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1. Introduction

Explaining the human capacity to construct mental categories is a central question in cognitive
science, yet how reality is perceived and compartmentalized by our mind has puzzled
philosophers since Aristotle. Today, categorization is believed to be a strategy humans
have in common with many animals. In most species, individuals have the opportunity to
directly experience only a tiny fraction of the entities, objects, features and events offered
by their environments. By relying on categorization, organisms become able to determine
which things in the world belong together or are alike in some way, therefore reacting in an
appropriate manner, thanks to the previous experiences had with other instances of the same
category.
The purpose of this chapter is to investigate computational models that can simulate
mechanisms underlying the ability to develop categories. We argue that a neural mechanism
for detecting and coding recurrent coincidences in stimuli could be the key component in our
brain’s ability to build the categories it uses to organize reality. The mathematical framework
that has given the best interpretation so far on how signals with high levels of autocorrelation
affect networks of neurons with local coincidence detection and coding abilities, is the one
referred to as self-organization.
Being categorization a phenomena appearing at so many different cognitive levels, and that
is pervasive in so many different modalities, we doubt that it could rely upon a single
mechanism. Moreover, we believe that humans unlike any other animal reshape their
categories and build new ones, by virtue of the information provided to them by language
as soon as they have developed the most rudimentary understanding of it. Nevertheless,
we do not see reasons for posing that the pre-linguistic development of categories in infants
should happen as a result of mechanisms different from those found in other species. Even
if we are convinced that different mechanisms might contribute, the basic mechanism briefly
discussed is one we consider to play a key role.

1.1 The problem of mental categories

The research on categorization in humans can be traced back to traditional domains.
In philosophy the objective of epistemology has included explaining the acquisition of
knowledge, with empiricists attempting to formulate explanations in terms of mental
mechanisms (Locke, 1690; Hume, 1739). It was within the field of psychology, however,
that the search for this sort of mechanism became a central issue, employing the strategy of
experimental analysis of the ontogenesis of categories in infants. While holding in high regard

33

www.intechopen.com
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the theoretical frameworks proposed within those two traditional disciplines in the past, we
believe that the possibility of identifying the basic mechanisms of categorization is today more
feasible thanks to recent advances in some specific domains. In particular, we are building on
the following:

– Developmental psychology, that thanks to improved testing methodologies has produced
an impressive amount of research on early categorization in the last 20 years.

– The neurobiology of learning, that has opened the door to the understanding of the
mechanisms underlying the representational power of neural circuits.

– Computational models of emerging representations, that have contributed to
understanding the modalities and constraints by which experiential inputs build
representations in the brain.

Basing ourselves on evidence that has come from these three fields, we argue that a
mechanism implementing coincidence detection of stimuli, and coding recurrent coincidences
by self-organization, could be essential for the brain to build mental categories.
There are at least three crucial aspects of this mechanism. One is the special sensibility
of organisms, in detecting that two or more elements in the stream of stimuli from the
environment, happen with remarkable synchrony. A second is the ability of the organism to
code in its nervous system traces of repeated coincidences of the detected elements. One effect
of this internal representation, is that subsequent experiences of just one (or a few) of the coded
elements, might elicit the activation of the internal representation of the other(s). Finally, in a
population of neurons every reinforcement of the binding between two or more elements,
should be compensated by reduction of other antagonistic elements. The combination of
self-reinforcing interaction with competitive compensation may give rise, on the scale of
cortical maps, to the emergence of self-organized representations corresponding to mental
categories.

1.2 Computational models of categorization

The first attempt to simulate lexical semantics by means of self-organization was done by
Ritter & Kohonen (1989). It was a very abstract model, in which names of animals and certain
binary attributes (like “has feathers” or “likes to swim”) were coded in vectors.
This approach was extended by Miikkulainen (1997), in a model that combined three SOM
maps, two for orthography and phonology, and a semantic featuremap. Associations between
them were formed, based on co-occurrence of the lexical symbol and its meaning. The model
was able to simulate dyslexic and category-specific aphasic impairments similar to those
observed in human patients. More recently Li et al. (2004) proposed a model of early lexical
categorization that combines two self-organizing maps as semantic map and phonological
map, connected via associative links. Their model reproduced aspects of a growing lexicon
during development. Mayor & Plunkett (2010) have also explored specific aspects of early
lexical acquisition, using standard self-organizing maps. This model reproduces interesting
aspects of language learning, like slips of the tongue and mispronunciation effects.
All these models, however, lack correspondence between their mathematics and how brain
computations are performed, in particular, there is no account on how, on a large scale,
processes relevant to categorization are distributed in the cortex.
The model here proposed is an attempt to simulate early phases of lexical categorization of
visual objects, exploiting mathematical implementations of the self-organizing principle, in a
way that takes into account the real structure of the cortex, with its pathways and hierarchies
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Self-Organization of Object Categories in a Cortical Artificial Model 3

of processes. In the next section, the core concept of the mechanism supporting categorization
will be introduced, together with its available implementations and relevant theoretical issues.
Section §3will describe the model, with results shown in §4.

2. Artificial networks with self-organizing properties, and category formation

Computational models have been a valid complement to neurophysiology and neuroimaging
in the enterprise of understanding how our brain works. Models, in abstracting biophysical
phenomena at different levels, can help bridge neurophysiology with behavior and
cognition. However, in the past the guiding principles of modeling cognitive functions were
strongly based on the epistemological value of the algorithmic design, corroborated by the
philosophical view of the mind as a computing machine, that prevailed in the 80’s and ’90s
(Fodor, 1981; 1983). The serious weakness of this early form of computationalism was the risk
of solving problems in our own head and then subsequently creating specific algorithms, that
can be a far cry from how the brain solves the same problem.
Today, computational neuroscience has grown, reaching solid theoretical foundations
Dayan & Abbott (2001), making it possible to constrain models, especially of low-level vision,
in order to get relatively close to real brain mechanisms, avoiding the errors made by
previously unconstrained computational models. However, the adherence to the known
chemical and electrical processes of the nervous system is necessarily inverse to the degree
of complexity of the problem at hand. In the case of categorization, even if limited to
objects with visual salience, complexity is very high, and therefore, the replication of biology
cannot be detailed. This means that the risk, mentioned above, of creating algorithms that
are unrelated to actual brain functions, is always present. A good antidote for this, is to
focus models on the repertoire of basic principles underlying cortical organization, and to
study the ontogenesis of complex functions by implementing these principles in a simulated
environment. This way of proceeding is characteristic of research done within a recent
framework called neuroconstructivism (Quartz & Sejnowski, 1997; Westermann et al., 2007).

2.1 The mathematics of cortical development

In our view category formation is directly correlated with the development of cortical maps,
in the meaning originally introduced by Mountcastle (1957), as a portion of the cortex unified
functionally by the consistent responsiveness of its cells to contiguous sensorial stimulation.
At this level, we consider the effect of being exposed to possible coincidences in a multitude of
signals. In a sense, categories are ways of coding in neural aggregates, which signals co-occur
or are co-incidental enough to be representative of the key traits of the objects or events
that caused those signals. One of the most fruitful mathematical frameworks for simulating
cortical development driven by the degree of autocorrelation of the incoming signals is the
concept of self-organization. It is a vast topic, related to dynamic systems theory, with a
long tradition in physics, physical chemistry, and astronomy (Haken, 1978). In general this
framework studies the spontaneous formation of organized patterns in systems consisting of
a large number of interacting elements, and initially in a relative undifferentiated state (Ball,
1999). In most organizing systems two fundamental facts are that global order can arise from
local interactions, and that interactions work in two opposite directions: that of enhancing
the degree of similarity (that in some systems can be interpreted intentionally as cooperation)
between some elements, or by the differentiation between some other elements (intentionally
read as competition). In the field of neural circuit development it was first introduced by
von der Malsburg (1973), for modeling how the visual cortex can spontaneously develop its
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mature organization, and was based exclusively on the local interaction of neurons, ruled
by Hebb’s principle. In the case of the development of orientation-sensitive patterns in the
primary cortex, the model was based on the following system of differential equations:

∂yi
∂t

= −αyi +�ki · f (�yi) + �wi · f (�zi) + xi, (1)

∂wi,j

∂t
= η f (yi)

(

f
(

zj

)

− wi,j ∑
l∈Zi

f (zl)

)

, (2)

where y and z are the activities of neurons in different layers of the same cortical area,
the former in layer IV, where typically thalamocortical afferents project, the latter in other
layers, where lateral intercortical interactions take place. wi,j is the connections strength
between zj and xi , and the vector �wi is composed by all connections of intercortical neurons
projecting to i. The vectors �yi and �zi are the activations of all neurons belonging to columns
where intercortical connections with neurons i exist. Using the same convention for the
corresponding scalars, �yi refers to cells in layer IV and�zi to cells in other layers. The constant

kernel vector�k modulates the activation of neighbors with the distance from i, typically with
a Gaussian difference. The function f is the monotonic squeezing non-linearity, typically
a sigmoid. In equation (2) the first term corresponds to Hebbian growth in response to
coinciding activity on the presynaptic and postsynaptic sides of the connection between i
and j. The second term, where Zi is the set of cells out of layer IV connected to i, performs
a competitive effect, ensuring that the sum of synaptic strengths converging on position i is
kept constant at 1.

2.2 The SOM implementation

Kohonen (1982; 1995) has made the mechanism of self-organization popular, with his very
simple but efficient SOM (Self-Organizing Maps) model.
The learning rule is on a winner-takes-all basis: if the input data are vectors �v ∈ R

N , the SOM
will be made of some M neurons, each associated with a vector�x ∈ R

N and a two dimensional
(in vision applications) coordinate�r ∈ {< [0,1], [0,1] >} ⊂ R

2. For an input v there will be a
winner neuron w satisfying:

w= arg min
i∈{1,...,M}

{‖�v−�xi‖} . (3)

The winner-takes-all mechanism is a mathematical substitution for the effect of lateral
connections, which play a fundamental role in the emergence of complex response functions
in the cortex. Once the winner is identified, neural vectors are updated during training using:

∆�xi = ηe−
‖�rw−�ri‖

2

2σ2 (�v−�xi) , (4)

where η is the learning rate, σ the amplitude of the neighborhood affected by the updating.
Often both η and σ are decreasing functions of the training epochs.
As said in §1.2 the SOM soon proved to be very effective in modeling categorization, at the
lexical level as well, it is however, a significant departure from the behavior of biological
cortical circuits. The winner-takes-all mechanism works as a mathematical substitution
for the effect of lateral connections, but only assuming fixed connections and uniform
neighborhoods. The input lacks a receptive field structure, therefore SOM cannot be used
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Self-Organization of Object Categories in a Cortical Artificial Model 5

Fig. 1. The LISSOM architecture with lateral connections for one neuron (in white).
Excitatory links are in pale gray and inhibitory links in dark gray.

as a building block in a hierarchy of cortical maps. However, there are concepts in SOM
categorization that we believe to be relevant to brain structure as well. One is the mapping
of meaning into two dimensions. The question concerning whether our disposition to better
understand patterns depends on their being presented in a two dimensional manner due to
the bidimensional structure of our cortex remains an open question (Chklovskii & Koulakov,
2004). Kohonen (1998) clearly defended the biological relevance of SOM-like maps in the
cortex and proposed a modification of the SOM algorithm in order to relate the adaptation
processes to physiological evidence in the brain, still preserving the winner-takes-all rule
(Kohonen & Hari, 2000).
Several new mathematical formulations have been provided for learning mechanisms in
populations of neurons in cortical maps, that still achieve competitive self-organization, but
without the SOM winner-takes-all mechanism. Wallis & Rolls (1997) designed a model with
explicit lateral inhibitory effect on neighbor units. Learning in the network is achieved with a
special modification of Hebb’s rule, in which a decaying trace of previous cell activity is kept.
The trace rule can be interpreted as a way of detecting regularities between appearances of
objects in short time sequences, therefore coincidental features that regularly happen when
the same object is under view. This architecture has been successful in recognizing categories
of artificial objects and faces (Rolls, 1992; Wallis & Rolls, 1997). This architecture is closer to
the reality of cortical maps than the SOM is, but still, due to the fixed modeling of inhibition,
and the lack of excitatory connections, may miss the full set of functional and developmental
phenomena of a real cortical map.

2.3 The LISSOM architecture

An attempt to implement flexible and modifiable lateral connections, while keeping
the architecture relatively simple, is represented by the model developed by
Sirosh & Miikkulainen (1997) called LISSOM (Laterally Interconnected Synergetically
Self-Organizing Map). In this model, each neuron is not only connected with the afferent input
vector, but receives excitatory and inhibitory inputs from several neighbor neurons on the
same map, as shown in Fig. 1
The activation level xi of a neuron i at a certain time step k will now be given by:

x
(k)
i = f

(

γA

1+ γN
�I ·�vrA,i

�arA,i ·�vrA,i + γE�erE,i ·�x
(k−1)
rE ,i

− γH
�hrH ,i ·�x

(k−1)
rH,i

)

, (5)

where the vectors �x
(k−1)
rE ,i

and �x
(k−1)
rH ,i

are the activations of all neurons in the map, where a
lateral connection exists with neuron i of an excitatory or inhibitory type, respectively. Their

fields are circular areas of radius, respectively, rE, rH. Vectors �ei and �hi are composed by
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all connection strengths of the excitatory or inhibitory neurons projecting to i. The vectors
�v and �xi , as before, are the input and the neural code. The scalars γA, γE, and γH, are
constants modulating the contribution of afferents. The map is characterized by the matrices

A,E,H, whose columns are all vectors �a, �e, �h for every neuron in the map. The scalar γN

controls the setting of a push-pull effect in the afferent weights, allowing inhibitory effects
without negative weight values. Mathematically, it represents dividing the response from
the excitatory weights by the response from a uniform disc of inhibitory weights over the

receptive field of neuron i. Vector �I is just a vector of 1’s of the same dimension of �xi. The
function f is any monotonic non-linear function limited between 0 and 1, in this model is
implemented as a piece-wise linear sigmoid.
The final activation value of the neurons is assessed after a certain settling time K, typically
about 10 time steps. It is easy to recognize the resemblance of (5) with the original formulation
of von der Malsburg in (1). All connection strengths adapt according to the general Hebbian
principle, but include a normalization mechanism that counterbalances the overall increase of
connections of the pure Hebbian rule. The equations are the following:

∆�arA,i =
�arA,i + ηAxi�vrA,i
∥

∥�arA,i + ηAxi�vrA,i
∥

∥

−�arA,i, (6)

∆�erE,i =
�erE,i + ηExi�xrE ,i
∥

∥�arE,i + ηExi�xrE ,i
∥

∥

−�erE,i, (7)

∆�hrH,i =
�hrH ,i + ηAxi�xrH ,i
∥

∥

∥

�hrH ,i + ηAxi�xrH ,i

∥

∥

∥

−�hrH ,i, (8)

where η{A,E,H} are the learning rates for the afferent, excitatory, and inhibitory weights. The
normalization in equations (6), (7), (8), is a computational account of the biological phenomena
of homeostatic plasticity (Turrigiano & Nelson, 2004).
The LISSOM model has been extensively used in vision studies, for modeling several
low-level visual phenomena (Miikkulainen et al., 1997), the simulation of aftereffects
(Bednar & Miikkulainen, 2000), perceptual grouping (Choe & Miikkulainen, 2004), face
detection (Bednar & Miikkulainen, 2003), color response development (Bednar et al., 2005),
motion direction selectivity (Bednar & Miikkulainen, 2006), and 3D object recognition
(Plebe & Domenella, 2006; 2007). A comprehensive review of LISSOM applications is in
(Miikkulainen et al., 2005). The LISSOM framework has been used by Plebe (2006) in a model
of the ventral visual cortex, to simulate learning invariance in vision. Invariance is a kind
of perceptual categorization, with the final goal of recognizing shapes as such, despite large
changes in their appearance on the sensory surface. In this simulation it is simply learned, by
detecting coincidences of activation patterns in lower visual maps, when belonging to same
shapes. The model has been extended to the recognition of real objects (Plebe & Domenella,
2007), categorized by their visual features. In a more complex model, that includes visual and
auditory pathways, Plebe et al. (2007b) have simulated the early acquisition of object names.
The model was exposed to the coincidence of objects in its field of view, and the utterance of
the category the object belonged to. A similar model was able to reproduce to some extent,
some of the phenomena characteristic of early word learning, such as fast mapping and shape
bias (Plebe et al., 2007a).
One difficulty in using LISSOM instead of SOM for studying categorization is in losing
the interpretation of the role of each neuron in the map, that in the SOM can be achieved
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Self-Organization of Object Categories in a Cortical Artificial Model 7

immediately by labeling (see §4.3.2). The point is that LISSOM resembles a biological cortical
map more closely than SOM, sharing with it the problem of the interpretation of neural firing,
especially in higher-level maps. Research in this direction has recently drawn on the idea that
the power of representing categories in cortical circuits lies in the combinations of activities
of many columnar units. This concept is usually named “distributed coding” Hinton et al.
(1986), but also “population coding”, “vector coding” and “state space representation”, in
the formulation by Churchland (1989). In the current interpretation of population coding, a
higher level map may code for a kind of object or fact, and is the concurrent level of firing of
a population of cells in that map that represents a specific category of the kind. There is large
evidence of population coding in higher cortical areas (Rolls & Tovee, 1995; Abbott et al., 1996;
Pasupathy & Connor, 2002). In §4.3.1 we will use the population coding concept in analyzing
the organization of the higher-level LISSOM maps in the model.

2.4 Theoretical issues in explaining categorization by self-organizing networks

We will now discuss several critical issues in the enterprise of shedding light on
human categorization by modeling the neural mechanism of coincidence detection and
self-organization.
There is a classical argument against basing the organization of categories on feature
associations, in that categories instead could form by distilling a few features from many,
the ones typical of the category. Quoting from Gibson & Levin (1975,p.23), “[association]
does not work for perceptual learning, because what is learned is not addition of something
but rather extraction of something”. It is arguable that associating, in the standard theory,
would be equivalent to adding something, certainly detecting coincidence and organizing
their representation accordingly has nothing to do with the notion of addition, while its net
effect is typically of coding the discrimination of some feature.
A deeper challenge is against the whole assumption, here made, that early categorization is
perceptually driven.
For Mandler (2004), an important feature of human cognition is conceptual analysis, that is
said to be parallel to, and different from, ordinary perceptual learning, which is associative in
essence. We do not deny that in building categories humans most probably rely on a variety
of skills that cannot be ascribed to our putative mechanism, even in a pre-linguistic phase.
We believe, however, that the coincidence mechanism plays a key role, for other reasons.
The first reason is that coincidence not necessarily implies only perceptual elements. Regular
conjunctions can be detected between signals elicited by stimuli and other signals recalled
by activations of representations already coded, this is a necessary step for generalizing
categories over a number of instances experienced in time. The second reason comes from
developmental science evidence that casts doubt on the separation between perceptual and
conceptual categorization (Eimas & Quinn, 1994; Rakison, 2003). As a result, Mandler’s
hypothesis that conceptual learning is different in nature from purely associative learning, not
necessarily requires a different notion than that of coincidence detection and self-organized
coding. One possibility is that conceptual analysis of experience is based on the same sort
of coincidence detection and coding, but involving phenomena that emerge in widespread
cortical circuits, with self-organization at a more global scale.
A more general criticism against the mechanism here proposed could be the objection that
self-organization of perceptual regularities alone cannot act as the foundation for mental
categories, because of an insufficiency of constraints. Keil et al. (1998) give the suggestive
example that “virtually every washing machine ever encountered is white, yet we know that
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LOC

V2

V1

VO

(a) Visual pathway

MGN

A1

STS

(b) Auditory
pathway

Fig. 2. Scheme of the two pathways that make up the model.
All acronyms are listed in Tab. 1

whiteness is irrelevant in determining that an object is a washing machine.”. This argument
reveals to be poor when directed against the coincidence mechanism. In fact, it is entirely
based on the assumption that perceptual features are equally neutral for the perceiver. Not
only is this not the case, but coincidence detection and self-organizational coding is first
and foremost the tool that allows the brain to rank the many features occurring with a
category of objects or an event, according to how features are predictive of the category.
Predictiveness is evaluated each time a next instance of the category is experienced, with
consequent adjustment of the ranking of features. There is no doubt that early categories
might include salient features that are not distinctive traits for the kind, in its normative
semantics. We suspect that for many young children being white is indeed important for
an object in order to be a washing machine, as important as being forbidden by their mothers.
But this seems only to show that what is used to make a prediction depends on our global
knowledge of the world, and that sometimes this knowledge could not be the best on the
market.

3. Modeling categorization in the cortex

This section will introduce the model, the rationale for its design, describe each component,
and discuss in detail the higher component of the model, where a SOM or a LISSOM module
will be used and compared.
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Self-Organization of Object Categories in a Cortical Artificial Model 9

3.1 Overall structure of the model

The overall model is a combination of artificial cortical sheets that reproduce essentially the
part of the brain involved in the categorization of objects with perceptual salience: the visual
and the auditory pathways. Each of the two processing streams is fed by realistic stimuli,
and therefore also comprises, in an approximate simulation, the components that transduce
the external signals, and the subcortical components. An outline of the modules that make
up the visual and auditory pathways is shown in Fig. 2, the names of the component are in
Tab. 1, together with their parameters as in equation (5). The two higher cortical maps in
the visual and the auditory paths, LOC and STS, will carry the best representation coded by
the models on object visual features and word sound features. The way of combining the two
representations is varied in the model, with the alternative of including a higher LISSOM-type
artificial cortical map, or a standard SOMmodule. While in the visual and auditory pathways
the criteria of adhering realistically to the structure of the human cortex is possible, in
higher categorization correlation between functions and cortical areas becomes more fuzzy
and uncertain. Categorization processes are by definition abstract representations, where
what is coded at a neural level has no obvious correspondence with features in the sensorial
inputs. Furthermore, in the mapping between words and objects, the native language acts
in a complex way, with its own established category structure, that initially mismatches with
the emerging mental categories of the developing mind, making it hard to trace back to the
level of neural processes. It is therefore, justifiable to adopt at this level a very abstract neural
architecture such as the SOM.

3.2 The visual pathway

The visual path is built upon and extends a previous model of visual object recognition
(Plebe & Domenella, 2007). The visual system encompasses the ventral stream only, in the
broad partition established by Ungerleider & Mishkin (1982), and commonly accepted in
current vision science. They proposed the well known dichotomy of “what” and “where”
pathways, in that the ventral pathway is specialized for object recognition whereas the dorsal
pathway is specialized for spatial perception. While the “where” has been quite controversial
and has been subject to other proposed interpretations (Goodale & Milner, 1992), there has
always been a large consensus on the purpose of the “what” pathway. For the purposes of this
model, therefore, limiting ourselves to the ventral path only, is a valid approximation. One
of the simplifications used in the model is the processing of sensorial input coming from one
side only. Stereopsis contributes to the perception of 3-dimensional shapes, and is therefore,

acronym full name size rA rE rH γA γE γH γN

LGN Lateral Geniculated Nucleus 112 2.6 - - - - - -
MGN Medial Geniculated Nucleus 36 2.2 - - - - - -
V1 Primary Visual Cortex 96 8.5 1.5 7 1.5 1.0 1.0 0.0
A1 Auditory Primary Cortex 24 6.5 1.5 5.0 1.7 0.9 0.9 0.0
V2 Secondary Visual Cortex 30 7.5 8.5 3.5 50.0 3.2 2.5 0.7
VO Ventral Occipital 30 24.5 4 8 1.8 1.0 1.0 0.0
LOC Lateral Occipital Complex 16 6.5 1.5 3.5 0.5 1.1 1.6 0.0
STS Superior Temporal Sulcus 16 2.5 1.5 5.5 1.8 1.0 1.2 0.0
PFC Pre-Frontal Cortex 24 2.5 1.5 5.5 1.5 3.2 4.1 0.1
ACM Abstract Conceptual Map 18 - - - - - - -

Table 1. Legend of acronyms of maps used in the model, and their main parameters.
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10 Self Organising Maps, New Achievements

a piece that is missing in the model. It is, however, much less useful than 2-dimensional
contours when there is a single, unmoving object in the foveal view of a scene. This is the case
of the samples used in our experiments.
This pathway includes the thalamic module, that is not the object of this study and is therefore
hardwired, according to what is known about its functions. The governing equations for the
subcortical components are the following:

x(⊙) = f
((

�lrA + �mrA

)

·
(

�g
(σN)
rA −�g

(σW)
rA

))

(9)

x(⊚) = f
((

�lrA + �mrA

)

·
(

�g
(σW)
rA −�g

(σN)
rA

))

(10)

x(R
+G−⊙) = f

(

�lrA ·�g
(σN)
rA − �mrA�g

(σW)
rA

)

(11)

x(R
+G−

⊚) = f
(

�lrA ·�g
(σW)
rA − �mrA�g

(σN)
rA

)

(12)

x(G
+R−⊙) = f

(

�mrA ·�g
(σN)
rA −�lrA�g

(σW)
rA

)

(13)

x(G
+R−

⊚) = f
(

�mrA ·�g
(σW)
rA −�lrA�g

(σN)
rA

)

(14)

where x is the activation of a neuron, without indexes for clarity. There are two distinct
subcortical pathways, one achromatic, processed by equations (9), (10), and another sensitive
to colors, limited here to medium and long wapath velengths. The equations are: (11),
(12), (13), (14). The symbol ⊙ refers to on-center type receptive fields, and symbol ⊚ to
off-center receptive fields. The profile of all visual receptive fields is given by differences

of two Gaussians �g (σN) and �g (σW), with σN < σW. This is an approximation of the combined
contribution of gangliar cells and LGN (Dowling, 1987).
The lower cortical maps included in the model are V1, V2 and VO, the primary, secondary,
and ventral-occipital visual areas. Their equations are the following:

x(V1) = f

(

γ
(V1)
A

(

�a
(V1←⊙)
rA ·�x

(⊙)
rA +�a

(V1←⊚)
rA ·�x

(⊚)
rA

)

+

γ
(V1)
E �e

(V1)
rE ·�x

(V1)
rE − γ

(V1)
H

�h
(V1)
rH ·�x

(V1)
rH

)
(15)

x(V2) = f
(

γ
(V2)
A �a

(V2←V1)
rA ·�x

(V1)
rA + γ

(V2)
E �e

(V2)
rE ·�x

(V2)
rE − γ

(V2)
H

�h
(V2)
rH ·�x

(V2)
rH

)

(16)

x(VO) = f

(

γ
(VO)
A

(

�a
(VO←R+G−⊙)
rA ·�x

(R+G−⊙)
rA +�a

(VO←R+G−
⊚)

rA ·�x
(R+G−

⊚)
rA +

�a
(VO←G+R−⊙)
rA ·�x

(G+R−⊙)
rA +�a

(VO←G+R−
⊚)

rA ·�x
(G+R−

⊚)
rA

)

+

γ
(VO)
E �e

(VO)
rE ·�x

(VO)
rE − γ

(VO)
H

�h
(VO)
rH ·�x

(VO)
rH

)

(17)

In all equations the activation x has to be taken as the activation of a generic i-th neuron of
that level, and all receptive fields have to be intended as referring to that neuron, the index i
has been omitted for clarity. For the same reason, the indication of the radius r of the circular
receptive fields has not been superscripted with the indication of the layer, for example in

equation (16) all rA should be read r
(V2)
A , as the radii are different in each map.
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The use of still pictures justifies the lack of a V3 area, whose main role is the processing of
motion information (Gegenfurtner et al., 1997). In exploiting the modularity of the model,
enacted by the correspondence with cortical maps, a simplification has been introduced by
way of the separation of the processing of shape and color. Shape is elaborated throughV1 and
V2, by equations (15) and (16), and the processing of color is entrusted to VO, with equation
(17).
There is evidence, in fact, that suggests that in the visual system no segregation of functions
such as shape or color processing takes place, and that almost all visual cortical maps
cooperate in analyzing form, color, motion and stereo information (Van Essen & DeYoe, 1994;
Schiller, 1996). On the other hand, it is clear that visual areas are not equally involved in all
aspects of object recognition. It is possible to identify specialization in one main function in
certain maps, although the same maps might also marginally extend to other operations, and
conversely, other maps may overlap in the elective function of that map as well. This is the
case in what has been called the color center area by Zeki (1983a;b), who named it “V4”. The
precise localization of this area in humans, as well as its name, have been the object of a yet
unsettled controversy. Sereno et al. (1995) redefined the borders of a color area in humans in
the fusiform gyrus, and called it “V4v” (“v” for ventral), Hadjikhani et al. (1998) argued for
an anterior area , which they called “V8”. Here we are using the more general name of VO
(Ventral Occipital), given by Wandell et al. (2005); Brewer et al. (2005) to the cluster of maps
in the fusiform gyrus involved in color processing. V1 is the well-known primary visual
cortex. It has been the most studied part of the brain (Hubel &Wiesel, 1962; 1959). One of
its main functions is the organization of the map into domains of orientation tuned neurons
(Blasdel, 1992; Vanduffel et al., 2002), which are fundamental for early shape analysis. For
the reasons discussed above, our model discards the contributions of V1 to color processing
(Landisman & Ts’o, 2002) and ocularity (Miller et al., 1989). The main projection from V1 is to
its immediately anterior area, V2, and this connection is maintained in the model. V2 is almost
as large as V1, but much less understood. A generally shared idea is that V2 is responsible for
shape analysis at a level of complexity and scale larger than that of V1 (Kobatake & Tanaka,
1994). This is compatible with findings of V2 cells responding to end-lines and corners
(Heider et al., 2000), gratings spirals and other complex shapes (Hegdé & Van Essen, 2000),
Glass patterns Smith et al. (2007), and, with shared stronger evidence, angles (Ito & Komatsu,
2004; Anzai et al., 2007).
Shape and color processing paths converge in a higher visual map, with the following
equation:

x(LOC) = f

(

γ
(LOC)
A

(

�a
(LOC←V2)
rA ·�x

(V2)
rA +�a

(LOC←VO)
rA ·�x

(VO)
rA

)

+

γ
(LOC)
E �e

(LOC)
rE ·�x

(LOC)
rE − γ

(LOC)
H

�h
(LOC)
rH ·�x

(LOC)
rH

)
(18)

The LOC model map corresponds to the area in the human cortex thought to be crucial
for the task of recognition in vision. Malach et al. (1995) first identified this region, an area
located anterior to Brodmann’s area 19, near the lateral occipital sulcus, extending into the
posterior and mid fusiform gyrus and occipital-temporal sulcus, with an overall surface
size similar to V1. They called it “lateral occipital complex”, where the term “complex”
denotes the uncertainty regarding whether this region is a single visual map or a cluster of
several maps. Being an object of research that is still quite recent, a clear picture of LOC
characteristics and its role in vision is still lacking, however, the impetus given by its discovery
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12 Self Organising Maps, New Achievements

has lead to an outstanding body of knowledge. Perhaps the most important idea, one that
has obtained a certain amount of consensus, is that this area is involved in visual behavior
in which recognition is the main task (Grill-Spector et al., 1998; 1999; Vuilleumier et al., 2002;
Kourtzi et al., 2003; Weigelt et al., 2007).

3.3 Auditory pathway

A division in dorsal and ventral streams, similar to that in the visual channel, has been
found in the auditory system as well, with two streams originating in the caudal and
rostral parts of the auditory cortex, targeting spatial and non-spatial domains of the frontal
lobe (Romanski & Goldman-Rakic, 1999). Here again, curiously, the “where” interpretation
is debated (Belin & Zatorre, 2000), but not the “what” processing path. This is the only
contribution taken into account in the auditory system of this model.
As in the ventral pathway, a simplifications used in the model is the processing of sensorial
input coming from one side only. This is not too much of a limitation for the auditory system,
since biaural hearing supports the “where” processing but not the “what” detection. An
outline of the modules that make up this pathway is shown in Fig. 2(b). The auditory path
includes as thalamic component the medial geniculate nucleus, with the following equation:

x
(�)
τ,ω =

∣

∣

∣

∣

∣

tM

∑
t=t0

v(t)w(t− τ)e−jωt

∣

∣

∣

∣

∣

2

(19)

where the symbol � refers to the spectrotemporal representation of the auditory signal, the
horizontal dimension τ is time, and the vertical dimension ω is frequency. Function w(·) in 19
is a short term temporal window, that performs a spectrogram-like response, similar to that
given by the combination of cochlear and MGN processes (Brown, 2003).
The cortical modules in this pathway include the auditory primary cortex, and the superior
temporal sulcus, the equations are the following:

x(A1) = f
(

γ
(A1)
A �a

(A1←�)
rA ·�x

(�)
rA + γ

(A1)
E �e

(A1)
rE ·�x

(A1)
rE − γ

(A1)
H

�h
(A1)
rH ·�x

(A1)
rH

)

(20)

x(STS) = f

(

γ
(STS)
A �a

(STS←A1)
rA ·�x

(A1)
rA + γ

(STS)
E �e

(STS)
rE ·�x

(STS)
rE − γ

(STS)
H

�h
(STS)
rH ·�x

(STS)
rH

)

(21)

Very little is known about the computational organization of the auditory primary cortex,
compared to the early visual maps just discussed (Linden & Schreiner, 2006). Our model
discards biaural interaction, and preserves the main connectivity from single cochlear
signals in the Medial Geniculate nucleus to A1. A large body of evidence points to an
organization of A1 with a fundamental dependency on sound frequencies along one cortical
dimension, and a distribution of neural responses to temporal properties (Atzori et al., 2001;
Miller, Escab, Read & Schreiner, 2002; Winer et al., 2005), model A1 has frequency and time as
map dimensions.
Equation (21) states the projection from the primary auditory cortex to STS. This is the model’s
correlate of a region in the cortical ventral auditory stream, on which there is accumulating
evidence and a convergence of opinion on its role in representing and processing phonological
information (Belin et al., 2000; 2004; Liebenthal et al., 2005; Hickok & Poeppel, 2007).

3.4 Higher categorial maps

The higher part of the model is implemented in two versions, as shown in Fig. 3. In version
(a) the two higher cortical maps in the visual and the auditory paths, LOC and STS, are the
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Visual Auditory

PFC

(a) PFC version

Visual Auditory

ACM

(b) ACM version

Fig. 3. Scheme of the complete model, in two versions. In version (a) LOC and STS converge to PFC
(PreFrontal Cortex), of type LISSOM. Version (b) aggregates LOC and STS contents in a single vector,
presented to ACM (Abstract Conceptual Map), of type SOM.

afferents to a cortical map, still modeled with LISSOM, called PFC. In version (b) all neural
activations in LOC and STS are aggregated in a single vector, that is fed to an abstract SOM
type component, called ACM. Therefore there are the following two different equations for
the higher cortical maps in the model:

x(PFC) = f

(

γ
(PFC)
A

(

�a
(PFC←LOC)
rA ·�x

(LOC)
rA +�a

(PFC←STS)
rA ·�x

(STS)
rA

)

+

γ
(PFC)
E �e

(PFC)
rE ·�x

(PFC)
rE − γ

(PFC)
H

�h
(PFC)
rH ·�x

(PFC)
rH

)
(22)

w(ACM) = arg min
i∈{1,...,M}

{∥

∥

∥

∥

∥

[

�x
(LOC)
r∞

�x
(STS)
r∞

]

−�x
(ACM)
i

∥

∥

∥

∥

∥

}

(23)

There are actually several areas where visual and auditory signals converge, and more than
one area activated in categorization tasks, justifying the solution of an abstract architecture
like the SOM as the final map, with equation (22). Its relevance in principle for the brain
categorization mechanism has been discussed in §2.2.
The other assumption, made with equation (22), is to expect a specific area to be at least
partially involved in aspects of abstraction and integration of object information typical of
categorization, even if not the only areawhere this process takes place. This is a role which can
be ascribed to biological PFC, Freedman et al. (2003) have suggested that PFC could also be a
crucial component of high-level visual categorization. While ITC (Inferior Temporal Cortex) is
more involved in the analysis of viewed shapes, lateral PFC could form a more abstract kind
of categorization (Miller, Freedman & Wallis, 2002; Fuster, 2002; Huey et al., 2006). Needless
to say, biological PFC deals with larger sets of object information than those used in the model,
and these would include for example, the functional information pertaining to what objects
can be used for.
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14 Self Organising Maps, New Achievements

The choice of ACM allows a more abstract, and powerful way of categorizing information
processed by the visual and auditory pathways, at the price of losing the topological
information pertaining to the LOC and STS maps, and population coding organization, that
can be studied in the model PFC.

4. Results of the model

In this section we will describe how the model has been trained in this experiment, we
will report on the functions developed in all the lower cortical maps of the model, and
subsequently discuss the various aspects of categorization that emerged in the higher maps.
For this purpose additional methods of analysis are required, that will be described. In the
upper map, representative of the joint visual and linguistic aspects of object categorization,
PFC and ACM results will be compared.

4.1 Simulation of inner and environmental experiences

The model has been exposed to a variety of stimuli, in different stages of its development, that
to some extent parallel periods of human development from the pre-natal stage to that of early
language acquisition. Initially only V1, VO and A1 maps are allowed to modify their synaptic
weights, by equations (6), (7), and (8). The stimuli presented to V1 and VO are synthetic
random blobs that mimic waves of spontaneous retinal activity, that are known to play a
fundamental role in the ontogenesis of the visual system (Mastronarde, 1983; Katz & Shatz,
1996; Thompson, 1997; Gödecke & Bonhoeffer, 1996; Chapman et al., 1996). Blobs presented to
V1 are elongated along random directions, to stimulate orientation selectivity. Blobs to VO are
circular, with constant hues, and random size, position, and intensity. The A1 map is exposed
to short trains of waves sweeping linearly around a central frequency. Time durations, central
frequencies and sweeping intervals are changed randomly. The next period of development
involves V2 and STS maps as well. The visual stimuli comprises pairs of elongated blobs with
a coinciding end point, to enhance the experience of patterns that are slightly more complex

bird boat bottle

can car cheese

chewinggum chicken cigarettes

cup dog drink

dummy frog fruit

hanger jam jug
kitten medicine mug

pepper piece pig

plug pot pottery

ring sauce soap

spoon sweets tape
telephone toast tomato

tool truck

Fig. 4. The samples used as stimuli for the models, on the bottom all 100 objects of the
COIL-100 image library, in their frontal view, on the top the 38 names of categories in which
the objects has been classified.
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V1 VO V2

Fig. 5. Organization of neural responses in the lower maps of the model. The two maps on
the far left show orientation selectivity in V1. Of these, the map at the far left shows the
preferred orientation for each neuron, coded in gray level from black→horizontal to
white→vertical. The map on the right contains the degree of neuronal selectivity in a gray
scale from black→equally responsive to all orientations, to white→highly selective to a
single orientation. The two middle maps represent the hue-responding domains in VO. The
map on the far left encodes the preferred hue, from black→red to white→green, the
rightmost map is again the degree of selectivity. The pair of maps on the far right show angle
selectivity in V2. The map on the far left is overlaid with patterns inducing peak responses in
the neurons, the map on the far right is the degree of selectivity.

than lines, such as corners. The auditory stimuli are synthesized waves of the 7200 most
common English words (from http://www.bckelk.uklinux.net/menu.html), with length
of 3 to 10 characters. All words are converted from text to waves using Festival software
(Black & Taylor, 1997), with cepstral order 64 and a unified time window of 2.3 seconds. In
the development stage that corresponds to that just after eye opening, natural images are
used. In order to include the primary and most realistic difficulty in recognition, which is
the identification of an object under different views, the COIL-100 collection has been used
(Nayar & Murase, 1995), where for each of the 100 objects, 72 different views are available. In
most experiments, unless otherwise stated, only 8 views per object have been used during the
learning phase of the model, and all 72 views are used in the testing phases.
The last stage of the experiment simulates events in which an object is viewed and a word
corresponding to its basic category is heard contemporaneously. The 100 objects have been
grouped manually into 38 categories. Certain categories, such as cup or medicine have 5
exemplars in the object collection, while others, such as telephone, have only one exemplar.
Each category word is converted from text to waves using the en1 “Roger” male voice, and
the us1 female American speaker in the Festival software. Both male and female utterances
are duplicated at standard and slower speeds, using the 1.3 value of the Duration_Stretch

parameter in Festival. The 100 objects and the names of the categories can be seen in Fig. 4.

4.2 Emergence of organization in the lower maps

At the end of development, different organizations are found in the lowermaps that enable the
performance of processes that are essential to recognition, and that are similar to those found
in corresponding brain areas. The model’s V1 map organized orientation selectivity, with
responsiveness of neurons to oriented segments arranged over repeated patterns of gradually
changing orientations, broken by few discontinuities, as shown in Fig. 5.
This ordering resembles the one known to be found in biological primary cortex (Blasdel, 1992;
Vanduffel et al., 2002). In the VO map of the model, most neurons respond to specific hues,
regardless of intensity. This is one of the basic features of color processing. Color constancy
is crucial in object recognition and is known to develop somewhere between two and four
months of age (Dannemiller, 1989). The organization in the model’s VO is shown in Fig. 5.
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16 Self Organising Maps, New Achievements

The kind of mapping found in A1 is typically tonotopic, and it encodes the dimensions of
frequency and time sequences in a sound pattern. This is known to be the main ordering of
neurons in biological A1 (Verkindt et al., 1995). The main organization found in the V2 map
is responsiveness to angles, especially in the 60 and 150 degrees range, this is shown in Fig.
5. This kind of selectivity is one of the major phenomena recently discovered in biological V2
(Ito & Komatsu, 2004; Anzai et al., 2007). We refer to other published works for further details
on the functions that emerged in V1 and VO (Plebe & Domenella, 2007) and V2 (Plebe, 2007).

4.3 Categorization and coding analysis

In the scope of this experiment the most interesting results are found in the three higher maps.
It is here where we expect types of categorization to take place that concern both visual and
word forms, and mostly conceptual categorization at the boundary between the two. In order
to understand how a categorial representation about world objects can be carried by a sheet of
artificial neurons, it is necessary to apply mathematical tools which will be introduced below.

4.3.1 Population coding

A common method of analysis has been carried out for the upper maps of LISSOM type
to reveal possible distributions of neural activation as population coding of categories, as
discussed in §2.3. Let us introduce the following function:

xi(s) : S ∈ S → R; s ∈ S ∈ S , (24)

that gives the activation x of a generic neuron i in one of the higher maps, in response to the
presentation of the stimulus s to the system. This stimulus is an instance of a class S, belonging
to the set of all classes of stimuli S available in the experiment. For a class S ∈ S we can define
the two sets:

XS,i =
{

xi(sj) | sj ∈ S
}

; XS,i =
{

xi(sj) | sj ∈ S′ 	= S ∈ S
}

. (25)

We can then associate to the class S a set of neurons in the map, by ranking it with the
following function:

r(S, i) =
µXS,i

− µXS,i
√

σXS,i

|XS,i|
−

σXS,i

|XS,i|

, (26)

where µ is the average and σ the standard deviation of the values in the two sets, and | · | is
the cardinality of a set. Now the following relation can be established as the population code
of a class S:

p(S) : S → {〈i1, i2, · · · , iM〉 | r(S, i1) > r(S, i2) > · · · > r(S, iM)} , (27)

where M is a given constant, typically one order of magnitude smaller than the number of
neurons in the map, and α is a constant that is close, but smaller, than one. The population
code p(S) computed with (27) can be used to classify a stimulus s in an expected category:

c(s) = argmax
S∈S

⎧

⎨

⎩

∑
j=1···M

αjxp(S) j(s)

⎫

⎬

⎭

, (28)

where p(S)j denotes the j-th element in the ordered set p(S). It is possible to evaluate how the
population code of a map is effective in discriminating a category S by measuring the fraction
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of hits in classifying stimuli belonging to that category:

a(S) =
|{s | c(s) ∈ S}|

|S|
, (29)

where |·| is the cardinality of a set.

4.3.2 SOM coding

Wewill provide here some of the mathematical details used in our interpretation of the results
in the ACMmap, that we consider most relevant to lexical categorization. The ACM is a SOM
map, and at the end of its development can be analyzed by labeling its neurons with elements
from the set of objects and names.
Since the only SOM map is ACM, and its purpose is to organize categories, the labeling
function could be directly specified:

l(ACM)(i) = argmax
C∈C

⎧

⎨

⎩

∣

∣

∣

∣

∣

∣

⎧

⎨

⎩

c = 〈o,u〉 ∈ C =

⎛

⎝

⋃

O∈OC

O

⎞

×UC | i = w(ACM) (c)

⎫

⎬

⎭

∣

∣

∣

∣

∣

∣

⎫

⎬

⎭

, (30)

where w
(ACM)
i (c) is computed by (23), when the utterance u is presented to the auditory path,

and the object o to the visual path. The 38 object categories introduce a partition in the set
of object’s views O, such that all sets of views in the partition, O ∈ OC are of objects of that
category C, while the set UC ⊂ U collects all utterances naming the category C.
From the labeling functions the possibility of judging the correctness of the identification
or the categorization of an object presented to the model immediately follows, by simply
checking the label of the winner neuron in the ACM map. It is also possible to estimate the
accuracy of the categorization simply by weighing the number of cases where the category or
the object has been classified as the prevailing one in each neuron of the SOM, as done by the
following equation:

a(ACM)(C) =

∣

∣

∣

{

c | l(ACM) (c) = w(ACM) (c)
}∣

∣

∣

|C|
. (31)

4.4 Categorization in the top visual and auditory maps

It is possible to begin evaluating the type of representation established in LOC, by using as
stimuli view o of an object O, therefore specializing the equation (24) as:

x
(LOC)
i (o) :O ∈ O → R; o ∈O ∈ O, (32)

where x
(LOC)
i (o) is computed by (18), when the image o is presented to the visual path. In

this case a category S of (24) is just an individual object, whose instances can be ascribed
to the same entity, or mistaken for a different entity, if a specific point of view does not
resemble the typical view of that object. Samples of population coding of individual objects
are shown in Fig. 6. As can be seen from the comparison of the population coding map with
LOC responses to different views of the same object, most coding neurons exhibit invariant
responses. Invariance, the ability to recognize known objects despite large changes in their
appearance on the sensory surface, is the most important property to fulfill the requirement
for an object-recognition cortical area. It has been identified in human LOC by several studies
(Grill-Spector et al., 1999; Vuilleumier et al., 2002; Kourtzi et al., 2003; Weigelt et al., 2007).
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Fig. 6. Examples of population coding of objects in the LOC map. In each row the map on
the far left displays the coding neurons. The following images in the row, are samples of
views of the same object, and the corresponding response patterns in LOC.

Although the term invariance is commonly used in vision, a better term would be “degree
of tolerance” with respect to classes of changes in appearance of the same object, since in
no cortical map are responses absolutely invariant to transformations of the same object
(Cox et al., 2005). There is also psychophysical evidence of inabilities to recognize objects
viewed from less common perspectives, even in adult humans (Farah, 1990). In the model’s
LOC the supposed coding by population of individual objects is efficient in discriminating
most of the views for many objects, although not in an absolute way. By means of equation
(29), adapted to stimuli conditions described in (32), the discrimination power of LOC has
been quantitatively assessed, and is shown in Tab. 2. In order to test the ability of the
representation to cope with invariance, two versions of the model have been trained, exposing
them to just a few views for each object only. During the test phase, all 72 views per object
have been used. As a comparative figure, discrimination by chance of this task would be of
0.01.
In the STS map it is possible to evaluate the population coding of words, as heard in four
different voices, therefore using stimuli that specialize equation (24) as:

x
(STS)
i (u) :U ∈ U → R; u ∈U ∈ U , (33)

where x
(STS)
i (u) is computed by (18), when the utterance u is presented to the auditory path.

# of views discriminative power
average over all objects standard deviation

4 0.611 0.334
8 0.638 0.315

Table 2. The model LOC’s discriminative power of individual objects by population coding.
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cheese

telephone

ring

sauce

Fig. 7. Examples of population coding of word sounds in the STS map. In each row the
leftmost map displays the coding neurons. The following images in the row are samples of
sound of the same name, and corresponding response patterns in STS.

There are 38 classes U of sounds in U , corresponding to the names of 38 object categories.
Samples of population coding of names are shown in Fig. 7. In Tab. 3 the accuracy of STS

voices discriminative power
average over all names standard deviation

female 0.882 0.242
male 0.895 0.234
both 0.658 0.300

Table 3. The model STS’s discriminative power of words heard by different voices.

in discriminating between the different names is shown. The development of STS has been
experimented using three different sets of stimuli: female voices only, male voices only, or
using the full set of voices. Listening to voices of a single gender facilitates the identification
of names, as can be observed in children. As a comparative figure, discrimination by chance
in this task would be 0.026.

4.5 Lexical categorization in PFC or ACM

Lexical categorization in the model takes place where the visual and the linguistic information
meet, implemented with the two alternatives of PFC or ACM maps. In the case of PFC
population coding is the computed specializing equation (24) as:

x
(PFC)
i (c) : C ∈ C → R; c = 〈o,u〉 ∈ C =

⎛

⎝

⋃

O∈OC

O

⎞

×UC, (34)

where x
(PFC)
i (c) is computed by (22), when the utterance u is presented to the auditory path,

and the object o to the visual path. The 38 object categories introduce a partition in the set
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of object’s views O, such that all sets of views in the partition, O ∈ OC are of objects of that
category C, while the set UC ∈ U collects all utterances naming the category C.
Samples of population coding and actual activations are shown in Fig. 9. Shown are how
both the population coding, and the map activations, do not preserve any explicit trace of
visual features, and the activations of neurons seem to code the categories in a rather abstract
way, as well as the peculiarities of the single samples. For each couple of waves and images,
the activations in the PFC map exhibit an important overlap with the population coding of
the corresponding category, with contingent additional or lacking activations, denoting the
specific view and the specific voice.
The development of both PFC and ACM followed that of all the lower hierarchies in the
model, and has been replicated, as in the case of STS, for single gender voices, and for the
full set. The objects have been presented using 8 views, of the 72 available, for each. Tab. 4
displays the accuracy achieved at the end of the development, as for STS, the discrimination is
quite more accurate whenwords are spoken by a person of a single gender. Nevertheless, both
models achieve a remarkable ability of categorizing objects taking into account their names,
even when thrown into a two gender speaking environments. The ACM version exhibits
a better accuracy in every condition with respect to PFC, with absolute accuracy on most
categories, confirming how the SOM architecture is suitable for simulating categorization.

5. Conclusion

The model here described demonstrates that the perceptual experiences of sound and lights
are enough for a first emergence of categories of visual objects and their names, where sounds
are uttered by people naming objects, and the lights are the views of those objects. All
processes implemented in themodel rely on fundamental mechanisms that enable detection of
recurrent coincidences in stimuli features, and the self-organization of crucial representations
of entities in the external world and of lexical categories.
A strength in the model is the attempt to adhere to the chain of computational processes taking
place in the brain, especially in the cerebral cortex, and to rely on fundamental plasticity
mechanisms that allow functions to emerge from sensorial experience. The model benefits

bird boat bottle can car cheese chewinggum chicken cigarettes

cup dog drink dummy frog fruit hanger jam jug

medicine mug pepper piece pig plug pot pottery ring

sauce soap spoon sweets tape telephone toast tomato tool

Fig. 8. Population coding in the PFC map for most categories.
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category PFC ACM

all male female all male female

bird 0.986 0.903 1.000 1.000 1.000 1.000
boat 0.304 0.198 0.844 0.972 0.965 1.000
bottle 0.450 1.000 0.564 1.000 1.000 1.000
can 0.764 1.000 0.833 0.750 1.000 1.000
car 0.316 0.423 1.000 0.996 1.000 1.000
cheese 1.000 1.000 0.963 1.000 1.000 1.000
chewinggum 0.500 1.000 0.676 1.000 1.000 1.000
chicken 0.750 1.000 0.972 1.000 1.000 1.000
cigarettes 1.000 1.000 1.000 1.000 1.000 1.000
cup 0.293 0.942 1.000 0.994 1.000 1.000
dog 0.986 1.000 1.000 1.000 1.000 1.000
drink 0.484 1.000 0.462 1.000 1.000 1.000
dummy 0.819 1.000 0.986 1.000 1.000 1.000
frog 0.743 0.958 1.000 1.000 1.000 1.000
fruit 0.650 0.560 1.000 1.000 1.000 1.000
hanger 0.576 1.000 0.764 0.875 1.000 1.000
jam 0.616 0.514 0.764 0.938 1.000 1.000
jug 0.389 1.000 0.486 0.500 1.000 0.500
kitten 0.424 0.722 1.000 1.000 1.000 1.000
medicine 0.969 1.000 1.000 1.000 1.000 1.000
mug 0.823 1.000 0.941 1.000 1.000 1.000
pepper 0.823 1.000 1.000 1.000 1.000 1.000
piece 0.935 0.994 0.997 1.000 1.000 1.000
pig 0.979 1.000 1.000 1.000 1.000 1.000
plug 0.521 0.889 0.611 1.000 1.000 1.000
pot 0.694 0.833 1.000 1.000 1.000 1.000
pottery 0.790 0.733 1.000 1.000 1.000 1.000
ring 0.868 1.000 1.000 1.000 1.000 1.000
sauce 0.984 1.000 1.000 1.000 1.000 1.000
soap 0.979 0.950 0.976 1.000 1.000 1.000
spoon 0.750 1.000 0.944 0.750 1.000 1.000
sweets 0.580 0.771 1.000 0.847 1.000 1.000
tape 0.750 0.361 0.806 1.000 1.000 1.000
telephone 0.750 1.000 1.000 0.500 1.000 1.000
toast 1.000 1.000 0.951 1.000 1.000 1.000
tomato 0.743 1.000 1.000 1.000 1.000 1.000
tool 1.000 1.000 0.986 1.000 1.000 1.000
truck 0.483 0.858 1.000 0.977 1.000 1.000

average 0.690 0.853 0.902 0.950 0.999 0.987

Table 4. Categorization accuracy of the two versions of the top map in the model, trained
with different sets of voices.
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Fig. 9. Examples of population coding in the PFC map. In each row the leftmost map
displays the coding neurons. Following images in the row are samples of a sound of the same
name, a view of an object of the relevant class, and the corresponding response patterns in
PFC. The first sample always has a male voice sound, and the second sample a female voice.

from this effort to different degrees, due to the different levels of knowledge we have of
the involved cortical processes. Much more is known about visual recognition, and this
explains why this path is much more detailed in the model. In vision, there is also a better
knowledge on how the process is organized in the lower part of the path, but we have
less information regarding the higher one. In the higher level of the model, where lexical
categorization takes place, two different versions have been implemented and compared, one
with a classical SOM map, and another that keeps the same LISSOM architecture closer to
the cortical structure, even if in this case there is no strict correspondence between model
map and a single brain area. We conceive the model here described as an important step in
the effort of developing a brain-informed simulation of phenomena in the early development
of fundamental human cognitive abilities, that rely on the same coincidence detection and
self-organization mechanism. Its novelty is not just in demonstrating the emergence of
concepts from the association of visual information and sounds, that has been already
simulated in previous work, but rather in its showing how this could happen in neural
structures that are similar to the cortical architecture of the human brain.
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cigar cigar tape plug pot bottl bottl bottl bottl bottl bottl drink sauce sweet sauce

cigar cup plug telep bottl bottl drink drink sweet sweet

potte cup cup car pot potte potte pot cup bird dummy sauce

potte mug mug potte pot cup cup bird bird drink drink sauce

truck tape cup cup car mug mug mug cup cup tool can truck dog dog dummy

pig cup mug mug pig can piece piece mug mug truck truck dummy

plug kitte mug mug peppe piece piece piece car mug car jam

truck hange hange hange hange hange peppe peppe piece piece potte car jam jam

tool hange kitte chees piece piece potte potte peppe boat

tool truck jam chees chees jam fruit fruit potte peppe tomat

tool hange jug chees jam sweet fruit fruit potte cup ring boat tomat

tool tape tool chees chees chick jam sweet fruit fruit boat boat truck ring boat fruit

soap soap tool chick chees jam toast toast boat boat boat truck truck

sauce soap chewi chick toast toast toast cup car car soap

sauce spoon spoon soap chewi jam toast car car car car car frog

soap soap truck chewi chewi kitte kitte medic medic medic car car car boat frog

chewi chewi kitte medic medic car car truck boat truck

soap soap tape chewi fruit bottl medic medic medic car car boat boat boat ring

Fig. 10. Organization of categories in the ACM SOM map, in the case of the model trained
with all voices. Category nouns are abbreviated for better readability, see Fig. 4 for full
nouns.
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of this book. The final section of this book, addresses the design and application of novel variants of SOM

algorithms.
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