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1. Introduction  

Coupled ocean-atmosphere science steadily advances with increasing information obtained 
from long-records of in situ observations, multiple-year archives of remotely sensed satellite 
images, and long time series of numerical model outputs.  However, the percentage of data 
actually used tends to be low, in part because of a lack of efficient and effective analysis 
tools.  For instance, it is estimated that less than 5% of all remotely sensed images are ever 
viewed by human eyes or actually used (Petrou, 2004).  Also, accurately extracting key 
features and characteristic patterns of variability from a large data set is vital to correctly 
understanding the interested ocean and atmospheric processes (e.g., Liu & Weisberg, 2005). 
With the increasing quantity and type of data available in meteorological and oceanographic 
research there is a need for effective feature extraction methods.  
The Self-Organizing Map (SOM), also known as Kohonen Map or Self-Organizing Feature 
Map, is an unsupervised neural network based on competitive learning (Kohonen, 1988, 
2001; Vesanto & Alhoniemi, 2000).  It projects high-dimensional input data onto a low 
dimensional (usually two-dimensional) space. Because it preserves the neighborhood 
relations of the input data, the SOM is a topology-preserving technique.  The machine 
learning is accomplished by first choosing an output neuron that most closely matches the 
presented input pattern, then determining a neighborhood of excited neurons around the 
winner, and finally, updating all of the excited neurons. This process iterates and fine tunes, 
and it is called self-organizing. The outcome weight vectors of the SOM nodes are reshaped 
back to have characteristic data patterns. This learning procedure leads to a topologically 
ordered mapping of the input data. Similar patterns are mapped onto neighboring regions 
on the map, while dissimilar patterns are located further apart.  An illustration of the work 
flow of an SOM application is given in Fig. 1. 
The SOM is widely used as a data mining and visualization method for complex data sets. 
Thousands of SOM applications were found among various disciplines according to an early 
survey (Kaski et al., 1998).  The rapidly increasing trend of SOM applications was reported 
in Oja et al. (2002).  Nowadays, the SOM is often used as a statistical tool for multivariate 
analysis, because it is both a projection method that maps high dimensional data to low-
dimensional space, and a clustering and classification method that order similar data 
patterns onto neighboring SOM units. SOM applications are becoming increasingly useful in 
geosciences (e.g., Liu and Weisberg, 2005), because it has been demonstrated to be an 
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effective feature extraction technique that has many advantages over conventional data 
analysis method (e.g., Liu et al. 2006a). The present paper serves as a survey of the SOM 
applications in meteorology and oceanography community.  Recent advance in applications 
of the SOM in analyzing a variety of data sets in meteorology and oceanography (in situ 
long time series, remotely sensed satellite and radar data, and numerical model output) are 
reviewed.  The advantages and weaknesses of the SOM are discussed with respect to 
conventional data analysis methods as used in the community.  Suggestions are also given 
on how to tune the SOM parameters for accurate mapping of meteorological and 
oceanographic features.   
 

 
Fig. 1. Illustration of how an SOM works (adapted from Liu et al., 2006b). The data time 
series are rearranged in a 2D array such that the data at each time step are reshaped as a row 
vector. For each time step, the row vector is used to update the weight of the SOM via an 
unsupervised learning algorithm. This iterative process is called self-organizing. The 
outcome weight vectors of the SOM nodes are reshaped back into characteristic data 
patterns 

2. Self-organizing map applications in meteorology 

The SOM was introduced to meteorological and climatic sciences in late 1990s as a 
clustering and pattern recognition method (e.g., Hewitson & Crane, 1994, 2002; Cavazos, 
1999, 2000; Malmgren & Winter, 1999; Ambroise et al., 2000).  It is found to be a useful tool 
in meteorological applications of different spatial and temporal scales: synoptic climatology, 
extreme weather & rainfall pattern analysis, cloud classification, as well as climate change 
analysis (Table 1).  Many types of meteorological data are analyzed using the SOM, for 
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example, observed and modeled sea level pressure, geopotential height at different pressure 
levels, air temperature, humidity, precipitation, evaporation, snow, sea ice, etc. 
Geographically, the SOM meteorological applications are found around the world: the 
Americas, Africa, Asia, Europe, Arctic and Antarctic (Table 1).  The rest of this section is 
roughly organized by meteorological data type in SOM applications.  

2.1 Sea level pressure and geopotential height data 

The SOM is popular in synoptic climatology, especially in analyzing sea level pressure and 
geopotential height (Table 1).  It is often used to summarize and describe the synoptic 
patterns of atmospheric circulation as indicated by sea level pressure and geopotential 
height at different levels, and to relate the characteristic circulation patterns with other 
meteorological variables.  For example, Hewitson & Crane (2002) used SOM to describe 
synoptic atmospheric circulation changes with time as seen from sea level pressure and to 
relate the sea level pressure patterns with the precipitation time series.  Cassano et al. (2006) 
used the SOM to produce a 55 yr synoptic climatology of daily sea level pressure patterns 
for the western Arctic, and to study circulation patterns associated with air temperature and 
high wind extremes.  Schuenemann et al. (2009) applied the SOM to the 40-yr European 
Centre for Medium-Range Weather Forecasts Re-Analysis daily sea level pressure data to 
objectively identify synoptic sea level pressure patterns over the North Atlantic region.  
Schuenemann & Cassano (2010a, b) examined the changes of synoptic weather (sea level 
pressure) patterns from the 15 climate models, and related the SOM extracted circulation 
patterns with Greenland precipitation in the 20th and 21st centuries.  Johnson & Feldstein 
(2010) presented an SOM analysis that illustrated coupled variability between the North 
Pacific sea level pressure field and outgoing longwave radiation in the tropical Indo-Pacific 
region so as to shed light on the relationship between the North Pacific continuum and 
tropical convection.  Reusch et al. (2007) used the SOM to analyze the monthly mean sea 
level pressure for North Atlantic climate variability.  A review of SOM classifications of 
atmospheric circulation patterns within synoptic climatology is provided in Huth et al. 
(2008), and an overview in remote sensing applications is seen in Filippi et al. (2010).  

2.2 Air temperature, humidity, and wind data 

Multiple variables can be simultaneously handled in the SOM algorithm.  Thus, the SOM is 
often used to examine the patterns of co-variability among several meteorological variables.  
Cavazos (2000) used the SOM to explore the daily atmospheric variables (circulation and 
humidity) for climate anomalies of extreme precipitation events over the Balkan region.  The 
SOM was used to discover meaningful intraseasonal evolution of North American monsoon 
from multiple daily atmospheric variables (850 hPa meridional winds, 700 hPa specific 
humidity, 500 hPa geopotential heights, and 850-500 hPa thickness), and to reveal 
interaction of the atmospheric variables during the monsoon evolution (Cavazos et al., 
2002). The SOM was also used to classify the midtroposphere variables (700 hPa air 
temperature, geopotential height and specific humidity) for generalized atmospheric 
patterns, and to reconstruct the ice-core-based synoptic patterns of climate in Antarctic 
region (Reusch et al., 2005).  SOM classification of the meteorological station data is seen in 
Raju & Kumar (2007), in which multiple variables (temperature, humidity, wind, sunshine 
hours and solar radiation, etc) are analyzed.  Khedairia & Khadir (2008) also performed a 
classification analysis of meteorological data of Annaba region (North-East of Algeria) from 
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1995 to 1999 using the SOM and k-means clustering methods. Tambouratzis & 
Tambouratzis (2008) analyzed long-term (43 years) meteorological data from 128 weather 
stations in Greece. 
 

Applications & data Regions References 

Northeast America 
Hewitson & Crane (2002), 
Crane & Hewitson (2003) 

Arctic and adjacent 
regions 

Cassano et al. (2006, 2007, 2010), 
Higgins & Cassano (2009),  Finnis et al. 
(2009a, b), Skific et al. (2009a, b) 

North Atlantic, 
Greenland 

Reusch et al. (2007), Schuenemann et 
al. (2009),  Schuenemann & Cassano 
(2010a, b) 

Europe, Middle East & 
Northern Africa 

Michaelides et al. (2007) 

Northern hemisphere, 
North Pacific 

Johnson et al. (2008, 2010), Johnson & 
Feldstein (2010). 

Australia 
Hope et al. (2006), Verdon-Kidd & 
Kiem (2008), Alexander et al. (2010) 

Synoptic climatology or 
synoptic patterns of 
atmospheric circulation 
based on SOM analysis 
of sea level pressure, 
geopotential height at 
different pressure levels 

Antarctic Lynch et al. (2006), Uotila et a. (2007) 
Balkan region Cavazos (2000) 
Southeast Arizona Cavazos et al. (2002) 
Europe Luengo (2004) 
Antarctic Reusch et al. (2005b) 
India Raju & Kumar (2007) 
Northeast Algeria Khedairia & Khadir (2008) 
Greece Tambouratzis & Tambouratzis (2008) 

Extreme climate events, 
monsoon variability, 
synoptic variation based 
on various 
meteorological variables 
(air temperature, 
humidity, wind, etc.) 

Taiwan Island Chang et al. (2010), Lin & Wu (2010) 
Eastern & central USA Tian et al. (1999), Filippi et al. (2010) 
Atlantic Ambroise et al. (2000) 
Europe Walder & MacLaren (2000) 

Southwest USA 
Hsu et al. (2002), Hong et al. (2004, 
2005, 2006) 

South Africa Tadross et al. (2005) 
China Zhang et al. (2006) 
Japan Nishiyama et al. (2007) 
Canada (Québec) Pelletier et al. (2009) 

Taiwan Island 
Lin & Chen (2006), Lin & Wu (2007, 
2010), Hsu & Li (2010), Chang et al. 
(2010) 

Colorado River Basin Fassnacht & Derry (2010) 
Puerto Rico Malmgren & Winter (1999) 
Peru Gutierrez et al. (2005) 

Evaporation, 
precipitation (rainfall, 
snow, sea ice), cloud 
classification based on in 
situ observations, model 
output, and satellite 
images 

Antarctic Reusch & Alley (2007) 

Table 1. SOM applications in meteorology 
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2.3 Evaporation, precipitation and cloud data 

Another category of SOM applications in meteorology include evaporation, precipitation 
(rainfall & snow) and cloud classification based on in situ observations, model output and 
satellite images.  Many of these applications are also found in the field of hydrology.  
Malmgren & Winter (1999) used the SOM in climate zonation on the island of Puerto Rico in 
the Caribbean.  They analyzed climate data, seasonal averages of precipitation, and 
maximum, mean, and minimum temperatures over the years 1960–1990, from 18 stations 
spread around the island, and identified four climate zones.  Hsu et al. (2002) applied the 
SOM in a rainfall-runoff linear forecast model, called Self-Organizing Linear Output map 
(SOLO).  Tadross et al. (2005) extracted characteristic rainfall patterns over South Africa and 
Zimbabwe from rainfall data products, and studied the rain-fed maize for the region.  
Gutierrez et al. (2005) applied the SOM to analyze atmospheric patterns  over Peru and local 
precipitation observations at two nearby stations for the purpose of downscaling multi-
model seasonal forecasts.  Nishiyama et al. (2007) used the SOM to analyze a combined data 
set of precipitation and 850 hPa winds, and to identify the typical synoptic wind pattern that 
frequently causes heavy rainfall in Kyushu during the rainy season.  Pelletier et al. (2009) 
applied the SOM in the characterization of 1-h rainfall temporal patterns in a Québec City 
case study.  Lin & Chen (2006) and Lin & Wu (2007) used the SOM to analyze the rainfall 
data on Taiwan Island.  Recently, Hsu & Li (2010) used the SOM and wavelet methods to 
explore spatio-temporal characteristics of the 22 years of precipitation data (1982–2003) for 
Taiwan Island.  Chang et al. (2010) also proposed an SOM-based neural network to assess 
the variability of daily evaporation based on meteorological variables.  Recently, the SOM 
was used to define regions of homogeneity in the Colorado River Basin using snow 
telemetry snow water equivalent data (Fassnacht & Derry, 2010).  The SOM was also used to 
analyze a 24 year (1973-1996) sea ice data (monthly sea-ice edge positions) in Antartic 
(Reusch & Alley, 2007). 
The SOM is often used as a feature extraction method in cloud classification of satellite 
imagery.  In the pioneering work of the SOM-based cloud classification, Tian et al. (1999) 
showed the potential of such neural network system in extracting features from the 
multispectral Geostationary Operational Environmental Satellite (GOES)-8 satellite imagery.  
Ambroise et al. (2000) presented a probabilistic SOM-based method for segmenting 
multispectral satellite images, and applied this method in cloud classification of the 
Polarization and Directionality of the Earth's Reflectances (POLDER) data.  Walder & 
MacLaren (2000) developed an SOM-based automatic cloud classificaton system and 
applied it to extract spectral and textural features from Advanced Very High Resolution 
Radiometer (AVHRR) images.  Hong et al. (2004) presented a satellite-based rainfall 
estimation system, Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks (PERSIANN) cloud classification system, and used this SOM-
based system to extract local and regional cloud features from infrared geostationary 
satellite imagery in estimating fine-scale rainfall distribution.  Hong et al. (2005) developed a 
more accurate SOM-based neural network for cloud patch–based rainfall estimation, named 
as self-organizing nonlinear output (SONO) model.  Hong et al. (2006) further introduced a 
satellite-based precipitation estimation system using watershed segmentation and growing 
hierarchical self-organizing map (GHSOM, Rauber et al. 2002), and found significant 
improvements of estimation accuracy in classifying the clouds into hierarchical sub-layers 
rather than a single layer. 
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3. Self-organizing map applications in oceanography 

Early SOM applications in oceanography community were mainly limited to satellite and in 
situ biological/geochemical data analyses by remote sensing scientiests or 
biological/chemical oceanographers (e.g., Kropp & Klenke, 1997; Ainsworth, 1999; 
Ainsworth & Jones, 1999; Yacoub et al., 2001; Silulwane et al., 2001).  Since the introducion 
and demonstration of the use of the SOM to the oceanography community by Richardson et 
al. (2003), SOM applications have been steadily increased in physical oceanography (e.g., 
Risien et al., 2004; Liu & Weisberg, 2005, 2007; Leloup et al., 2007, 2008; Iskandar et al., 2008), 
and other disciplinary of oceanography as well (e.g., Chazottes et al., 2006, 2007 ; Telszewski 
et al., 2009).  The SOM is used in analyzing many kinds of oceanographic data, such as 
satellite ocean color, chlorophyll, sea surface temperature, sea surface height, in situ and 
modeled ocean currents, etc (Table 2).  Geographically,  SOM applications are seen in major 
world’s oceans (Pacific, Atlantic, Indian Ocean, Antarctic, etc) and many coastal regions (e.g, 
Banguela upwelling region, West Florida Shelf, Washington-Oregon Shelf).  The rest of this 
section is organized by oceanographic data type in SOM applications.  

3.1 Satellite ocean color and chlorophyll 
Satellite oceanography community needed effective feature extraction methods and used the 
SOM technique earlier because they have larger amount of data than other disciplinary of 
oceanography. Ainsworth (1999) and Ainsworth & Jones (1999) used the SOM to classify the 
Chlorophyll concentration data around the Pacific Ocean obtained from the Ocean Colour 
and Temperature Scanner on board of the Japanese Advanced Earth Observing Satellite 
(ADEOS), and demonstrated the use of the SOM in classifying ocean colors from 
multispectral satellite data. Yacoub et al. (2001) applied the SOM in satellite ocean color 
classifcation for the northwest African coast of the Atlantic Ocean.  Niang et al. (2003) 
proposed an SOM-based automatic classification method to analyze ocean color reflectance 
measurements taken at the top of the atmosphere (TOA) by satellite-borne sensors, and 
identified aerosol types and cloud contaminated pixels from satellite ocean color reflectance 
spectra in the Cape Verde region of the Atlantic Ocean. Recently, Telszewski et al. (2009) 
applied the SOM to satellite chlorophyll-a concentration, reanalysis sea surface temperature, 
and mixed layer depth time series and estimated the partial pressure of carbon dioxide 
(pCO2) distribution in the North Atlantic. 

3.2 In situ biological and geochemical data 

Kropp & Klenke (1997) were among the earliest SOM users in oceanography.  They applied 
the SOM to a data set of 170 sediment samples for biological and geochemical conditions of 
a tidal flat in the southern North Sea, and demonstrated the efficiency of the SOM technique 
in analyzing multivariate data sets of complex natural system (Kropp & Klenke, 1997).  
Silulwane et al. (2001) used the SOM to classify in situ vertical chlorophyll profiles from the 
Benguela upwelling system, and related the identified characteristic chlorophyll profiles to 
pertinent environmental variables, such as sea surface temperature, surface chlorophyll, 
mixed layer depth and euphotic depth. They pointed out that these relationships can be 
used semi-quantitatively to predict the subsurface chlorophyll field from known (water 
column depth) or easily measured variables from satellites, such as surface temperature or 
surface chlorophyll (Richardson et al., 2002).  Lee et al. (2003) used the SOM to examine the 
plankton taxa in Antarctic area.  Chazottes et al. (2006, 2007) applied the SOM to analyze the 
in situ absorption spectra of phytoplankton from ocean water, in conjunction with detailed 
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pigment concentrations. Solidoro et al. (2007) used the SOM to classify biogeochemical 
properties of 1292 water samples collected in a 3-year-long monitoring program in the 
northern Adriatic Sea, and identified a representative synthetic sample for each group.  
Bandelj et al. (2008) used the SOM to illustrate the spatial and temporal succession of 
multitrophic plankton assemblages in the Lagoon of Venice and relates them to 
biogeochemical properties.  Astel et al. (2008) applied the SOM to evaluate the geochemical 
and environmental impact of 26th December 2004 tsunami disaster in Indian Ocean.   
Solidoro et al. (2009) applied the SOM to 9 biogeochemical parameters (temperature, 
salinity, dissolved oxygen, ammonia, nitrites, nitrates, phosphates, silicates, and chlorophyll 
a) of 7150 original water samples for water mass classification. Aymerich et al. (2009) 
presented an SOM-based technique for classifying fluorescence spectra, and found that if 
the data (emission spectra) were appropriately preprocessed, the SOM were able to properly 
identify between algal groups, such as diatoms and dinoflagellates, which could not be 
discriminated with previous methods.   

3.3 Satellite sea surface temperature data 

Remotely sensed sea surface temperature may be the most abundant type of satellite data in 
oceanography. It is an important variable in air-sea interaction, especially for heat budget.  
Along with the satellite chlorophyll data analysis, Ainsworth (1999) and Ainsworth & Jones 
(1999) used the SOM to classify the sea surface temperature around the Pacific Ocean 
obtained from the Ocean Colour and Temperature Scanner on board of ADEOS satellite.  
Richardson et al. (2003) gave an example SOM analysis of sea surface temperature in the 
southern Benguela region.  Liu et al. (2006b) used a two-layer GHSOM to analyze the sea 
surface temperature on the West Florida Shelf in the eastern Gulf of Mexico, and 
summarized the seasonal evolution of the temperature patterns that were explained in terms 
of air-sea interactions on the shelf on seasonal time scale.  Tozuka et al. (2008) investigated 
both satellite observed and coupled model outputs of sea surface temperature for tropical 
Indian Ocean climate variability using the SOM, and found that the SOM successfully 
captured the dipole sea surface temperature anomaly pattern associated with the Indian 
Ocean Dipole and basin-wide warming/cooling associated with El Ninõ-Southern 
Oscillation (ENSO).  Morioka et al. (2010) used the SOM to examine the climate variability in 
the southern Indian Ocean by classifying the sea surface temperature anomaly poles.  
Iskandar (2010) applied the SOM to study the seasonal and interannual variations of sea 
surface temperature patterns in Banda Sea.  Leloup et al. (2007) used the SOM to analyze the 
climate indices of equatorial Pacific and found the SOM to be useful both for seasonal ENSO 
predictability and for the detection of decadal changes in ENSO behavior. Leloup et al. 
(2008) used the SOM to assess the spatial characteristics of the twentieth century ENSO sea 
surface temperature variability along the equatorial Pacific simulated by 23 climate models.  

3.4 Satellite sea surface height data 

Sea surface height from satellite altimetry is another important type of oceanographic data 
that is related to ocean circulation dynamics and ocean heat content in the upper layer.  In 
open ocean regions, sea surface height is often used to calculate surface geostrophic currents 
and hence to approximate surface currents.  Hardman-Mountford et al. (2003) used the SOM 
to identify characteristic patterns of satellite derrived sea surface height (actually sea level 
gradient) data, and related to sardine recruitment in the Northern Benguela.  Liu et al. (2008) 
applied the SOM to time series of altimetry (sea surface height anomaly) gridded data in the 
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South China Sea, extracted characteristic patterns of sea surface height variability, and 
calculated the associated surface geostrophic current anomalies. They found that the SOM 
successfully revealed the upper layer current variability in the South China Sea on seasonal 
and interannual time scales.  Iskandar (2009) examined the satellite altimetry in the tropical 
Indian Ocean using the SOM, and found that the SOM was able to separate typical patterns 
associated with the ENSO and the Indian Ocean Dipole events. 

3.5 Ocean current data from in situ observations and numerical models 

Most of the SOM applications in physical oceanography were to extract characteristic 
circulation patterns from long time series of ocean current data.  Liu & Weisberg (2005) and 
Liu et al. (2006a) used the SOM to extract the dominant patterns of ocean current variability 
from a mooed Acoustic Doppler Current Profiler (ADCP) array on the West Florida Shelf, 
and related the evolution of the characteristic coastal upwelling and downwelling current 
patterns with the local wind forcing.  Liu & Weisberg (2007) examined velocity profiles from 
an across-shelf transect of ADCP moorings on the West Florida Shelf, and focused on the 
SOM extracted across-shelf structures of coastal upwelling/downwelling jet over the inner 
shelf.  Cheng & Wilson (2006) also used the SOM to identify the characteristic vertical 
profiles of the currents in an estuary.  
High frequency (HF) radar current data is an important type of data in coastal 
oceanography that has been developed quickly in recent years. The archived HF radar 
surface currents are usually hourly maps, i.e., the dimension of the data is high for multiple-
year observations. Liu et al. (2007) applied the SOM to extract current pattern variability 
from a joint HF radar and ADCP dataset on the West Florida Shelf, and obtained 
dynamically distinctive spatial and temporal current structures on semidiurnal, diurnal and 
synoptic time scales.  Mau et al. (2007) also used the SOM to characterize the Long Island 
Sound outflows from HF radar data. 
Numerical ocean models also generate huge amount of “data” that need to be effectively 
analyzed.  SOM has already found its application in describing numerical ocean model 
output.  For example, Iskandar et al. (2008) applied the SOM to extract the characteristic 
vertical profiles of zonal currents in the equator of Indian Ocean from a numerical model 
output.  Liu et al. (2009) used the SOM to summarize the synoptic variation of the Columbia 
River plume patterns (surface currents) from a numerical ocean circulation model.  Recently, 
Jin et al. (2010) also used the SOM to examine modeled currents in Kerama Gap, and gained 
insights into the interaction of the Kuroshio in the East China Sea and the Ryukyu Current 
system east of the Ryukyu Islands. Additional opportunities abound for future use of SOM 
in analyzing numerical ocean model simulations. 

3.6 Other oceanographic data 

In addition to the above mentioned main data types, SOM applications were found in many 
other oceanographic data, such as wind stress, sea floor shape, tusnami and salinity.  
Richardson et al. (2003) and Risien et al. (2004) demostrated the use of SOM in 
characterizing coastal wind (wind stress) patterns and their variability.  Chakraborty et al. 
(2003) implemented an SOM-based hybrid artificial neural network in sea-floor roughness 
classification of multibeam angular backscatter data in the central Indian Ocean basin.  Liu 
et al. (2009) applied the SOM to analyze modeled surface salinity time series for 
characteristic patterns of Columbia River Plume, and associated these plume pattern 
evolution with local wind forcing and river flow temporal variation.  Corchado et al. (2008) 
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and Mata et al. (2009) applied the SOM-based hybrid intelligent system to detect oil spill in 
the ocean.  Borges et al. (2010) also applied the SOM in geographical classification of 
weathered crude oil samples. Some SOM applications in maritime environment (e.g., ship 
trajectory classification) were briefly reviewed in Lobo (2009). Recently, Ehsani & Quiel 
(2008) and Hentati et al. (2010) applied the SOM to geomorphology. 

4. Advantages over other conventional methods 

The empirical orthogonal function (EOF) or principal component analysis (PCA) method is 
often used to extract patterns of variability in meteorological and oceanographic data.  Liu & 
Weisberg (2005, 2007) used both EOF and SOM to extract ocean current patterns from the 
same data set (a long time series of velocity from a moored ADCP array), and found that the 
SOM patterns were more accurate and intuitive than the leading mode EOF patterns. The 
asymmetric features (in current strength, coastal jet location and velocity vector veering 
with depth) between upwelling and downwelling current patterns extracted by the 
(nonlinear) SOM were not readily revealed by the (linear) EOF (Liu & Weisberg, 2005).  Liu 
et al. (2006a) evaluated the feature extraction performance of the SOM by using artificial 
data representative of known patterns.  The SOM was shown to extract the patterns of a 
linear progressive sine wave as the EOF did, even with noise added.  However, in the 
experiment with multiple sets of more complex patterns, the SOM technique successfully 
chose all those patterns in contrast with the EOF method that failed to do that (Liu et al., 
2006a).  Reusch et al. (2005) also tested the SOM against the PCA method using synthetic 
datasets composed of positive and negative modes of four idealized North Atlantic sea level 
pressure fields, with and without noise components. They also found that the SOM was 
more robust than the PCA in extracting the predefined patterns of variability. Annas et al. 
(2007) and Astel et al. (2007) further confirmed the superior performance of the SOM over 
the PCA.  These advantages, of course, must be tempered by the fact that PCA uses an 
empirical vector space that spans the data space, hence aspects of the data space may be 
quantitatively reconstructed from the vector space (Liu, 2006; Liu & Weisberg, 2005).  
K-means is another popular artificial neural network widely used for clustering.  After 
comparing the SOM and k-means methods, Bação et al. (2005) proposed the use of SOMs as 
possible substitutes for the k-means clustering algorithms.  Lin & Chen (2006) tested the cluster 
accuracy of the SOM, the k-means method and Ward’s method based on experimental data 
sets that the amount of cluster dispersion and the cluster membership are controlled and 
known.  They found that the SOM determined the cluster membership more accurately than 
the K-means method and Ward’s method.  K-means somehow is a subset of SOM, meaning 
that SOM reduces to k-means for particular choice of parameters (e.g., Lobo, 2009), and 
therefore it is natural to assume that SOM is more flexible than k-means (Solidoro et al., 2007). 

5. Self-organizing map parameter choices 

Despite its wide applications as a tool for feature extraction and clustering, the Self-
Organizing Map (SOM) remains a black box to most meteorologists and oceanographers.  
SOM new users may be perplexed by the choice of SOM parameters, because different 
parameter choices may result in different SOM patterns.  This challenge may prevent some 
potential new users from pursuing further SOM applications.  Liu et al. (2006a) evaluated 
the feature extraction performance of the SOM by using artificial time series data comprised 
of known patterns.  Sensitivity studies were performed to ascertain the effects of the SOM 
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tunable parameters.  A practical way to apply the SOM was proposed and demonstrated 
using several examples, including long time series of coastal ocean currents from the West 
Florida Shelf (Liu et al., 2006a). 
 

Oceanographic data Regions References 
Pacific Ainsworth (1999), Ainsworth & Jones (1999) 
Southeast Atlantic Yacoub et al. (2001) 
Southwest Atlantic Saraceno et al. (2006) 

Satellite ocean color, 
Chlorophyll 

North Atlantic Niang et al. (2003), Telszewski et al. (2009) 
Southern North Sea Kropp & Klenke (1997) 

Southeast Atlantic 
Silulwane et al. (2001), Richardson et al. 
(2002) 

Europe 
Barreto & Perez-Uribe (2007ab), Alvarez-
Guerra et al. (2008), Aymerich et al. (2009), 
Skwarzec et al. (2009), Žibret & Šajn (2010) 

Lagoon of Venice Bandelj et al. (2008) 
Northern Adriatic Sea Solidoro et al. (2007, 2009) 
Antarctic Lee et al. (2003) 
World oceans Chazottes et al. (2006, 2007) 

In situ Chlorophyll, 
absorption spectra of 
phytoplankton, 
plankton taxa, 
ecological variables, 
microbiological and 
geochemical 
variables, pCO2 

Indian Ocean Astel et al. (2008) 
Pacific Ainsworth (1999), Ainsworth & Jones (1999) 
Tropical Pacific  Leloup et al. (2007, 2008)  
Southeast Atlantic Richardson et al. (2003) 
West Florida Shelf Liu et al. (2006b) 
North Atlantic Telszewski et al. (2009) 

Satellite measured sea 
surface temperature, 
ENSO indices 

Indian Ocean 
Tozuka et al. (2008), Morioka et al. (2010), 
Iskandar (2010) 

Southeast Atlantic Hardman-Mountford et al. (2003) 
South China Sea Liu et al. (2008) 

Satellite measured sea 
surface height 

Indian Ocean  Iskandar (2009)  

West Florida Shelf 
Liu & Weisberg (2005, 2007), Liu et al. 
(2006a, 2007) 

Columbia River plume Liu et al. (2009) 
New York Harbor  Cheng & Wilson (2006) 
New York Bight Mau et al. (2007) 
Indian Ocean Iskandar et al. (2008) 

Ocean currents from 
in situ observations 
and numerical 
models 

Kerama Gap Jin et al. (2010) 
Surface winds Southeast Atlantic Richardson et al. (2003), Risien et al. (2004) 

Sea-floor roughness South Atlantic Chakraborty et al. (2003) 

Salinity Columbia River plume Liu et al. (2009) 

Oil spill Galician coast, Europe 
Corchado et al. (2008), Mata et al. (2009), 
Borges et al. (2010) 

Maritime data Europe Lobo (2009) 

Table 2. SOM applications in oceanography 
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6. Summary 

In recent years, the SOM has gained its popularity in meteorology and oceanography 
community as a powerful pattern recognition and feature extraction method. The SOM 
analysis has been applied to a variety of data sets in meteorology and oceanography, such as 
in situ long time series, remotely sensed satellite and radar data, and numerical model 
output.  With the steadily increasing quantity and type of data, the SOM users are expected 
to increase within the meteorology and oceanography community.  Note that there are still 
many types of meteorological and oceanographic data not analyzed using the SOM, 
especially output from various numerical models. There are vast opportunities for 
meteorologists, oceanographers and climate scientists, especially modelers, to have fruitful 
applications of the SOM, a promising applied mathematical tool for feature extraction and 
pattern recognition from large and complex data sets. 
The SOM has many advantages over conventional feature extraction methods in the 
community, such as the EOF, k-means methods. It is proposed as a complement to these 
established methods.  One obstacle of SOM application, especially to new users, would be 
the choice of many tunable parameters, which may prevent potential users from pursuing 
further SOM applications.  Suggestions were given in Liu et al. (2006a) on how to tune the 
SOM for accurate mapping of meteorological and oceanographic features.   
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