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1. Introduction   

The IP Multimedia Subsystem (IMS) is a maturing technology. It has the potential to be used 

in Mobile Ad Hoc Networks (MANETs) to provide multimedia Internet experience for 

much diversified users with a variety of applications in a highly mobile environment. The 

introduction of the IMS into MANETs and futuristic mobile networks face unique 

challenges and needs. 

The underlying signalling protocol for the IMS is the Session Initiation Protocol (SIP). In this 

chapter, we first investigate the “unreliable signalling” problem of using SIP for mobility 

support. Based on the investigation and the analysis, this chapter introduces an enhanced 

SIP signalling mechanism called Chain-Based SIP signalling (CBS) to mitigate the problem. 

The analytical performance analysis results will be given in the chapter as well.  

1.1 Session Initiation Protocol (SIP)   

The Session Initiation Protocol (SIP) (Rosenberg, J. et al., 2002) is an application-layer 

signalling and control protocol that performs user location, session setup, and session 

management. It works independently of underlying transport protocols and the type of 

sessions that are being established. The SIP is a core protocol for initiating, managing, and 

terminating peer-to-peer communication sessions on the Internet. These sessions may be 

text, voice, video, or a combination of these. SIP sessions involve one or more participants 

and can use unicast or multicast communications.  

The SIP proposal began in 1995 in IETF Multiparty Multimedia Session Control (MMUSIC) 

Working Group (WG), then from February 1996 (draft-ietf-mmusic-sip-00, 15 ASCII pages 

with one request type) to March 1999 (RFC 2543, 153 ASCII pages, 6 methods) the first RFC 

was proposed. In November 1999, SIP WG was formed. In December 2000, it was 

recognized that the amount of work at SIP WG was becoming unmanageable, and 

consequently, numerous individual subsections were formed. In April 2001, a proposal for 

splitting SIP WG into SIP and SIPPING was announced. In June 2002, the RFC 2543 was 

obsolete and replaced by RFC 3261 (Rosenberg, J. et al., 2002). Today, there are over 100 

IETF RFCs related to SIP and SIP implementations widely available. The SIP Status can be 

found at: 

 http://tools.ietf.org/wg/sip/.  
The Table 1 lists some commonly used SIP related IETF RFCs.  
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RFCs Description 

RFC 2326: Real-Time Streaming 
Protocol (RTSP) 

An application-level protocol for control over the 
delivery of data with real-time properties 

RFC 2327: Session Description 
Protocol (SDP) 

Describes multimedia sessions for the purposes of 
session announcement, session invitation, and other 
forms of multimedia session initiation. 

RFC 2976: The SIP INFO Method Adds INFO method to the SIP protocol 

RFC 3050: Common Gateway 
Interface for SIP 

Defines a SIP CGI for providing SIP services on a SIP 
server 

RFC 3261: Session Initiation 
Protocol (SIP)  

The core SIP specification. It baselines the SIP 
protocol for multimedia session handling. 

RFC 3262: Reliability of 
Provisional Responses 
in the SIP 

Specifies an extension to provide reliable provisional 
response messages. 

RFC 3263: SIP: Locating SIP 
Servers 

Uses the DNS procedures to allow a client to resolve 
a SIP Uniform Resource Identifier (URI) into an IP 
address, port, and transport protocol of the next hop 
to contact for locating a server. 

RFC 3264: An Offer/Answer 
Model with the SDP 

Defines Offer/Answer model for the SDP use with 
the SIP. 

RFC 3265: Session Initiation 
Protocol (SIP)-Specific Event 
Notification 

Describes an extension of the SIP, by which SIP 
nodes can request notification from remote nodes 
indicating that certain events have occurred. 

RFC 3266: Support for IPv6 in 
SDP 

Describes the use of Internet Protocol Version 6 
(IPv6) addresses in conjunction with the SDP. 

RFC 3311: The Session Initiation 
Protocol (SIP) UPDATE Method 

Adds an UPDATE method to the SIP protocol. 

RFC 3312: Integration of 
Resource Management and SIP 

Defines a generic framework for preconditions and 
discusses how network quality of service can be 
made in a precondition for the establishment of 
sessions initiated by the SIP. 

RFC 3313: Private Session 
Initiation Protocol (SIP) 
Extensions for Media 
Authorization 

Defines a SIP extension that can be used to integrate 
QoS admission control with call signalling and help 
guard against denial of service attacks. 

RFC 3320: Signalling 
compression (SigComp) 

Defines a solution for compressing messages 
generated by application protocols such as the 
SIP and the RTSP. 

RFC 3323: A Privacy Mechanism 
for the SIP 

Defines new mechanisms for the SIP in support of 
privacy. 

RFC3329: Security Mechanism defines new functionality for negotiating the security 
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RFCs Description 

Agreement for the SIP mechanisms used between a the SIP user agent and 
its next-hop SIP entity. 

RFC3372: Session Initiation 
Protocol for Telephones (SIP-T): 
Context and Architectures 

Taxonomies the use of PSTN-SIP gateways, provides 
uses cases, and identifies mechanisms   necessary for 
interworking. 

RFC3407: SDP simple Capability 
Declaration 

Defines a set of SDP attributes that enables SDP to 
provide a minimal and backwards compatible 
capability declaration mechanism. 

RFC3428: Session Initiation 
Protocol (SIP) Extension for 
Instant Messaging 

Defines SIP extensions for Instant Messaging. 

RFC3515: The Session Initiation 
Protocol (SIP) Refer Method 

Adds REFER method to the SIP protocol. 

RFC3550: RTP: A Transport 
protocol for Real-Time 
Applications 

A replacement of RFC 1889 (RTP). It describes the 
RTP and enhances the scalable timer.  

RFC3605: Real Time Control 
Protocol (RTCP) Attributes in 
Session Description Protocol (SDP) 

Describes the parameters of media streams used in 
multimedia sessions.  

RFC3702: AAA Requirement for 
SIP 

Provides basic authentication, authorization, and 
Accounting requirements for the SIP. 

RFC3711: The Secure Real-time 
Transport Protocol (SRTP) 

Describes the SRTP that can provide confidentiality, 
message authentication, and replay protection to the 
RTP traffic and to the RTCP. 

RFC3840: Indicating User Agent 
Capabilities in the SIP 

Defines mechanisms by which a SIP user agent can 
convey its capabilities and characteristics to other 
user agents and to the registrar for its domain.  

RFC 3853: S/MIME Advanced 
Encryption Standard (AES)         
Requirement for the Session 
Initiation Protocol (SIP) 

Updates the normative guidance of RFC 3261 to 
require the Advanced Encryption Standard (AES) for 
S/MIME. 

RFC3856: A Presence Event 
Package for the SIP 

Describes the usage of the SIP for subscriptions and 
notifications of presence. Presence is defined as the 
willingness and ability of a user to communicate with 
other users on the network. 

RFC4028: Session timers in the 
SIP 

Defines an extension to the SIP for a periodic refresh 
of SIP sessions through a re-INVITE or UPDATE 
request. 

RFC4032: Update to the Session 
Initiation Protocol (SIP)                    
Preconditions Framework 

Updates RFC 3312, which defines the framework for 
preconditions in SIP. 
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RFCs Description 

RFC4083: Input 3GPP Release 5 
Requirements on the SIP 

Describes the requirements identified by 3GPP to 
support the SIP for Release 5 of the 3GPP IMS in 
cellular networks. 

RFC 4168: SCTP as a Transport 
for SIP 

Specifies a mechanism for usage of SCTP (the Stream 
Control Transmission Protocol) as the transport 
mechanism between SIP entities. 

RFC 4189: Requirements of End-
to-Middle Security for the SIP 

Defines a set of requirements for a mechanism to 
achieve end-to-middle security. 

RFC 4320: Actions Addressing 
Identified Issues with the Session 
Initiation Protocol's (SIP) Non-
INVITE Transaction 

Describes modifications to the SIP to address 
problems that have been identified with the SIP non-
INVITE transaction. 

RFC 4353: A Framework for 
Conferencing with the SIP 

Defines a framework for how conferencing can occur. 
This framework describes the overall architecture, 
terminology, and protocol components needed for 
multi-party conferencing. 

RFC 4354: A SIP Event Package 
and Data Format for various 
settings in support for the PoC 
Service 

Defines a SIP event package to support publication, 
subscription, and notification of additional   
capabilities required by the Push-to-Talk over 
Cellular (PoC) service. 

RFC 4412: Communications 
Resource Priority for the SIP 

Provides support for precedence handling within the 
SIP protocol 

RFC 4780: Management 
Information Base for the Session 
Initiation Protocol (SIP) 
 

Defines a portion of the Management Information 
Base (MIB) for use with SIP. It describes a set of 
managed objects that are used to manage SIP entities, 
which include User Agents, Proxy, Redirect, and 
Registrar servers. 

RFC 4916: Connected Identity in 
the Session Initiation Protocol 
(SIP) 

Provides a means for a SIP User Agent that receives a 
dialog-forming request to supply its identity to the 
peer User Agent by means of a request in the reverse 
direction, and for that identity to be signed by an 
Authentication Service. 

RFC 5027: Security Preconditions 
for  Session Description Protocol 
(SDP) Media Streams 

Defines a new security precondition for the Session 
Description Protocol (SDP) precondition framework 
described in RFCs 3312 and 4032. 

RFC 5367: Subscriptions to 
Request-Contained Resource 
Lists in the Session Initiation 
Protocol (SIP) 

Specifies a way to create subscription to a list of 
resources in SIP. 

RFC 5393: Addressing an 
Amplification Vulnerability in 
Session Initiation Protocol (SIP) 
Forking Proxies 

Normatively updates RFC 3261, the Session Initiation 
Protocol (SIP), to address a security vulnerability 
identified in SIP proxy behaviour.   
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RFCs Description 

RFC 5621: Message Body 
Handling in the Session 
Initiation Protocol (SIP) 

Specifies how message bodies are handled in SIP. 
 

RFC 5626: Managing Client-
Initiated Connections in the 
Session Initiation Protocol (SIP) 

Defines behaviours for User Agents, registrars, and 
proxy servers that allow requests to be delivered on 
existing connections established by the User Agent. 

RFC 5630: The Use of the SIPS 
URI Scheme in the Session 
Initiation Protocol (SIP) 

Provides clarifications and guidelines concerning the 
use of the SIPS URI scheme in the Session Initiation 
Protocol (SIP). 

RFC 5922: Domain Certificates in 
the Session Initiation Protocol 
(SIP) 

Describes how to construct and interpret certain 
information in a PKIX-compliant certificate for use in 
a SIP over Transport Layer Security (TLS) connection. 

RFC 5954: Essential Correction 
for IPv6 ABNF and URI 
Comparison in RFC 3261 

Corrects the Augmented Backus-Naur Form (ABNF) 
production rule associated with generating IPv6 
literals in RFC 3261. 

Table 1. Commonly Used SIP RFCs 

1.2 SIP design 

SIP is a text-based and transaction oriented (i.e. using request-response sequences) 
signalling protocol using a client/server model and relying on HTTP like messages that 
communicate between end-users and SIP servers. It is independent of lower layer protocols 
or media. SIP is suitable for applications that have a notion of session. SIP uses Uniform 
Resource Identifier (URI) to identify users. The URI associates the user and the carrying 
platform that uses an IP address. With this mechanism, it is convenient to support mobility 
for hosts, sessions, and users.  

1.2.1 SIP methods 

SIP uses Methods / Requests / Responses to establish sessions. There are six basic methods: 

• INVITE – To initiate a session 

• ACK – To confirm that the client has received a final response to an INVITE request 

• BYE – To terminate a session 

• CANCEL – To terminate any pending session but not terminate a session that has 
already been connected 

• OPTIONS – To query for the capabilities support by other side (either a server or a 
client) 

• REGISTER – To register contact information 
There are other SIP-methods extensions: 

• INFO – To allow for the carrying of session related control information that is generated 
during a session (RFC 2976). For example, carrying wireless signal strength information 
in support of mobility 

• NOTIFY – To request notification from remote nodes indicating that certain events have 
occurred (RFC 3265) 

• PRACK – To provide reliable provisional acknowledgement (RFC 3262) 

www.intechopen.com



 VoIP Technologies 

 

258 

• REFER – To ask the recipient to issue a SIP request (e.g. call transfer) for contacting a 
third party (RFC 3515) 

• SUBSCRIBE – To request asynchronous notification of an event or set of events (RFC 
3265) 

• UPDATE – To update parameters of a session (RFC 3311) 

1.2.2 SIP responses 

The SIP uses specific messages to exchange information. These messages are classified into 
six groups:  

• Provisional (1xx) – This is a type of informational response to indicate that the request 
is received and is continuing to be processed. For example: 

• 100 Trying (i.e. The request has been received by the next-hop server and an action 
is being taken on behalf of this request.) 

• 180 Ringing (i.e. The UA receiving the INVITE is trying to alert the user.) 

• 181 Call forwarded (i.e. To indicate that the call is being forward to a different 
destination) 

• 182 Queued (i.e. The called party is temporarily unavailable, the server queue the 
request instead of reject it.) 

• 183 Session in progress  

• Successful (2xx) – Successful in terms of action, message received, and message 
understood. For example, 200 OK (i.e. The request has succeeded.) 

• Redirection (3xx) – Extra actions are necessary in order to finish the request. For 
example: 

• 300 Multiple Choices (i.e. The request is resolved to several choices.) 

• 301 Moved Permanently (i.e. The user can no longer be found.)  

• 302 Moved Temporarily (i.e. The requesting client should try a new address.)  

• 380 Alternative Service (i.e. The call was not successful, but alternative services are 

possible.)  

• Request failure (4xx) – It indicates a definite failure of a request from a particular 

server. For example, 

• 400 Bad Request (i.e. The request cannot be understood.) 

• 401 Unauthorized (i.e. The request requires user authentication.) 

• 403 Forbidden (i.e. The server understood the request, but refused to fulfill it.) 

• 404 Not Found (i.e. The server has definitive information that the user does not 

exist at the domain specified in the request.) 

• 486 Busy Here (i.e. The callee is currently not willing or able to take the call.) 

• Server failure (5xx) – The server itself has erred and cannot process valid request. For 

example, 

• 500 Server Error  

• 501 Not Implemented (i.e. The server does not support the functionality required to 

fulfill the request.) 

• 503 Unavailable (i.e. The server is temporarily unable to process the request due to 

a temporary overloading or maintenance of the server.)  

• 504 Timeout (i.e. the server did not receive a timely response from an external 

server to process the request.) 
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• Global failure (6xx) – It indicates that a server has definitive information about a 

particular user’s unsuccessful call and none of the requests can be fulfilled. For 

example, 

• 600 Busy Everywhere 

• 603 Decline 

• 604 Doesn’t Exist (i.e. The server has authoritative information that the user 

indicated in the request does not exist anywhere.) 

• 606 Not Acceptable (i.e. the UA is contacted successfully but some aspects of the 

session such as requested media, bandwidth, etc. are not acceptable.)  

These messages are designed to fulfill all signalling requirements. These messages and the 

process of these messages build the core of the SIP protocol (Rosenberg, J. et al., 2002). 

1.2.3 SIP-based network entities 

SIP defines a number of logical entities as described as the follows: 

• User Agent (UA) 

A UA is a SIP-enabled end system that consists of two components: a User Agent Client 

(UAC) and a User Agent Server (UAS). A UAC initiates SIP requests or originates calls 

and a UAS listens to incoming calls and responses to the UAC’s requests. A UA 

communicates with other UAs directly or indirectly via an intermediate server (e.g. a 

proxy server). A typical UA is a SIP phone or a voice mail server. Generally, UAs are 

the only elements where media and signalling converge.  

• Network Servers 

• Proxy server – It decides next hop, forwards request, and relays call signalling. It 

performs routing function, i.e., determine to which hop, (UA/proxy/redirect) 

signalling should be relayed. It serves as a rendezvous point at which callees are 

globally reachable. It has a Forking function, which means that several destinations 

may be tried for requests sequentially or in parallel.  

A proxy server can be either stateless or stateful. A stateless proxy only forwards 

incoming requests without ensuing the request’s reliability. A stateful proxy 

remembers the requests and related processes (transaction) so that it can reliably 

deliver a SIP request either sucessfully or return a response code. Only the stateful 

proxy can fulfill Forking function, which sends copies of the requrest to different 

destinations. 

A proxy cannot (usually) control media path because a proxy does not know all 

routing hops along an end-to-end media path. Unless route recording is used, 

subsequent SIP requests (including ACK with SDP) may take different paths.  

• Redirect server – It receives requests and return a response that indicates where 

the SIP requestor should send to in next step. That is, the redirect server does not 

forward incoming requests; instead, it sends the address of the next hop back to the 

caller, and then redirects the caller to other servers. 

• Registrar – It stores SIP URIs and associated contacts of SIP users. It accepts 

REGISTER requests from SIP users and maintains user’s whereabouts at a location 

server.  

• Location server – It provides users’ location details. 
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• Application server – It provides advanced services for users. 

• Gateways 
A SIP gateway is an application that implements protocol translation, which is used to 

connect a SIP network to a network that uses different signalling protocols. A SIP 

gateway may only terminate signalling path, such as in the case of connecting to a 

H.323 enabled network. The SIP gateway translates SIP signalling messages to the 

H.323 format, while the media (using the Real-time Transport Protocol) can still run 

over the media path. A SIP gateway may also terminate both signalling and media 

paths, such as in the case of connecting to a Public Switched Telephony Network 

(PSTN) network. In this case, a SIP gateway converts signalling messages and a PSTN 

media gateway converts media data flows. 

1.3 SIP security  

The SIP security is based on 3GPP standards (23.228 IP Multimedia (IM) Subsystem - Stage 

2, 33.203 Access Security for IP-Based Services, and 33.210 Network Domain Security) and 

IETF RFCs such as Security Mechanism Agreement for the Session Initiation Protocol (RFC 

3329). SIP security should be able to fulfill the following goals  (Arkko, J. et al.  2003):  

1. The entities involved in the security agreement process need to find out exactly which 

security mechanisms to apply, preferably without excessive additional message 

exchanges. 

2. The selection of security mechanisms itself needs to be secure. 

3. The entities involved in the security agreement process need to indicate success or 

failure of the security agreement process. 

4. The security agreement process should not introduce any additional state to be 

maintained by the involved entities. 

1.3.1 SIP signalling security  

The SIP signalling security uses both end-to-end signalling security and hop-by-hop 

signalling security mechanisms to satisfy the requirements. The end-to-end signalling 

security uses SIP authentication and SIP message body encryption. However, it cannot cover 

entire signalling messages since some fields need to be visible for routing purpose. 

Consequently, intermediate proxies can compomise security. The Hop-by-hop signalling 

security relies on transport-layer or network-layer security mechanisms, such as Transport 

Layer Security (TLS) and Internet Protocol Security Architecture (IPSec), to protect 

signalling messages. It may allow covering entire signalling message within a hop. A more 

appealing solution is to combine both mechanisms. Table 2 lists both security mechanisms 

and their related RFCs.  

1.3.2 SIP signalling security threats 

Network security is usually categorized into: authentication, confidentiality, integrity, and 

availability (Knuutinen, 2003), (Rantapuska, 2003), (Sawda & Urien, 2006). The text-based 

SIP messages are vulnerable to security attacks such as spoofing, hijacking, and message 

tampering (Geneiatakis, D. et al. 2006). Table 3 summarizes some threats, their impacts, and 

possible solutions. 
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SIP Security Mechanisms Description Standards 

Digest Authentication
Authentication of signalling 
message using HTTP digest  

RFC 2617  
End-to-end 
security 

S/MIME 
Authentication and encryption 
messages  

RFC 2633  

The Transport Layer 
Security (TLS) 
Protocol Version 1.1 

Prevent eavesdropping, 
tampering, or message forgery 
at the transport layer 

RFC 4346  

Hop-to-hop 
security 

Internet Protocol 
Security (IPSec) 

Authentication and encryption 
at the network layer 

RFC 2412  
RFC 4301 
RFC 4303 
RFC 4308 
RFC 4835 

Table 2. SIP Signalling Security 

    

Threats Security Aspects Examples of Impacts  Possible Solutions 
Denial-of-service 
(DoS) attacks, e.g. 
using 

• CANCEL 

• BYE 

• 4xx, 5xx, 6xx 

Availability Interrupt sessions, force 
servers unusable 

Traffic filtering, access 
control, DoS 
protection, etc. 

Hijacking, e.g. 
• Registration  
• Using 3xx 

redirect 
responses 

• Mid-session re-
INVITE 

Availability Register malicious device 
as the contact address of 
the victim and deregister 
all connected contacts 

Authenticate the 
originators of requests  

Message tampering Integrity  Change SDP message 
body to direct RTP stream 
to an eavesdrop device 

Encryption 

Replay messages to 
cause DoS 

Availability Overload a server Sequencing message 

Snooping Confidentiality Gain information on 
users’ identities, services, 
media, network topology, 
etc. With the information, 
other attack can be further 
triggered. 

Encryption, Privacy 
protection 

Spoofing REGISTER Confidentiality Call redirection Authenticate the 
originators of requests 

Spoofing INVITE Confidentiality Bypass call filtering Authenticate the 
originators of requests 

Spoofing ICMP “port 
unreachable”  

Availability Interrupt sessions Traffic filtering, access 
control 

Table 3. Some Identified Threats, Impacts, and Solutions 
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2. SIP mobility support and signalling reliabilities 

The mobility involves user devices and network equipment movement, sometimes at a high 
speed, which causes rapid changes in network topology and attachment points. A mobile 
node should be accessible by other nodes even when a network attachment point is 
changed. In addition, the ongoing communication should be reliable and the performance of 
the communication should be kept at a constant level before, during, and after the node 
movement. All these requirements present significant challenges to the usability of a 
signalling protocol such as the SIP.  

2.1 SIP mobility  

There are four types of mobility supported by the SIP (Schulzrinne, H. & Wedlund, E. 2000).  
• Terminal Mobility – It allows Mobile Hosts (MHs) move between subnets without 

interrupting communications.  
• Session Mobility – It allows a user to maintian a media session even while changing 

terminals.  
• Personal Mobility – It allows to address a single user located at different terminals by 

the same logical address. A user can use more multiple devices to send and receive 
calls.  

• Service Mobility – It allows a user to maintain access to their services while the user is 
moving or changing devices and network service providers.  

 

Fig. 1. An Notional Example of SIP Terminal Mobility Support 

This chapter focuses on the terminal mobility and the associated unreliable signalling 
problem in its possible movement scenarios.   

2.2 SIP mobility support scenario 
The SIP mobility support usually has two challenging cases: 1) one of the two mobile hosts 
(MHs) moves during a session and 2) both hosts simultaneous move during a session 
(Wong and Woon, 2007). Details are discussed in next section.  
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2.2.1 Move during A Session 
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Fig. 2. SIP Message Flows for Move during A Call  

This case happens when the MH (the caller) is moving during a session. It has been 
suggested (Wedlund and Schulzrinne, 1999) to use a “re-invited” message to inform the 
Correspondent Host (callee) when the caller is moving during a session. This is done via a 
registration process. The caller’s home SIP register updates the MH’s location server. This 
procedure keeps tracking the moving caller and provides possible lost-session reconnection 
when the SIP “re-INVITE” message does not arrive to the callee. The MH needs to update its 
current address to its home SIP server registrar and location server to let them know where 
it is, which provides the updated information for future communications. The 
Correspondent Host (CH) then acknowledges the message and the session re-starts (please 
refer to the case of “only MH moves (in blue)” in Figure 2).  

2.2.2 Simultaneous move  

The simultaneous move (Wong and Woon, 2007) is a special situation of the case “move 
during a session” (or “move during a call”) where both MH and CH move at the same time. 
Neither of them can receive the “re-INVITE” message from the other party since both of 
them are changing their locations. In this case, after each host arrives to its new location, it 
registers its new location (IP address) to its home SIP servers (to both registrar and location 
server). After registration, either one of them or both of them will send a “re-INVITE” 
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message to each of the host-home SIP servers. The home SIP server will contact the other 
party’s home SIP server to get an updated location address. After that, another “INVITE” 
message will be sent out either from the MH or from the CH to the other party to start the 
communication. Figure 2 shows the message exchange flow for the case of “both MH and 
CH move”. It is noticeable that there are many message exchanges for supporting mobile 
hosts maintaining an ongoing session.  
 

 

Fig. 3. Delay Causes SIP Message Repetitions 

2.2.3 Fragility of SIP signalling   

The scenario depicted in Figure 2 shows that without correct and on-time registrations for a 
mobile host, a mobile network is at risk of losing communications. In a mobile environment, 
it may not be practical for a mobile host to update its location to a remote SIP server 
frequently. Home SIP servers (including a registrar and a location server) are usually located 
far away from an edge network. The connections between an edge network and its home 
network can be fragile due to many factors.  
In addition, when both mobile hosts are constantly moving, the registration requests from 
each host may be triggered more frequently. The connectivity between an edge network and 

www.intechopen.com



Reliable Session Initiation Protocol   

 

265 

a SIP server may span a large geographic distance by using satellite links, which could cause 
a long delay for message exchanges (e.g. registration and call setup). Moreover, the network 
link capacity can be limited and a link could be unreliable because of unintentional 
interferences, hostile actions, terrain, foliage, weather, or other factors. Failure or delay of 
SIP registrations will significantly impact SIP mobility handling. 
From our previous SIP performance study (Wang, S. & Zheng, H. 2009), we have observed 
that network delays, delay variations (jitter), and packet loss affect signalling quality and 
voice quality (measured by Mean Opinion Score) considerably. Figure 4 and Figure 5 show 
some examples. One disturbing observation was that when network delay increased, the 
number of SIP messages increased proportionally. This was caused by re-sending messages 
due to messages time out as shown in Figure 3. This repetition wastes radio resource and 
may result in a self-generated Denial of Service (DoS). It is evident that we need to modify 
the message forwarding mechanism in order to reduce redundant messages, to improve 
signalling reliability, and to enhance mobility support.       
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Fig. 4. Network Delay Impact on SIP 
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Fig. 5. Network Delay Impact on Voice Quality 
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Since the main function of the SIP is to provide signalling between two communication 
hosts, the challenges include how to let each host know where the other host is, how to 
connect to each other, and how to keep a session alive with or temporarily without the help 
from its home network. To solve this problem, a reliable SIP message forwarding 
mechanism [Zheng and Wang, 2007] has been proposed. The next section will present the 
details.  

3. Reliable Chain-Based SIP (CBS)  

In order to overcome the problem of unreliable registration in the SIP mobility support, a 
chain-based SIP signalling (CBS) mechanism has been proposed (Zheng, H. & Wang, S. 
2007), which increased the signalling reliability by adopting Mobility Agent(s) to construct a 
signalling chain that facilitated a reliable signalling.   

3.1 Chain-based signalling 

Some existing studies have shown that it is feasible to have hierarchical mobility support by 
using SIP. Vali, D. et al. (2003) proposed the use of an intermediate SIP server called the SIP 
Mobility Agent (MA) to handle micro mobility. A MA is responsible for handling SIP 
message forwarding and supporting the intra-domain SIP mobility. The inter-domain SIP 
mobile handling is still based on the standard SIP mobility by sending “re-INVITE” 
messages to the home SIP server. 
(Zheng, H. & Wang, S. 2007) proposed an idea of using a chain of mobility agents that 
traverse multiple domains. It proposed that SIP mobile agents could exist in each domain 
along a routing path that was from a mobile host to its Home SIP Server. The chain-based 
signalling is depicted in Figure 6, where the CBS employs a new network component called 
Mobile Agent (MA), which provides basic functions of a SIP proxy server.    
In this proposal, a MA locally holds the information of mobile hosts resided in its reachable 
subnets and domains. The MA periodically updates the users’ information to synchronize  
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Fig. 6. Chain-based Mobile SIP Signalling  

www.intechopen.com



Reliable Session Initiation Protocol   

 

267 

with the home network. The MAs can reside within routers along the routing path from the 
MH to the SIP home server. Usually, a MA is collocated with a domain border edge router.  
Since MAs are located within a standard routing path, it is not necessary for a Mobile Host 
(MH) to find where MAs are. The SIP messages naturally interact with MAs when these 
messages are traversed on the routing path to the Home SIP server.  
Using the SIP registration as an example, the CBS signalling procedure can be explained as 
following. Each mobile host is required to register to its home SIP server before it can access 
to any application services. When a mobile host registers itself, it sends a registration 
message to its Mobility Agent (MA) in the current domain. After it registers the SIP mobile 
locally, the MA forwards the mobile registration request to the next domain that is in the 
path towards the home SIP server. This process continues until the request reaches the home 
SIP server. This type of registration is called “chained registration”. The registration 
message forwarding within a registration chain is not the duty of the mobile host. Instead, it 
becomes a duty of the MAs. Therefore, as long as a mobile host registers itself to a local 
domain MA, the registration is considered as being finished. The rest of the registration 
processes will be completed at each MA along the routing path. It is not necessary to finish 
the whole registration process at once; instead, it can be done in a pair-wised fashion. As 
long as there is connectivity available between a pair of MAs, the registration process can 
continue forwarding the request. Therefore, this method significantly improves the 
survivability of a registration request.  
In addition, each involved MA updates the hosts’ registration requests referring to a time 
stamp. If a MA receives multiple registration requests, it saves the one with the latest time 
stamp. It also checks the SIP request ID. Multiple registration requests can be either from the 
mobile host or from lower chain rings of the MA registration chain. These two types of 
request are treated equally at each MA. In a registration chain, the home SIP server is the 
last ring of the chain. It always gets an updated host registration with the host location 
information when the connectivity between registration chain MAs is available. The link 
availability between a MA pair does not need to exist simultaneously. Instead, as long as a 
network link between two MAs exists, an updated registration is forwarded. In this fashion, 
the mobile host request can propagate to the home SIP server. Using this method, the 
intermittent link availability between a mobile host and its home SIP server is less of a 
hindrance. Figure 6 illustrates an example of forwarding SIP registration messages using the 
CBS. The details are given in the next section.  
In addition to forwarding user SIP messages, MAs can potentially be functional as light-
weighted SIP servers. SIP messages, such as SIP registrations, are kept within a MA in case the 
MA is selected as a SIP server. This mechanism eliminates extra user SIP registration request 
messages when the home SIP server is unavailable and a substitution of MA is elected.  

3.2 Message-forwarding modes 

The CBS SIP message forwarding has two modes. One is called forced forwarding. In this 
mode, whenever a MA receives a registration request, it updates its own database, then 
immediately forwards the request to an upper ring if a communication link is available.  
The other forwarding mode is called periodic forwarding. An MA re-sends unsuccessfully 
forwarded requests to an upper ring based on a preset time interval. The forced forwarding 
normally happens the first time the MA receives a fresh registration request. If the forced 
forwarding fails, then the periodic forwarding will continue re-sending the request to the 
upper ring up to the maximum numbers of retrials. However, if there is a newer registration 
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request arrives from the same mobile host, the MA resets the forwarding timer and 
abandons the older request. This happens when the current request is timed out and the 
host sends a new request.  
If there is a broken link within the request-forwarding path, the MA at a lower part of the 
chain will serve as a SIP server to fulfil the SIP signalling functions locally relevant to the 
caller. The purpose is avoiding host request time out, thereby, to avoid redundant request 
messages. For example, in Figure 6, the link between the MA1 and the home SIP server is 
broken; then, the MA1 is served as an acting SIP server. Using this CBS request-forwarding 
mechanism, every server within the chain has the possibility to be an acting SIP server and 
may perform SIP signalling functions.  
The choice of a server as an acting SIP server depends on the MA’s logical location in the 
registration chain. In Figure 6, it is assumed that the link between the home SIP server (on 
the top of the figure) and MA1 is a satellite link. When the satellite link is broken, since MA1 
is located at the top of registration chain, therefore, MA1 is designated as an acting SIP 
server. In this way, the SIP signalling process is not blocked by a broken link.   

3.3 Intra-domain and Inter-domain soft handoff  

Another advantage of using the chain structure is that it provides potential for fast handoffs. 

A handoff is a process of transferring an ongoing session from one network attachment to 

another. A seamless handoff (unnoticed by a user) will significantly improve 

communication quality during host movements. During a handoff, the transition period 

needs to be short. The quicker a handoff can be completed, the higher velocity a mobile user 

can achieve (Banerjee, N. et al. 2005). 

The server that is responsible for performing the SIP procedures is at the lowest level 

(towards the CH) of the signalling chain. It knows both CH and MH addresses. In our case, 

it is MA2 in Figure 6.  

In an intra-domain mobility situation as shown in Figure 6, the MH gets a new IP address 

before relinquishing its old IP address. It obtains the new IP address from an intra-domain 

visiting sub-network (see the red line in Figure 6). The MH registers itself at MA2 and sends 

a “re-INVITE” to MA2. The MA2 sends the “re-INVITE” message to the CH. The CH sends 

OK and it is ACKed by the MH. Then a new session is established and the communication 

continues. 

If only the MH moves, it sends the “re-INVITE” message directly to the CH since the MH 

knows the CH location via the old connection. However, the MH still needs to register its 

new location to the MA2. For the sake of reducing handoff time, the MH can send two “re-

INVITE” requests to both old CH address and MA2 (Wong, K. D. & Woon, W. L. 2007). If 

CH does not move, it can receive both messages. The CH can reject the message from the 

MA2 to avoid duplication. Since the handover process in this proposal does not need to 

send all the SIP messages to the home SIP server, the overall performance is improved. 

Using signalling-server chain for inter-domain mobility handling is different from the 

standard SIP mobility support. The proposal uses a SIP proxy server (MA1 in our case) that 

is closer (physically) to the mobile host than the home SIP server is, which avoids using the 

original home SIP server that is far away and the satellite link may be broken. The inter-

domain soft handoff procedure is similar to the intra-domain soft handoff for setting up a 

session. The improvement is to have a much shorter signal path than the one used by the 

standard SIP, which reduces the handoff time and increases the signalling reliability.  
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3.4 CBS performance assessment 

Using a signalling chain can significantly improve the SIP request success probability and 
reduce message delay. These claims are proved in the following sections.  

3.4.1 Message forwarding success probability analysis  

We will analyze SIP message forwarding success probability in two cases. In case 1, a SIP 
client sends a SIP message only once; in case 2, a client can re-transmit the message N times. 
The results from both cases show that the CBS increases the success probability of SIP 
message transmission significantly, especially when the link reliability decreases. The 
definitions of parameters are as follows:  
PCBS:   The SIP registration success probability using chain-based mechanism 
PSIP:  The SIP registration success probability using standard SIP mechanism 
M:  Number of domains 
N:  Maximum number of times SIP registration request forwarding by  each MA 
pi:  Packet transmission success probability in domain i. 

3.4.1.1 Message forwarding success probability analysis – single try 

In this simple situation, by using the standard SIP without re-transmission, the probability that 
a message successfully traverses M domains and reaches its destination can be expressed as:  
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M
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While using the CBS, because of its “forced forwarding” and “periodical forwarding” 
mechanisms, the success probability is:  
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3.4.1.2 Message forwarding success probability analysis – multiple try 

In this case, the probability of successfully using SIP is changed to:  

 
1

1 1

N
M

SIP i
i

P p
=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∏   (3)   

www.intechopen.com



 VoIP Technologies 

 

270 

Now, comparing Eq.2 and Eq.3, we can prove that PCBS is still larger than PSIP. The proof is 
as the followings.  
Let α be a ratio between PCBS and PSIP, that is:  
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Let’s consider a special situation, in which each “chain” has the same message transmission 
success probability. Therefore, each pi = p;  
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When p is small, we can have 
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Similarly, when p is large or even close to 1, we have 
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In summary, when the message transmission success probability is low, which is 

represented by a small value of p, p ≈ 0, the chain-based message delivery mechanism has a 

much higher probability (NM-1 times) to be successful as indicated by Eq. 6. When a link is 

reliable, this means that the p ≈ 1, both chain-based and the original SIP mechanisms have a 

similar performance.  

For a 3-chain network infrastructure, we can have the reliability depicted in Figure 7. By 

using UDP as the transport protocol, SIP only sends the “invite” message 7 times1, so we set 

N=7. We can see that the chain-based message transmission mechanism is much more 

reliable than the original SIP messaging does.  
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Fig. 7. Reliability Comparison of CBS and standard SIP 

3.4.2 Delay analysis  

Let pi be the successful transmission probability at the chain domain i. Also, let di be the 

transmission delay for a message to be transmitted across different domains, which includes 

propagation delay and processing delay. It is assumed that the transmission delay is the 

same for both directions of a path. If a message is only retransmitted N times, the expected 

delay for a message to be transmitted over one “chain” can be considered as the following.  

                                                 
1 A SIP UAC stops retransmitting a request after 7 tries without receiving a response. The first 
retransmitting is sent after 500 ms, the rest of are sent at a 1-second interval. 
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Eq. 8 assumes that the message can be delivered within N times of re-transmissions. The 
delay is the expected value of the re-transmissions. However, if the message cannot be 
successfully sent within N re-transmissions, the delay will be infinity since the chain-based 
mechanism stops sending it to save network resources. There is a small probability for such 

a case. Each message has a probability equal to (1 )N
ip−  that it will not be sent. The delay 

for the message is infinity. We use a large number Dlarge to represent the large delay. 
The total expected delay for using the chain-based message transmission mechanism can be 
expressed as a summarization of delays from each chain, assuming there are a total of M 
chains.  
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As a comparison, the expected delay based on the traditional SIP message transmission can 
be expressed as: 
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We need to compare Eq. 9 and Eq. 10 to determine which one has a longer delay. To reduce 
the calculation complexity, it is assumed that the transmission success probability pi is the 
same in all chains. Therefore, Eq. 9 and Eq. 10 become 
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The last items in Eq. 11 and Eq. 12 represent the probabilities of messages that are not 

successfully transmitted. The probability (1 )M Np− in Eq. 12 is larger than (1 )Np−  from Eq. 

11. This means that using the chain-based mechanism yields a smaller probability of non-

successful transmission than what the traditional SIP mechanism does. This echoes the 

conclusion from the reliability analysis.  
For delay analysis, we focus on the time used for the messages that have been successfully 
transmitted. In that term, we only compare the first items in Eq. 9 and Eq. 10. Again, it is 
assumed that each “chain” domain has the same success transmission probability. Hence, it has 
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Eq. 11 converges to Eq. 13 when p is relative large. Similarly, Eq. 12 converges to Eq. 14. 
Comparing Eq. 13 and Eq. 14, we conclude that Eq. 13 yields a smaller value than Eq. 14; 
hence, TCBS is smaller than TSIP. The simulation result is shown in Figure 8. The simulation is 
based on M=3, N=20 and Dlarge = 4N. 
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Fig. 8. SIP Message Forwarding Delay Comparisons 
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5. Conclusion 

In this chapter, the problem of unreliable signalling caused by the deficiency of the standard 
SIP in an ad hoc mobile network environment was investigated. To mitigate the problem, 
several innovative ideas from protocol and network architecture perspectives have been 
introduced, which are important for furthering the SIP development and performance 
improvement.  
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