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1. Introduction

The scope of our study in this paper is limited to the analysis of the phonons, i.e. phonon
behavior in thin layered structures or crystalline films, which implies the existence of two
boundary surfaces perpendicular to a preferred direction. Besides that, these film-structures
could be doped by foreign atoms from one or both sides of the boundary surfaces in which
way the internal configuration of the atom distribution is disturbed.
Since elastic constants and atomic masses define phonon spectra and states, we conclude
that they must be different in the film-structures with respect to the corresponding ones in
the ideal unbounded and translational invariant crystalline structures. The change of mass
distribution along one direction and the existence of the finite structure width along that
direction introduces additional boundary conditions into the analysis of the phonon behavior.
We shall study the thin film ”cut-off” from the ideal tetragonal crystalline structure with
lattice constants ax = ay = a and az = 3a. This structure has a finite width in the z-direction,
while XY-planes are assumed to be infinite, meaning that the structure possesses two infinite
boundary surfaces (parallel to the unbounded XY-planes) lying at z = 0 and z = L (Fig.
1). The number of the atoms located along z-direction is assumed to be Nz, and it is also
assumed that torsion constants Cαβ (α �= β) can be neglected with respect to the elongation
constants Cαα (Tošić et al., 1987). These structures will be titled the ideal crystalline films.
The doping (by sputtering) of the ideal film with guest atoms (impurities) along z-direction,
from one or mutually from both boundary surfaces, produces the film with disturbed internal
distribution of atoms. Such structures will be entitled asymmetrically or symmetrically
deformed crystalline films, respectively.
We have decided to study phonon behavior in the above mentioned film-structures for
two reasons. Phonons are the basic elementary excitations in the condensed matter
which have the decisive role in the creation of Cooper pairs of electrons in the
low-temperature superconductivity. On the other hand, although the existence of phonons
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2 Thermodynamics

and Cooper pairs in the high-temperature superconductive ceramics is experimentally
established (Chang & Esaki, 1992), the very mechanism of the superfluid charge transfer
is not yet resolved (Bednorz & Müller, 1988). Taking into account the technical and
technological treatments for the production of these high-temperature superconductors –
they are small-grain crystalline structures (of small dimensions with pronounced boundaries)
produced by doping, more precisely sputtering by guest atoms in certain stoichiometric ratio
(Šetrajčić et al., 1990; Harshman & Mills, 1992), it is necessary to formulate the corresponding
theoretical model. The simplest model for the bounded structures is the ideal crystalline film.
Within the framework of this model we shall study only and exclusively the influence of
the system boundaries onto spectra and states of phonons and their contribution to the basic
physical properties of the system. In order to consider also the influence of the doping, we
shall study the spectra and states of phonons in the deformed films and estimate what has
the stronger influence to the change of the system behavior: the existence of the boundary
surfaces or the disturbance of the internal distribution and type of atoms inside the system.
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Fig. 1. Sight of crystalline film-structure model

The starting point of our study will be the standard Hamiltonian of the phonon system
(Mahan, 1983; Jones & March, 1985) in the nearest neighbors’ approximation:

HID =
1

2 ∑
�n

p2
�n

M�n
+

1

4 ∑
�n,�λ

C
�n,�λ

(�u�n −�u
�n+�λ

)2 , (1)

where: �p�n and �u�n – are the momentum and displacement of the atom of mass M�n at the crystal
site �n = a(nx�ex + ny�ey + 3nz�ez), while C

�n,�λ
≡ C�λ,�n – is Hooke’s elastic constants between the

atom at the site�n and its neighboring atoms at the site �m =�n+�λ, �λ = a(�ex +�ey + 3�ez).
One of the most important aims is to study if the minimal frequencies of the atoms in the
film are non-vanishing, i.e. does the phonon energy spectrum possesses the gap. In the
structures where such gap exists, there can arise the damping or the elimination of the
acoustical phonons (Tošić et al., 1987; Šetrajčić et al., 1990) so that there exist only the phonons
of optical type. This would result in the film behavior like a ”frozen” structure until certain
corresponding activation temperature is reached – the temperature necessary for the creation
of the phonons in the film (Djajić et al., 1987), since bellow that temperature, real (acoustical)
phonons can not be present1.

1For example, electrons would move in such a structure without friction up these temperatures, i.e.
they would behave like ideal conductors.

318 Thermodynamics

www.intechopen.com



Phonon Participation in Thermodynamics and
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Taking this into account, the presence of the phonon gap might represent the possible
explanation of the fact (CRC HCP, 1989) that thin films represent better ordered
thermodynamical systems and that they have higher critical superconductive temperature
than the corresponding bulk structures. Since the change in the properties of the anisotropic
structures, is caused by the change in the dispersion law, it is necessary to study the
behavior of relevant physical quantities in order to obtain a more complete picture about these
processes.
In Section 2 we first derive the dispersion law for phonons and calculate the possible phonon
states in the above mentioned crystalline films, with separate study of the situation in the ideal
(non-deformed), and in (symmetrically and asymmetrically) deformed films and the results
are compared to the corresponding ones for unbounded structures with no breaking of the
symmetry of the internal distribution of the atoms (ideal infinite structures). The Section 3 is
devoted to the determination of the strength and the analysis of the diversity of the influences
(the presence of boundaries, the type and manner of the doping, etc.) onto the changes of
energy spectrum and specific moments in the population of the phonon states resulting from
it, compared to the results with the known ones – for non-deformed bulk-structures. The
conclusion gives the summary of the most important results and the discussion of the level of
impact of boundary and deformation parameters.

2. Dispersion law and states of phonons in films

The Hamiltonian of the phonon subsystem of the model film-structure in the nearest
neighbors approximation (Tošić et al., 1995) is given in the form expression 1, where:

−
Nβ

2
≤ nβ ≤

Nβ

2
; Nβ ∼ 108 ; β ∈ (x,y) ; 0≤ nz ≤ Nz ; Nz =

L

3a
∼ 20,

so that it can be written in the expanded form as:

HFS =
1

2 ∑
α

∑
nx,ny

Nz

∑
nz=0

(p α
nx,ny,nz

)2

Mnx,ny,nz

+
1

4 ∑
α

∑
nx,ny

{

C α
−1

(

u α
nx,ny,0

)2
+

+ Cα
0

[

(

u α
nx+1,ny,0

− u α
nx,ny,0

)2
+

(

u α
nx−1,ny,0

− u α
nx,ny,0

)2
+

+
(

u α
nx,ny+1,1 − u α

nx,ny,0

)2
+

(

u α
nx,ny−1,0 − u α

nx,ny,0

)2
+

+
(

u α
nx,ny,1

− u α
nx,ny,0

)2
+

(

u α
nx,ny,0

)2
]

+

+ Cα
1

[

(

u α
nx,ny,1

− u α
nx,ny,2

)2
+

(

u α
nx,ny,1

− u α
nx,ny,0

)2
]

+

+
Nz−1

∑
nz=1

C α
nz

[

(

u α
nx+1,ny,nz

− u α
nx,ny,nz

)2
+

(

u α
nx−1,ny,nz

− u α
nx,ny,nz

)2
+

319Phonon Participation in Thermodynamics and Superconductive Properties of Thin Ceramic Films

www.intechopen.com



4 Thermodynamics

+
(

u α
nx,ny+1,nz

− u α
nx,ny,nz

)2
+

(

u α
nx,ny−1,nz

− u α
nx,ny,nz

)2
]

+ (2)

+
NZ−2

∑
nz=2

C α
nz

[

(

u α
nx,ny,nz+1 − u α

nx,ny,nz

)2
+

(

u α
nx,ny,nz−1 − u α

nx,ny,nz

)2
]

+

+ C α
Nz−1

[

(

u α
nx,ny,Nz−1 − u α

nx,ny,Nz

)2
+

(

u α
nx,ny,Nz−1 − u α

nx,ny,Nz−2

)2
]

+

+ C α
Nz

[

(

u α
nx+1,ny,Nz

− u α
nx,ny,Nz

)2
+

(

u α
nx−1,ny,Nz

− u α
nx,ny,Nz

)2
+

+
(

u α
nx,ny+1,Nz

− u α
nx,ny,Nz

)2
+

(

u α
nx,ny−1,Nz

− u α
nx,ny,Nz

)2
+

+
(

u α
nx,ny,Nz−1 − u α

nx,ny,Nz

)2
+

(

u α
nx,ny,Nz

)2
]

+ C α
Nz+1

(

u α
nx,ny,Nz

)2
}

.

This Hamiltonian describes the film-structure model presented at the Fig.1. It enables further
theoretical analysis of the properties, specific effects and changes in the phonon behavior
in above mentioned translational non-invariant systems. All changes and specific effects
which can occur in the system, will be treated as a strict consequence of the contribution
of the mechanical vibrations of the atoms of the crystal lattice under the influence of the
presence of boundary surfaces and asymmetric distribution of the atoms along one preferred
(z) crystallographic direction in that system.

2.1 Ideal film-structures

The concept of the ideal film means here the model of the crystal bounded by two parallel
surfaces which can ”breathe” (no rigid walls) along one crystallographic direction (which
we choose for the positive direction of z-axis) perpendicular to the boundary surfaces and
unbounded in the two other remaining directions. Furthermore, besides boundaries, there are
no other defects in the ideal film, so inside the boundaries we encounter single atom tetragonal
structure.
The Hamiltonian, expression 2, adapted to the above mentioned model can be separated into
two parts: the first one HS, which includes ”surface” terms and the second one HB, which
includes ”bulk” terms subject to the conditions (see Fig.1):

Mnx,ny,nz ≡ M ; C α
nxnynz ;nx±1,nynz

= C α
nxnynz ;nxny±1,nz

= C α
nxnynz ;nxnynz±1 ≡ Cα .

Since there are no layers for nz ≤ −1 and for nz ≥ Nz + 1, we must include the following
condition, too:

u α
nx,ny,l

= 0; l ≤ −1 ∧ l ≥ Nz + 1 (i.e. l �∈ [0, Nz]) .

If we would assign C α
−1 = C α

Nz+1 = 0, then the boundary atoms (for nz = 0 and nz = Nz) would
be ”frozen”, i.e. we would have the effects of rigid walls (Maradudin, 1987). In this way, the
expression for the total Hamiltonian of the ideal crystalline film obtains the following form:

HIF = HS + HB , (3)
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where:

HS =
1

2M ∑
α

∑
nx,ny

[

(

p α
nx,ny,0

)2
+

(

p α
nx,ny,Nz

)2
]

+

+
1

4 ∑
α

Cα ∑
nx,ny

[

2
(

u α
nx,ny,0

)2
+ 2

(

u α
nx,ny,Nz

)2
+

+
(

u α
nx,ny,Nz−1 − u α

nx,ny,Nz

)2
+

(

u α
nx,ny,1

− u α
nx,ny,0

)2
+

+
(

u α
nx,ny,0

− u α
nx+1,ny,0

)2
+

(

u α
nx,ny,0

− u α
nx−1,ny,0

)2
+ (4)

+
(

u α
nx,ny,0

− u α
nx,ny+1,0

)2
+

(

u α
nx,ny,0

− u α
nx,ny−1,0

)2
+

+
(

u α
nx,ny,Nz

− u α
nx+1,ny,Nz

)2
+

(

u α
nx,ny,Nz

− u α
nx−1,ny,Nz

)2
+

+
(

u α
nx,ny,Nz

− u α
nx,ny+1,Nz

)2
+

(

u α
nx,ny,Nz

− u α
nx,ny−1,Nz

)2
]

;

HB =
1

2M ∑
α

∑
nx,ny

(

p α
nx,ny,nz

)2
+

1

4 ∑
α
Cα ×

× ∑
nx,ny

{

Nz−1

∑
nz=1

[

(

u α
nx+1,ny,nz

− u α
nx,ny,nz

)2
+

(

u α
nx−1,ny,nz

− u α
nx,ny,nz

)2
+

+
(

u α
nx,ny+1,nz

− u α
nx,ny,nz

)2
+

(

u α
nx,ny−1,nz

− u α
nx,ny,nz

)2
]

+ (5)

+
Nz−2

∑
nz=2

[

(

u α
nx,ny,nz+1 − u α

nx,ny,nz

)2
+

(

u α
nx,ny,nz−1 − u α

nx,ny,nz

)2
]

+

+
(

u α
nx,ny,Nz−1 − u α

nx,ny,Nz−2

)2
+

(

u α
nx,ny,1

− u α
nx,ny,2

)2
}

.

We have decided to use the approach of Heisenberg’s equations of motion (Tošić et al., 1992;
Šetrajčić et al., 1992; Šetrajčić & Pantić, 1994) for the determination of possible frequencies
(energy spectrum) and the states of phonons. We start from the following system of the
equations of motion for the phonon displacements:

– for nz = 0

ü α
nx,ny,0

− Ω2
α

(

u α
nx+1,ny,0

+ u α
nx−1,ny,0

+ u α
nx,ny+1,0+

+ u α
nx,ny−1,0 + u α

nx,ny,1
− 6u α

nx,ny,0

)

= 0; (6)

– for 1≤ nz ≤ Nz − 1

ü α
nx,ny,nz

− Ω2
α

(

u α
nx+1,ny,nz

+ u α
nx−1,ny,nz

+ u α
nx,ny+1,nz

+

+ u α
nx,ny−1,nz

+ u α
nx,ny,nz+1 + u α

nx,ny,nz−1 − 6u α
nx,ny,nz

)

= 0; (7)
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6 Thermodynamics

– for nz = Nz

ü α
nx,ny,Nz

− Ω2
α

(

u α
nx+1,ny,Nz

+ u α
nx−1,ny,Nz

+ u α
nx,ny+1,Nz

+

+ u α
nx,ny−1,Nz

+ u α
nx,ny,Nz−1 − 6u α

nx,ny,Nz

)

= 0. (8)

where Ωα =
√
Cα/M. The solution of this system of Nz+1 homogeneous differential-difference

equations for phonon displacements can be looked for in the form of the product of an
unknown function (along z-axis) and harmonic function of the position (within XY-plane)
known from the bulk solutions, i.e.

Iu α
nx,ny,nz

(t) = ∑
kx,ky,kz

+∞
∫

−∞

dω eia(kxnx+kyny)−itω Φ α
nz
; Φ α

nz
≡ Φ α

nz
(kz, ω) . (9)

Substituting this expression into the equations 6–8 we obtain:

RΦα
0 + Φα

1 = 0

Φα
0 + RΦα

1 + Φα
2 = 0

· · · ·
Φ α

nz−1 + RΦ α
nz
+ Φ α

nz+1 = 0 (10)

· · · ·
Φ α

Nz−2 + RΦ α
Nz−1 + Φ α

Nz
= 0

Φ α
Nz−1 + RΦ α

Nz
= 0

where:

R ≡W 2
α − 4Fkxky − 2; Wα ≡

ω

Ωα
; Fkxky ≡ sin2

akx
2

+ sin2
aky

2
. (11)

In this way the system of Nz + 1 differential-difference equations 6–8 turns into a system of
Nz + 1 homogeneous algebraic difference equations 10. In order that this system possesses
nontrivial solutions, its determinant:

DNz+1(R) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R 1 0 0 · · · 0 0 0 0
1 R 1 0 · · · 0 0 0 0
0 1 R 1 · · · 0 0 0 0

· · · · . . . · · · ·
0 0 0 0 · · · 1 R 1 0
0 0 0 0 · · · 0 1 R 1
0 0 0 0 · · · 0 0 1 R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(12)

must vanish. The roots (poles) of this determinant represent one of the forms of Chebyshev’s
polynomials of the second order (Cottam & Tilley, 1989) and can be written in the form:

DNz+1(R) ≡ DN I
z−1(R) =

sin(N I
z ζ)

sinζ
; N I

z = Nz + 2; ζ �= 0,

where: R = 2cosζ. Above mentioned condition (DNz+1(Rν) = 0) is satisfied for:

ζν =
π ν

N I
z
; ν = 1,2,3, ... , N I

z − 1, (13)
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whose substitution into expressions 11 leads to the expression for demanded (possible)
unknown phonon frequencies:

I ω α
kxky

(μ) = 2Ωα

√

G I

μ +Fkxky , (14)

where:

G I

μ ≡ sin2
akz(μ)

2
; kz(μ) =

π

a

μ

N I
z
; μ ≡ N I

z − ν = 1,2,3, ... , N I
z − 1. (15)

One must notice that contrary to kx and ky which range from 0 to π/a, one has:

kmin
z ≡ kz(1) =

π

a

1

N I
z
> 0;

kmax
z ≡ kz(N I

z − 1) =
π

a

N I
z − 1

N I
z

<
π

a
,

(16)

because N I
z ≪

(

Nx,Ny
)

.
If one divides the system of equations 10 by Φα

0 ≡ Φα
0(kz) and rejects the last equation, this

system is obtained in the new form:

Rν + ̺1 = 0, for nz = 0

1+ Rν ̺1 + ̺2 = 0, for nz = 1

̺nz−1 + Rν ̺nz + ̺nz+1 = 0, for 2≤ nz ≤ Nz − 1

(17)

where Rν ≡ 2 cosζν and:

̺nz ≡ ̺ α
nz

= (Φα
0)

−1
Φ α

nz
=⇒ Φ α

nz
= Φα

0ր α
nz
. (18)

The last of the equations 18 is satisfied for:

̺nz = (−1) nz {P sin(nzζν) + Qsin [(nz − 1)ζν]} , (19)

and using this and expression 13 it follows:

̺1 = −Psin(ζν) ; ̺2 = P sin(2ζν) + Qsin(ζν) .

Substituting these expressions into the first and second equation in the system od difference
equations 18 we arrive to the unknown coefficients P ≡ Pν = Rν sin

−1 ζν and Q ≡ Qν =
− sin−1 ζν, while returning them into expressions 19 and 18, it follows:

Φα
nz
(kz) = (−1) nz

sin [(nz + 1)ζν]

sinζν
Φα

0 . (20)

According to above calculations – combining 9, 20 and standard normalization (Callavay,
1974), one can easily obtain the final expression for phonon displacements in the form:

Iuα
nx,ny,nz

(t) = ∑
kxky

N I
z−1

∑
μ=1

IN α
nz

(

kxky, μ
)×

× e
ia (kxnx+kyny)−itω α

kxky
(μ)

sin [(nz + 1) akz(μ)] ; (21)

IN α
nz

(

kxky, μ
)

= (−1)nz

√

h̄

MNxNyN I
z ω α

kxky
(μ)

.
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8 Thermodynamics

Comparing the result obtained here with the corresponding one for ideal infinite structures,
one can conclude that mechanical vibrations in the ideal unbounded structure are plane waves
in all spatial directions, while in the thin film they represent the superposition of the standing
waves in z-direction and plane waves in XY-planes. It is also evident that the displacement
amplitude in the films is ∼ 104

√
2/N I

z times larger2 than the amplitude in corresponding
unbounded structures.
Using expression 14 one can determine the dispersion law for phonons in thin undeformed
ideal film3 :

I
E α
kxky

(μ)≡ h̄ I ω α
kxky

(μ) = Eα
I

√

G I

μ +Fkxky , (22)

where Eα
I
= 2h̄Ωα and which is valid together with expressions 11 and 15.

We represent graphically this energy spectrum at the Fig.2 vs XY-plane vector k2 = k2x + k2y:

IE z
μ ≡

(

I
E z
kxky

(μ)/Ez
I

)2
=

IE z
kz(μ)

(

Fkxky

)

.

Fig.2 represent energy spectrum of phonons in the ideal (ultrathin Nz = 4) crystalline films vs.
two-dimensional (XY planar) wave vector. Within the band of bulk energies with continual
spectrum (bulk limits are denoted by solid dashed lines) one can notice five allowed discrete
phonon energies in the film studied (thin solid lines). One can notice the narrowing of the
energy band and the existence of the energy gap.

0 5, 1 0, 1 5, 2 0,

1 0,

0 5,

1 5,

Rxy

E
�

� i

Fig. 2. Phonon spectra in the ideal ultrathin crystalline films

2For very thin films N I
z ∼ 10, so the factor of the amplitude increase can achieve even 2000.

3Most common treatment is that using classical procedure, for example, second quantization method
(Callavay, 1974), on the basis of expressions 3–??, 14 and 20, the Hamiltonian HIF is diagonalized, and
then the energy spectrum in the form 22 is readily obtained.

324 Thermodynamics

www.intechopen.com



Phonon Participation in Thermodynamics and
Superconductive Properties of Thin Ceramic Films 9

One can clearly see from the plot explicate discreteness of the allowed energy levels
of phonons in the ideal film with respect to the continuum of these values for the
corresponding bulk-structures. All three acoustic frequencies in bulk-structures vanish when

three-dimensional (spatial) vector k=
∣

∣

∣

�k
∣

∣

∣
vanishes, while the minimal frequencies of phonons

in the thin ideal film-structure are:

∆i ≡ (ω I
α)min ≡ ω I

α(kx = ky = 0, kz = kmin
z )≈ Ωα

π

N I
z
> 0. (23)

On the other hand, maximal values of the frequencies of acoustic branches in the ideal infinite

crystal tend to the value (ωB
α)max = 2Ωα

√
3 when kα → π/a , α = x,y,z, while in the studied

ideal film they are:

(ω I
α)max ≡ ω I

α

(

kx = ky =
π

a
, kz = kmax

z

)

≈ 2Ωα

√
3

[

1− π2/12

(N I
z)

2

]

< (ωB
α)max . (24)

It can be also seen from the same figure that the width of the energy band in the film is
narrower. From expressions 23 and 24 we can determine the total narrowing of the band
of allowed energies of the phonons in the film-structures with respect to the bulk band:

W I

α ≡ h̄ {(ωB
α)max − [(ω I

α)max − (ω I
α)min]} ≈ h̄Ωα

π (N I
z + 1)

(N I
z)

2
> 0. (25)

The functional behavior and the physical explanation, as well as the effects that might be
caused by the existence of the frequency threshold 23 and the band narrowing 25 will be
exposed in the next Section after the analysis of the phonon behavior in the deformed
structures.

2.2 Deformed film-structures

During sputtering perpendicular to the boundary surfaces (Cava et al., 1987; Chu et al., 1987;
Politis et al., 1987; Segre et al., 1987; Dietrich et al, 1987; Kuwahara, 1992; Notzel et al., 1992),
the atoms that are introduced locate themselves along z-axis since this is energetically most
convenient: az = 3a and ax = ay = a. For that reason the effective mass of the atom (as well
as the elongation constant), at some site in the crystalline lattice, will depend on its relative
position (with respect to the origin of z-axis), i.e. on the lattice index in the z-direction, but not
in x and y directions:

M�n ≡ Mnx,ny,nz = Mnz .

Using the Heisenberg equations of motion for u and p with the Hamiltonian (given by
expression 2), taking into account above mentioned conditions, one arrives to the system of
Nz + 1 homogeneous differential-difference equations for the phonon displacements:

– for nz = 0

ü α
nx,ny,0

=
Cα
0

M0

(

u α
nx+1,ny,0

+ u α
nx−1,ny,0

+ u α
nx,ny+1,0

+ u α
nx,ny−1,0 + u α

nx,ny,1
− 5u α

nx,ny,0

)

+ (26)

+
Cα
1

2M0

(

u α
nx,ny,1

− uα
nx,ny,0

)

− C α
−1

2M0
u α
nx,ny,0

,
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– for 1≤ nz ≤ Nz − 1

ü α
nx,ny,nz

=
C α
nz

2Mnz

[

2
(

u α
nx+1,ny,nz

+ u α
nx−1,ny,nz

+ u α
nx,ny+1,nz

+ u α
nx,ny−1,nz

)

+

+ u α
nx,ny,nz+1 + u α

nx,ny,nz−1 − 10u α
nx,ny,nz

]

+ (27)

+
C α
nz+1

2Mnz

(

u α
nx,ny,nz+1 − u α

nx,ny,nz

)

+
C α
nz−1

2Mnz

(

u α
nx,ny,nz−1 − u α

nx,ny,nz

)

,

– for nz = Nz

ü α
nx,ny,Nz

=
C α
Nz

MNz

(

u α
nx+1,ny,Nz

+ u α
nx−1,ny,Nz

+ u α
nx,ny+1,Nz

+

+ u α
nx,ny−1,Nz

+ u α
nx,ny,Nz−1 − 5u α

nx,ny,Nz

)

+ (28)

+
C α
Nz−1

2MNz

(

u α
nx,ny,Nz−1 − u α

nx,ny,Nz

)

−
C α
Nz+1

2MNz

u α
nx,ny,Nz

.

The solution of this system of equations can be looked for in the form of the product of an
unknown function in z-direction and plane harmonic waves in XY-planes:

Du α
nx,ny,nz

(t) = ∑
kx,ky,kz

+∞
∫

−∞

dw eia(kxnx+kyny)−itω Ψ α
nz
; Ψ α

nz
≡ Ψ α

nz
(kz, ω) . (29)

Calculating corresponding derivatives and introducing them into equation 27 we obtain the
difference equation for the unknown functions Ψ α

nz
:

2
(

Mnz ω2 − 4C α
nz
Fkxky

)

Ψ α
nz
+ C α

nz

(

Ψ α
nz+1 + Ψ α

nz−1 − 2Ψ α
nz

)

+ (30)

+C α
nz+1

(

Ψ α
nz+1 − Ψ α

nz

)

+ C α
nz−1

(

Ψ α
nz−1 − Ψ α

nz

)

= 0

valid for nz = 1,2,3, ... , Nz − 1. For nz = 0, using the same procedure, one obtains from
equation 26 the first (upper) boundary equation:

2
(

M0ω2 − 4Cα
0 Fkxky

)

Ψα
0 + Cα

0 (Ψ
α
1 − 2Ψα

0) + (31)

Cα
1 (Ψ

α
1 − Ψα

0)− C α
−1 Ψα

0 = 0

and for nz = Nz, using equation 28, the second (lower) boundary equation:

2
(

MNz
ω2 − 4C α

Nz
Fkxky

)

Ψ α
Nz

+ C α
Nz

(

Ψα
Nz−1 − 2Ψ α

Nz

)

+ (32)

+C α
Nz−1

(

Ψ α
Nz−1 − Ψ α

Nz

)

− C α
Nz+1 Ψ α

Nz
= 0.

The procedure for the determination of the allowed phonon states using the above equations is
extremely complicated4. For that reason we are going to perform the transition to continuum

4In fact, it is not known or elaborated in the literature for this, completely general case.
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(continuum approximation), i.e. transition from the discrete to continual variables, and
expand the corresponding quantities into the Taylor’s series:

nz −→ z ; Ψ α
nz

−→ Ψα(z) ; Mnz −→ M(z) ; az −→ a(z) ; C α
nz
−→ Cα(z) .

Besides that, as a consequence of sputtering, i.e. clustering of foreign atoms around the atoms
of the basic matrix (Tošić et al., 1987; Šetrajčić et al., 1990; Tošić et al., 1992; Ristovski et al.,
1989), the mass of the basic matrix must be substituted by the corresponding reduced mass:

M−1(z) =M−1
m + n(z)M−1

d , (33)

where: Mm – is the mass of the basic matrix,Md – the mass of doping atoms and n(z) – their
number at the site z (measured from the lower boundary surface of the crystalline film).
After these transformations and introduction into the difference equation 30, it becomes a
second order differential equation:

d2 Ψα(z)

dz2
+ C−1

α (z)
dCα(z)

dz

dΨα(z)

dz
−

[

4Fkxky

a2(z)
− M(z)ω2

Cα(z) a2(z)

]

Ψα(z) = 0. (34)

Further solving of this differential equation demands the specification of the functional
dependence of the quantities M(z), Cα(z) and a(z), and they depend not only on the procedure
of the sputtering of the basic matrix – ideal crystalline film-structure, but also on the number,
type and distribution of the sputtered atoms.

2.2.1 Asymmetrical deformation

Taking into account that the production of oxide superconductive ceramics includes
the sputtering with foreign atoms (Cava et al., 1987; Chu et al., 1987; Politis et al., 1987;
Segre et al., 1987; Dietrich et al, 1987; Kuwahara, 1992; Notzel et al., 1992; Johnson, 1995), we
shall assume that it is performed perpendicularly to one (upper) of the boundary surfaces
of the model film-structure. For this reason, doping atoms cluster along z-direction, from this
upper surface towards lower boundary surface and let us assume the (approximate) parabolic
distribution of such ”weighted” atoms, i.e. their reduced masses:

M(z) −→ M
A
(z) = A

A

M
+ B

A

M
(z− L)2 .

Using boundary conditions:

MA(0) =Mm ; MA(L) =
MmMd

Md − nMm
,

we determine the unknown coefficients A
A

M
and B

A

M
, so that we obtain:

MA(z) =
Mm

OA
M

[

1−
(

1−OA
M

)

(

1− z

L

)2
]

; OA
M
= 1− n

Mm

Md
. (35)

The sputtering of the basic matrix causes also (parabolic) change of the lattice constant:

a(z) −→ a
A
(z) = A

A

a + B
A

a (z− L)2 ,
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with boundary conditions:

aA(0) = az ; aA(L) =
az
n
,

from which it follows:

a
A
(z) = az

[

1− n− 1

n

z

L

(

2− z

L

)

]

. (36)

Since Hooke’s constants may be expressed as Cα(z) = const(α) a−γ(z), using expression 36
one can write:

CA

α (z) = Cα

[

1+ γ
n− 1

n

z

L

(

2− z

L

)

]

. (37)

Furthermore, instead of a
A
(z) and CA

α (z) we shall use their values averaged over the total film
width (L):

aA
z ≡ aA (z) =

1

L

L
∫

0

aA (z)dz = f An az ; f An ≡ n+ 2

3n
;

Cα
A
≡ CA

α (z) =
1

L

L
∫

0

CA

α (z)dz = gA
n Cα

z ; gA
n ≡ 1+ 2γ

n− 1

3n
.

(38)

To simplify the solution of the last differential equation, besides 35 and 38, it is convenient to
change variable z→ η: 1− z/L = Λ η, so that it becomes:

d2Ψ
A

α

dη2
+KA

α

{

[

1−
(

Λ
A

α

)2 (

1−OA

M

)

η2

]

ω2 − 4
OA

M

Mm
Cα

A
Fkxky

}

Ψ
A

α = 0. (39)

Introducing new notations:

KA

α =
L2

(

Λ
A

α

)2
Mm

aA
z
2 Cα

A
OA

M

; Λ
A

α =

√

aA
z Ω

A

α

Lω
; Ω

A

α = Ωα τA
α (n) ; τA

α (n) =

√

√

√

√

gA
n OA

M

1−OA

M

(40)

and

AQ α
kxky

(ω) =
L

aA
z

[

ω

Ω
A

α

(

1−OA

M

)−1
− 4

Ω
A

α

ω
Fkxky

]

≡

≡ 2s+ 1; s = 0,1,2, ... , (41)

the above differential equation can be turned into Hermit-Weber one (Callavay, 1974):

d2Ψ
A

α

dη2
+

[

AQ α
kxky

(ω)− η2
]

Ψ
A

α = 0, (42)

with the solution:
Ψ

A

α ≡ Ψ
A

α (η) −→ A
Ψα
s (η) =

AN α
s Hs(η)e

−η2/2 , (43)

where Hs(η) – is Hermitian’s polynomial of the order s. In order that atomic displacements

remain finite, it is necessary that
AQ α

kxky
(ω) satisfies the identity condition (expressed by

41) which, in fact, insures the physics-chemical (crystallographic) stability of the model
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film-structure. This identity allows the determination of the allowed vibrational frequencies
of the system:

Aω α
kxky

(s) =
Ω

A

α

2

[

GA

s +

√

(

GA

s

)2
+Fkxky

]

, (44)

where Fkxky is defined in 11, and

GA

s ≡ 2s+ 1

NA
z

; NA
z =

L

aA
z

(

1−OA

M

)−1
.

It is clear from this expression that none of the possible frequencies A ω α
kxky

(s) vanishes, neither

for s = 0, nor for (dimensionless) twodimensional vector q = a−1
√

k2x + k2y → 0.

Since we have solved Hermite-Weber’s equation 42 without taking into account the boundary
conditions, it must be supplied by two boundary equations 31 and 32, for z = 0 and z= L, i.e.
its solution 43 must satisfy these supplementary conditions. The substitution of 43 into 31 for

z = 0 ⇒ η =
(

Λ
A

α

)−1
and q = 0 gives:

{

2−OA

M

[

A ωα
0(s)

Ω
A

α

]2
}

Hs

(

1

Λ
A

α

)

= exp

{(

1− aA
z

2L

)

Aωα
0(s)

Ω
A

α

}

Hs

(

L− aA
z

Λ
A

αL

)

. (45)

By analogous procedure, solution expressed by 43 with boundary equation 32, for z = L ⇒
η = 0 and q = 0, gives:

{

2+
(

1−OA

M

)

[

Aωα
0 (s)

Ω
A

α

]2
}

Hs(0) = exp

{

aA
z

2L

Aωα
0 (s)

Ω
A

α

}

Hs

(

aA
z

Λ
A

α L

)

. (46)

Using the relationHs(x+ c) =Hs(x) + (2c)s one can write:

Hs

(

L− aA
z

Λ
A

αL

)

= (−1)sHs

(

aA
z

Λ
A

αL

)

+

(

2

Λ
A

α

)s

,

after which the equations 45 and 46 turn into a single one:

{

2−OA

M

[

Aωα
0 (s)

Ω
A

α

]2
}

[

exp

{

A ωα
0(s)

Ω
A

α

}

Hs

(

1

Λ
A

α

)

+ (−1)s+1Hs(0)

]

=

=

{

(−1)s
[

Aωα
0 (s)

Ω
A

α

]2

Hs(0) +
(

Λ
A

α

)−s
exp

{

aA
z

2L

A ωα
0(s)

Ω
A

α

}}

. (47)

It is obvious from here that the parameters Mm , Md, n, L and quantum number s are not
mutually independent. In fact, for given values, from expression 44 they define the conditions
for the existence of phonon states with the energies h̄ Aω α

kxky
(s). From this equation, one

can determine for which value of quantum number s the function Aωα
0 (s) attains minimal

value. A graphical-numerical solving method gives smin = 2. Numerical calculations and
estimates were performed for the compound La(Ba2−ε La ε )Cu3O7+δ, where it was taken

n = 3, γ = 12, OA

M
= 1/0,83, ε = 0,125, δ = 0,11, vz ≈ 3, az ≈ 1,2; all based on data from
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(Šetrajčić et al., 1990; Cava et al., 1987; Chu et al., 1987; Politis et al., 1987; Segre et al., 1987;
Dietrich et al, 1987; Kuwahara, 1992; Notzel et al., 1992; Johnson, 1995) and (Ristovski et al.,
1989; Djajić et al., 1991; Šetrajčić et al., 1994). Due to the discreteness of the solutions (2.43)
and the initial model, their total number must be equal to Nz + 1. It follows from here that the
quantum number s is bounded also from above: smax = Nz + 2, i.e. s ∈ [2, Nz + 2].
Substituting of the solution expressed by 43 into difference equation 30, and normalizing it,
the expression for the phonon displacements becomes:

Au α
nx,ny

(z, t) = ∑
kxky

NA
z −2

∑
s=2

AN α
nz

(

kxky, s
) Hs(z)e

−2(1−z/L)2/(2Λ
A
α )

2 ×

× e
i
[

a(kxnx+kyny)−t A ω α
kxky

(s)
]

; (48)

AN α
nz

(

kxky, s
) ≡ (−1)nz

√

h̄

MzNxNyNA
z A ω α

kxky
(s)

; NA
z = Nz + 4.

The analysis of this expression shows that, contrary to phonon displacements in ideal
unbounded structures (plane waves in all three spatial directions), and similar to the ideal
films (superposition of standing wave and planewaves), here they represent the superposition
of the plane waves in XY-planes and collective vibrational harmonic motion along z-direction.
The amplitude of the phonon displacements is here ∼ 104

√
2/NA

z times larger than the
corresponding one in the bulk structures, and approximately equal (in fact slightly smaller)
than in the ideal films5.
According to all above mentioned, it follows from expression 44 that the dispersion law for
phonons in the asymmetrically deformed crystalline films has the following form:

A
E α
kxky

(s) ≡ h̄ Aω α
kxky

(s) = Eα
A

[

GA

s +

√

(

GA

s

)2
+Fkxky

]

, (49)

where Eα
A
≡ h̄Ω

A

α/2, and s = 2,3,4, ... , NA
z − 2. Graphical presentation of this dispersion law

in the form
AE z

s ≡
[

A
Ez
kxky

(s)/Ez
A

]2
=

AE z
s

(

Fkxky

)

is given in the Fig.3.

Fig.3 represent the energy spectrum of phonons in the asymmetrically deformed (ultrathin
Nz = 4) crystalline films vs. two-dimensional (XY planar) wave vector. Besides the narrowing
of the energy band with five discrete levels and the presence of the energy gap (with respect
to the bulk band denoted by solid dashed lines) a shift of this band outside bulk limits can be
noticed, corresponding to the appearance of the localized phonon modes.
One can see from this plot that non of the allowed energies, i.e. possible frequencies Aωα

q (s)
does not vanish for q → 0, implying that the presence of boundaries together with the
deformation of the atom distribution of the parabolic type (expressed by 35–38) leads to the
appearance of the energy gap in the phonon spectrum, i.e. to the possible creation of the
phonons of only the optical type. Contrary to the dispersion law for phonons in unbounded
and nondeformed structures, where minimal and maximal frequency of the acoustic phonon

5See the comment bellow the expression 22.
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Fig. 3. Phonon spectra in the asymmetrically deformed ultrathin crystalline films

branches tend to 0, and 2Ωα

√
3, respectively, they have the following values here6:

(ωA
α )min ≡ Aωα

0(2) = ωA
α

(

kx = ky = 0; s = 2
)

=
5

NA
z

Ω
A

α > (ω I
α)min ; (50a)

(ωA
α )max ≡ ωA

α

(

kx = ky =
π

a
; s= NA

z − 2
)

≈ 2(2NA
z − 3)

NA
z

Ω
A

α < (ω I
α)max . (50b)

It is evident from the same figure that the width of the allowed phonon energies band in the
film is smaller7. Using expressions 49 and 50 one can determine the total narrowing of the
energy band of phonons in the asymmetrically deformed film-structure with respect to the
phonon bulk-band8:

W A

α ≡ h̄ {(ωB
α)max − [(ωA

α )max − (ωA
α )min]} ≈

≈ h̄Ωα

[

2
√
3− 4NA

z − 11

NA
z

τA
α (n)

]

> W I

α . (51)

More detailed analysis, functional behavior and physical interpretation as well as the possible
effects caused by the existence of the frequency threshold in formula 49 and narrowing of the
frequency range in expression 51 will be presented in the next Section.

6Compare with the expressions 23 and 24.
7It is also evident that this band is shifted so it leaves the bulk limits. This result which might mean

the appearance of the localized phonon modes is not discussed here in particular, since it occurs for the
higher values of the planar two-dimensional (XY) wave vector, for which the validity of the continual –
long wavelength approximation might be questioned.

8See expression 25.
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2.2.2 Symmetrical deformation

In the case of symmetrical sputtering (sputtering of the basic matrix – ideal crystalline film,
by foreign atoms mutually perpendicular to both boundary surfaces of the film) within the
framework of the parabolic approximation will be:

M(z) −→ M
S
(z) = A

S

M + B
S

M

(

z− L
2

)2
;

a(z) −→ aS (z) = A
S

a + B
S

a

(

z− L
2

)2
.

(52)

The constants A and B are determined from the boundary conditions:

MS(0) = MS(L) = n−1Md

OS

M

; OS

M
= 1+ n−1 Md

Mm
;

M
S

(

L

2

)

= Mm ; a
S
(0) = a

S
(L) =

az
n
; a

S

(

L

2

)

= az

(n is the number of sputtered atoms of the mass Md around the atom of the mass Mm of the
basic – unsputtered matrix), so that we obtain:

MS(z) =
Mm

OS

M

[

OS

M
−

(

1− 2
z

L

)2
]

; (53a)

a
S
(z) = az

[

1− n− 1

n

(

1− 2
z

L

)2
]

. (53b)

Due to CS

α(z) = const(α) a−γ
S

(z), where γ – is the decay exponent of the interatomic potentials
with distance, sputtering will also cause the change of the Hooke’s constants of elongation:

CS

α(z) = Cα
z

[

1+ γ
n− 1

n

(

1− 2
z

L

)2
]

. (54)

In order to simplify further analysis, just as in the previous case, instead of 53b and54 we shall
use their values averaged over the total film width (L):

aSz ≡ a
S
(z) = f Sn az ; f Sn =

2n+ 1

3n
,

CS

α ≡ CS

α(z) = gS
n Cα

z ; gS
n = 1+ γ

n− 1

3n
.

(55)

The notations az and Cα
z in the expressions 53 and 54 are related to the corresponding

quantities for the unsputtered matrix.
Now we can proceed to the solving of the equation 34. We introduce expressions 53a and 55
in it and perform the change of variable z→ ζ: (L− 2z)/(2L) = ΛS

α ζ, after which it takes the
form:

d2Ψα
S

dζ2
+KS

α

{

[

OS

M
− 4

(

Λ
S

α

)2
ζ2

]

ω2 − 4
OS

M

Mm
Cα

S
Fkxky

}

Ψ
S

α = 0, (56)

KS

α =
L2

(

Λ
S

α

)2
Mm

aSz
2CS

αOS

M

; Λ
S

α =

√

aSzΩ
S

α

2Lω
; Ω

S

α = Ωα τS
α (n) ; τS

α (n) =
√

gS
nOS

M
.

332 Thermodynamics

www.intechopen.com



Phonon Participation in Thermodynamics and
Superconductive Properties of Thin Ceramic Films 17

Since the atoms in the studied film (along z-direction) represent the system of mutually
coupled linear harmonic oscillators, above equation is reduced to the well-known (Callavay,
1974) Hermite-Weber’s equation:

d2Ψ
S

α

dζ2
+

[

SQ α
kxky

(ω)− ζ2
]

Ψ
S

α = 0, (57)

with:
SQ α

kxky
(ω) =

L

2aSz

(

OS

M

ω

Ω
S

α

− 4Fkxky

Ω
S

α

ω

)

. (58)

In order to secure the crystal stability of the structure, the displacements of the atoms for any
film width must remain finite, so we must introduce the restriction:

SQ α
kxky

(ω) = 2r+ 1; r = 0,1,2, ... . (59)

On the other hand, this is just the quantum-mechanical condition for the convergence of the
solutions of the equation 57, which in this case can be expressed as:

Ψ
S

α ≡ Ψ
S

α(ζ) −→
S
Ψα
r (ζ) =

SN α
r Hr(η)e

−ζ2/2 , (60)

where Hr(ζ) – is the Hermitian’s polynomial of order r in terms of ζ.
Equating the condition equations 58 and 59, one obtains the expression for the possible
phonon frequencies in the form:

Sω α
kxky

(r) =
Ω

S

α

2

[

GS

r +

√

(

GS

r

)2
+Fkxky

]

, (61)

where the function Fkxky is defined by formula 11, while

GS

r ≡
2r + 1

NS
z

; NS
z =

L

aSz
OS

M
.

One can easily see by a simple analysis of this expression that allowed phonon frequencies
express their discreteness, that they depend on all the parameters of the system (L, n, γ, Mm,
Md, az and Cα

z ) and that their minimal values do not vanish neither for r= 0, nor for (kx,ky)→
0.
Due to the presence of the boundaries, the solution 60 obtained without taking into account
the presence of the boundaries of the studied system, must be additionally supplied by two
boundary equations 31 and 32. Since we assume the symmetric conditions at the boundaries,
these two equations are identical and after the substitution 60 they give:

exp

{

Sωα
0(r)

Ω
S

α

(

1− aSz
L

)}

Hr

(

2aSz − L

2Λ
S

α

)

= (62)

=

{

3

2
−

[

Sωα
0(r)

Ω
S

α

]2
1

n

Md

Mm

}

Hr

(

− L

2Λ
S

α

)

.

One can see from here that the parameters of the studied system Mm, Md, r, n and L
(or Nz) are not mutually independent. In fact, for given values and through expression 61
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they determine the conditions of the existence of phonon states with the energies h̄ Sωα
q (r).

Numerical solving and combination of the equations 61 and 62 allow us to determine the
lowest possible energy state with r = rmin and q = 0. These calculations9 have shown that
the value of the quantum number rmin can not be lower than 1. Due to the discreteness
of the solutions (formula 61) and the initial model, their total number must be equal to
Nz + 1. It follows from here that the quantum number r must be bounded from above, too:
rmax = Nz + 1, i.e. r ∈ [1, Nz + 1].
Substituting the solution expressed by 60 into 29 and normalizing it, the expression for the
phonon displacements becomes:

Su α
nx,ny

(z, t) = ∑
kxky

NS
z −2

∑
r=1

SN α
nz

(

kxky, r
) Hr(z)e

−(1−2z/L)2/(2Λ
S
α )

2 ×

× e
i
[

a(kxnx+kyny)−t S ω α
kxky

(r)
]

; (63)

SN α
nz

(

kxky, r
)

≡ (−1)nz

√

h̄

MzNxNyN
S
z S ω α

kxky
(r)

; NS
z = Nz + 3.

The analysis of this expression shows that contrary to the phonon displacements in the ideal
unbounded structures (plane waves in all three spatial directions), similar to ideal films
(superposition of the standing and plane wave) and in the same way as in asymmetrically
deformed films, they represent here the superposition of the plane waves in XY-planes and
the collective oscillatory harmonic motion along z-direction. The amplitude of the phonon

displacements is of order ∼ 104
√

2N−1
z times higher than the corresponding one in the

bulk structures, and approximately the same as in the ideal crystalline films10. The largest
difference between the bulk and film structures is for the thin films. We must mention also,
that any relevant difference between the ideal and deformed film-structures appears only for
ultrathin films, but the quantitative analysis of this dependence within their framework of of
this analysis (continual approximation), can not be reliably performed11.
According to all the above results, the solution expressed by 61 leads to the dispersion law of
phonons in symmetrically deformed crystalline films:

S
E α
kxky

(r)≡ h̄ S ω α
kxky

(r) = Eα
S

[

GS

r +

√

(

GS

r

)2
+Fkxky

]

, (64)

where Eα
S
= h̄Ω

S

α/2 and r = 1,2,3, ... , NS
z − 2. The plot of this dispersion law in the form:

SE z
k ≡

[

S
Ez
kxky

(r)

Ez
S

]2

=
S E z

kxky

(

GS

r

)

is given at the Fig.4.
The Fig.4 represent the energy spectrum of phonons in the symmetrically deformed (ultrathin
Nz = 4) crystalline films vs. two-dimensional (XY planar) wave vector. Besides the narrowing

9Estimates were based on the data from Refs. (Šetrajčić et al., 1990), (Cava et al., 1987; Chu et al.,
1987; Politis et al., 1987; Segre et al., 1987; Dietrich et al, 1987; Kuwahara, 1992; Notzel et al., 1992;

Johnson, 1995) and (Ristovski et al., 1989; Djajić et al., 1991; Šetrajčić et al., 1994) for the compound
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Fig. 4. Phonon spectra in the symmetrically deformed ultrathin crystalline films

of the energy band with five discrete levels and the presence of the energy gap (with respect
to the bulk band denoted by thin dashed lines) a shift of this band outside bulk limits can be
noticed, corresponding to the appearance of the localized phonon modes.

It is clear from this plot that none of the allowed energies
S
Eα
q (r) does not vanish when

two-dimensional vector q≡ a
√

k2x + k2y → 0, meaning that the presence of boundaries together

with the deformation of the parabolic type (expressions 52–55) of the atom distribution leads
to the appearance of the energy gap in the phonon spectrum, i.e. to the possible creation of
phonons of only optical type. As compared to the acoustic phonon energies in unbounded and
nondeformed structures, here the minimal and maximal frequencies (compare with formula
50):

(ωS
α)min ≡ Sωα

0 (1) = ωS
α

(

kx = ky = 0; r = 1
)

=
3

NS
z

Ω
S

α > (ωA
α )min ; (65a)

(ωS
α)max ≡ ωS

α

(

kx = ky =
π

a
; r = NS

z − 2
)

≈ 2 (2NS
z − 3)

NS
z

Ω
S

α < (ωA
α )max . (65b)

It is also evident from the same figure that there arises a narrowing of the band of allowed
phonon energies in the studied film12. On the basis of formulas 64 and 65 one can

La(Ba2−εLa ε)Cu3O7+δ, where it was taken n = 3, γ = 12, ε = 0,125, δ = 0,11, vz ≈ 3, az ≈ 1,2.
10See the comment bellow the expression 21.
11The doubts that these results are the consequence of the applied (parabolic) approximation

are rejected after testing on the simplest possible examples of three- and five-layered structures

(Šetrajčić et al., 1990; Djajić et al., 1991), which can be also solved exactly.
12Besides that there is a visible shift of this band and its leaving the bulk limits. This results in the
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determine the total narrowing of the energy band of phonons in the symmetrically deformed
film-structures with respect to the phonon bulk-band (compare also with expression 51):

W S

α ≡ h̄ {(ωB
α)max − [(ωS

α)max − (ωS
α)min]} ≈

≈ h̄Ωα

[

2
√
3− 4NS

z − 9

NS
z

τS
α (n)

]

> W A

α . (66)

The analysis of the functional behavior and physical interpretation, as well as the possible
effects caused by the existence of the frequency threshold 65 and narrowing of the frequency
range 66 will be presented in the next Section.

3. Energy gap and state density of phonons in ultrathin films

The basic property of the energy spectra of the phonons in the studied crystalline films is
the narrowing of the allowed energy band13. Physically, the most interesting result of our
calculations of the dispersion law is the presence of the energy gap, i.e. the existence of the
acoustical phonons of the optical type. Analyzing the expressions 14, 44 and 61, and also the
formulas 23, 50a and 65a, it is visible that:

∆F
α ≡ h̄ (ωF

α)min ∼ (NF
z )

−1 ; F ≡ {I,A,S} , (67)

i.e. that the size of the gap decreases hyperbolically with the number of atomic XY layers
(parallel to boundary surfaces) and that in the classical limit (NF

z → ∞) it vanishes. In Fig.5
we show this dependence for the studied types (nondeformed and deformed) crystalline
film-structures.
Fig.5 shown the dependence of the size of energy gap or phonon activation temperature
on the film width (i.e. the number of perpendicular layers) of particular film types: I –
ideal crystalline film-structures, A – asymmetrically deformed crystalline film-structures, S
– symmetrically deformed crystalline film-structures.
It can be clearly seen from the figure that for the same film width larger value of the gap
belongs to deformedfilms (especially the symmetric ones) and that the effect ismost expressed
for ultrathin films (Nz ≤ 10), meaning that the doping process can (in relatively small amount)
to increase the effect (appearance of the gap) which is the consequence of the finiteness of (one
of) the dimensions of the system14.
Since the films studied are produced by ”cutting them out” of the ideal infinite tetragonal
structure with simple unit cell, it is clear that only acoustical phonon branches can appear.
The existence of the gap, as the basic characteristic of the optical phonon branches, does not

phenomenon of localized phonon modes, which will not be discussed here in detail, since they appear
for higher values of the perpendicular (z) wave-vector, for which the validity of the applied continual –
long-wavelength approximation is questioned.

13See the expressions 25, 51 and 66 and notice that it is exclusive consequence of the boundness of the
system – finite film width. Doping (within the framework of the parabolic model), can increase this effect
only slightly, but for L→ ∞ (i.e. for Nz ≫ 10) the narrowing magnitude W → 0.

14These, at first sight, puzzling conclusions become rather realistic on the basis of the general discussion
based on the uncertainty relations. It is well-known that any micro-particle moving within the bounded
region of space, can not possess zero energy. Applying the uncertainty relations ∆pz∆z ≥ h̄/2 and taking
∆z = Nzaz = Lz and ∆pz = ∆E/v, where v is the speed of sound, we obtain: ∆E ≥ h̄v/(2Lz). In bilk
structures with Lz ∼ 1 cm and v = 4 · 103 m/s, it follows that ∆E ∼ 10−10 eV, and this value is practically
undetectable. On the other hand, in exceptionally thin films with the width L∼ 10−7 cm, we find ∆E ∼ 1
meV, which is observable, experimentally accessible quantity.
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Fig. 5. Phonon energy gap vs. ultrathin film thickness

mean the elimination of the acoustical ones (as was the explanation in Refs. (Tošić et al., 1987;
Šetrajčić et al., 1990; Djajić et al., 1987), but a completely new physical effect – the appearance
of the acoustical phonons of the optical type. This agrees with the classical (thermodynamic)
limit: for Nz → ∞ it also follows that Tac → 0.
One can assign to the energy gap corresponding activation temperature:

TF
ac =

∆F

kB

≡ Ωα

kB

ϕ
F
(Nz) ≈

≈

⎧

⎪

⎨

⎪

⎩

35 K, for ideal (F = I) nondeformed films;

38 K, for asymmetrically (F = A) deformed films;

40 K, for symmetrically (F = S) deformed films,

(68)

for the typical values of the parameters15 according to data from Refs. (Cava et al., 1987;
Chu et al., 1987; Politis et al., 1987; Segre et al., 1987; Dietrich et al, 1987; Kuwahara, 1992) and
(Notzel et al., 1992; Johnson, 1995; Ristovski et al., 1989; Djajić et al., 1991; Šetrajčić et al., 1994).
According to al the above mentioned, physical interpretation which could be assigned to
these temperatures might be the following: No phonons can appearing in the crystalline
film-structure up to Tac,

16 and this structure behaves as completely ”frozen”. For phonon

15Following experimental data we have chosen: Mm = (2− x)MY +MCu + (4− δ)MO, Md = (x−
δ)MBa for the compound Y2−xBa x−δCuO4−δ, x,δ ∈ (0,5, 1,0), n= 4, γ = 12, az ≈ 1,2 nm, v≈ 3 · 103 m/s;

we gave a detailed explanation in our Refs. (Šetrajčić et al., 1992; 1994).
16This is the consequence of the existence of boundary surfaces in the system studied. The very effect of

the sputtering, although not decisive, definitely contributes to this effect, especially for the symmetrical
doping.
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states to be created, energy must be brought to the system from outside (thermal, mechanical,
etc) at least in the amount of the gap size. This could be also an acceptable explanation
of the well-known effect (CRC HCP, 1989; Notzel et al., 1992) that superconductive critical
temperature of the films is always higher than in the corresponding bulk structures.
From the plot (Fig.5) and from 68 one can notice two trends. The first one that the appearance
of the activation temperature (energy gap) is the consequence of the existence of finite (small)
film width, i.e the boundness of the structure. The sputtering which disturbers the symmetry
of the distribution of atoms in the film along the direction in which the film is bounded (two
parallel boundary surfaces) can only enhance this effect17, and can not cause it in any way:

∆
S
> ∆

A
> ∆ I ≫ ∆B ≡ 0 (69)

(compare the expressions 23, 50a and 65a with ωmin).
The calculations of the energy bandwidth also support the statement that thin-layer, i.e.
film-structures possess better superconductive characteristics. If we compare the results
expressed by 25, 51 and 66, it is clear that:

WS >WA >W I ≫WB ≡ 0. (70)

These expressions define the magnitude of the energy band narrowing in the films with
respect to bulk band. We see that in the film-structures the allowed band of phonon energies
is much smaller than the one in the corresponding massive sample. Taking into account the
previous comment (the existence of the gap i.e. the rise of the ground state energy level) it is
clear that the probability of the electron scattering on atomic vibrations is decreased (electric
resistance decreases), but also that the effective – attractive – electron-phonon interaction
”straightens” because virtual phonons possess more energy (phonons of the optical type).
On the other hand, this can be used for the explanation of lower critical density of the electric
current in the high-temperature superconductors (smaller number of phonons participates
in the effective electron-phonon interaction), and less pronounced isotope effect (only higher
energy phonons interact with electrons, so the role of the atoms is minority).
To support these statements, it is necessary to determine the density of states of the phonons
at relevant energy levels, i.e. their distribution over the energies in film-structures. We have
applied the well-known Debye’s approach (Mahan, 1983; Jones & March, 1985), adapted for
our model.
Following the standard definition (Maradudin, 1987; Cottam & Tilley, 1989; Callavay, 1974),

the number of allowed values of the quasi-momentum �k ≡ (kx ,ky,kz) per unit volume of

�k-space is:
Nx

kmax
x

· Ny

kmax
y

· Nz

kmax
z

, where, according to the model, kmax
x = kmax

y =
2π

a
, and kmax

z <

2π

az
(this value depends on the film kind). If we approximate the volume in the momentum

space (in the long-wavelength approximation) by a cylinder of the basis π k2 (k2 = k2x + k2y)
and height kmax

z , in the frequency range ω , ω + dω the total number of the phonon states can

17This is not an abstract theoretical conclusion, since the parameters of the system were chosen from
and according to experimental data, and not for some general cases. We are sure that for some other set
of the parameters, the theoretical result of the sputtering might even oppose to this effect, i.e. to decrease
Tac with respect to the undoped film. Our leading idea was to cast at least some light in the shadows
surrounding the mechanism of high-temperature superconductivity, so that is the reason for our choice
of data.
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be expressed as:

NF =
NF

4π
a2k2 ; NF = NxNyNF

z . (71)

The density of phonon states is then:

DF (ω)|ω=ω
F
≡ dNF

dωF

=

(

dωF

dk

)−1 NF

2π
a2k/, . (72)

Long-wavelength approximation applied here allows us to choose and retain only the lowest
possible value of the projection kz: k

min
z . Taking this into account:

ωF ≡ ω(k)≈ ΩF

[

√

a2k2 + ∆2
F
+ ∆F (1− δFI )

]

; ∆F =
κF

NF
z

(73)

(magnitudes and values for κF and NF
z are given in the Table 1) and expressions 23, 24, 49, 50,

64 and 65 we can determine:

DF (ωF) =
NF

2πΩ2
F

[ωF − ΩF∆F (1− δFI )] (74)

(the values for ΩF are also given in Table 1).
Table 1 shown the values of the parameters used for the calculation and comparison of
the densities of phonon states and Debye’s frequencies for the studied types of crystalline
film-structures. The numerical values of the coefficients are calculated on the basis of
the experimental data for high-temperature superconducting ceramics of the Y–Ba–Cu–O
type from Refs. (Cava et al., 1987; Chu et al., 1987; Politis et al., 1987; Segre et al., 1987;
Dietrich et al, 1987) and (Kuwahara, 1992; Notzel et al., 1992; Johnson, 1995); calculation
procedure in details is given in our papers (Tošić et al., 1987; Šetrajčić et al., 1990; Djajić et al.,
1987) and on conference talks (Ristovski et al., 1989; Djajić et al., 1991; Šetrajčić et al., 1994).
One can clearly see from the expression (3.8) that the density of phonon states for a given
value of the frequency ω = ωF(k) is lower than in the bulk structures, and the lowest in the
(symmetrically) deformed films:

DS < DA < DI ≪DB (75)

and that they are posses linear dependence on the frequency.
If one would ”abandon” the long-wavelength approximation then the expression 74 would
have slightly different form: instead of a linear function of ω, the density of states would turn
into a δ-function, since ∆F → GF which has a finite discrete series of possible values18. In this
way, one would confirm the results of the Einstein’s approach to the analyze of the density of
phonon states (Jones & March, 1985).
At the end of this Section, let us determine the values of the Debye’s frequencies for all three
kinds of films. According to the model described, if the sample contains NF unit cells, than
the total number of states is also equal to NF , so from:

NF ≡
ωF

D
∫

0

DF (ω)dω =
NF ωF

D

4πΩ2
F

[

ωF
D − 2ΩF ∆F (1− δFI )

]

(76)

18It can be seen from the expressions 15, 16, 44 and 61.
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F = I F = S F = A

κF π 4,2 4,7

NF
z Nz + 2 Nz + 3 Nz + 4

ΩF/Ω 1,00 1,12 1,21

Table 1. Debye’s parameters for different types ultrathin films

it follows:

ωF
D
= 2ΩF

√
π

⎡

⎣

√

1+
∆2

F

4π
(1− δFI )

2 +
∆F

2
√

π
(1− δFI )

⎤

 . (77)

Simple analysis of this expression leads to another relation:

ωS
D
< ωA

D
< ω I

D
≪ ωB

D
. (78)

For typical values of the parameters (already listed) one can estimate that Debye’s frequencies
in the film-structures are 10 – 15 % lower than in the corresponding bulk-structures. This
means that in thinlayered structures there exist ”softer” phonons.
It is interesting to compare the values of the density of phonon states at Debye’s frequencies:

DF(ωF
D
)

DB(ω
B
D)

=
1

3
√
36π

ΩB

ΩF

NF
z

NB
z
. (79)

Since NF
z ∼ 50, and NB

z ∼ 108 it is clear that:

DF (ω
F
D
)≪DB(ω

B
D
) . (80)

So, in the film-structures, i.e. the structures with broken translational symmetry, the
population of phonons with Debye’s frequencies is extremely small – much smaller than in
the corresponding unbounded and nondeformed crystalline structures.
The phonons with precisely Debye’s frequencies are responsible for the electrical and thermal
transport properties of the materials, one can conclude that there will occur a large difference
in these physical properties in bounded and deformed films with respect to the ideal
and unbounded structures although there are no chemical or crystallographic differences.
According to the results 78 and 80 – lower values of Debye’s frequencies and lower densities
of phonon states in the films studied – one can expect that film-structures will be poorer
electric (lower conductivity) and heat (lower capacity) conductors. This is well known and
well tabulated fact, for examples for metals and metallic alloys (CRC HCP, 1989).
Since the idea to study such film-structures arose after the discovery of the high-temperature
superconductors and their specific properties differing them from the classical
superconducting materials, we can not avoid turning our attention at the end to the
possible consequences that these results could bear to the superconducting properties.
Due to smaller phonon population and the appearance of softer phonons in small-grain
perovskite structures (Bednorz & Müller, 1988) of Y–Ba–Cu–O type and the similar ones, one
can conclude that the probability of Cooper’s pairs creation is smaller. This should result in
the lower value of the (critical) density of (superconductive) current.
On the other hand, in the expression for matrix elements (V) of the effective electron-electron
interaction within the framework of the BCS theory there occur Debye’s frequencies: V ∼
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ω−1/2
D

, which, taking into account the results obtained, undoubtedly indicates that the
attractive interaction of the electrons is more intense for strongly bounded and deformed
structures, so they can be ”more strongly” coupled into Cooper’s pairs. For the destruction
of such pairs one needs more energy so the critical temperature of these structures is much
higher.
If we remember the fact that the materials with poor conductive properties (in the normal
phase) possess better superconductive characteristics, then following above presented
analyzes and estimates, we can state that the boundness of the structure and the deformation
of its crystal symmetry is one of the important elements which explain the peculiarities of the
phenomenon, and even the very mechanism of high-temperature superconductivity, in part.
At this stage we must notice that considerations presented here are only of qualitative nature
and are the consequence of the incomplete19 analysis of the behavior of a single subsystem
(phonons) – one of the participants in the effects of high-temperature superconductivity. We
are trying to establish if it is possible that maybe for copper-oxide ceramics we also deal
with the same (BCS, i.e. Cooper’s) mechanism of superconductivity – the same one as for
the classical superconducting materials, only under substantially different conditions. The
continuation of the research which should include the behavior of the electron system in
the studied film-structures (these results are now in the stage of numerical treatment), and
especially the formation and the analysis of the effective electron-(virtual phonon)-electron
interaction will either confirm or deny our above exposed statements.

4. Phonon thermodynamics of thin film-structures

Forasmuch as the properties of anisotropic structures are conditioned by the change of
dispersion law, it is necessary to observe behavior of certain thermodynamic properties
towards obtainment of better understanding about those properties. Phonon participation
in thermodynamic properties (or heat capacitance temperature behavior, i.e. generally –
in heat transferring) in thin film was found in our previous paper (Lazarev et al., 2000;
Jaćimovski et al., 2004; Šetrajčić et al., 2007; Ilić et al., 2007; Šetrajčić et al., 2009).
Getting that, when k→ 0 (in long-wave approximation: 4

[

sin2 (akx/2) + sin2
(

aky/2
)]

≈ a2k2,

k2 = k2x + k2y), energies of all three phonon branches have non-zero values, it can be utilized
dispersion relations 22, 49 and 64, in somewhat simplified form:

E(�k) =
√

a2k2E2
0
+ ∆2

f . (81)

where

∆ f = akmin
z E0 ; E0 ≡ h̄

√

Cα

M
. (82)

It should be specifically emphasized that verification of phonon dispersion law at very low
values of k is virtually impossible, so that verification of existence of phonon gap detects itself
in measurement of low temperature thermal capacitances in film and corresponding ideal
structure.

19For completing of these analyzes it is necessary to determine the phonon contribution in the heat
capacity of the system.
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The thermal capacitance is analyzed, whereby at first internal energy is calculated in terms of
standard form (Mahan, 1983; Jones & March, 1985; Maradudin, 1987; Callavay, 1974):

U f = 3 ∑
kx,ky,kz

E(�k)
[

eE(
�k)/θ − 1

]−1
. (83)

Going over from sum in last expression to integral in accordance with the formula20:

∑
kx,ky,kz

−→ 3(Nz + 1) ∑
kx,ky

−→ 3NxNy(Nz + 1)a2

4π2

2π
∫

0

dϕ

kmax
∫

0

k dk ,

and taking kmax ≈ kD =
3
√
6π2, after suitable notations:

η ≡
√

N2
z

3
+ Nz + 1 ; ζ ≡

√

1+

(

Nz + 2

π

3
√
6π2

)2

and adequate operations, expression for internal energy has been obtained in form:

U f (x) =
3N f

4π2

∆4
f

E3
0

x2
{[

Z2

(

1

x

)

− η2Z2

( η

x

)

+ η2ζ2Z2

(

ηζ

x

)

− ζ2Z2

(

ζ

x

)]

+

+4x

[

Z3

(

1

x

)

− ηZ3

(η

x

)

+ η ζ Z3

(

ηζ

x

)

− ζ Z3

(

ζ

x

)]

+ (84)

+ 6x2
[

Z4

(

1

x

)

− Z4

(η

x

)

+ Z4

(

η ζ

x

)

− Z4

(

ζ

x

)]}

,

where the symbol x is introduced for reduced temperature: x =
θ

∆ f
, N f = NxNy(Nz + 1) and

Zr(X) =
∞

∑
j=1

j−re−jX – the functions are called Dyson’s functions.

For finding of expression for the thermal capacitance per a unit cell (here: per an atom), the
standard definitional form (Mahan, 1983; Jones & March, 1985; Maradudin, 1987; Callavay,
1974) is used:

C f =
1

N f

∂U f

∂T
≡ kB

N f

∂U f

∂θ
=

1

∆ f

kB
N f

∂U f

∂x
. (85)

In accordance with that it is obtained:

C f (x) =
3kB
4π2

(

∆ f

E0

)3{[

Z1

(

1

x

)

− η3Z1

( η

x

)

+ η3ζ3Z1

(

η ζ

x

)

− ζ3Z1

(

ζ

x

)]

+

+6x

[

Z2

(

1

x

)

− η2Z2

( η

x

)

+ η2ζ2Z2

(

η ζ

x

)

− ζ2Z2

(

ζ

x

)]

+

+18x2
[

Z3

(

1

x

)

− ηZ3

(η

x

)

+ η ζ Z3

(

η ζ

x

)

− ζ Z3

(

ζ

x

)]

+ (86)

+ 24x3
[

Z4

(

1

x

)

− Z4

(η

x

)

+ Z4

(

η ζ

x

)

− Z4

(

ζ

x

)]}

.
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It is known that the phonon part in thermal capacitance of the system is described with
cubic temperature dependence. By introducing nondimensional reduced temperature,

this dependence amounts to: Cb(x) =
12

5
π4NbkB

(

∆ f

ED

)3

x3. For comparison of these

dependencies, these and expression 86 are divided by the constant: C0 =
kB
2

(

∆ f

ED

)3

, whose

dimension is equal to dimension of thermal capacitance, and nondimensional properties are

compared: C f/b ≡
C f/b

C0
. On Fig.6 are shown relative (nondimensional) thermal capacitances

of bulk (b) and film-structure (f ) subject to the relative temperature x in low (a) and very low
temperature region.
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Fig. 6. Thermal capacitance vs. temperature at low and extremely low temperatures

On Fig.7 are shown relative (nondimensional) thermal capacitances of bulk (b) and
film-structure (f ) samples versus relative temperature x, for ultrathin – Nz = 3 (a), thin Nz = 8
(b) and thick Nz = 48 (c) film-structures, in comparatione with bulk ones.
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It can be seen that in low-temperature region (Fig.6) thermal capacitance of film is lower than
that of massive specimens, whereas at the intermediate temperatures situation is reversed
(Popov et al., 2003). Intersect point of two curves at low temperatures is moving – with
increase of film-thickness – towards lower temperatures (Fig3 a –> c). Besides, it is noticeable
that thermal capacitance of film with decrease of temperature declines faster than that of
corresponding ideal structure, or slowly rises with the increase of temperature – to a certain
upper temperature. Hence, for film heating from certain lower to a certain upper temperature,
it is necessary to use more thermal energy per mass unit than for heating the same quantity
of corresponding (with the identical crystallographical parameters) unbounded structure to
the same temperature. It is in accordance with the fact that phonons in film have non-zero
excitation energy.

5. Conclusion

Studying and comparing the phonon spectra and states in the ideal unbounded and
nondeformed (bulk) structures and the structures with broken translational symmetry (films)
we have reached the following conclusions.

1. Mechanical vibrations in bulk structures are plane waves in all directions, while in the
films they represent the superposition of the standing waves in z-directions (perpendicular
to the boundary surfaces) and plane waves in XY-planes (parallel to boundary surfaces).

2. The amplitude of phonon displacements in the films depends on the film width and it
is ∼ 104

√
2/Nz times higher than in the ideal structures. This indicates their larger elastic

”maneuvering space” without any negative effect to the mechanical properties of the given
material (for example no breaking of interatomic bonds) which leads to higher resistance
and higher melting point of the films with respect to bulk samples.

3. All three acoustic frequencies in bulk structures vanish for�k → 0, while in the films they
tend toward some minimal value depending on the film width. This means that phonons
in the films possess the energy gap, that for their excitation (creation) one should spend
certain energy, i.e. heat them up to certain – activation temperature, meaning that the
system up to that temperature behaves as the ”frozen” one, as if the phonons were not
present.

4. Phonon gap, besides depending on the film width, depends also on the type of the atoms
and their distribution along z-direction and also on the stoichiometric relation of the atoms
injected in the films.

5. The densities of phonon states and Debye’s frequencies have lower values in the films than
in the corresponding bulk structures. This implies that in the films, phonon excitations are
more ”difficult” to appear, that they are less ”present” and that created acoustic phonons
of the optical type (above the activation temperature) are energetically ”softer” than the
classical ones which appear in the bulk structures.

6. Since phonons with Debye’s frequencies define thermal and electrical properties of the
materials, this means that films are worse thermal and electrical conductors.

These analyzes show that the films are better superconductors than the corresponding bulk
samples, made from the same material with the same crystalline structure. This statement,
which is an experimental fact is supported by the following of our results.
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1. In the films there appear standing phonon waves along z-directions, the collective property
specific for the macroscopic quantum-mechanical state which is the characteristics of the
superconductors. In the ideal structures, where there exist only plane phonon waves, there
is no such property.

2. Higher values of the amplitudes of phonon displacements in the films indicate to the
possibility of the long-range phonon interaction with other excitations which can occur
in the system (electrons or holes). This induces the higher possible coherence length, i.e.
the larger radius of the Cooper’s pairs which can be created here.

3. The appearance of the energy gap in the phonon spectrum of the films means that up
to the activation temperature these systems behave as completely frozen, i.e. without
any mechanical vibrations which would cause the real resistance to the electrical current
conduction.

4. Lower values of Debye’s frequencies in the films could result in the higher values of (BCS)
matrix elements of the effective electron-electron interaction. The attraction between paired
electrons is stronger, and one must spend more energy for their destruction, so the critical
temperature of these systems is higher.

Comparing the results between the phonon behavior in the ideal and deformed films one can
conclude that the strongest influence onto the change of phonon states and spectra has just
the existence of finite boundaries of the system, while less important (although not negligible)
influence has the disturbance of the atom distribution (due to doping) within the film –
especially when we talk about symmetrical doping.
Since phonons with Debye’s frequencies are responsible for electrically and thermically
induced transport properties of material (Mahan, 1983; Jones & March, 1985), it follows that
the nanofilm-structure will be inferior electrical and thermic conductor in contrast with the
relative massive structures, providing there is no chemical and structural differences between
them.
On the other hand, it is well known fact that the more inferior electrical conductor materials is
(under normal conditions), the better superconductor it becomes (Maradudin, 1987; Callavay,
1974). Due to that, the experimental fact can be concluded and justified, that in spatially very
confined structures more qualitative superconductive properties have been achieved.
In the region of low temperatures, the thermal capacitance of film is lower than in massive
structures, while in medium temperatures it is reversed. Intersect point of two curves at
low temperatures is moving – with increase of film-thickness – towards lower temperatures.
Besides, it is noticeable that thermal capacitance of film with decrease of temperature
declines faster than that of corresponding ideal structure, or slowly rises with the increase
of temperature – to a certain upper temperature.
Hence, for film heating from certain lower to a certain upper temperature, it is necessary to
use more thermal energy per mass unit than for heating the same quantity of corresponding
(with the identical crystallographical parameters) unbounded structure to same temperature.
It is well known that poorer electric conductors are better superconductors, so that in ultrathin
films it is possible to achieve much better superconducting properties!
All these conclusions, derived on the basis of the results of the analyzes of this work, are
of more or less qualitative nature and deal with the change of phonon states and spectra
under the influence of the presence of boundaries and the breaking of crystalline symmetry
of the structure, and the possible influence of these changes onto the macroscopic physical
characteristics of these systems. Since we have taken only phonon contributions into account,
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they could not be considered as definitive and final. The continuation of the research should
study the influence of the boundaries onto spectra and states of other elementary charge
carriers and their mutual interaction in the presence of the changed phonon field. On the
basis of these results one might be able to say something more concrete about the order of
magnitude of the superconductive characteristics of the films.
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Popov D.; Jaćimovski S.K.; Tošić B.S. & Šetrajčić J.P. (2003). Kinetics of Thin Films Mechanical
Oscillations. Physica A, Vol. 317, No. 1, January 2003, 129–139, ISSN 0378-4371.

348 Thermodynamics

www.intechopen.com



Thermodynamics

Edited by Prof. Mizutani Tadashi

ISBN 978-953-307-544-0

Hard cover, 440 pages

Publisher InTech

Published online 14, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Progress of thermodynamics has been stimulated by the findings of a variety of fields of science and

technology. The principles of thermodynamics are so general that the application is widespread to such fields

as solid state physics, chemistry, biology, astronomical science, materials science, and chemical engineering.

The contents of this book should be of help to many scientists and engineers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jovan P. Šetrajčić, Vojkan M. Zorić, Nenad V. Delić, Dragoljub Lj. Mirjanić and Stevo K. Jaćimovski (2011).

Phonon Participation in Thermodynamics and Superconductive Properties of Thin Ceramic Films,

Thermodynamics, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from:

http://www.intechopen.com/books/thermodynamics/phonon-participation-in-thermodynamics-and-

superconductive-properties-of-thin-ceramic-films



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


