), U∗
1 = u∗ +U, Θ∗

1 = Θ + θ∗, Φ∗
1 = Ψ∗ + Φ, P∗

1 = p∗ + P,

V∗
a = u∗ − wa and G∗

1 = η∗ − g, M∗(x, t) = γu∗ + δp∗ and (ũ∗, θ̃∗, Φ̃∗) = F⊥(X∗ ,Y∗) is
the solution of the adjoint problem (65),(66),(67).

Remark 11 We can apply easily our stochastic robust control approach developed in the section 8 to
the problem of coagulation process analyzed in the present section.

To help the interested reader with the transition from theory to implementation, we also
discuss some optimization strategies in order to solve the robust control problems, by using
the adjoint model.

10. Minimax optimization algorithms and conclusion

We present algorithmswhere the descent direction is calculated by using the adjoint variables,
particularly by choosing an admissible step size. The descent method is formulated in terms
of the continuous variable such is independent of a specific discretization. The methods are
valid for the continuous as well as random processes.

10.1 Gradient algorithm

The gradient algorithm for the resolution of treated saddle point problems is given by:
for k=1,. . . , (iteration index) we denote by (Xk,Yk) the numerical approximation of the
control-disturbance at the kth iteration of the algorithm.

(Step1) Initialization: (X0,Y0) (given initial guess).

(Step2) Resolution of the direct problem where the source term is (Xk,Yk), gives F (Xk,Yk).
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(Step3) Resolution of the adjoint problem (based on (Xk,Yk,F (Xk,Yk)), gives F⊥(Xk,Yk),

(Step4) Gradient of J at (Xk,Yk):

(GJ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪



ck
de f
=

∂J
∂X

(Xk,Yk),

dk
de f
=

∂J
∂Y

(Xk,Yk),

Gk = (ck,dk).

(Step5) Determine Xk+1: Xk+1 = Xk − γkck,

(Step6) Determine Yk+1: Xk+1 = Yk + δkdk,
where 0< m≤ γk,δ ≤ M are the sequences of step lengths.

(Step7) If the gradient is sufficiently small: end; else set k := k+ 1 and goto (Step2).
Optimal Solution: (X,Y) = (Xk,Yk).

The convergence of the algorithm depends on the second Fréchet derivative of J (i.e. m,M
depend on the second Fréchet derivative of J ) see e.g. (Ciarlet, 1989).

In order to obtain an algorithm which is numerically efficient, the best choice of γk,δk will
be the result of a line minimization and maximization algorithm, respectively. Otherwise, at
each iteration step k of the previous algorithm, we solve the one-dimensional optimization
problem of the parameters γk and δk :

γk =min
λ>0

J (Xk − λck,Yk),

δk =min
λ>0

J (Xk,Yk + λdk),
(73)

To derive an approximation for a pair (γk,δk) we can use a purely heuristic approach, for
example, by taking γk =min(1,‖ ck ‖−1

∞ ) and δk =min(1,‖ dk ‖−1
∞ ) or by using the linearization

of F (Xk − λck,Yk) at Xk and F (Xk,Yk − λdk) at Yk by

F (Xk−λck,Yk)≈F (Xk,Yk)−λ
∂F
∂X

(Xk,Yk).ck, F (Xk,Yk+λdk)≈F (Xk,Yk)−λ
∂F
∂Y

(Xk,Yk).dk,

where
∂F
∂X

(Xk,Yk).ck = F ′(Xk,Yk).(ck,0) and
∂F
∂Y

(Xk,Yk).dk = F ′(Xk,Yk).(0,dk) are solutions

of the sensitivity problem. According to the previous approximation, we can approximate the
problem (73) by

γk =min
λ>0

H(λ), δk =min
λ>0

R(λ), (74)
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where the functions H and R are polynomial functions of the degree 2 (since the functional J
is quadratic), then the problem (74) can be solved exactly. Consequently, we obtain explicitly
the value of the parameter λk.

10.2 Conjugate gradient algorithm:

Another strategy to solve numerically the treated saddle point problems, is to use a
Conjugate Gradient type algorithm (CG-algorithm) combined with the Wolfe-Powell line
search procedure for computing admissible step-sizes along the descent direction. The
advantage of this method, compared to the gradient method, is that it performs a soft reset
whenever the GC search direction yields no significant progress. In general, the method has
the following form:

Dk = Dz =

⎧

⎨



−Gk f or k = 0,

−Gk + ξk−1Dk−1 f or k ≥ 1,

zk+1 = zk + λkDk

where Gk denotes the gradient of the functional to be optimized at point zk, λk is a step length
obtained by a line search, Dk is the search direction and ξk is a constant. Several varieties of
this method differ in the way of selecting ξk . Some well-known formula for ξk are given by
Fletcher-Reeves, Polak-Ribière, Hestenes-Stiefel and Dai-Yuan.
The GC-algorithm for the resolution of the considered saddle point problems is given by:
for k=1,. . . , (iteration index) we denote by (Xk,Yk) the numerical approximation of the
control-disturbance at the kth iteration of the algorithm.

(Step1) Initialization: (X0,Y0) (given), ξ−1 = 0, η−1 = 0 and C−1 = 0, D−1 = 0,

(Step2) Resolution of the direct problem where the source term is (X0,Y0), gives F (X0,Y0),

(Step3) Resolution of the adjoint problem (based on (X0,u0)), gives F⊥(X0,Y0),

(Step4) Gradient of J at (X0,Y0), the vector (c0,d0) is given by the system (GJ),

(Step5) Determine the direction: C0 = −c0, D0 = −d0

(Step6) Determine (X1,Y1): X1 = X0 + λ0C0, Y1 = Y0 − δ0D0

(Step7) Resolution of the direct problem where the source term is (Xk,Yk), gives F (Xk,Yk),

(Step8) Resolution of the adjoint problem (based on (Xk,Yk), gives F⊥(Xk,Yk),

(Step9) Gradient of J at (Xk,Yk), the vector (ck,dk) is given by the system (GJ),

(Step10) Determine (ξk−1,ηk−1) by one of the following expressions:

ξk−1 =
‖ ck ‖2Uad

‖ ck−1 ‖2Uad

, ηk−1 =
‖ dk ‖2Vad

‖ dk−1 ‖2Vad

(Fletcher-Reeves),
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ξk−1 =
< ck − ck−1, ck >Uad

‖ ck−1 ‖2Uad

, ηk−1 =
< dk − dk−1,dk >Vad

‖ dk−1 ‖2Vad

(Polak-Ribière),

ξk−1 =
< ck, ck − ck−1 >Uad

< Ck−1, ck − ck−1 >Uad

, ηk−1 =
< dk,dk − dk−1 >Vad

< Dk−1,dk − dk−1 >Vad

(Hestenes-Stiefel),

ξk−1 =
‖ ck ‖2Uad

< Ck−1, ck − ck−1 >Uad

, ηk−1 =
‖ dk ‖2Vad

< Dk−1,dk − dk−1 >Vad

(Dai-Yuan),

(Step11) Determine the direction: Ck = −ck + ξk−1Ck−1, Dk = −dk + ηk−1Dk−1,

(Step12) Determine (Xk+1,Yk+1): Xk+1 = Xk + λkCk, Yk+1 = Yk − δkDk,
where 0< m≤ λk,δk ≤ M are the sequences of step lengths,

(Step13) If the gradient is sufficiently small (convergence): end; else set k := k + 1 and
goto (Step7).

Optimal Solution: (X,Y) = (Xk,Yk).

Remark 12

1. After derived the gradient J ′ of the cost functional J , by using the adjoint model corresponding to
the sensitivity state corresponding to the direct problem, we can use any other classical optimization
strategies (see e.g (Gill et al., 1981)) to solve the robust/minimax control problems considered in this
chapter.

2. For the discrete problem, the direct, sensitivity and adjoint problems can be discretized by a
combination of Galerkin and the finite element methods for the space discretization and the classical
first-order Euler method for the time discretization (see e.g. Chapter 9 of (Belmiloudi, 2008)).

10.3 Conclusion

In ultrasound surgery, the best strategy to destroy the cancerous tissues is based on the rise
in the temperature at the cytotoxic level (because the tumors are highly dependent on the
temperature). Thus, in the clinical treatment of the tumors, it is very important to have enough
complete knowledge about the behavior of the temperature in tissues. The mathematical
models that we have used in this present work take account on the physical and thermal
properties of the living tissues, in order to show the effects of living body exposure to variety
energy sources (e.g. microwave and laser heating) on the thermal states of biological tissues.
For predicting and acting on the temperature distribution, we have discussed stabilization
identification and regulation processeswith andwithout randomness in data, parameters and,
boundary and initial conditions, in order to reconstitute simultaneously the blood perfusion
rate and the porosity parameter from MRI measurements (which are the desired online
temperature distributions and thermal damages). In this context, we have considered two
types of system of equations: a generalized form of the nonlinear transient bioheat transfer
systems with nonlinear boundary conditions (GNTB) and the system (GNTB) coupled with a
nonlinear radiation transport equation and a model of coagulation process.
The existence of the solution of the governing nonlinear system of equations is established
and the Lipschitz continuity of the map solution is obtained. The differentiability and some
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properties of the map solution are derived. Afterwards, robust control problems have been
formulated. Under suitable hypotheses, it is shown that one has existence of an optimal
solution, and the appropriate necessary optimality conditions for an optimal solution are
derived. These conditions are obtained in a Lagrangian form. Some numerical methods,
combining the obtained optimal necessary conditions and gradient-iterative algorithms, are
presented in order to solve the robust control problems. We can apply the developed technic
to other systems which couple the system (GNTB) with other processes, e.g. with a model
calculating the SAR distribution in tissue during thermotherapy from the electrical potential
as follows (Maxwell-type equation):

∇× B = κcE+ Jsource,
∇× E = −iωμcB,

(75)

where i2 =−1, κc = σ + iω is the complex admittance, σ is the electrical conductivity, μc is the
magnetic permeability type, Jsource is the current density, E is the complex electric field vector,
B is the complex magnetic field vector. The heat source term f can be taking as

f = SAR =
1

2
σ | E |2 .

To derived the SAR distribution requires complex approach that is not discussed here :
reader may refer e.g. to (Belmiloudi, 2006), for details on application complex robust control
approach .
It is clear that we can consider other observations, controls and/or disturbances (which can
appear in the boundary condition or in the state system) and we obtain similar results by
using similar technique as used in this work (see (Belmiloudi, 2008)).
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