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1. Introduction

The electromyographic signal is the electrical manifestation of the neuromuscular activation
associated with a contracting muscle. The surface electromyographic (SEMG) signal
represents the current generated by ionic flow across the membrane of the muscle fibers
that propagates through the intervening tissues to reach the detection surface of an electrode
located over skin (De Luca (2006)). The SEMG signal provides a non-invasive tool for
investigating the properties of skeletal muscles (Sommerich et al. (2000)). The main challenge
in implementing controlled motion for prosthesis is correctly predicting the user’s motion
intention. SEMG signals have been used in an effective way in prosthesis control systems
(Merletti & Parker (2004); Parker et al. (2006)). The SEMG signal is very convenient for
prosthesis control, because it is intrinsically related to the user’s intention (Hudgins et al.
(1993)). A myoelectric control algorithm should be capable of learning the muscular activation
patterns that are used in natural form for typical movements. It also needs robustness against
variations in conditions during the operation, and the response time cannot create delays that
are noticeable to the user (Fukuda et al. (2003)). Pattern recognition of the SEMG signal allows
discriminating amongst the desired classes of limb motion and plays a key role in advanced
control of powered prostheses for amputees and for individuals with congenital deficiency in
the upper or lower limbs. The success of a myoelectric control scheme depends greatly on the
classification accuracy.
Electronic knees can be designed for providing different levels of damping during swing,
and for adjusting to different walking speeds, assuming they have the appropriate sensors
and control algorithms for estimating the knee joint angle and the walking speed. With the
appropriate control algorithm, it is possible to program the prosthesis to allow the knee to flex
and extend while bearing a subject’s weight (stance flexion). This feature of normal walking is
not possible with conventional prostheses. Electronic knees use some form of computational
intelligence to control the resistive torque about the knee. Several research groups have been
involved in designing prototype knee controllers. Grimes et al. (1977) developed an echo
control scheme for gait control, in which a modified knee trajectory from the sound leg is
played back on the contralateral side. Popovic et al. (1995) presented a battery-powered
active knee joint actuated by direct-current motors, together with a finite state knee controller
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that utilizes a robust position tracking control algorithm for gait control. A small number
of companies have also developed electronic knees for clinical use. For example, the Otto
Bock C-leg (Kastner et al. (1999)) provides adjustable resistance for flexion and extension in
swing through onboard intelligence and a special software package. Figure 1 presents the
ongoing development of an active leg prosthesis prototype. The prosthesis has three degrees
of freedom: one for the knee (sagittal plane), and two movements for the foot (sagittal and
frontal plane). The three degrees of freedom are controlled by direct-current reduction motors.
Onboard sensors allow estimating the foot orientation with respect to the ground (Ishihara et
al. (2009)). This allows the foot to be oriented according to the terrain.
A pattern-recognition-based myoelectric control algorithm is typically composed of various
main modules; a data segmentation stage handles the data before feature extraction, to
improve precision and response time. A feature extraction stage pre-processes the data for
reducing the amount of information to be analyzed. New variables (features) may be obtained
by linear or non-linear transformation of the original data. The central component is the neural
network classifier, which must be capable of learning relations between the input features and
the desired control outputs. Significant advancements in pattern recognition methodology are
in progress. A common approach is to extract parameters from the data, such as time-domain
features (e.g., mean absolute value, waveform length, number of zero crossings) (Kelly et
al. (1990); Hudgins et al. (1993)), spectral parameters (e.g., auto-regressive model) (Huang
et al. (2005);Hargrove et al. (2008)), time-frequency coefficients (e.g., short-time Fourier
transform) (Englehart et al. (2001)), and/or time-scale coefficients (e.g., discrete wavelet
transform, wavelet packet decomposition) (Englehart et al. (2001); Chu et al. (2005); Wang et
al. (2006)). Further data reduction may be achieved using a feature projection stage between
pre-processing and classification (Englehart et al. (2001); Chu et al. (2005); Wang et al. (2006)).
This approach eliminates redundant information, which speeds up the training process. It
may also help mapping the data into small and well-separated clusters, by absorbing signal
variations and noise present in the data’s original vector-space.
The data processing and classification techniques discussed above have been successfully
used for myoelectric control by several groups. Kelly et al. (1990) proposed an algorithm
capable of discriminating between four motions of elbow and wrist joints from SEMG patterns
measured from one pair of electrodes, using a Hopfield neural network for time-domain
feature extraction, followed by a two-layer perceptron neural classifier. Englehart et al.
(2001) designed an algorithm for dexterous and natural myoelectric control of powered upper
limbs using a linear discriminant analysis (LDA) classifier, after principal component analysis
(PCA) dimensionality reduction on a wavelet-based feature set. Chu et al. (2005) presented
a pattern recognition algorithm for the control of a multifunction myoelectric hand, using
the wavelet packet transform for feature extraction, a multilayer neural network classifier,
and a linear-nonlinear feature projection composed of PCA and self-organizing feature maps,
respectively. Huang et al. (2005) designed a classification scheme based on Gaussian mixture
models for myoelectric control of upper limb prostheses, using feature extraction based on
time-domain statistics, auto-regressive (AR) coefficients, and the root mean square of the
signal. Wang et al. (2006) proposed an algorithm capable of discriminating between four types
of hand and forearm movements, using wavelet packet feature extraction and PCA feature
projection. Zhao et al. (2006) designed a control algorithm capable of recognizing six different
hand motion patterns, using a multi-layer perceptron neural network classifier and feature
extraction based on sample entropy, time-domain filtering, and wavelet transform coefficients.
Hargrove et al. (2008) used a combination of time-domain features and AR coefficients with
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a LDA classifier to determine the effect of electrode displacements on pattern classification
accuracy, and to design a classifier training strategy to address this issue.
The application of multisensor data fusion has found widespread use in diverse areas
(industry, commerce, local robot guidance for global military defense, etc.) (Luo et al. (2002)).
Data fusion is the continuous process of implementing a model of the domain of interest,
utilizing data of different natures (Gao & Harris (2002)). The purpose of data fusion is
to produce an improved model or estimate of a system from a set of independent data
sources. The use of range sensory data allows automatic extraction of information about
the sensed environment under different operating conditions, and increases the performance,
reliability, data rates and autonomy of the system (Luo (1996);Hall & Llinas (1997);Dasarathy
(1997)). In many real-time applications, the desired model is the state vector of the dynamic
process (Ferreira et al. (2005);Delis et al. (2009a)). The combination of the information from
the sensors and subsequent estimation of the state should be done in a coherent manner,
such that the uncertainty is reduced. The Kalman filter is a state estimator algorithm
widely used for optimally estimating the unknown state of a linear dynamic system from
Gaussian distributed noisy observations (Manyika & Durrant-Whyte (1994)). The algorithm
uses a predefined model of the system to predict the state at the next time step (Diniz
(1997)). The fusion of SEMG signals with other data is not common in the literature.

Fig. 1. Prototype of a leg prosthesis for transfemoral amputees.
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Silva et al. (2003) applied data fusion of mechanomyography signals for the generation of
binary control signals for an electrically powered prosthesis. The goal was to implement a
practical mechanomyography-based detection system of muscle contractions for prosthesis
control. Silicon-embedded microphone-accelerometer sensor pairs were used to record the
mechanomyographic signals. A multisensor data fusion strategy for generation of binary
control signals, based on the root-mean-square (RMS) values of the segmented signals, was
trained and used as a detector (Silva et al. (2003)). Accuracies of 95% and 86% were achieved
in the detection of contraction signals from the wrist extensors and flexors, respectively.
Lopez et al. (2009) proposed two strategies for data fusion based on variance weighted
average and decentralized Kalman filter, by means of an arrangement of redundant potentials,
that is, by combining the SEMG signals. The muscle contraction amplitude was estimated
and transformed to angular reference for the control of the robot joint. The algorithms
demonstrated an efficient performance, and the joint never moved beyond its safety range
(Lopez et al. (2009)).
Despite great success in decoding discrete movements such as individual finger flexion
or extension, the matter of continuously predicting joint angles using SEMG signals is
comparatively underdeveloped (Smith et al. (2008)). Increasing the number of SEMG channels
that are acquired and processed may provide the user with higher accuracy in controlling
the intensity of the contraction (Englehart et al. (2001)). However, as the number of inputs
increases, the complexity of the network structure grows exponentially, which significantly
increases the convergence time and the system response time. This chapter presents a feature
extraction and pattern classification algorithm for estimating the intended knee joint angle
from a two-channel SEMG signal, acquired using surface electrodes placed on the upper
leg. This algorithm was designed for myoelectric control of an active transfemoral prosthesis
(Cascão et al. (2005);Rodrigues et al. (2006)), as an improvement to the algorithm proposed
by Ferreira et al. (2005). The proposed method improves the feature extraction stage by
using a combination of spectral and temporal domain approaches – AR coefficients (Huang
et al. (2005);Hargrove et al. (2008)) and signal amplitude histogram (Zardoshti-Kermani et
al. (1995);Liu et al. (2007)), respectively – and by incorporating a feature projection stage,
using a self-organizing map (SOM) (Kohonen (2001)). The incorporated Kohonen network
reduces the dimensionality of the data at the input of the Levenberg–Marquardt (LM) neural
classifier (Hagan & Menhaj (1994)), by mapping all the AR and histogram coefficients into a
two-dimensional vector space (Chu et al. (2005)).
The accuracy of knee joint angle estimation algorithms based exclusively on
pattern-recognition of SEMG signals may be greatly reduced by problems such as the
required high level of amplification (due to the low level of the SEMG signals), motion of
the sensor cables and/or noise caused by the power supplies (Merletti & Parker (2004)).
These issues make myoelectric control rather sensitive. This motivates the use of other type
of sensors on the prosthesis, which may potentially allow parameter adaptation during the
use of the prosthesis by the patient. For example, micro-electromechanical gyroscopes and
joint motion sensors may be used for measuring the angular velocity of the knee joint. The
integration of these data can be used to obtain an estimate of the knee joint angle, which can
be used to make small corrections of the neural network’s coefficients in real-time. Fusion of
the SEMG signals with proprioceptive sensor data could also improve the precision of the
prosthesis control during movement and provide a more reliable myoelectric control (Oskoei
& Hu (2007)).
This chapter presents various algorithms that use SEMG signals and proprioceptive sensors
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for continuous estimation of the knee angle for control of active transfemoral prostheses. The
next section presents the experimental protocol for SEMG signals and proprioceptive sensor
data acquisition. Section 3 presents a knee angle estimation algorithm based exclusively on
SEMG signal processing and analysis. Section 4 presents three algorithm variants based on
data fusion of SEMG data and proprioceptive sensor (gyroscope) data. Section 5 proposes
a performance comparison between the proposed algorithms. Results, discussions and
conclusions are presented in sections 6, 7 and 8, respectively.

2. Experimental protocol and data acquisition

Myoelectric signal acquisition was performed using the microcontrolled bioinstrumentation
system described by Delis et al. (2009b) and shown in Figure 2a. The system acquires two
channels of amplified SEMG signals, the angular displacements signal and the data from the
gyroscope sensors, using a 13-bit analog-to-digital converter, which is electrically isolated
from the microcontroller and from the power supply using an optocoupler and a DC-DC
converter. The sampling rate was 1043.45 Hz per channel. Analog filters are used to limit
the SEMG signals to the 20–500 Hz frequency range (SENIAM (2008)). The microcontrolled
system implements a digital real-time adaptive notch filter, which maintains a running
estimate of the 60 Hz power line interference (Ahlstrom & Tompkins (1985)). The data is
transferred to a personal computer through a serial interface. The experimental protocol was
approved by the research ethics committee of the University of Brasilia (process no. 079/09,
group III). Twelve able-bodied volunteers were studied and provided informed consent in
accordance with institutional policy. Two pairs of 10-mm Ag/AgCl surface electrodes were
placed in bipolar configuration over a pair of antagonist muscles (Figures 2b and 2c). These
muscles correspond to the flexion and extension movements of the knee joint, respectively.
The SEMG electrodes were attached to the skin over the muscle such that the longitudinal
axes of the electrodes were parallel to the longitudinal axes of the muscle. The distance
between the centers of the electrodes from each pair was 2–3 cm, according to the SENIAM
protocol recommendations (SENIAM (2008)). The reference electrodes were placed over the
lateralis and medialis epicondyle bones. An electrogoniometer was placed and strapped
over the external side of the leg, and the gyroscope sensors were placed over the upper
and lower legs, respectively (Figure 2d). The difference between the signals measured by
the gyroscopes reflects the angular rate of the knee joint. Each of the twelve subjects was
studied over the course of five days. Four 15-second measurements were performed on each
day, with 5-minute rest periods between measurements. For each measurement, the subject
was asked to walk in particular directions at a constant pace. Some variability in pace was
observed between measurements. The first and third measurements from each day were
used for training the algorithm’s neural network, and the second and fourth measurements
were used for testing the algorithm. Figure 3 presents simultaneously-acquired SEMG and
proprioceptive signals from a representative subject. A total of 240 measurements were
obtained, with half of them being used for algorithm training and the other half being used
for algorithm testing.

3. Knee angle estimation based exclusively on SEMG data

The first proposed algorithm provides knee angle estimates based exclusively on information
extracted from the electromyographic signals (Figure 4). The algorithm is composed of
three main stages: (i) feature extraction, using a combination of spectral and temporal
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Fig. 2. Bioinstrumentation system (a) and placement of SEMG electrodes (b,c),
electrogoniometer and gyroscope sensors (d).

Fig. 3. Representative set of simultaneously-acquired SEMG signals, electrogoniometer angle
and gyroscope measurements.
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Fig. 4. Block diagram of the proposed knee joint angle estimation algorithm based
exclusively on SEMG data.

domain approaches (AR coefficients and signal amplitude histogram, respectively); (ii)
feature projection, using a self-organizing map; and (iii) pattern classification, using
a Levenberg–Marquardt multi-layer perceptron neural network. Feature extraction
and projection is performed independently for each SEMG channel. Data from the
electrogoniometer is used as reference during network training, and is not used by the
network during testing. Each of these stages is discussed in detail below, followed by a
discussion on the approach for training the cascade networks.

3.1 Feature extraction

Presenting the myoelectric signal directly to a neural classifier is impractical, because of the
dimensionality and random characteristics of the signal. The signal needs to be represented
by a vector of reduced dimensionality, capable of representing the signal’s information in a
more compact fashion. Such vector is called a feature vector. In this work, the feature vector
is composed of two sets of coefficients: the amplitude histogram bin counts, representing
the time-domain characteristics of the SEMG signal, and the auto-regressive coefficients,
representing the spectral content of the signal. The auto-regressive model is a convenient
structure for model identification, in which the spectral envelope of the signal is modeled
as an all-pole transfer function. The coefficients of this transfer function (the AR coefficients)
contain information about the frequency content of the signal. In this work, the AR coefficients
are used to compactly represent the spectral features of the SEMG signal (Huang et al. (2005);
Hargrove et al. (2008)). The coefficients are calculated using the recursive least squares
algorithm with a forgetting factor (Vaseghi (2000)). This gives more weight to the most
recent samples at the moment of the iteration, which allows the algorithm to track temporal
variations of the signal. The parameters are calculated recursively (Ljung (1987)) as presented
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below:

η̂k = η̂k−1 + Lk

[

yk − ϕT
k η̂k−1

]

, (1)

Pk =

[

Pk−1 −
Pk−1 ϕk ϕT

k Pk−1

λk ϕT
k Pk−1 ϕk

]

1

λk
, (2)

Lk =
Pk−1 ϕk

λk + ϕT
k Pk−1 ϕk

, (3)

where η̂k are the vector coefficients that are estimated at discrete time k; ϕk is the regressors
vector, Pk−1 is the error covariance matrix and Lk is the gain vector of the filter. The forgetting
factor λk controls the system response time. Based on literature (Huang et al. (2005);Ferreira et
al. (2005)) and on an evaluation using the Akaike criterion (Ljung (1987)), we concluded that
an AR order of four to six is sufficient for efficiently representing the SEMG signal. Thus, a
sixth-order AR model was used, with a forgetting factor λk = 0.995, which is equivalent to 200
samples, or 192 ms. The coefficient estimated at instant k can be interpreted as a characteristic
of the SEMG signal within the time interval specified by the forgetting factor, and it is a way
of determining the angular displacement that the patient is trying to impose to the prosthesis
(Ferreira et al. (2005)). The coefficients form a feature vector for the pattern classification
process. This procedure is initialized with P0 = I and η̂0 being a null vector.
The SEMG amplitude histogram is an extension of the zero crossing and the Willison
amplitude measures (Zardoshti-Kermani et al. (1995)). The amplitude histogram provides
a measure of the regularity in which the SEMG signal reaches each level of amplitude,
associated with different histograms bins. Myoelectric signals reach relatively higher
levels during the contraction period (compared to the base line amplitude), thus the
amplitude histogram is capable of providing useful information about the state of a joint
(Zardoshti-Kermani et al. (1995)). A histogram with nine symmetrically and uniformly
distributed bins was used in this algorithm. The range of values was set based on the
maximum and minimum SEMG amplitude levels measured on the training datasets. The
window length was set to 200 samples (192 ms). Both the histogram window and the AR
coefficients are updated for every new SEMG sample. This produces a more dense but
semi-redundant stream of class decisions that could potentially be used to improve response
time and accuracy (Englehart & Hudgins (2003)).

3.2 Feature projection

The feature extraction stage reduces the dimensionality of the data to fifteen (nine histogram
bins, and six AR coefficients). The feature projection stage further reduces the dimensionality
of the feature vector, by mapping it into a two-dimensional space using a self-organizing map.
SOM neural networks (Kohonen (2001)) are trained using unsupervised learning, and are
capable of arranging the input data into a discretized two-dimensional space (a map), which
attempts to preserve the topological properties of the input space. The SOM is composed of
nodes (or neurons). A position in the map space and a weight vector (of the same dimension as
the input data vectors) are assigned to each node. The mapping algorithm consists in finding
the node with the weight vector that is the closest to the input vector. The output of the SOM
network is the two-dimensional coordinate of the winning node. To find the output neuron
(winning node), the following steps are used, according to the learning rule of the Kohonen
feature map (Haykin (1999)), applied to a SOM with N nodes trained with feature inputs x:

Step 1: Choose random values for the initial weight vectors wj(0).

408 Self Organizing Maps - Applications and Novel Algorithm Design
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Step 2: Find the winning neuron yc at time step t (similarity matching), by using the
minimum-distance Euclidean criterion:

yc = argwj(t)
min

∥

∥

∥
x(t)− wj(t)

∥

∥

∥
, j = 1,2, . . . N (4)

Step 3: Update the synaptic weight vectors of all neurons by using the following update rule:

wj(t + 1) = wj(t) + ρ(t)hj,yc
(t)

[

x(t)− wj(t)
]

(5)

where ρ(t) is the learning rate, and hj,yc
(t) is the neighbor function centered around the

winner yc. ρ(t) and hj,yc
(t) are changed dynamically during the learning stage, in order

to obtain optimal results.

Step 4: Go back to Step 2 until no changes in the feature map are observed.

Each of the two SOM maps (one for each SEMG channel) is arranged in a topological net with
100 neurons in their interconnection structure (10×10 matrix). The dimension of the network
was chosen empirically, based on experimentation. The initial learning rate was 0.9, and the
time constants τ1 and τ2 were 1431 and 1000 iterations, respectively (Haykin (1999)). The
neighborhood function initially contains all the neurons of the network, centered around the
winning neuron, and with time it gradually decreases in size. Thus, the initial size of the
neighborhood function is equal to the radius of the lattice (i.e., 5). At the output of the feature
projection stage, the information in each of the SEMG channels is represented by only two
coefficients, i.e., a 2D coordinate, resulting in a total of four coefficients at the input of the
pattern classification stage. Different coordinate pairs represent different points of operation
associated with the movement of the knee joint during a walk.

3.3 Pattern classification

The pattern classification stage is responsible for providing an estimate of the knee joint
angle from the set of four SOM coefficients obtained from the feature projection stage. This
is performed using a Levenberg–Marquardt multi-layer perceptron neural network (Hagan
& Menhaj (1994)). There has been considerable research on methods to accelerate the
convergence time of multi-layer feed-forward neural networks, such as methods that focus
on standard numerical optimization techniques, including the conjugate gradient algorithm,
quasi-Newton methods, and nonlinear least squares (Battiti (1992); Charalambous (1992)).
The method used in this chapter is an application of a nonlinear least squares algorithm to the
batch training of multi-layer perceptrons, called Levenberg–Marquardt algorithm. The LM
algorithm is very efficient for training moderate-sized feed-forward neural networks (Hagan
& Menhaj (1994)). Although the computational requirements of the LM algorithm become
much higher after each iteration, this is fully compensated by its higher efficiency. This is
especially true when high precision is required. Similarly to the quasi-Newton methods, the
LM method was designed to approach second-order training speed without computing the
Hessian matrix. The key step in the LM algorithm is the computation of the Jacobian matrix,
which can be computed through standard backpropagation techniques (Hagan & Menhaj
(1994)), which are much less complex than computing the Hessian matrix.
The LM network used in our algorithm has three layers in its structure, with four input
nodes (output vectors of the SOM networks) in the first layer, six nodes in the second layer
(associated with tangential functions), and one node in the output layer (associated with
a linear function). This structure was chosen empirically, based on experiments aimed at

409Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses
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minimizing the mean squared error (MSE). The node in the output layer represents the
estimated knee joint angle (Figure 4).
The cascade networks (SOM and LM) were trained independently for each set of 15-second
two-channel SEMG test signals, using its correspondent set of training signals and
electrogoniometer measurements. First, the histogram and AR coefficients associated with
each sample of each of the two SEMG signals were calculated. Then, these coefficients were
used in the SOM networks’ unsupervised training process to configure the topological map
structures and set the weight vector of each neuron. Then, the same feature vectors were
used into the trained SOM maps, in order to generate two-dimensional vectors to be used for
training the LM network. During LM network training, the outputs from the trained SOM
network were used as inputs, and the corresponding angular displacement measurements
from the electrogoniometer were used as the target outputs. The same initial weight values
were used for all three network layers (zero for all neurons). The maximum number of
iterations was set to 50, the MSE stop criterion was 10−10 n.u.2, and the initial learning rate
was 1.0. These values were empirically chosen, aiming at maximum reduction of the final
MSE.

4. Knee angle estimation based on fusion of SEMG and proprioceptive sensor data

Angular rate information may be extracted from gyroscope sensor data using a Kalman
filter. This approach was evaluated in three myoelectric algorithm variants. The angular rate
information is used to correct the estimation of the intended knee joint angle by fusion with
the SEMG features. The three algorithms are composed of a feature extraction stage, a pattern
classification stage and variations of a data fusion stage.

4.1 Feature extraction

For this data fusion approach, the set of features is obtained from Cepstral coefficients
extracted from SEMG signals. Cepstral analysis is used for frequency-domain SEMG
signature discrimination. The cepstrum of a signal is defined as the inverse Fourier transform
of the logarithm of the squared magnitude of the Fourier transform of a signal (Kang et al.
(1995)). If all transfer function poles are inside the unit circle, the logarithmic transfer function
can be represented as a Laurent expansion (Kang et al. (1995)). Hence, the following recursive
relation may be used to calculate cepstral coefficients from AR coefficients:

c1 = −a1

ci = −ai −
i−1

∑
n=1

(

1 −
n

i

)

anci−n, i = 2, ..., P. (6)

Using (6), the first P cepstral coefficients (ci, i = 1, ..., P) can be obtained from the coefficients
(ak) of a Pth order AR model, estimated as in Section 3.1. Some works have reported that
the AR-derived cepstrum feature has better performance than the unprocessed AR feature
(Kang et al. (1995) ; Chiou et al. (2004)). Even though the cepstral coefficients are derived
directly from the AR coefficients, they do not contain exactly the same information, because
the recursive operation changes the distribution of the features nonlinearly (Kang et al. (1995)).
In this work, the cepstral coefficients were obtained using a sixth-order AR model and (6).
A second approach for feature extraction is implemented using the entropy of the myoelectric
signal, calculated and used as a time-domain feature vector (Ito et al. (2008)). We focus
on the difference in entropy between the stationary SEMG signal in a relaxed state and
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during motion. Assuming that electromyographic signals can be approximated by a normal
distribution process with zero mean, the entropy of the distribution in a M-sample time
window is computed as

H(σi) =
1

2
log(2πσ2

i ), (7)

σ2
i =

1

M − 1

M−1

∑
m=0

x2
i (k − m), (8)

where σ2
i represents the signal variance estimated from the signal measured from each

electrode and xi is the SEMG signal from the i-th electrode (Ito et al. (2008)). For each
SEMG channel, the calculated entropy is concatenated with the cepstral feature vector. This
combination provides robustness in weak SEMG signals.

4.2 Pattern classification

The pattern classification stage is implemented using a LM neural network, just as described
in Section 3.3.

4.3 Data fusion strategies

Three data fusion strategies for estimating the intended knee joint angle were evaluated:
(i) data fusion implemented during pattern classification, which is performed on both
SEMG features and estimated angular rate; or (ii, iii) data fusion performed after pattern
classification, which is performed on the SEMG features only. These strategies are presented
next.

4.3.1 First data fusion strategy

Figure 5 presents the block diagram for the proposed knee angle estimation algorithm based
on the first data fusion strategy. The use of angular rate information from the gyroscopes
improves angle estimation precision and reduces estimation artifacts. Feature extraction is
performed using a Kalman filter. The goal of Kalman filters is the estimation of non stationary
noisy signals, by minimizing the mean squared error, i.e., recursive least squares for stochastic
models. The estimated signal is modeled using a state-space formulation, describing its
dynamical behavior (Diniz (1997)), according to the following first-order linear stochastic
model:

x(k) = x(k − 1) + n(k) (9)

y(k) = x(k) + v(k) (10)

where x(k) is the joint angular rate, n(k) is the noise modeling the evolution of the joint
angular velocity between two sampling intervals, y(k) is the measured angular rate, obtained
from subtracting the angular rate values measured on the upper and lower legs, respectively;
and v(k) is the measurement noise. It is assumed that n(k) and v(k) are zero mean,
uncorrelated Gaussian distributions, with variances q2 and r2, respectively. When applying
the Kalman filter to this model, the prediction process for each iteration cycle is expressed
according to

x̂(k|k − 1) = x̂(k − 1) (11)

P(k|k − 1) = P(k − 1) + q2 (12)

411Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses
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Fig. 5. Block diagram of the proposed knee angle estimation algorithm based on the first
fusion strategy.

where P(k|k − 1) is the predicted error covariance matrix. The algorithm is initialized as q2 =
4, r2 = 10, x̂(0) = 0 and P(0) = 0.01. These predictions are corrected, using the angular rate
measure provided by the gyroscopes, y(k), as follows:

G(k) =
P(k|k − 1)

P(k|k − 1) + r2
(13)

x̂(k) = x̂(k|k − 1) + G(k) (y(k)− x̂(k|k − 1)) (14)

P(k) = (I − G(k))P(k|k − 1) (15)

where G(k) is the Kalman filter gain, and x̂(k) is an optimal estimate of x(k) in the
least-squares sense. It can be shown that, for this specific problem, this filter is equivalent
to a unity-gain, low-pass, first-order filter with time-varying cut-off frequency. This cut-off
frequency is computed considering noise variances q2 and r2, as well as the error variance
associated with x̂(k) (Diniz (1997)). The value of x̂(k) is an optimal estimate of the mean of the
knee joint angular rate at sampling step k. Thus, at each time instant k, the optimally filtered
angular rate estimate x̂(k), along with the SEMG cepstral and entropy coefficients are used as
inputs to the neural classifier (Figure 5).

4.3.2 Second data fusion strategy

The second data fusion strategy is based on information fusion in the correction process of a
Kalman filter. This may reduce the perturbations that are generated on the angle estimation
process from the neural network. This data fusion strategy is presented in Figure 6. In this
strategy, the feature vectors obtained from feature extraction are used as inputs to the LM
neural network. The estimated knee joint angle is modeled using a state-space formulation,
describing its dynamical behavior (Diniz (1997)), according to the following linear stochastic
model:

x(k) = x(k − 1) + Tu(k) + n(k) (16)

y(k) = x(k) + v(k) (17)

where x(k) now represents the knee angle, u(k) is the measured angular rate acquired with a
sampling period T, obtained from subtracting the angular rate values measured on the upper
and lower legs, respectively. n(k) is noise modeling the evolution of the knee joint angle
between two sampling intervals. y(k) is the measured knee joint angle obtained from the
LM neural network output, and v(k) is the associated measurement noise. It is assumed that
n(k) and v(k) are zero mean, uncorrelated Gaussian distributions, with variances q2 and r2,
respectively. When applying the Kalman filter to this model, the prediction process for each
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iteration cycle is expressed according to

x̂(k|k − 1) = x̂(k − 1) + Tu(k) (18)

P(k|k − 1) = P(k − 1) + T2σ2
u(k) + q2 (19)

where σ2
u(k) = 25 deg2 /sec2 is the variance of the measured angular rate information u(k). q2,

r2, x̂(0) and P(0) have the same values as in the previous strategy, and the correction process
is expressed by the same equations, (13)-(15). However, the value x̂(k) is an optimal estimate
of the knee joint angle from the fusion process at each time instant k.

4.3.3 Third data fusion strategy

A third variant is a modification of the previous strategy. This variant introduces a
compatibility test based on the Mahalanobis distance (De Maesschalck et al. (2000)). The
Mahalanobis distance is a useful way of determining similarity of sample sets, as it is not
dependent on the scale of the measurements. The Mahalanobis distance is computed between
the prediction and correction process of the Kalman filter (Figure 7). The objective is to detect
possible artifacts that come from the estimated angle at the LM neural network output, on
each time step of the data fusion process.
When the Kalman filter is applied to the linear stochastic model described by equations (16)
and (17), the prediction process for each iteration cycle is described by equations (18) and (19).
The Mahalanobis distance is calculated between the estimated knee angle y(k) from the LM
neural network and the predicted knee angle x̂(k|k − 1), based on the following equations:

d2(k) =
(y(k)− x̂(k|k − 1))2

P(k|k − 1) + r2
. (20)

It can be shown that d2(k) is χ2
1 distributed. Thus, y(k) and x̂(k|k − 1) are said to be

statistically compatible if d2(k) ≤ 3.81, according to the 95% confidence threshold obtained
from the chi-square table. In such a case, y(k) is used to correct x̂(k|k − 1) using equations
(13)-(15). If d2(k)> 3.81, the filter uses the predicted values as estimates: x̂(k) = x̂(k|k− 1) and
P(k) = P(k|k − 1), protecting the estimation process from possible angle estimation artifacts
at the neural network, originated from SEMG signals.

4.4 Parameter setting for the myoelectric algorithms based on data fusion

Network training and testing were performed in Matlab (The MathWorks, Inc., Natick, MA,
USA). For each SEMG channel, the proposed algorithms were implemented using 200 sample
(192 ms) sliding windows for the feature extraction process (cepstral analysis and entropy).

Fig. 6. Block diagram of the proposed knee angle estimation algorithm based on the second
fusion strategy.
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Fig. 7. Block diagram of the proposed knee angle estimation algorithm based on the third
fusion strategy.

For each new pair of gyroscope sensor samples, estimates of updated Kalman filter angular
rate (first proposal) and knee joint angle (second and third proposals) were calculated. This
results in a 15-coefficient feature vector per sample interval (six cepstral coefficients and
one entropy coefficient per SEMG channel, plus one angular rate coefficient) for the first
proposal. For the second and third proposals, we obtained a 14-coefficient feature vector
(6 cepstral coefficients and 1 entropy coefficient, per SEMG channel). In the three algorithms,
the information is transferred to a LM neural network, with 15 (first proposal) or 14 (second
and third proposals) nodes in the input layer, 6 nodes in the hidden layer, and 1 node in
the output layer. The output node represents the estimated knee joint angle. The network
architecture and size was empirically chosen, aiming at maximum reduction of the final
MSE. The same initial weight values were used for all three network layers (zero for all
neurons). The maximum number of iterations was set to 50, the MSE stop criterion was 10−10

n.u2. and the initial learning rate was 1.0. The true displacement angle measured with the
electrogoniometer was used as training reference.

5. Performance comparison between the proposed algorithms

For performance evaluation, the myoelectric algorithms are quantitatively compared using
statistics metrics based on: (i) the error-to-signal percentage, (ii) the correlation coefficient
and (iii) statistics of error events, including the number of error events, the maximum error
event duration and the maximum error amplitude (Delis et al. (2009a)). The statistics were
calculated for each set of SEMG signals, and the average and standard deviation of those
parameters were calculated for each subject. For consistency, the same training process and
test sets were used with the myoelectric algorithms based solely on SEMG signals and with
those based on data fusion. The same sliding window length (192 ms) and step (1 sample) and
the same AR order and forgetting factor configuration were used for all evaluated methods.
120 sets of SEMG, electrogoniometer and gyroscope data which were not used for training
were used for comparing the methods. The performance of each algorithm was evaluated by
comparing the knee angle estimated from the SEMG signals with the angular displacement
values measured with the electrogoniometer.
A threshold was applied to the time-series to detect the error events (Delis et al. (2009a)). This
threshold was empirically set to 10◦. Each series of consecutive errors found to be above the
threshold was considered an error event.
The Mahalanobis distance was calculated for each metric as a means of assessing the statistical
difference between the proposed method based solely on the SEMG signals and the proposed
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Fig. 8. Knee angle estimation results for the algorithm based exclusively on SEMG data,
(compared with the electrogoniometer measurements) for two sets of signals from the same
subject: (a) training results; (b) test results; (c) filtered test results.

methods based on data fusion (Delis et al. (2009a);Duda & Hart (2000)). For N = 12 datasets,
the Mahalanobis distance between a same metric computed using two techniques, represented
by m1 and m2, is given by

d2
m1m2

=
N

∑
n=1

(m1(n)− m2(n))
2

σ2
1 + σ2

2

(21)

σ2
i =

1

N − 1

N

∑
n=1

(

m1(n)−
1

N

N

∑
n=1

mi(n)

)2

, i = 1,2

where n means the n-th dataset. The metrics m1 and m2 are considered to be statistically
similar (with 95% confidence) if d2

m1m2
≤ 21.03, which is equivalent to dm1m2 ≤ 4.58.

6. Results

6.1 Testing process

Figure 8 presents two time-series of estimated knee joint angle from a subject, obtained during
the training and testing processes, respectively, using the algorithm based exclusively on
SEMG data. In the test results, a 50-tap (48 ms) moving average filter was used for reducing
the estimation noise and the variance (Figure 8c). Such filtering removes jitter in the output
signal, which could cause undesirable and unintentional motion of the prosthesis. The results
were satisfactory, with a reduction of impulsive noise and maintaining the slope change in the
estimated angle.
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Figure 9 shows three time series for estimated knee angle by the proposed myoelectric
algorithms based on data fusion. It can be noted that the three algorithm variants provide
good tracking of the knee angle with respect to the measured angle, in spite of the occurrence
of discrete artifacts. Such artifacts may be imperceptible for myoelectric control, because of
the prosthesis’ mechanical inertia.

6.2 Comparison between the proposed algorithms

Figure 10 presents a qualitative comparison between the myoelectric algorithms based
exclusively on SEMG data and those based on data fusion. Measured and estimated angle
displacements from a subject are shown for (a) the first proposal based solely on SEMG
signals; (b) the first variant based on data fusion; (c) the second variant based on data fusion;
and (d) the third variant based on data fusion. The absolute difference between measured and
estimated angles is also shown.
Figure 11 presents a similar qualitative comparison, but in the presence of motion artifacts.
The straps holding the electrode cables were intentionally left loose during this experiment,
which caused motion artifacts in the SEMG signal. Measured and estimated angle
displacements from a subject are shown for (a) the algorithm based exclusively on SEMG
signals; (b) the first variant based on data fusion; (c) the second variant based on data fusion;
and (d) the third variant based on data fusion. The absolute difference between measured
and estimated angles is also shown. In spite of the occurrence of false positives during the
knee joint angle estimation process with the proposed algorithms, the level of degradation of
the estimate is lower with the algorithms based on data fusion. The second and third variant
presents errors peaks that could be imperceptible for the movement of the leg prosthesis,

Fig. 9. Measured and estimated knee joint angle for the three proposed algorithms based on
data fusion: (a) first variant; (b) second variant; (c) third variant.
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Fig. 10. Qualitative comparison between the proposed myoelectric algorithms. Measured
and estimated displacement angle from a representative experiment and their absolute
differences (estimation error) are shown for the following algorithms: (a) first proposal based
solely on SEMG signals; (b) first variant based on data fusion; (c) second variant based on
data fusion; and (d) third variant based on data fusion.

depending on their duration. The best results in the presence of motion artifacts were obtained
with the second and third data fusion variants, in which the fusion process is implemented
between the SEMG signals and the gyroscopes sensors on the correction process by Kalman
filtering.
Another implemented test was the evaluation of the robustness against power line 60-Hz
interference. A 60-Hz signal with an amplitude of 0.1 mV was added to each SEMG
channel. This amplitude value was chosen for this test because this was the maximum
60-Hz interference level registered during the experiments. Figure 12 presents a qualitative
comparison between the estimated and measured angles. Measured and estimated angle
displacements from a subject are shown for (a) the first algorithm based exclusively on SEMG
signals; (b) the first variant based on data fusion; (c) the second variant based on data fusion
and (d) the third variant based on data fusion. The absolute difference between measured and
estimated angles is also shown. It is observed that, in spite of the presence of discrete false
positives, the estimated knee joint angle for the myoelectric algorithms is reasonably similar
to the measured angle.
Table 1 presents the computed Mahalanobis distance – see equation (21) – between each
method based on data fusion and the algorithm proposal based solely on SEMG signals.
According to the threshold dm1m2 ≤ 4.58, only the first data fusion variant strategy presented
statistically different results for the maximum error event amplitude metric. That means
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Fig. 11. Qualitative comparison between the proposed myoelectric algorithms. Measured
and estimated angle displacements from measurements with movement artifacts and their
absolute difference (estimation error), are shown for the following algorithms: (a) first
proposal based exclusively on SEMG signals; (b) first variant based on data fusion; (c) second
variant based on data fusion; (d) third variant based on data fusion.

that the second and third data fusion strategies present results which are similar in mean.
However, the robustness of the third strategy with respect to SEMG artifacts is superior, as
seen in the previous figures.

7. Discussion

The proposed myoelectric algorithms provide dimensionality reduction that makes possible
the connection of a larger number of SEMG sensors without affecting the performance of
the Levenberg–Marquardt multi-layer perceptron neural network. The algorithms based

Metric First strategy Second strategy Third strategy

Error-to-signal percentage 1.61 1.00 1.53

Correlation coefficient 1.59 1.37 1.37

Number of error events 2.67 1.33 1.21

Maximum error event amplitude 17.30 1.27 1.07

Maximum error event duration 0.90 0.87 0.85

Table 1. Mahalanobis distance dm1m2 between each of the algorithm variants based on data
fusion and the myoelectric algorithm based exclusively on SEMG signals.
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Fig. 12. Qualitative comparison between the proposed myoelectric algorithms. Measured
and estimated angle displacements from measurements with added 60 Hz interference and
their absolute difference (estimation error) are shown for the following algorithms: (a)
algorithm based solely on SEMG signals; (b) first variant based on data fusion; (c) second
variant based on data fusion; (d) third variant based on data fusion.

on data fusion makes possible the integration of different types of sensors, besides SEMG
signals, using a Kalman filter. The access to additional information by the myoelectric
algorithms during knee angle estimation improves precision and robustness for the prosthesis
myoelectric control.
The maximum error amplitudes measured with the proposed methods are considerably
reduced; however, they are still large (Figure 10, 11 and 12). Nevertheless, this may not
be a significant issue, as short duration error events are unnoticeable to the leg prosthesis,
due to the system’s mechanical inertia. These short duration error peaks may be caused
due to noise in the feature space, and/or by an insufficient number of neurons in the SOM
network and in the LM network’s hidden layer. This problem may be addressed by increasing
the number of neurons, by increasing the number of SEMG signals, and/or adding other
variables associated with leg proprioception (e.g., accelerometers). These approaches would
result in increased computational network complexity and convergence time. Alternatively,
error peaks may be avoided by increasing the forgetting factor of the recursive least squares
AR algorithm and the window length of the histogram. However, this approach would
increase the response time of the prosthesis. The accuracy of the proposed method in the
presence of transient data may be improved using time-frequency and time-scale feature
projection (e.g., wavelets, short-time Fourier transform) (Englehart et al. (2001)). However
these approaches are more computationally intense than the combination of AR coefficients

419Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses

www.intechopen.com



20 Self Organising Maps, New Achievements

with an amplitude histogram, as proposed in this work, and would also affect the networks’
complexity. Furthermore, time-domain and AR features have been shown to outperform
time-frequency features for stationary or slowly changing data, and to provide equivalent
results for steady-state SEMG signals (Huang et al. (2005)).
The comparison of the first variant of the algorithm based on data fusion with the algorithm
based exclusively on SEMG data showed a significant reduction on the maximum amplitude
of error event. This emphasizes the fusion in the LM neural network of the information from
the feature extraction process (cepstral coefficients and SEMG entropy) with the low-pass
filtered angular rate information obtained from the Kalman filter. This fusion removes the
noise on the estimated knee joint angle. It is expected that an increase in the amount of
information supplied to the myoelectric algorithms (e.g., number of input channels) in the
estimate process of the knee joint angle may result in improved precision for the control of the
leg prosthesis.
The presence of artifacts due to movement of the electrode cables and 60-Hz interference
during knee angle estimation may be interpreted by the leg prosthesis as false positives,
depending of their duration (Figure 11b). The second and third variants based on data
fusion, which use an optimal estimate of the knee joint angle obtained on the fusion process
with the angular rate information at each time instant, are more robust than the myoelectric
algorithms based solely on SEMG signals (Figures 11 and 12). The addition of other variables
associated with leg proprioception (e.g., gyroscope sensors) may improve the precision and
reduce artifacts in knee angle estimation, without significantly increasing the computational
complexity of the myoelectric algorithm. However, the implementation of these algorithms
involves an additional degree of complexity for obtaining the cepstral coefficients from the
AR coefficients, in comparison with the first myoelectric algorithm proposal.
The first proposal is preferred for on-line implementation when the number of sensors is
large and computational power is limited. However, considering the robustness aspect in the
presence of movement artifacts, the second proposal based on data fusion is recommended.
Although the computational complexity of the Levenberg–Marquardt algorithm increases
after each iteration during the training process, this is compensated by a gain in efficiency
and a reduction in the network’s convergence time. Hagan & Menhaj (1994) present
comparisons between the Levenberg–Marquardt algorithm and modifications implemented
in the back-propagation neural network, based in the conjugate gradient and variable learning
rate. The results show failure in the convergence time for the evaluated modifications, while
the same tests converged with acceptable results with the Levenberg–Marquardt algorithm.
The results indicate that the LM algorithm is very efficient when it is trained with hundreds
of neurons in their interconnection structure.

8. Conclusions

This chapter introduced a myoelectric algorithm based solely on SEMG data and three
variants of myoelectric algorithms based on data fusion with the purpose of improving the
knee joint angle estimation. The first proposal improves the algorithm originally presented
by Ferreira et al. (2005), by adding a feature projection stage (a SOM network), and by
incrementing the feature extraction stage with a signal amplitude histogram. Feature
extraction now combines time-domain (histogram) and frequency-domain (AR coefficients)
features. Pattern classification is still performed using a Levenberg–Marquardt multi-layer
perceptron neural network, but this is now more efficient due to the dimensionality reduction
provided by the SOM network.
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The second proposal was based on three algorithm variants, which implement data fusion
using Kalman filters. Through a prediction-correction formulation process, this provides
an optimal estimate of the estimated knee angle, which is obtained by fusion of the
information from gyroscope sensors using a Kalman filter. The myoelectric algorithms
strategies present a feature extraction process based on cepstral coefficients and the
entropy of the myoelectric signals (mixture of coefficients in frequency and time domains,
respectively). A Levenberg–Marquardt multi-layer perceptron neural network is used
for pattern classification. It was demonstrated that the fusion of SEMG signals with
proprioceptive sensors reduces artifacts in the estimated joint angles.
The three algorithm variants based on data fusion present equivalent results when
compared with the myoelectric algorithm based exclusively on SEMG signals, however, their
performance is better in the presence of signal artifacts.
The concepts used in these algorithms may be useful in the development of a control
algorithm for active leg prostheses, in which signals from many different sensors may be
fused and used in the conception of a movement predictive model. We have demonstrated
that it is possible to continuously decode knee position from SEMG signals collected from a
generalized electrode placement in an able-bodied subject.
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Congresso Ibero-Americano Sobre Tecnologias de Apoio a Portadores de Deficiência.

SENIAM (2008). Surface Electromyography for Noninvasive Assessment of muscle,
[http://www.seniam.org].

Silva, J.; Chau, T. & Goldenberg, A. (2003). MMG-Based Multisensor Data Fusion for
Prosthesis Control. Proceedings IEEE CMBS, pp. 2909-2912.

Smith, R. J.; Tenore, F.; Huberdeau, D.; Etiene-Cummings, R. & Thakor, N. V. (2008).
Continuous decoding of finger position from surface EMG signals for the control of
powered prostheses, Proceedings of the 2008 IEEE/EMBC 30th Annual International
Conference Engineering in Medicine and Biology Society, pp. 2393-2396.

Sommerich, C. M.; Joines, S. M., Hermans, V. & Moon, S. D. (2000). Use of surface
electromyography to estimate neck muscle activity, J. Electromyography Kinesiol.,
No. 6, pp. 377-98.

Vaseghi, S. V. (2000). Advanced Digital Signal Processing and Noise Reduction, John Wiley

423Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses

www.intechopen.com



24 Self Organising Maps, New Achievements

Publisher, 2nd edn, New York.
Wang, G.; Wang, Z.; Chen, W. & Zhuang, J. (2006). Classification of surface EMG signals using

optimal wavelet packet method based on Davies-Bouldin criterion, Med. Biol. Eng.
Comput., Vol. 44, pp. 865-72.

Zardoshti-Kermani, M.; Wheeler, B. C.; Badie, K. & Hashemi, R. M. (1995). EMG feature
evaluation for movement control of upper extremity prosthesis, IEEE Trans. Rehabil.
Eng., Vol. 3, pp. 324-33.

Zhao, J.; Xie, Z.; Jiang, L.; Cai, H.; Lio, H. & Hirzinger, G. (2006). EMG control for a
five-fingered interactuated prosthetic hand based on wavelet transform and sample
entropy, Proceedings IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp.
3215-20.

424 Self Organizing Maps - Applications and Novel Algorithm Design

www.intechopen.com



Self Organizing Maps - Applications and Novel Algorithm Design

Edited by Dr Josphat Igadwa Mwasiagi

ISBN 978-953-307-546-4

Hard cover, 702 pages

Publisher InTech

Published online 21, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Kohonen Self Organizing Maps (SOM) has found application in practical all fields, especially those which tend

to handle high dimensional data. SOM can be used for the clustering of genes in the medical field, the study of

multi-media and web based contents and in the transportation industry, just to name a few. Apart from the

aforementioned areas this book also covers the study of complex data found in meteorological and remotely

sensed images acquired using satellite sensing. Data management and envelopment analysis has also been

covered. The application of SOM in mechanical and manufacturing engineering forms another important area

of this book. The final section of this book, addresses the design and application of novel variants of SOM

algorithms.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alberto L. Delis, Joao L. A. Carvalho, Adson F. da Rocha, Francisco A. O. Nascimento and Geovany A. Borges

(2011). Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses, Self

Organizing Maps - Applications and Novel Algorithm Design, Dr Josphat Igadwa Mwasiagi (Ed.), ISBN: 978-

953-307-546-4, InTech, Available from: http://www.intechopen.com/books/self-organizing-maps-applications-

and-novel-algorithm-design/myoelectric-knee-angle-estimation-algorithms-for-control-of-active-transfemoral-

leg-prostheses



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


