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1. Introduction 

1.1 Background 
With the recent enhancement of desktop design environments, it has become easy for 
personal users to design graphical documents such as posters, flyers, slides, drawings, etc. 
These kinds of documents are usually produced by the applications like drawing softwares, 
which have the advantage that they can store and retrieve the drawing data electronically. 
By reusing parts of the stored drawing data, the users can design the graphical documents 
much more easily. 
However, generally, the stored data of many users is not shared, although this can be 
achieved by putting a drawing database. One reason is that it is difficult to retrieve desired 
figures from large amounts of drawing data in the database. Unlike in text search, the figure 
search will require enormous amounts of computation time because matching of the 
geometric primitives in the drawing data will cause their combinatorial explosion in 2D 
space. 
To address this problem, many approaches have been proposed recently. When users search 
the drawing database, they should conjure up the desired figures and design their 2D 
sketches as the keys. In case of retrieving general figures, such as electrical symbols and map 
symbols, there would be little difference between sketches of them drawn by different users, 
but it is impractical to make them visualize various objects and things and use the sketches 
as the keys. For example, in case of retrieving human figures, since the sketches of humans 
differ according to the users, not all of figures of humans will be able to be obtained from 
the drawing database. To cope with this problem, we need a technique that enables the 
applications to automatically present users with the list of figures considered to have any 
meaning. Users can specify a figure of the desired object or thing simply by selecting it from 
the list and then retrieve the desired figures from the database using it as the key. 

1.2 Figure pattern mining 

Since the parts appearing many times in many graphical documents would illustrate 
something significant, the application should analyze all of the data in the drawing database 
and mine frequent figure patterns automatically so that it can obtain figures which represent 
some meanings. We call the frequent parts having similar figure patterns semantic figure 
patterns, which might well be the general figures like symbols. By presenting users with the 
list of the obtained semantic figure patterns, users can retrieve desired data from the 
drawing database without sketching. This will lead to sharing of the drawing data stored by 
many users. 
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In this chapter, we discuss a data mining approach for 2D drawing data designed by the 
drawing softwares and propose a method of 2D figure pattern mining. Usually, a variety of 
symbols registered in drawing softwares are placed on the drawing area through various 
kinds of 2D affine transformations such as rotation, scaling and translation. In order to mine 
such drawing data, including symbols placed in a complex manner, it should be represented 
in the form independent of these affine transformations. Since topology of geometric 
primitives is invariant to the affine transformations, our method first obtains interim results 
by mining topology data of the drawing data. After that, the final results are sorted out from 
the interim ones with the verification of their geometric validity. 
In our approach, the topology data of the drawing data is represented by graphs where 
nodes and edges correspond to the geometric primitives and the spatial relations between 
them, respectively. We call this graph topology graph, where labels on the nodes denote the 
kinds of the geometric primitives and those on the edges the types of the spatial 
arrangements of two primitives. Even if the 2D affine transformation is applied to a partial 
set of the geometric primitives, its corresponding subgraph in the topology graph will be 
unchanged. Our method generates these topology graphs from all of the drawing data and 
mines them to extract the frequent subgraphs as the interim results. These subgraphs 
represent sets of the geometric primitives having frequent topological figure patterns, but 
the similarity of their appearance is not guaranteed. 
Next, our method checks if the sets of the geometric primitives obtained in the previous step 
fit each other by inferring the affine transformations between them. If valid transformations 
can be estimated between the primitive sets, it can be said that they have the same topology 
and appearance. They can be interpreted as the final result, that is, which are the desired 
semantic figure patterns appearing frequently in the drawing database. 

2. Related works 

The analysis of figures has been studied by many researchers. In recent years, interesting 
study has been carried out not only on 2D figures but on 3D figures. However, the most 
important point is how to represent their shapes no matter what dimension they are in. 
In the studies of the 3D shape matching, one general approach is to represent the 3D shapes 
with set of points. Barequet and Sharir presented a partial surface and volume matching 
method, which represents objects to be matched as a set of points and estimates a 
transformation of one object to the other (Barequet & Sharir, 1997). Aiger et al. proposed a 
fast and robust alignment scheme for surface registration of 3D point sets (Aiger et al., 2008). 
Some approaches dealt with not set of points but salient points and achieved advanced 
matching like partial matching (Novotni et al., 2005) and matching over several views of an 
object (Castellani et al., 2008). 
There is also an approach where the 3D shapes are represented with skeleton graphs. 
Brennecke and Isenberg used the skeleton graph to calculate a similarity measure for 3D 
geometry models (Brennecke & Isenberg, 2004). Sundar et al. used graph matching 
techniques and proposed a method of part-matching of 3D objects. This method is intended 
to be used for retrieval of the shapes from an indexed database (Sundar et al., 2003). Tung 
and Schmitt proposed the multiresolution Reeb graph and tried to improve a shape 
matching method applied to content-based search in database of 3D objects (Tung & 
Schmitt, 2005). Iyer et al. proposed a shape representation which has multiple levels of detail 
and preserves geometry and topology of 3D models using a hierarchical skeleton graph. 
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This is also used for similar 3D shape retrieval. Schnabel et al. used not only graph 
representation but 3D point-clouds and presented a flexible framework for the rapid 
detection of semantic shapes (Schnabel et al., 2007). 
In order to develop a fast retrieval system of 3D objects, it is important to represent features 
of the shapes simply and plainly for the reduction of the computation time (Bustos et al., 
2004). In this case, many methods retrieve desired objects without considering detailed 
correspondence between 3D shapes and exploit only the 3D shape features like Krawtchouk 
moment (Mademlis et al., 2006), Bag-of-Words representation (Li & Godil, 2009) and Bag-of-
features SIFT (Ohbuchi et al., 2008). 
The 2D shape matching technique has been studied actively in the field of data retrieval where 
2D shape is used as a search key. Kim and Grauman presented an asymmetric region-to-image 
matching method which identifies corresponding points for each region and compares images 
by considering geometric consistency and appearance similarity (Kim & Grauman, 2010). Liu 
et al. proposed a sketch-based approach to find matching source images for image 
composition. The system asks users to draws a rough sketch to identify the desired object and 
finds a set of matching images (Liu et al., 2009). This sketch-based approach is also used in 
searching 3D objects. Funkhouser et al. proposed a shape descriptor for boundary contours 
and used it as the shape-based query. This descriptor is invariant to rotation and is represented 
with a set of the amplitudes of constituent trigonometrics (Funkhouser et al., 2003). Pu et al. 
proposed 2D sketch-based user interface for 3D CAD model retrieval, where 2D shapes are 
compared with each other by matching a large amount of sample points on their edges and 
calculating the Euclidean distance distribution between the sample points (Pu et al., 2005). 
In all cases, most of the techniques for analyzing shapes of figures have been used mainly 
for matching and data retrieval. There does not appear to be any data mining methods in 
this field. However, some interesting approaches have been proposed. They analyze shapes 
without any prior knowledge about the desired objects. Lovett et al. proposed an 
incremental learning technique for the generalization of object categories based upon the 
sketches of those objects. The generalized categories are used to classify new sketches 
(Lovett et al., 2007). Hou et al. proposed a clustering method based on Support Vector 
Machines to organize the 3D models semantically. The resultant clusters are used to classify 
the unknown data (Hou et al., 2005). Pauly et al. presented an approach for discovering 
regular or repeated geometric structures in 3D shapes, which are represented in point or 
mesh based models (Pauly et al., 2008). Ovsjanikov et al. proposed an approach for 
computing intrinsic symmetries of a 3D shape (Ovsjanikov et al., 2008). 
Since figures are drawn in a multi-dimensional space, it can be said that a shape of a figure 
is a kind of spatial data. In the field of data mining, spatial data mining is becoming popular 
and has been studied by many researchers recently (Ng and Han, 1994). Sheikholeslami et 
al. proposed a multi-resolution clustering method which can effectively identify arbitrary 
shape clusters at different degrees of accuracy in spatial databases using wavelet 
transformation (Sheikholeslami et al., 1998). Jiang proposed a spatial hierarchical clustering 
technique for generalization processes in GIS (Jiang 2004). Visual data mining proposed by 
Brecheisen et al. is a very interesting approach, where the hierarchical clustering structure of 
a 3D object database is visualized (Brecheisen et al., 2004). 

3. Topology graph mining 

Our method represents spatial relations between the geometric primitives as the topology 
graph, which is invariant to the 2D affine transformations such as rotation, scaling and 
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translation. Sets of the geometric primitives having frequent topological figure patterns can 
be obtained by generating the topology graphs from large amounts of 2D drawing data and 
applying a graph mining method to them. The desired semantic figure patterns will be 
included in these geometric primitive sets. 

3.1 Topology graph 

In the topology graph, a node corresponds to a geometric primitive, which is denoted as fh. 
There exists an edge between the nodes if their corresponding geometric primitives, 
denoted as (fh, fk), touch or intersect with each other. From the above, the topology graph 
can be denoted as G=({fh}, {(fh, fk)}). 
Now we consider the topology of the geometric primitives and define the labels on the 
nodes and edges to deal with their spatial arrangements. Since each geometric primitive in 
the 2D drawing data generally has its type (line segment, circle, etc.) and the control points 
(start point, end point, center, etc.) specifying its shape, it can be expressed as (tfh, {pfhi}), 
where tfh and {pfhi} is the type and the set of control points of the geometric primitive fh, 
respectively. It should be noted that the coordinates of the control points vary according to 
the 2D affine transformation applied to the geometric primitives. Since the topology graph 
should be invariant to the 2D affine transformation, the node labels show only the types of 
the geometric primitives with a digit as shown in Fig. 1. The control points will be 
considered for the analysis of the spatial relations between the geometric primitives and for 
the estimation of the affine transformations between the sets of the geometric primitives, as 
described later. 
 

Line : 1 Circle : 2 Ellipse : 3 Arc : 4
 

Fig. 1. Digits assigned to geometric primitives 

The edge labels represent the spatial relations between the geometric primitives touching or 
intersecting each other. The spatial relations must be able to be defined for any types of 
geometric primitives. Therefore, we suppose that each geometric primitive consists of three 
components: area, boundary and set of end points as shown in Fig. 2 and define five digits 
as the edge label by considering form of overlapping between these components as shown 
in Fig. 3. The first digit represents spatial relation between areas of geometric primitives. If 
these areas overlap partially, the first digit is set to be 1. If an area is entirely included in the 
other, it is set to be 2. The second digit represents the relationship between the boundaries. It 
is the number of their intersections. If there is infinite set of the intersections, let the second 
digit be 9. The third digit is the number of end points which are included in the area of the 
other geometric primitive. This represents the relationships between the area and the end 
points. The fourth digit is the number of the end points which are on the boundary of the 
other geometric primitive. This represents the relationships between the boundary and the 
end points. The fifth digit is the number of end points that are shared with the other 
geometric primitive. This represents relationships between the end points. Examples of the 
edge labels are shown in Fig. 4. These edge labels are unchanged even if their relevant 
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geometric primitives are moved by the affine transformation. Naturally, the ways of  
calculating the edge labels differ according to the combination of the geometric primitive 
types. The an edge label calculation between two line segments is totally different from that 
between an line segment and a circle. Our method assumes that all of the ways of the edge 
label calculation are given for any combination of possible geometric primitive types.  
Our method generates the topology graphs for all 2D drawing data in the drawing database 
to represent topological figure patterns. The node labels, the edge labels, and the 
connections between the nodes are invariant to the 2D affine transformations.  
 

Area Boundary Set of end points

Line

Circle None

 

Fig. 2. Area, Boundary and Set of end points of geometric primitives 
 

Area Boundary Set of end points

Area 3
Boundary 2 4

Set of end points 5

1

 

Fig. 3. Places of digits for edge label 

 

11222 22220 12000 19220
 

Fig. 4. Examples of edge label 

3.2 Mining of topology graph 

By mining the topology graphs, our method extracts subgraphs corresponding to the 
frequent topological figure patterns, which could be the desired semantic figure patterns. In 
the field of graph mining, various methods have been proposed to obtain frequent 
subgraphs fast and correctly. Our method uses GASTON graph mining algorithm, which 
works efficiently, especially for sparse undirected graphs (Nijssen & Kok, 2004). Since the 
edges in the topology graphs correspond to spatial relations between geometric primitives 
adjacent to each other, the number of the edges is generally much less than the possible 
number of edges. Therefore, GASTON will works efficiently for the topology graphs. 
Although the extracted subgraphs represent the frequent topological figure patterns, their 
appearances are not always the same. As shown in Fig. 5, the same topology subgraphs do 
not always show the same configurations of the geometric primitives. Our method overlays 
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one of the extracted sets of the geometric primitives onto the other to check the similarity of 
their appearances. This is done by verifying that a valid 2D affine transformation can be 
obtained between the primitive sets. 
 

11

2 1

a

b

a

d

b
c

22220

22220 22220

Semantic figure 
pattern A Topology subgraph

c

d

a b

c d

Semantic figure 
pattern B

 

Fig. 5. Same topology subgraph of different semantic figure patterns 

4. Check of geometric validity 

In order to verify the geometric validity of the sets of the geometric primitives obtained by the 
topology graph mining, our method tries to overlay one of the sets onto the other and checks 
the similarity of their appearances. This can be done by taking the following two steps: First, 
the 2D affine transformation is estimated between the primitive sets. Then their appearances 
are compared by fitting them with each other using the estimated transformation. If it is 
judged that they have the same appearance, they can be considered as the final results, that is, 
frequent figure patterns representing the desired semantic figure patterns. 
If coordinates of 2D points are represented as augmented vectors, a 2D affine transform can 
be expressed as follows: 
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where [x y 1]t and [x' y' 1]t are the coordinates of an original point and of the point after the 
transformation in the homogeneous coordinate system. a1, a2, b1, b2, d1, d2 are the affine 
parameters. e is a parameter due to the use of augmented vectors. If n correspondences of 
the points between two sets of the geometric primitives are obtained by topology graph 
mining, the following equation is derived:  
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where pi=[xi yi 1]t and pi'=[xi' yi' 1]t (i=1, ..., n) are the coordinates of n corresponding points. 
Eq. (2) can be represented as follows: 

                                                                   0aR = .                                                                 (3) 
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In practice, Eq. (3) is usually an over-determined system of equations because the number of 
the control point coordinates is usually more than the number of unknown parameters, that 
is, affine parameters and e. 
Our method obtains the least square solution of Eq.(3) using the Lagrange multiplier 
method. The value to be minimized is the sum square of the residuals between the 
corresponding control points as shown in Fig. 6. This value can be represented as follows:  

 t tC a R Ra= . (4) 

Here one solution to Eq.(4) is a = 0, which is meaningless for the purpose of this approach. 
To avoid this problem, we set the constraint  

 ta a 1=  (5) 

on the unknown parameters and set up the objective function as follows:  

 t t tC a R Ra λ(a a 1)= + − , (6) 

where λ  is a Lagrange multiplier. Since the partial differentiation of Eq.(6) is 

 tC
2R Ra +2 λa

a

∂
=

∂
, (7) 

the desired solution is the eigenvector of RtR which corresponds to the minimum 
eigenvalue. 
It should be noted that our method cannot determine a unique correspondence between the 
control points in the frequent topological figure patterns obtained by the topology graph 
mining as shown in Fig. 7. Our method obtains all of the combination, estimates affine 
parameters for each of them, and selects the most valid affine transformation. As shown in 
Fig. 8, we denote by SF the sets of all possible combination of geometric primitives obtained 
from the results of the topology graph mining. For a geometric primitive combination g ∈  

SF, the sets of combination of control points are denoted by SPg. Our method minimizes the 
standard deviation of the residuals between control points corresponding with each other as 
follows:  

 
F P

g

c c c
i i

g S c S |
d  min min(sd({|t(p ,a ) p '|} )

∈ ∈
= − , (8) 

where sd({v}) is the standard deviation of the values {v}. t(p, a) is the point translated from 
the point p through the affine transformation whose parameters are a. Points pic and pic' are 
the i-th corresponding points in the control point combination c. ac is the estimated 
parameters in the combination c using the Lagrange multiplier method as described above. 
If d is smaller than a threshold, we can state that the set of geometric primitives evaluated 
with (6) have the same topology and that one of them can be mapped to the other through 
an affine transformation as shown in Fig. 6. This implies that they represent the same 
semantic figure pattern. 
In this appearance evaluation process, thresholding d starts from the pairs of geometric 
primitive sets corresponding to the largest topology subgraph. If they are judged to have the 
same semantic figure pattern, the geometric primitives in them are excluded from this 
process to avoid extracting their substructures as other semantic figure patterns. 
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Fig. 6. Estimation of affine transformation 
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Fig. 7. Ambiguity of correspondence between semantic figure patterns 
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5. Experiments 

We implemented the proposed method on a PC with Intel Core 2 Duo CPU, 2.13GHz, and 
4GB RAM using the C++ language and applied it to some 2D drawing data to confirm its 
validity. As the 2D drawing data for this experiment, we used CAD data of 42 floor plans 
where there are 8 electrical symbols, which are shown in Fig. 8. These floor plans were 
drawn by 6 users with Microsoft Office Visio. 
 

 

Fig. 8. Electrical symbols 

In the experiment, we evaluated precision and recall to evaluate the performance of the 
proposed method. They are computed as follows:  

 
tp

tp fp

N
Precision  

N N
=

+
, (9) 

 
tp

tp fn

N
Re call  

N N
=

+
, (10) 

where Ntp is the number of the semantic figure patterns extracted correctly. Nfp is the 
number of the extracted figure patterns which are not true semantic figure patterns. Nfn is 
the number of the semantic figure patterns not extracted in this experiment.  
First, we built topology graphs of all floor plans and applied the topology graph mining to 
them with the support 1.0. Here the support is defined as follows:  

 ff

af

M
Support  

M
= , (11) 

where Mff is the number of the floor plans where the frequent topology subgraphs appear, 
and Maf is the total number of floor plans. This value can adjust the sensitivity of the mining 
performance. As the result of the topology graph mining, our method extracts 12 kinds of 
topology subgraphs, which represent the frequent topological figure patterns and  
potentially desired semantic figure patterns as illustrated in Fig. 9. These frequent 
topological figure patterns included 5 out of 8 types of electrical symbols. The remaining 3 
types could not be obtained because of the following reasons. First, some of the types did 
not appear frequently enough to satisfy the support value. The other reason is the error of 
labelling some edges, where, for example, a geometric primitive did not quite reach to the 
other one, even though they should touch each other, and vice versa as shown in Fig. 10. In 
this step, the precision and recall were 66% and 82%, respectively. 
 

 

Fig. 9. Result of topology graph mining 
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Fig. 10. Example of labeling error 

Next, we eliminated wrong semantic figure patterns by checking the appearance similarity 
between the geometric primitive sets corresponding to the same topological subgraphs. The 
threshold for d was set to be 1.0 which was determined experimentally. In this step, the 
precision was improved to be 72%. However, the proposed method has to estimate affine 
transformations for all of the combinations of geometric primitives and those of control 
points individually. This will lead to the explosion of the computation time. Moreover, not 
all of the erroneous semantic figure patterns were eliminated in this step because similar 
configurations could exist among them. Figure 11 shows an example, where the geometric 
primitives are arranged similarly, even though they do not represent electrical symbols. 
 

 

Fig. 11. Example of erroneous figure patterns having similar configuration 

In the end, the proposed method shows the obtained results and asks the user to choose 
correct semantic figure patterns using the GUI shown in Fig. 12. In this step, wrong semantic 
figure patterns were greatly reduced and the precision rose to 92%. This work is light 
because the user only selects correct semantic figure patterns. Figura 13 shows one of the 
resultant floor plans. Table 1 lists the precision and recall at each step. 
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Fig. 12. GUI 
 

 

Fig. 13. Example of result 
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Precision Recall

Topology graph mining

Topology graph mining and
affine transformation

Topology graph mining and

affine transformation and

interaction with user

92% 82%

72% 82%

66% 82%

 

Table 1. Precision and recall at each step 

6. Discussion 

We now consider the experimental results and future development. One of the serious 
problems is the explosion of the computation time, especially in the case of dealing with 
large amounts of the drawing data. In our method, the reduction of the computation time is 
equivalent to reducing the combinations of geometric primitives and those of control points 
in the estimation of the affine transformations. This problem is caused by the use of 
undirected graphs as the topology graphs, which gives rise to the ambiguity of the 
correspondence between the geometric primitives and that between the control points. This 
ambiguity increases the combinations of geometric primitives and those of control points. 
For example, in the case of Fig. 14(a), the proposed method generates the same topology 
graphs and confuses the correspondence between the geometric primitives and that 
between the control points. If we can use the directed graphs as the topology graphs, the 
results obtained in the topology mining step will make the correspondences clear as 
illustrated in Fig. 14(b). This will lead to a reduction in the number of combinations and the 
amount of computation time. To actualize this approach, we should develop and use a fast 
graph mining method for directed graphs. 
The failure of the extraction of the desired semantic figure patterns is caused by the change 
of edge labels that occurs when the corresponding geometric primitives are displaced 
slightly as illustrated in Fig. 10. Since this failure will lead to poor recall, this is the problem 
to be solved at present. But this problem is very difficult and leaves room for future studies. 
The basic approach to this problem is to simplify the description of the edge labels so that 
their drastic change does not occur in the case of a slight displacement of the geometric 
primitives. Contrary to this, the precision can be improved using knowledge on the desired 
object. In the case of dealing with the floor plans, for example, the system can assume that 
the desired symbols consist of geometric primitives in a large circle. But this will 
compromise the generality of the proposed method. From this viewpoint, we believe that 
the objects extracted erroneously should be excluded with the user interaction. 
This time we used the drawing data made with Microsoft Office Visio. If the proposed 
method becomes applicable to the data made with Microsoft Office PowerPoint, the 
drawing data distributed on the Internet could be sorted and subsequently exploited by 
many users by incorporating social tagging into the figure pattern mining method (Setz & 
Snoek, 2009). This is a kind of automatic clipart generation. 
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Fig. 14. Undirected and directed topology subgraphs 

7. Conclusion 

In this chapter, we described a 2D figure pattern mining approach where semantic figure 

patterns can be obtained from the drawing data without prior knowledge. The proposed 

method first builds the topology graphs to represent topology of geometric primitives in the 

drawing data. Then our method extracts frequent topology subgraphs by mining all of the 
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topology graphs and tries to sort out correct semantic figure patterns from them by inferring 

affine transformations among the sets of their corresponding geometric primitives.  

In the experiment, 82% of electrical symbols placed in floor plans could be extracted through 

the interaction with the user. However, some electrical symbols were not extracted in the 

cases where the electrical symbols were placed in few floor plans and where an edge label 

was changed by the slight error of geometric primitive positions. We hope this kind of study 

will continue along the lines described in the previous section. 
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