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Forced Accretion andyAssimilation Based on
Self-Organizing Neural Network

Cheng-Yuan Liou and Wei-Chen Cheng
Department of Computer Science and Information Engineering

National Taiwan University, Taiwan
Republic of China

1. Introduction and review

The high level abstraction is developed layer after layer. This abstraction and generalization
are important in language evolution and the study of mental processes. This chapter presents
a self-organizing neural network based on cascading a series of layered perceptrons that
resemble the development of the deep layers of the brain. This neural network is named
‘SOM perceptron’. It maps all received patterns in a single class into a point in the deep layer
space and maps different classes into different points. These widely separated class points can
facilitate the abstract categorization and analogy operated in the mental process. Categorizing
similar objects into small categories and different objects into different small categories can
simplify a problem and reduce the mental load. Those small categories that contain similar
objects will be successively combined into large categories to further reduce the load. This
categorization process is a kind of divide and conquer process. This work emulates such
process in successive layers. This design also resembles the formation of the corlica sensory
representation. It preserves the topological relations among classes. It constructs a layered
feed-forward network. Each layer attempts to split different classes and concentrate the same
class patterns. It is trained using the discrimination differences between classes and trained
independently layer after layer in a bottom-up manner. The class labels are not used in the
training process to relieve the loading complexity of weights.
A bottom-up training method for the construction of the SOM perceptron Liou et al. (2000);
Liou & Cheng (2008) is introduced in this chapter. This constructed SOM perceptron can be
used as the mapping function to split different classes. It can be applied to split multiple
classes.
The construction ideas are discussed in this section. There are four issues concerning the
method. The first issue is the reduction of the number of hidden representations. The second
one discusses a design method for the weights, such that the accomplishment of the SOM
perceptron is guaranteed. The third one is why we prefer a bottom-up construction for the
MLP and why we do not apply the BP to training it. The fourth issue discusses the different
functions of front layers and rear layers of MLP under the BP training. These four issues will
be presented in four subsections in this section. The method and architecture of the SOM
perceptron are described in the next section. Experiments are included in the third section.
Several related works are discussed in the last section.
We start with an introduction of the hidden representation. Let the set of all patterns be X =
{xp, p = 1, . . . ,P}. Each pattern xp is a D-dimensional column vector. The label function,
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2 Self Organising Maps, New Achievements

C : RD → N, maps each pattern, xp, to its class identity number, cp. Let the set Uci contain all
pattern pairs that belong to the same class ci,

Uci = {(xp,xq) ; C (xp) = C (xq) = ci} . (1)

Let the set Vci,cj contain all pattern pairs that belong to different classes,

Vci ,cj =
{

(xp,xq) ; C (xp) = ci, C (xq) = cj, ci �= cj

}

. (2)

Suppose there are L hidden layers in the network, {m = 1,2, . . . ,L}. Let the column vector

y(p,m) be the output vector of all neurons in the mth layer when the pattern xp is fed to the

input layer. y(p,m) is the hidden (or internal) representation of xp in the mth layer. We set

y(p,0) = xp form= 0. Let nm denote the total number of neurons in themth layer. The collection
of all hidden representations (HRs) of the mth layer is

Ym =
{

y(p,m), p = 1, . . . ,P
}

.

A HR may be the same for different patterns, that is, a many-to-one mapping, y(p,m) = y(q,m)

for xp �= xq. Let ‖Ym‖ be the total number of distinct HRs in the set Ym.

1.1 First issue: reduced number of hidden representations

The HRs, Ym, have been studied in Liou & Yu (1995). All patterns have their HRs in each
layer. These HRs are the output vectors of the hidden layers for all input patterns. They
are all binary codes when the hard-limiting activation function is applied to all neurons. So,

y(p,m) is a binary code. The nm decision hyperplanes of the neurons in the mth layer divide the
nm−1 dimensional space of the preceding (m− 1)th layer into nonoverlapped small decision
areas and code these areas with binary codes. Let Am be the collection of all areas, Am = {ami ,

i = 1 . . .‖Am‖}. The total number of these areas is less than or equal to Σ
nm−1

k=0 (
nm
k ), ‖A

m‖ ≤

Σ
nm−1

k=0 (
nm
k ) Mirchandini & Cao (1989). Each area has a convex polyhedral shape.

Each of the codes, y(p,m) ≡ ami , represents all patterns (or HRs) contained in a single divided

polyhedral area, {y(p,m−1); y(p,m−1) ∈ ami }. This could be a many-to-one mapping. Each
area is a small category containing many similar patterns. Note that certain areas may not
contain any representation, ‖Am‖ ≥ ‖Ym‖. According to the study in Liou & Yu (1995), the
total number of HRswill be much reduced, generally, in a layer that is far from the input layer.
This means

∥

∥

∥
YL

∥

∥

∥
≪ . . .≪

∥

∥

∥
Y2

∥

∥

∥
≪

∥

∥

∥
Y1

∥

∥

∥
≪ P.

The reduced number in the mth layer,
∥

∥Ym−1
∥

∥ − ‖Ym‖, is the pattern complexity resolved

in the mth layer. In many cases,
∥

∥Ym−1
∥

∥ >> ‖Ym‖. This reduction is very useful for the
abstraction and isolation of the whole class patterns. Ideally, this number can be reduced to
the number of classes,

∥

∥YL
∥

∥= ‘total number o f classes’= ‖C‖. This makes the design possible
for the SOM perceptron. Figure 1 illustrates the design idea.

1.2 Second issue: constructive weight design for SOM perceptron

The method in Liou & Yu (1994) provided a weight design for each layer, see program in
web Liou (2000a). This design can be used in the SOM perceptron. This guarantees the
accomplishment of the SOM perceptron. According to the design, the upper bound of
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Forced Accretion andyAssimilation Based on Self-Organizing Neural Network 3

Fig. 1. The top diagram plots the reduction and the bottom plots an ambiguity representation
in the second hidden layer.

the number of neurons in the mth layer required for solving a general-position two-class
classification problem is

⌈

∥

∥Ym−1
∥

∥

nm−1

⌉

≥ nm.

For the number of neurons in the first hidden layer, n1, the bound is
⌈

P
D

⌉

≥ n1. With this

weight design, the reduced number in the last layer L is guaranteed, that is
∥

∥YL
∥

∥ = ‖C‖.
The method in Liou & Yu (1994) also showed a constructive weight design for the MLP. To
illustrate this method, we show a general-position two-class classification problem. This
problem can be solved with two hidden layers. This construction is very different from BP
algorithms. It solves the complexity, Σ

nm−1

k=0 (
nm
k ), in the succeeding MLP layers.

Figure 2(a) illustrates the design for a two-class problem, c1 = 1 and c2 = 2, in a two
dimensional space, D = n0 = 2. In this D space, a center line of a strip, xpxq, is allocated
for two near patterns, xp and xq, that are in a same class c1, x

p ∈ c1 and xq ∈ c1. We assume

685Forced Accretion and Assimilation Based on Self-Organizing Neural Network

www.intechopen.com



4 Self Organising Maps, New Achievements

that c1 contains fewer number of patterns than that of c2. Then, this center line is split into
two parallel lines, line a and line b. They are in the two opposite sides of this center line and
parallel to the center line, a‖xpxq‖b. For a, pick a pattern xr, xr ∈ c2, where xr is closest to xpxq.
xr and a are in the same side of xpxq. Plot a parallel line ar, ar‖xpxq, that passes the pattern
xr . Pick a pattern xs, xs ∈ c1, that is in between the two lines, ar and xpxq, and is the closest
pattern to the line ar . Plot a parallel line, as, as‖xpxq, that passes the pattern xs. Plot a decision
border line, ars, right in between the two parallel lines, ar and as. ars has wide margin between
the pair (xr, xs).
The two patterns, xr and xs, serve as the margin-limiting stops of the region in between the

two lines, ar and as. The decision border line b
uv

for b can be accomplished in a similar way on
the other side of xpxq. These two decision lines are used as the two neurons in the mth layer.

All patterns in between the two lines ars and b
uv

belong to the same class c1. They are well
isolated from the patterns in the other class c2. The stops x

r and xs could be different from the
support vectors in support vector machine (SVM) Boser et al. (1992).

The number of patterns in between the two lines ars and b
uv

are one of the two factors of
the two neurons. The other factor is the width between these two decision lines. These two
factors are useful in the determination of the significance of these two neurons. Those neurons
with large factors are preferable and will be preserved with high priority in many training
operations. Small factor neurons will be eliminated occasionally.
An example of the typical decision regions is illustrated in Figure 2(b). The decision regions
contain four bar-like strips. There exists physiological evidences on receptive fields, D = 2,
for such bar-like strips, Daugman (1980); Dobbins et al. (1987).
There are many techniques to pick the center patterns xp and xq to build a strip. One way to
do this is to select all patterns, {xp, xq, xr , xs, xu and xv}, in a predefined neighborhood region.
The size of this region can be tuned during the training process. One may include a penalty

cost to set the borders ars and b
uv

in a way similar to that for SVM.
Note that both the number of neurons and the number of layers in certain operations of the
tiling algorithm [Mezard and Nadal, 1989] are highly sensitive to the setting of the origin,
the absolute coordinates, of the patterns. Many other neural networks, such as SOM, are also
sensitive to the setting of the origin. The relative distances among patterns are used in the
method in Liou & Yu (1994). This relative distance gives the classification quality. To our
knowledge, the performance of this method exceeds that of SVM. The relative distances will
be used in this work.
Figure 2(c) illustrates an example for the general-position two-class classification problem. A
single ‘AND’ function is used for a neuron in the second hidden layer to represent the patterns
in one individual strip. A global ‘OR’ function is used in the output neuron to represent
all patterns in class c1 that are in all strips. To our knowledge, this is the simplest MLP
architecture in many aspects. Any difficult isolated polyhedral region that is encompassed
by several neurons can be included in this archietecture by adding an extra ‘OR’ weight
connecting this region. The performance of this simple architecture exceeds that of tiling
algorithm.

1.3 Third issue: front layers must be trained correctly to get perfect performance for MLP

The reason why we prefer a constructive way from the bottom layer is based on the work
Liou & Yu (1995). It introduced a layered binary tree, named ‘AIR’ tree, that can trace the
error neurons in a latent hidden layer that is far from the output layer and close to the input
layer, see program in Liou (2000b). The error shows that certain mixed patterns from both

686 Self Organizing Maps - Applications and Novel Algorithm Design
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Forced Accretion andyAssimilation Based on Self-Organizing Neural Network 5

Fig. 2. The concept of the weight design method in Liou & Yu (1994).

classes are represented in a same code. This means that certain area code y(p,m) ≡ ami ∈ Am

represents different class patterns, y(p,m) = y(q,m) for (xp,xq) ∈ Vci,cj . Any area that contains
the mixed patterns, (xp,xq) ∈ Vci,cj , is named ‘ambiguity’ area. An area that contains patterns
belong to a single class is named ‘unambiguity’ area. The joint nodes of the tree are the HR
codes. This tree exposes the latent error areas and their neurons. According to this tree, any BP
algorithms cannot correct the latent error by adjusting the weights in its succeeding layers that
near the output layer. The front layersmust be trained correctly in order to send discriminated
signals (HRs) to their succeeding layers. This suggests that one has to accomplish the MLP
layer after layer in a bottom-up construction way.
Figure 3 illustrates an example tree for a two-class problem with the MLP network, n0 = 2,
n1 = 3, n2 = 3, n3 = 1. There are 19 patterns in the class c1 and 12 patterns in the class c2,
P = 31. In the input space, n0 = 2, the three decision lines of the first hidden layer divide the
input space into

∥

∥A1
∥

∥ = 7,
∥

∥A1
∥

∥ = Σ
n0
k=0(

n1
k ), decision areas, A1 = {a1i , i = 1,2,3,5,6,7}. The

input space is divided into 7 areas and coded with 7 binary codes shown in the bottom layer
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Fig. 3. The AIR tree for MLP Liou & Yu (1995).
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Forced Accretion andyAssimilation Based on Self-Organizing Neural Network 7

of the tree. Note that these seven codes are symbols and are not binary numbers, for example
a17 = 110[1] �= 1× 22 + 1× 21 + 0× 20. Each code represents all patterns in a single decision

area. One of the areas is void, a12, and contains no pattern. No input pattern can activate this

HR code. One area, a13, contains mixed patterns from both classes, this area is an ambiguity
area. There exists one latent error and it can be traced by the tree, see the dash line in the
figure. This kind error can be fixed locally using the patterns in the ambiguity area by adding
extra neurons in this area. This error cannot be resolved by adjusting the weights in the layers
n2 and n3 using any BP algorithms. When one deletes a significant neuron, many ambiguity
areas will be generated. A less significant neuron will generate less number of ambiguity
areas when it is deleted. One of two neurons can be pruned when both produce the same (or
different) responses for all patterns. A neuron has the same response for all patterns can be
pruned. One can build the tree for any training algorithms as an online monitor to visualize
the latent contents. With this tree, one can see and understand how a MLP solve a problem.
This tree can facilitate many applications.
Note that the latent errors cause the global mean square error (MSE) of the whole network
stays significantly high constant for certain unpredictable period of time during the BP
training. The BP may force the outputs of the error neurons to zero to suppress (or cover)
the errors. This will do more harm than help to resolve the ambiguity areas. This is the major
reason for slow learning and convergence to local minima of the BP algorithm. The presence
of a high constant MSE is an important pointer of when we should fix the error neurons.
As for a single neuron, there exists at most one high constant MSE period Liou et al. (2005)
Huang & Liou (2010) and the duration of that period is roughly proportion to the total number
of boolean functions available near the origin point of input space.

1.4 Fourth issue: different functions of front layers and rear layers in MLP under BP training

The study in the work Liou & Yu (1995) further identifies the function of the front layers
during the supervised BP training. It shows that categorization into different classes is
the main function for those front layers. This means that the detailed identity of each
class, the class label, is not used in the categorization. This suggests that the front layers
can be successfully trained by using the discrimination differences between classes as the
object function. The discrimination differences may come from parts of the distributed
representation as discussed by Elman (1991).

Note that the most important conclusion of the work, Liou & Yu (1995), is that the MLP must
be accomplished in a bottom-up manner in order to get perfect performance. It is hopeless
to use the BP algorithm to get a global solution for a medium-sized MLP network. Any BP
algorithm will converging to a local minimum solution. This work also shows that the MLP
with perfect performance is a certain kind of “ logical machine “ that build a logical map for
the events in the training dataset. This map can facilitate the comprehension of the events.

The ‘SIR’ method in Liou et al. (2000) provides the categorization object function based on
the discrimination differences between classes, see program in web Liou (2000c). The front
layers can be trained layer after layer using this object function starting from the first hidden
layer. Perfect categorization and production of right signals can be accomplished for each
layer Liou & Cheng (2008). These front layers are served, suitably, as the SOM perceptron.
The SOM perceptron will utilize the discrimination differences between classes to train the
front layers. It will not use class labels in its training process. Labels are not used as the
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8 Self Organising Maps, New Achievements

supervised primitives. Rather, the categorization is accreted under the side direction of those
discrimination differences. It carry the similar notion as that in Elman (1991).
The work Liou & Yu (1995) also identifies the function of rear layers that are near the output
layer. It shows that labeling with class labels is the main function. These front and rear
functions comprise the supervised BP for the MLP. We will include a labeling sector that
contains several layers after the SOM perceptron. The object function for the labeling sector is
the class labels. One can apply any wide margin techniques to train this sector.
We will use the discrimination differences between classes to train each front layer starting
from the first hidden layer. Any ambiguity area should be resolved for each layer. All
ambiguity errors can be traced using the AIR tree and fixed locally and independently. This
can be done either by the weight design method Liou & Yu (1994) for those error neurons
or by the retraining method Liou & Yu (1995). For a severe ambiguity area, one may insert
additional neurons and train them using the HRs in the ambiguity area. Note that any added
neuron will not destroy the unambiguity area.
A second hidden layer is added to the first hidden layer when the outputs of the first hidden
layer cannot produce well isolated HRs for each class. When a hidden layer can produce well
isolated signals for different classes, it will be served as the last front layer and as the output
of the SOM perceptron. We expect that the number of reduced HRs of the last layer will be
equal to the number of classes,

∥

∥YL
∥

∥ = ‖C‖.

2. Method

Figure 4 illustrates the SOM perceptron and the labeling sector. The SOM perceptron consists
of layered neurons.
The relative distance between two patterns will be used in this work. For the pair patterns
in the same class, (xp,xq) ∈ Uci , each layer is trained by using the energy function Liou et al.
(2000),Liou & Cheng (2008),

Eatt (xp,xq) =
1

2

∥

∥

∥
y(p,m) − y(q,m)

∥

∥

∥

2
, (3)

to reduce the distance between their output vectors,
∥

∥

∥
y(p,m) − y(q,m)

∥

∥

∥
. For the pair, (xp,xq) ∈

Vci ,cj , each layer is trained by using the energy function,

Erep (xp,xq) =
−1

2

∥

∥

∥
y(p,m) − y(q,m)

∥

∥

∥

2
, (4)

to increase the distance between their output vectors. The discrimination information between
classes is implicitly used in these two energies. They comprise the self-organizing principle
for evolving the HRs on each layer space. We expect that these energies can maximally utilize
all inherent discrimination differences among class patterns to separate the classes. Note that
the class labels are not used in these two object functions. The labels will be used only in the
labeling sector.
The network is constructed layer after layer, starting from L= 1. A new hidden layer is added,
Lnew = Lold + 1, whenever Lold layers cannot accomplish the isolation. All weights of the
trained Lold layers are fixed during the training of the added layer, m= Lold + 1.
The weight matrix which connects the output of the (m− 1)th layer and the input of the
mth layer, is denoted by Wm. The W1 connects the input layer and the first hidden layer.
In this paper, ‘module Wm’ is used for representing the weights of the mth layer. Applying
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Forced Accretion andyAssimilation Based on Self-Organizing Neural Network 9

Fig. 4. The SOM perceptron and labeling sector.

the gradient descent method to the added layer, the two energies can be reduced efficiently
during training iterations. The successfully trained network is used as the SOM perceptron to

map the pattern, xp, to the output space, y(p,L).

Algorithm
Each time a new hidden layer, Lnew=Lold+ 1, is added, its weights are adjusted by the gradient
descent method based on the energies (3) and (4). The weights of all trained layers, Lold, are
fixed. Suppose there are two classes, {c1 = 1, c2 = 2}. The training algorithm is in below.

1. For each added layerWm,Wm fromW1 toWL

2. For limited epochs

3. Pick any two patterns in the same class, xp and xq, which satisfy the following
condition

(xp,xq) = argmax
{(xi,xj)∈U1 or (xi ,xj)∈U2}

∥

∥

∥
y(i,m) − y(j,m)

∥

∥

∥

2
. (5)

Among the pair patterns in the same class, either in U1 or in U2, the two patterns (xp ,xq)
have the longest distance in the output space of the mth layer.

4. Find the pair patterns, xr and xs in different classes, which satisfy

(xr ,xs) = argmin
(xi,xj)∈V1,2

∥

∥

∥
y(i,m) − y(j,m)

∥

∥

∥

2
. (6)

The pair patterns (xr ,xs) have the shortest distance in the output space of the mth layer.
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5. Adjust the moduleWm by

∇Wm ← ηatt ∂Eatt (xp,xq)

∂Wm + ηrep ∂Erep (xr ,xs)

∂Wm (7)

Wm ← Wm −∇Wm,

where ηatt and ηrep are learning rates.

The gradients of Eatt and Erep in (7) are

∂Eatt (xp,xq)

∂Wm
= +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

y
(p,m)
1 − y

(q,m)
1

)

(

1−
(

y
(p,m)
1

)2
)

...
(

y
(p,m)
nm

− y
(q,m)
nm

)

(

1−
(

y
(p,m)
nm

)2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

y
(p,m−1)
1 , . . . ,y

(p,m−1)
nm−1

,−1
]

−

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

y
(p,m)
1 − y

(q,m)
1

)

(

1−
(

y
(q,m)
1

)2
)

...
(

y
(p,m)
nm

− y
(q,m)
nm

)

(

1−
(

y
(q,m)
nm

)2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

y
(q,m−1)
1 , . . . ,y

(q,m−1)
nm−1

,−1
]

and

∂Erep (xp,xq)

∂Wm
= −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

y
(p,m)
1 − y

(q,m)
1

)

(

1−
(

y
(p,m)
1

)2
)

...
(

y
(p,m)
nm

− y
(q,m)
nm

)

(

1−
(

y
(p,m)
nm

)2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

y
(p,m−1)
1 , . . . ,y

(p,m−1)
nm−1

,−1
]

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

y
(p,m)
1 − y

(q,m)
1

)

(

1−
(

y
(q,m)
1

)2
)

...
(

y
(p,m)
nm

− y
(q,m)
nm

)

(

1−
(

y
(q,m)
nm

)2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

y
(q,m−1)
1 , . . . ,y

(q,m−1)
nm−1

,−1
]

.

Figure 5 illustrates an example of the algorithm. In this figure, the intra-class pattern
pairs are U1 =

{(

x1,x2
)

,
(

x1,x3
)

,
(

x2,x3
)}

and U2 =
{(

x4,x5
)}

. The inter-class pattern pairs

are V1,2 =
{(

x1,x4
)

,
(

x1,x5
)

,
(

x2,x4
)

,
(

x2,x5
)

,
(

x3,x4
)

,
(

x3,x5
)}

. The intra-class pair has the
maximal distance in the output space is

(

x1,x2
)

= argmax
{(xi,xj)∈U1 or (xi,xj)∈U2}

∥

∥

∥
y(i,1) − y(j,1)

∥

∥

∥
,

and the inter-class pair has the minimal distance is

(

x3,x4
)

= argmin
{(xi,xj)∈V1,2}

∥

∥

∥
y(i,1) − y(j,1)

∥

∥

∥
.
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Fig. 5. A snapshoot of the first hidden layer of the algorithm.

The two energies are

Erep
(

x3,x4
)

=
−1

2

∥

∥

∥
y(3,1) − y(4,1)

∥

∥

∥

2

and

Eatt
(

x1,x2
)

=
1

2

∥

∥

∥
y(1,1) − y(2,1)

∥

∥

∥

2
.

3. Experimental analysis

Two artificial datasets are used in the simulations. One is a two-class problem and the other
is a three-class problem. Four real world datasets are also used in the simulations.

3.1 Two-class problem

Figure 6(b) plots the trained result for the two-class patterns, ci ∈ {1,−1}, in the 2D plane,

n0 = 2. The border of these two-class patterns is (x1)
3 + 0.1x1 = x2. Pattern points with the

same color are in the same class. There are five neurons in each layer, {nm = 5,m ∈ {1, . . . ,L}}.
The SOM perceptron is trained layer after layer until it produces well isolated HRs for each
class. We set the isolation condition for inter-class HRs as

min
(xp,xq)∈V1,2

∥

∥

∥
y(p,L) − y(q,L)

∥

∥

∥

2
≈ 22 × nL, (8)
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12 Self Organising Maps, New Achievements

and the condition for intra-class HRs as

max
{(xp,xq)∈U1or (xp,xq)∈U2}

∥

∥

∥
y(p,L) − y(q,L)

∥

∥

∥

2
≈ 0. (9)

The learning rates are ηatt = 0.01 and ηrep= 0.1. Thismeans that the repelling force is weighted
stronger than the attractive force. The successful isolation is reached when L = 2. We set
one neuron, nc1 = 1, in the labeling sector as the output layer and use the class identities,
ci ∈ {1,−1}, to train this neuron. Figure 6(b) plots the trained result.
We also compare the result with those obtained by the MLP in Figure 6(a), and SVM in Figure
6(c). The MLP is a multilayer perceptron with two hidden layers, nMLP

1 = nMLP
2 = 5. This

MLP is trained by the supervised BP. The Gaussian kernel, K (u,v) = exp
(

‖u− v‖2
)

, is used

in SVM Chang & Lin (2001).
The boundary in Figure 6(b) is much more close to the border than the result of the supervised
MLP in Figure 6(a). Using the polynomial kernel, the boundary learned by SVM is also close
to the border.

3.2 Multiple-class problem

Figure 7 plots the training patterns sampled from three classes separated by three ellipses,
ci ∈ {1,2,3}.
In this simulation, we train four SOM perceptrons with different number of neurons in each
layer, {nm = 5, nm = 7, nm = 9, nm = 11}. Each layer is trained by 1000 epochs. The isolation
conditions (8, 9) are used in this simulation to stop the addition of a new layer. The learning
rates are ηatt = 0.01 and ηrep = 0.1. The values of the isolation conditions for each layer

MinInterClass(m) = min
(xp,xq)∈{V1,2,V1,3,V2,3}

∥

∥

∥
y(p,m) − y(q,m)

∥

∥

∥

2
(10)

and

MaxIntraClass(m) = max
(xp,xq)∈{U1,U2,U3}

∥

∥

∥
y(p,m) − y(q,m)

∥

∥

∥

2
, (11)

are recorded and plotted in the Figure 8.
When the isolation is reached, we set two layers in the labeling sector with nc1 = 2 and nc2 = 3
and use the class identities to train these two layers. In the layer nc2= 3, each neuron represents
a single class.

Fig. 6. The dash lines indicate the intrinsic border. (a) The trained result of MLP. (b) The
result of SOM perceptron. (c) The result of SVM.
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Fig. 7. The patterns in three classes.

We employ the SOM to visualize the output signals, y(j,m), of each layer, to see the isolation
of classes. The neurons of the SOM are placed on the regular points, see Figure 9. The SOM
consists of 10× 10 neurons.

Fig. 8. Recorded isolation conditions, MinInterClass (10) and MaxIntraClass (11), for each
layer, m = 1,2,3,4.

Fig. 9. The SOM used for visualization.
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14 Self Organising Maps, New Achievements

Fig. 10. The results of using the SOM to visualize the isolation of the output vectors of each
layer. The images on the right column display the mapping relation between input space and
output space of the labeling sector. Each neuron of the layer nc2 = 3 indicates a single class
(one color) in the input pattern space.

Figure 10 plots the SOM results for each layer. Each pixel denotes a SOM neuron. The
pattern color is marked on its winner neuron. This figure shows that well isolated signals
are gradually accomplished in the last few layers. The output signals of the last layer have
three concentrated points in the SOM.

3.3 Real datasets

The Sonar Dataset, Wine Dataset, Ionosphere data and promoter gene sequences will be
used in these experiments. Four machine learning techniques, k-NN (k-nearest neighbors
algorithm), SOM perceptron, MLP and SVM, are compared using the 10-fold cross-validation.
The dataset is randomly split into ten partitions, nine of them are used in the training process
and the rest one is used in the testing process. The results are the average of the 10-fold
cross-validation. The settings in the labeling sector for all datasets are listed in Table 1. The
parameters of SVM are the cost C for the error tolerance and the gamma γ in the Gaussian
kernel. Parameter k indicates the number of neighboring cells in the k-NN algorithm. The
values of C, γ, and k, are optimized using an inner 10-fold cross-validation procedure. The
settings that produce the lowest errors are used to learn the models with the whole set of
training data. The MLP has two hidden layers. All parameters are listed in Table 1 and Table
2. The values of the input patterns are normalized within the range [−1,1].
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k-NN SOMP
(

nm,n
c
1,n

c
2

)

Sonar (3,1,1,3,3) (35,5,1)
(3,1,1,1,1)

Wine (3,15,13,11,19) (10,5,3)
(15,19,13,15,11)

Ionosphere (1,3,1,1,1) (10,5,1)
(1,11,1,1,1)

Promoters (3,5,1,3,1) (100,40,1)
(3,3,3,3,3)

Table 1. Parameters in k-NN and SOM perceptron

Table 3 and Table 4 show that the SOMperceptron is competitive and practicable in real world
applications. The column ‘SOMP’ contains the results of SOMperceptron. Aswe expected, the
training accuracy of the SOM perceptron is perfect 100%. In all our experiments the number
of layers L is always small.

4. Summary

The topological form and correspondence on the L layer space, YL, may resemble the fine
organization of the corlica sensory representation, Homunculus Penfield & Rasmussen (1950)
Kohonen (1982). There exists one and only one representation point on outer cortex for a
sensory input.
A high dimensional combined representation point may indicate and serve as the state
transition for two consecutive states and as the state transformation between two kinds of
sensory inputs. For example, the transition between successive two states can be represented
by a combined pattern in some sense similar to the bi-directional associative model Kosko
(1988).

4.1 RBM and SOM perceptron

The HRs developed by the restricted Boltzmann machine (RBM) Salakhutdinov et al. (2007)
and the Boltzmann machine Ackley et al. (1985); Liou & Lin (1989) are very different from
those developed in the SOM perceptron. RBM is also constructed in a bottom-up manner.
Each individual layer is developed freely and evolved independently. The labels are not
used in RBM. The discrimination differences between classes are not used directly for the

SVM MLP

C gamma nMLP
1 nMLP

2
Sonar

(

25,21,25,23,27
) (

2−3,2−1,2−3,2−3,2−5
)

30 10
(

27,27,23,23,25
) (

2−5,2−5,2−1,2−3,2−3
)

Wine
(

2−1,21,2−1,23,21
) (

2−1,2−1,2−1,2−9,2−3
)

20 5
(

25,2−1,21,2−1,21
) (

2−5,2−1,2−1,2−1,2−3
)

Ionosphere
(

23,23,23,23,21
) (

2−1,2−1,2−1,2−1,2−5
)

20 5
(

25,2−1,21,2−1,21
) (

2−3,2−5,2−1,2−3,2−1
)

Promoters
(

21,21,21,23,21
) (

2−9,2−11,2−7,2−13,2−7
)

20 5
(

25,21,23,21,25
) (

2−15,2−9,2−11,2−9,2−11
)

Table 2. Parameters in SVM and MLP algorithms
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Training Accuracy

k-NN SOMP MLP SVM
Sonar 95.46% 100.00% 98.24% 100.00%
Wine 97.88% 100.00% 100.00% 99.56%

Ionosphere 97.69% 100.00% 99.46% 99.05%
Promoters 93.72% 100.00% 100.00% 100.00%

Table 3. The training accuracy on real dataset.

development of the RBMHRs. It is expected that the HRs developed in the RBMhidden layers
can support the visual patterns to tolerate noisy patterns and variations of patterns. When the
number of hidden neurons in a hidden layer is much less than that of visual patterns, the
representation capacity is low and the HRs tend to encode those patterns with the complexity
of each neuron layer. This encoding scheme has been extensively discussed in Ackley et al.
(1985); Liou & Lin (1989). This kind encoding has been used to explain the mechanism of the
RBM.
When the number of neurons is much larger than that of visual patterns, the representation
capacity is high and there are so many alternative HRs for the visual representations. There
exist so many alternative HRs for the visual support. There is no specific preferred HRs by
the RBM. The SOM perceptron imposes the repelling energy to split different classes and
the attraction energy to concentrate a class directly. It seeks those widely separated HRs to
support and isolate the visual patterns.

4.2 Hebbian learning

It is generally accepted that the supervised BP algorithm is not biological plausible. The SIR
learning Liou et al. (2000), weights degrading and enhancing mechanism for classes, keeps
the Hebbian form for a single layer. It is biological possible. As for the Hebbian form, in the

gradient formulas,
∂Eatt(xp,xq)

∂Wm and
∂Erep(xp,xq)

∂Wm , the terms

(

1−
(

y
(p,m)
i

)2
)

and

(

1−
(

y
(q,m)
i

)2
)

have nonnegative values. These two terms are the derivatives of the activation function
f (x) = tanh (x). If we substitute 1 for these terms, the learning rule becomes

wm
ij (n+ 1)←− wm

ij (n) + η
(

y
(p,m)
i (n)− y

(q,m)
i (n)

)(

y
(p,m−1)
j (n)− y

(q,m−1)
j (n)

)

, (12)

that is the Hebbian learning with ‘bi-patterns’. The modification strength is proportional to
the difference between two HR patterns,

(

y
(p,m−1)
j (n)− y

(q,m−1)
j (n)

)

,

Testing Accuracy

k-NN SOMP MLP SVM

Sonar 82.74% 86.60% 84.14% 88.00%
Wine 97.78% 98.33% 97.78% 98.30%

Ionosphere 85.17% 90.60% 88.32% 94.87%
Promoters 72.64% 86.55% 85.73% 89.36%

Table 4. The testing accuracy on real dataset.
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and the difference between their postsynaptic responses (output vectors),
(

y
(p,m)
i (n)− y

(q,m)
i (n)

)

.

The increase of the strength of a synapse, wm
ij (n+ 1), is proportional to such differences on

both sides of that synapse synchronously. To compare, a popular Hebbian learning form is

wij (n+ 1)←− wij (n) + ηyi (n)xj (n) , (13)

where yi (n) is the postsynaptic response and xj (n) is the presynaptic input pattern.
Another interesting form called the covariance hypothesis was introduced in Sejnowski (1977).
According to this hypothesis, the learning applied to the synaptic weight wij is defined by

wij (n+ 1)←− wij (n) + η (yi (n)− ȳ (n))
(

xj (n)− x̄ (n)
)

(14)

where x̄ (n) and ȳ (n) denote the time-averaged values of xi and yi, respectively. Comparing
Equation (13) and Equation (14), the differences between them are the presynaptic and
postsynaptic reference thresholds, which determine the sign of synaptic modification. In
Equation (12), instead of the time-averaged references, the presynaptic signal and the
postsynaptic signal use the other signals as the references.

4.3 Relation with support vector machine

The support vector machine employs the Mercer kernel to map patterns to a high dimensional
space. Usually, the class information is not used in the design of the mapping function. The
outcome of the mapping relies on the choice and the setting of the kernel function. The SOM
perceptron is an adjustable mapping function to transform the patterns to a high dimensional
space. It can be used as the Mercer kernel to map patterns to a space with highly separated
representations.
In SVM, a multi-class classification task (polychotomy) can be decomposed into a set of
simpler two-class classification tasks (dichotomies). Each dichotomy is implemented using
one such machine independently. The outputs of these dichotomizes are reconstructed in
classification. Advanced techniques have been developed for decomposition of poychotomy
into dichotomies and reconstruction of their outputs. The SOM perceptron attempts to
simultaneously divide the whole representation space for all classes. It uses the internal space
of the layer perceptrons where each dichotomy (hyperplane) learns in a way dependent on
each other. This learning will exhaust the hidden layer space and maximize the utility of all
neurons to accomplish highly separated representations in that layer. Such representations
have large margins and facilitate the operations of error correction.

4.4 Relation with mutual information learning

The proposed method is based on the maximization of the representations distances among
different class representations and the minimization of the distances among the same class
representations. There is a network Becker & Hinton (1992) with two modules. It has a

different goal. It maximizes the mutual information, I
(

y(p,L);y(q,L)
)

, where y(p,L) and y(q,L)

are the output vectors corresponding to the input patterns xp and xq. This mutual information
is defined as

I =
1

2
log

Var
(

y(p,L) + y(q,L)
)

Var
(

y(p,L) − y(q,L)
)
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where Var is the variance over the responses of the training samples. This network is plotted

in Figure 11(a). The goal of this network is to make the output y(p,L) and y(q,L) of the two

modules to agree closely (i.e., to have a small value in the denominator Var
(

y(p,L) − y(q,L)
)

)

for a closely related pair of input patterns xp and xq. This goal is similar to, in some sense,
the attraction energy for the same class patterns. In the same time, the two modules cannot
just produce constant output that is unaffected by the input patterns, otherwise, they convey
no information. The outputs of these two modules should vary as the inputs are varied. This

constant situation is prevented by a large value in the numerator, Var
(

y(p,L) + y(q,L)
)

. Since

there are two more classes in SOM perceptron, this kind prevention is not necessary. We will
ignore the discussion on this numerator.
When we replace this two-module network with a single-module network as shown in Figure
11(b) and confine the output responses in a hypercube space. We then train this network to
minimize the object function

I ′ =
1

2
logVar

(

y(p,L) − y(q,L)
)

for patterns in the same class that are closely related pairs. Conversely, we train the network
to maximize this function for different class patterns. We could obtain similar results for the
same class patterns as those obtained by the SOM perceptron.
We briefly explain the similarity of the two goals. The object function I ′ will weight frequent
patterns. In our experiments all patterns have equal appearance (uniform probability

distribution). Suppose that the mean value of the vector
(

y(p,m) − y(q,m)
)

is zero. Assume

each pattern in
{

x1,x2, . . . ,xP
}

has its own representation, y(p,m) �= y(q,m) for p �= q. Assume

y(p,L) − y(q,L) has equal probability of appearance, P−1. Then

I ′ =
1

2
{−2Erep} − logP.

The information function, I ′, is similar to the repelling energy and the attraction energy. This
shows that the two energies are agree with the mutual information to a certain extent. Note

that the assumption on the equal probability of y(p,L) − y(q,L) is not precise.

Fig. 11. (a) The two-module network. (b) The single-module network.
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When we use

Erep = −
1

2

P

∑
p=1

P

∑
q=1

nm

∑
i=1

(

y
(p,m)
i − y

(q,m)
i

)2
,

the SIR method tends to maximize (or minimize) the variance of each neuron’s output

difference, Var
(

y
(p,m)
i − y

(q,m)
i

)

, evenly for all pairs of different class patterns (or same class

patterns). All neuronswill be devoted to these class patterns. All neurons are sensitive to these
patterns only. Any unknown pattern will be included in one of these patterns’ representations.
In other words, these representations exhaust the pattern space.
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