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1. Introduction 

Thermodynamics concerns two kinds of states, the equilibrium ones (classical 

thermodynamics) and the nonequilibrium ones (nonequilibrium thermodynamics). The 

classical thermodynamics is an extremely important theory for macroscopic properties of 

systems in equilibrium, but it can not be fully isolated from nonequilibrium states and 

irreversible processes. Therefore, within the framework of classical thermodynamics, it is 

significant to explore a new method to solve the questions in the nonequilibrium state. 

Furthermore, this treatment should be helpful for getting deep comprehension and new 

applications of classical thermodynamics. 

For an irreversible process, thermodynamics often takes the assumption of local 

equilibrium, which divides the whole system into a number of macroscopic subsystems. If 

all the subsystems stand at equilibrium or quasi-equilibrium states, the thermodynamic 

functions for a nonequilibrium system can be obtained by some reasonable treatments. 

However, the concept of local equilibrium lacks the theoretical basis and the expressions of 

thermodynamic functions are excessively complicated, so it is hard to be used in practice. 

Leontovich[1] once introduced a constrained equilibrium approach to treat nonequilibrium 

states within the framework of classical thermodynamics, which essentially maps a 

nonequilibrium state to a constrained equilibrium one by imposing an external field. In 

other words, the definition of thermodynamic functions in classical thermodynamics is 

firstly used in constrained equilibrium state, and the following step is how to extend this 

definition to the corresponding nonequilibrium state. This theoretical treatment is feasible in 

principle, but has not been paid much attention to yet. This situation is possibly resulted 

from the oversimplified descriptions of the Leontovich’s approach in literature and the lack 

of practical demands. Hence on the basis of detailed analysis of additional external 

parameters, we derive a more general thermodynamic formula, and apply it to the case of 

nonequilibrium polarization. The results show that the nonequilibrium solvation energy in 

the continuous medium can be obtained by imposing an appropriate external electric field, 

which drives the nonequilibrium state to a constrained equilibrium one meanwhile keeps 

the charge distribution and polarization of medium fixed. 
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2. The equilibrium and nonequilibrium systems 

2.1 Description of state 

The state of a thermodynamic system can be described by its macroscopic properties under 

certain ambient conditions, and these macroscopic properties are called as state parameters. 

The state parameters should be divided into two kinds, i.e. external and internal ones. The 

state parameters determined by the position of the object in the ambient are the external 

parameters, and those parameters, which are related to the thermal motion of the particles 

constituting the system, are referred to the internal parameters. Consider a simple case that 

the system is the gas in a vessel, and the walls of the vessel are the object in the ambient. The 

volume of the gas is the external parameter because it concerns only the position of the 

vessel walls. Meanwhile, the pressure of the gas is the internal parameter since it concerns 

not only the position of the vessel walls but also the thermal motion of gas molecules. All 

objects interacting with the system should be considered as the ambient. However, we may 

take some objects as one part of a new system. Therefore, the distinction between external 

and internal parameters is not absolute, and it depends on the partition of the system and 

ambient. Note that whatever the division between system and ambient, the system may do 

work to ambient only with the change of some external parameters. 

Based on the thermodynamic equilibrium theory, the thermal homogeneous system in an 

equilibrium state can be determined by a set of external parameters { }ia  and an internal 

parameter T , where T  is the temperature of the system. In an equilibrium state, there 

exists the caloric equation of state, ( , )iU U a T= , where U  is the energy of the system,system 

capacitysystem capacity so we can choose one of T  and U  as the internal parameter of the 

system. However, for a nonequilibrium state under the same external conditions, besides a 

set of external parameters { }ia  and an internal parameter U  (or T ), some additional 

internal parameters should be invoked to characterize the nonequilibrium state of an 

thermal homogeneous system. It should be noted that those additional internal parameters 

are time dependent.  

2.2 Basic equations in thermodynamic equilibrium 

In classical thermodynamics, the basic equation of thermodynamic functions is 

 d d di i
i

T S U A a= +∑   (2.1) 

where S , U  and T  represent the entropy, energy and the temperature (Kelvin) of the 

equilibrium system respectively. { }ia  stand for a set of external parameters, and iA  is a 

generalized force which conjugates with ia . The above equation shows that the entropy of 

the system is a function of a set of external parameters { }ia  and an internal parameter U , 

which are just the state parameters that can be used to describe a thermal homogeneous 

system in an equilibrium state. So the above equation can merely be integrated along a 

quasistatic path. Actually, dT S  is the heat rQδ  absorbed by the system in the infinitesimal 

change along a quasistatic path. dU  is the energy and di iA a  is the element work done by 

the system when external parameter ia  changes.  

It should be noticed that the positions of any pair of iA  and ia  can interconvert through 

Legendre transformation. We consider a system in which the gas is enclosed in a cylinder 
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with constant temperature, there will be only one external parameter, i.e. the gas volume V . 

The corresponding generalized force is the gas pressure p , so eq. (2.1) can be simplified as  

 d d dT S U p V= +    (2.2) 

It shows that ( , )S S U V= . If we define H U pV= + , eq. (2.2) may be rewritten as 

 d d( ) d d dT S U pV V p H V p= + − = −   (2.3) 

Thus we have ( , )S S H p= . If we choose the gas pressure p  as the external parameter, then 

V  should be the conjugated generalized force, and the negative sign in eq. (2.3) implies that 

the work done by the system is positive as the pressure decreases. Furthermore, the energy 

U  in eq. (2.2) has been changed with the relation of U pV H+ =  in eq. (2.3), in which H  

stands for the enthalpy of the gas. 

2.3 Nonequilibrium state and constrained equilibrium state 

It is a difficult task to efficiently extend the thermodynamic functions defined in the classical 

thermodynamics to the nonequilibrium state. At present, one feasible way is the method 

proposed by Leontovich. The key of Leontovich’s approach is to transform the 

nonequilibrium state to a constrained equilibrium one by imposing some additional external 

fields. Although the constrained equilibrium state is different from the nonequilibrium state, 

it retains the significant features of the nonequilibrium state. In other words, the constraint 

only freezes the time-dependent internal parameters of the nonequilibrium state, without 

doing any damage to the system. So the constrained equilibrium becomes the 

nonequilibrium state immediately after the additional external fields are removed quickly. 

The introduction and removal of the additional external fields should be extremely fast so 

that the characteristic parameters of the system have no time to vary, which provides a way 

to obtain the thermodynamic functions of nonequilibrium state from that of the constrained 

equilibrium state. 

2.4 Extension of classical thermodynamics 

Based on the relation between the constrained equilibrium state and the nonequilibrium 

one, the general idea of extending classical thermodynamics to nonequilibrium systems can 

be summarized as follows: 

1. By imposing suitable external fields, the nonequilibrium state of a system can be 

transformed into a constrained equilibrium state so as to freeze the time-dependent 

internal parameters of the nonequilibrium state. 

2. The change of a thermodynamic function between a constrained equilibrium state and 

another equilibrium (or constrained equilibrium) state can be calculated simply by 

means of classical thermodynamics. 

3. The additional external fields can be suddenly removed without friction from the 

constrained equilibrium system so as to recover the true nonequilibrium state, which 

will further relax irreversibly to the eventual equilibrium state. Leontovich defined the 

entropy of the nonequilibrium state by the constrained equilibrium. In other words, 

entropy of the constrained equilibrium and that of the nonequilibrium exactly after the 

fast removal of the external field should be thought the same. 
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According to the approach mentioned above, we may perform thermodynamic calculations 
involving nonequilibrium states within the framework of classical thermodynamics. 

3. Entropy and free energy of nonequilibrium state 

3.1 Energy of nonequilibrium states 

For the clarity, only thermal homogeneous systems are considered. The conclusions drawn 

from the thermal homogeneous systems can be extended to thermal inhomogeneous ones as 

long as they consist of finite isothermal parts[1]. As a thermal homogeneous system is in a 

constrained equilibrium state, the external parameters of the system should be divided into 

three kinds. The first kind includes those original external parameters { }ia , and they have 

the conjugate generalized forces { }iA . The second kind includes the additional external 

parameters { }kx , which are totally different from the original ones. Correspondingly, the 

generalized forces { }kξ  conjugate with { }kx , where kξ  is the internal parameter originating 

from the nonequilibrium state. The third kind is a new set of external parameters { '}la , 

which relate to some of the original external fields and the additional external parameters, 

i.e., 

 ' 'l l la a x= +  (3.1) 

where la  and 'lx  stand for the original external parameter and the additional external 

parameter, respectively. Supposing a generalized force 'lA  conjugates with the external 

parameter 'la , the basic thermodynamic equation for a constrained equilibrium state can be 

expressed by considering all the three kinds of external parameters, { }ia , { }ix , and { '}la , i.e. 

 * *d d d d 'd 'i i k k l l
i k l

T S U A a x A aξ= + + +∑ ∑ ∑  (3.2) 

where *S  and *U  stand for entropy and energy of the constrained nonequilibrium state, 

respectively, and other terms are the work done by the system due to the changes of three 

kinds of external parameters. Because the introduction and removal of additional external 

fields are so fast that the internal parameters kξ  and 'lA  may remain invariant. The 

transformation from the constrained equilibrium state to the nonequilibrium state can be 

regarded adiabatic.  

Beginning with this constrained equilibrium, a fast removal of the constraining forces { }kx  

from the system then yields the true nonequilibrium state. By this very construction, the 

constrained equilibrium and the nonequilibrium have the same internal variables. In 

particular, the nonequilibrium entropy nonS  is equal to that of the constrained equilibrium[1] 

 non *S S=  (3.3) 

The energy change of the system in the fast (adiabatic) process is given as follows 

 non *U U U WΔ = − = −  (3.4) 

where nonU  denotes the energies of the true nonequilibrium, and W  is the work done by 

the system during the non-quasistatic removal of the constraining forces, i.e., 
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0

non

'
* d ' d ' ' '

l

k l l

a

k k l l k k l lx a x
k l k l

U U W x A a x A xξ ξ
+

− = − = − − = +∑ ∑ ∑ ∑∫ ∫  (3.5) 

where k k
k

xξ∑  and ' 'l l
l

A x∑  are work done by getting rid of the second and the third kinds 

of additional external fields quickly. Eq. (3.5) is just the relation between the energy of the 
nonequilibrium state and that of the constrained equilibrium state. 

If ' 0lA = , eq. (3.5) is reduced to the Leontovich form, i.e., (Eq.3.5 of ref 1) 

  *
k k

k

U U xξ= +∑  (3.6) 

' 0lA =  indicates that the constraining forces { }kξ  are new internal parameters which do not 

exist in the original constrained equilibrium state. This means that eq. (3.5) is an extension of 
Leontovich’s form of eq. (3.6). 

If one notes that 
k
ξ  and '

k
A  remains invariant during the fast removal of their conjugate 

parameters, the energy change by eq. (3.5) becomes straightforward.  

3.2 Free energies of the constrained equilibrium and nonequilibrium states 

The free energy of the constrained equilibrium state *F  is defined as 

 * * *F U TS= −  (3.7) 

Differentiating on the both sides of eq. (3.7) by substituting of eq. (3.2), we have 

 * *d d d d 'd 'i i k k l l
i k l

F S T A a x A aξ= − − − −∑ ∑ ∑  (3.8) 

The free energy of the nonequilibrium state nonF  is defined as 

 non non nonF U TS= −  (3.9) 

Subtracting eq. (3.7) from eq. (3.9), with noticing eq. (3.5), we have 

 non * ' 'k k l l
k l

F F x A xξ− = +∑ ∑  (3.10) 

From the above equation, nonF  can be obtained from *F . 
A particularly noteworthy point should be that 'lA  and 'lx  are not a pair of conjugates, so 

the sum ' 'l l
l

A x∑  in eq. (3.10) does not satisfy the conditions of a state function. This leads 

to that the total differential of nonF  does not exist.  

Adding the sum 'l l
l

A a∑  to both sides of eq. (3.10), the total differential can be obtained as 

 non nond( ' ) d d d 'd 'l l i i k k l l
l i k l

F A a S T A a x a Aξ+ = − − + +∑ ∑ ∑ ∑   (3.11) 

If the third kind of external parameters do not exist, i.e., 0la =  and ' 0lx = , hence ' 0la = , eq. 

(3.11) is identical with that given by Leontovich[1]. Eq. (3.11) shows that if there are external 
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parameters of the third kind, the nonequilibrium free energy nonF  which comes from the 

free energy *F  of the constrained state does not possess a total differential. This is a new 

conclusion. However, it will not impede that one may use eq. (3.11) to obtain nonF , because 

with this method one can transform the nonequilibrium state into a constrained equilibrium 

state, which can be called as state-to-state treatment. This treatment does not involve the 

state change with respect to time, so it can realize the extension of classical thermodynamics 

to nonequilibrium systems. 

4. Nonequilibrium polarization and solvent reorganization energy 

In the previous sections, the constrained equilibrium concept in thermodynamics, which can 
be adopted to account for the true nonequilibrium state, is introduced in detail. In this 
section, we will use this method to handle the nonequilibrium polarization in solution and 
consequently to achieve a new expression for the solvation free energy. In this kind of 
nonequilibrium states, only a portion of the solvent polarization reaches equilibrium with 
the solute charge distribution while the other portion can not equilibrate with the solute 
charge distribution. Therefore, only when the solvent polarization can be partitioned in a 
proper way, the constrained equilibrium state can be constructed and mapped to the true 
nonequilibrium state.  

4.1 Inertial and dynamic polarization of solvent 

Theoretical evaluations of solvent effects in continuum media have attracted great attentions 
in the last decades. In this context, explicit solvent methods that intend to account for the 
microscopic structure of solvent molecules are most advanced. However, such methods 
have not yet been mature for general purposes. Continuum models that can handle properly 
long range electrostatic interactions are thus far still playing the major role. Most continuum 
models are concerned with equilibrium solvation. Any process that takes place on a 
sufficiently long timescale may legitimately be thought of as equilibration with respect to 
solvation. Yet, many processes such as electron transfer and photoabsorption and emission 
in solution are intimately related to the so-called nonequilibrium solvation phenomena. The 
central question is how to apply continuum models to such ultra fast processes. 
Starting from the equilibrium solvation state, the total solvent polarization is in equilibrium 
with the solute electric field. However, when the solute charge distribution experiences a 
sudden change, for example, electron transfer or light absorption/emission, the 
nonequilibrium polarization emerges. Furthermore, the portion of solvent polarization with 
fast response speed can adjust to reach the equilibrium with the new solute charge 
distribution, but the other slow portion still keeps the value as in the previous equilibrium 
state. Therefore, in order to correctly describe the nonequilibrium solvation state, it is 
important and necessary to divide the total solvent polarization in a proper way. 
At present, there are mainly two kinds of partition method for the solvent polarization. The 
first one was proposed by Marcus[2] in 1956, in which the solvent polarization is divided into 
orientational and electronic polarization. The other one, suggested by Pekar[3], considers that 
the solvent polarization is composed by inertial and dynamic polarization. 
The first partition method of electronic and orientational polarization is established based 

on the relationship between the solvent polarization and the total electric field in the solute-

solvent system. We consider an electron transfer (or light absorption/emission) in solution. 
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Before the process, the solute-solvent system will stay in the equilibrium state “1”, and then 

the electronic transition happens and the system will reach the nonequilibrium state “2” in a 

very short time, and finally the system will arrive to the final equilibrium state “2”, due to 

the relaxation of solvent polarization. In the equilibrium states “1” and “2”, the relationship 

between the total electric field E  and total polarization P  is expressed as  

 eq eq
1 s 1χ=P E , eq eq

2 s 2χ=P E  (4.1) 

where s
s

( 1)

4

εχ
π
−

=  is the static susceptibility, with sε  being the static dielectric constants. 

The superscript “eq” denotes the equilibrium state. Correspondingly, the electronic 
polarizations in the equilibrium states “1” and “2”are written as 

 eq
1,op op 1χ=P E , eq

2,op op 2χ=P E  (4.2) 

where the subscript “op” represents the electronic polarization and 
op

op

( 1)

4

ε
χ

π
−

=   the 

electronic susceptibility, with opε  being the optical dielectric constant. In solution, the 

electronic polarization can finish adjustment very quickly, and hence it reaches equilibrium 
with solute charge even if the electronic transition in the solute molecule takes place. On the 
other hand, it is easy to express the orientational polarization as  

 eq eq
1,or 1 1,op or 1χ= − =P P P E , eq eq

2,or 2 2,op or 2χ= − =P P P E  (4.3) 

with  or s opχ χ χ= − . Here, orχ  stands for the orientational susceptibility and the subscript 

“or” the orientational polarization. This kind of polarization is mainly contributed from the 
low frequency motions of the solvents. 
In the nonequilibrium state “2”, we express the total electric field strength and solvent 

polarization as non
2E  and non

2P  respectively, the electronic polarization can be defined as  

 non non
2,op op 2χ=P E  (4.4) 

At this moment, the orientational polarization keeps invariant and the value in the previous 
equilibrium state “1”, thus the total polarization is written as  

 non non
2 1,or 2,op= +P P P  (4.5) 

The second partition method for the polarization is based on the equilibrium relationship 
between the dynamic polarization and electric field. Assuming that the solvent only has the 

optical dielectric constant opε , the dynamic electric field strength and the polarization in 

equilibrium state “1” and “2” can be expressed as 

 1,dy op 1,dyχ=P E , (4.6) 

  2,dy op 2,dyχ=P E  (4.7) 
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Then the inertial polarization in an equilibrium state is defined as  

 eq
1,in 1 1,dy= −P P P , eq

2,in 2 2,dy= −P P P  (4.8) 

where the subscripts “dy” and “in” stand for the quantities due to the dynamic and inertial 
polarizations. In a nonequilibrium state, the inertial polarization will be regarded invariant, 
and hence the total polarization is decomposed to  

 non
2 1,in 2,dy= +P P P  (4.9) 

With the dynamic-inertial partition, the nonequilibrium polarization is of the following 
form, i.e.,  

 eq eqnon
2 1,in 2,dy 1 1,dy 2,dy s 1 op 1,dy op 2,dyχ χ χ= + = − + = − +P P P P P P E E E  (4.10) 

According to the inertial-dynamic partition, the picture of the nonequilibrium state “2” is 
very clear that the invariant part from equilibrium to nonequilibrium is the inertial 
polarization and the dynamic polarization responds to the solute charge change without 
time lag in nonequilibrium state, being equal to the dynamic polarization in equilibrium 
state “2”.  

4.2 Constrained equilibrium by external field and solvation energy in nonequilibrium 
state 
Based on the inertial-dynamic polarization partition, the thermodynamics method 
introduced in the previous sections can be adopted to obtain the solvation energy in 
nonequilibrium state, which is a critical problem to illustrate the ultra-fast dynamical 
process in the solvent. 
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Scheme 1. 

In the real solvent surroundings, the solvation energy is composed of three contributions: 
the cavitation energy, the dispersion-repulsion energy and electrostatic solvation energy. 
The cavitation energy, needed to form the solute cavity, will not change from the 
equilibrium “1”to the nonequilibrium state “2” due to the fixed solute structure. At the same 
time, the dispersion-repulsion energy is supposed invariant here. Therefore, the most 
important contribution to the solvation energy change from equilibrium to nonequilibrium 
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is the electrostatic part, and the electrostatic solvation energy, which measures the free 
energy change of the medium, simplified as solvation energy in the following paragraphs, is 
the research focus for the ultrafast process in the medium.  
As shown in Scheme 1, we adopt the letter “N” to denote the nonequilibrium state, which 

has the same solute electric field 2cE  as equilibrium state “2”. The differences of polarization 

strength and polarization field strength between states “N” and “2” in scheme 1 can be 
expressed as  

 eqnon
2 2 dy eq in' = − = Δ − Δ = −ΔP P P P P P   (4.11) 

 eqnon
p 2 2 dy eq in' = − = Δ − Δ = −ΔE E E E E E   (4.12) 

with  

k 2,k 1,kΔ = −M M M         (k= “dy”, “in” or “eq”) 

where M  can be electric filed E  or polarization P . In eqs. (4.11) and (4.12), 'P  is hereafter 

called the residual polarization which will disappear when the polarization relaxation from 

state “N” to the final equilibrium state “2” has finished after enough long time. p'E  is 

actually a polarization field resulted from 'P .  

In order to obtain the solvation energy for the nonequilibrium state “N”, we can construct a 

constrained equilibrium state, denoted as state “C” in scheme 1, by imposing an external 

field exE  from the ambient on the equilibrium state “2”, which produces the residual 

polarization 'P  and the corresponding polarization field p'E . It is clear that 

s ex p' ( ' )χ= +P E E  in the medium with the dielectric constant sε . Thus the total electric field 

'E  due to the external field in the medium with the dielectric constant sε  can be expressed 

as 

 
dy eq op

ex p dy eq

s s s

'
' '

χ
χ χ χ

Δ − Δ
= + = = = Δ − Δ

P PP
E E E E E  (4.13) 

Combining eqs. (4.12) and (4.13), the external field strength can be defined as[4-6]  

 
op s op s'

ex p dy dy

s s

'
1

χ χ ε ε
χ ε
− −

= − = Δ = Δ
−

E E E E E  (4.14) 

 

Through the introduction of the external field, the constrained equilibrium state has been 

constructed as 

 

*
c 2c ex

* non
2

eq* non
2 2 '

ex

= +

= +

= = +

E E E

E E E

P P P P

 (4.15) 

where *
cE  is the solute electric field in vacuum. In constrained equilibrium state, the 

polarization, entropy and solute charge distribution are the same as the nonequilibrium 
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state “N”. It is shown in eq. (4.15) that nonequilibrium polarization non
2P  equilibrates with 

solute and external electric field 2c ex+E E  in the medium with static dielectric constant. 

Therefore, the only difference between the nonequilibrium state and constrained 

equilibrium state is the external field exE .  

Now we can analyze the equilibrium and constrained equilibrium states from the view of 

thermodynamics. For clarity, we take the medium (or solvent) as the “system” but both the 

solute (free) charge and the source of exE  as the “ambient”. This means that the 

thermodynamic system is defined to only contain the medium, while the free charges and 

the constraining field act as the external field. The exclusion of the free charges from the 

“thermodynamic system” guarantees coherent thermodynamic treatment. 

Given the above definition on the “system”, we now turn to present the free energy solF  of 

the medium. Here we use the subscript “sol” to indicate the quantities of the medium, or 

solvent. Let us calculate the change in solF  resulting from an infinitesimal change in the field 

which occurs at constant temperature and does not destroy the thermodynamic equilibrium 

of the medium. The free energy change of the medium for an equilibrium polarization is 

equal to the total free energy change of the solute-solvent system minus the self-energy 

change of the solute charge, i.e.,  

 sol c c

1 1
d d

4 4
F V Vδ δ δ

π π
= ⋅ − ⋅∫ ∫E D E E  (4.16) 

 

where E is the total electric field while cE  is the external field by the solute charge in the 

vacuum. D is the electric displacement with the definition of 4π ε= + =D E P E . Eq.(4.16) 

gives the free energy of the medium for an equilibrium polarization as 

 
sol c c

c c c c

1
( )d

8
1 1

( )d ( ) ( )d
8 8

F V

V V

π

π π

= ⋅ − ⋅

= ⋅ − ⋅ + + ⋅ −

∫

∫ ∫

D E E E

E E D E E E D E

 (4.17) 

We note that 

 = −∇ΦE , c cψ= −∇E  (4.18) 

where Φ  is the total electric potential produced and cψ  is the electric potential by the 

solute (free) charge in vacuum. With eq.(4.18), the last term in the second equality of 

eq.(4.17) becomes 

 c c

1
( ) ( )d

8
Vψ

π
− ∇ Φ + ⋅ −∫ D E  (4.19) 

 

The volume integral (4.19) can be change to the following form by integration by parts: 

 c c

1
( ) ( )d 0

8
Vψ

π
Φ + ∇ ⋅ − =∫ D E  (4.20) 
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Thus eq.(4.17) can be rewritten as[7,8] 

 sol c

1
d

2
F V= − ⋅∫P E  (4.21) 

We consider our nonequilibrium polarization case. For the solvent system in the constrained 

equilibrium state “C”, the external field strength 2cE  takes the role of the external parameter 

a , exE  takes the role of 'χ , and solvent polarization eq* non
2 2 '= = +P P P P  takes the role of 

'A . The total external (vacuum) electric field in this state is *
c 2c ex= +E E E . A constrained 

equilibrium can be reached through a quasistatic path, so the electrostatic free energy by an 

external field is of the form like eq.(4.21), 

 eq* * *
sol c 2 ex 2c

1 1
d ( ') ( )d

2 2
F V V= − ⋅ = − + ⋅ +∫ ∫P E P P E E  (4.22) 

Similarly, the electrostatic free energy of the final equilibrium state “2” is given by 

 eq eq
2,sol 2 2c

1
d

2
F V= − ⋅∫P E  (4.23) 

Starting form the constrained equilibrium “C”, we prepare the nonequilibrium state “N” by 

removing the external exE  suddenly without friction. In this case, the constrained 

equilibrium will return to the nonequilbirium state. According to eq. (3.10), the 

nonequilibrium solvation energy is readily established as 

 eqnon *
2.sol sol 2 ex( ') dF F V= + + ⋅∫ P P E  (4.24) 

Substituting eq. (4.22) into eq. (4.24), the electrostatic solvation energy (it is just the 
electrostatic free energy of the medium) for the nonequilibrium state “N” is given by 

 

eq eqnon
2,sol 2c ex 2 ex 2

eq
ex 2c 2

1
( ) ( ')d ( ')d

2

1
( ) ( ')d

2

F V V

V

= − + ⋅ + + ⋅ +

= − ⋅ +

∫ ∫

∫

E E P P E P P

E E P P

 (4.25) 

Eq. (4.25) can be further simplified as 

 eqnon
2,sol 2c 2 ex

1 1
d 'd

2 2
F V V= − ⋅ + ⋅∫ ∫E P E P  (4.26) 

with the relationship of eq
2c ex 2'd dV V⋅ = ⋅∫ ∫E P E P , which is proved in Appendix A. Here, 

the first term on the right hand side of eq. (4.26) stands for the solvation energy of 

equilibrium state “2”, and the second term is just the solvent reorganization energy, i.e., 

 s ex

1
'd

2
Vλ = ⋅∫E P  (4.27) 
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Therefore, it can be seen from eqs. (4.26) and (4.27) that the solvent reorganization energy is 
the energy stored in the medium from equilibrium state “2” to nonequilbirium state “2”, 

that is, the energy change of the medium resulted from the addition of 'P  in the equilibrium 

state “2” by imposing the external field exE . 

Combining eqs. (4.11), (4.14) and (4.27), we obtain the final form for the solvent 
reorganization energy as 

 
s op

s dy eq dy

s

1
( )d

2 1 V

V
ε ε

λ
ε
−

= Δ ⋅ Δ − Δ
− ∫ E P P  (4.28) 

4.3 Solvent reorganization energy and its application 
4.3.1 Solvent reorganization energy and spectral shift 

Electron transfer reactions play an important role in chemistry and biochemistry, such as the 

break and repair of DNA, the function of enzyme and the breath of the life body. In Marcus’ 

electron transfer theory, the total reorganization energy is composed of two contributions: 

the internal reorganization inλ  due to the change of the reactant structure and the solvent 

reorganization energy sλ  due to the change of the solvent structure, i.e. 

 in sλ λ λ= +   (4.29) 

Marcus defined the solvent reorganization energy between the difference of the electrostatic 
solvation free energy between the nonequilibrium “2” and equilibrium “2” state, i.e.[9] 

 eqnon
s 2 ,sol 2 ,solF Fλ = −  (4.30) 

In the above derivation, we have obtained the solvent reorganization energy in electric field-
polarization representation as shown in eq.(4.27) and we also can derive another form of 
charge-potential representation as 

 
s op

s dy dy eq

s

1
( )d

2 1 S

Φ S
ε ε

λ σ σ
ε
−

= Δ Δ − Δ
− ∫¶  (4.31) 

The detailed derivation can be found in Appendix B. 
For the different solute size, shape and charge distribution, we simplify the solute charge 
distribution as the multipole expansion located as the center of a spherical cavity. In the case 
of the solute monopole, we can obtain the concise form as  

 s ex eq dy

1
( )

2
qλ ϕ ϕ= Δ − Δ  (4.32) 

where exq  is the external charge located at the center of the cavity to produce 'P . For the 

point charge Dq  and Aq  locating at the centers of the electron donor and accepter spherical 

cavities, the form of solvent reorganization energy in two-sphere model is given as 

 s D,ex D,eq D,dy A,ex A,eq A,dy

1 1
( ) ( )

2 2
q qλ ϕ ϕ ϕ ϕ= Δ − Δ + Δ − Δ  (4.33) 
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where D,exq  and A,exq  are the imposed external charge at the center of donor’s and acceptor’s 

spheres.  
In the case of solute charge being point dipole moment at the center of a sphere, the solvent 
reorganization energy can be derived to 

 s ex p,dy p,eq

1
( )

2
λ = ⋅ Δ − Δμ E E  (4.34) 

where exμ  is the external dipole at the sphere center and the subscript “p” denote the field 

strength produced by the polarization. The derivation for eqs. (4.32)-(4.33) is detailed in 

appendix C. 
 

 
Solvation coordinate 

Fig. 1. Spectral shift for the absorption and emission spectrum 

Similar to the definition for the solvent reorganization energy, the spectral shifts for light 

absorption and emission also can be defined as shown in Figure 1. Due to the Franck-

Condon transition of the solute in medium, the solute-solvent system will experience the 

following change: starting from the equilibrium ground state, then reaching the 

nonequilibrium excited state, and then relaxing to the equilibrium excited state, following 

by the nonequilibrium ground state, and finally reaching the starting equilibrium ground 

state. Here we use subscripts “1” and “2” to denote the different charge distributions in 

ground and excited state respectively. In Figure 1, (g)iU ( 1,2)i =  stands for the internal 

energies of the solute in ground state “1” and excited state “2” in vacuum. abhν  and emhν  

are the absorption and emission energy in medium respectively. 
According to the traditional nonequilibrium solvation theory[2,9], the absorption spectral 
shift is defined as the free energy difference between nonequilibrium excited state “2” and 
equilibrium ground state “1”. Ignoring the self-consistence between the solute and solvent 
charge, the spectral shift for the absorption spectrum can be defined as the solvation energy 
difference between nonequilibrium excited state “2” and equilibrium ground state “1”, i.e.  

 eqnon
ab 2,sol 1,solΔhǎ F F= −   (4.35) 
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Correspondingly, for the inversed process, namely, emission (or fluorescence) spectrum, the 
spectral shift can be expressed as 

 eqnon
em 1,sol 2,solΔhǎ F F= −   (4.36) 

According to the definitions given in eqs. (4.35) and (4.36), the positive value of abΔhǎ  is 

blue shift, while the positive value of emΔhǎ  is red shift. The solvation energies for the 

equilibrium ground and excited states in the charge-potential presentation can be given as  

 eq eq
1,sol 1 1

1
d

2 V

F Vρ ϕ= ∫  (4.37) 

 eq eq
2 ,sol 2 2

1
d

2 V

F Vρ ϕ= ∫  (4.38) 

where ϕ  is the polarization potential and ρ  the charge density of the solute. According to 

eq. (4.26), the nonequilibrium solvation energy can be expressed in charge-potential form as 

 eqnon
2 2 2 s

1
d

2 V

F Vρ ϕ λ= +∫  (4.39) 

 eqnon
1 1 1 s

1
d

2 V

F Vρ ϕ λ= +∫  (4.40) 

Together with eqs. (4.35)-(4.40), the general forms for the absorption and emission spectral 
shift can be obtained as  

 eq eq eqnon
ab 2 1 s 2 2 1 1

1
( )d

2 V

h F F Vν λ ρ ϕ ρ ϕΔ = Δ − Δ = + −∫  (4.41) 

 eq eq eqnon
em 1 2 s 2 2 1 1

1
( )d

2 V

h F F Vν λ ρ ϕ ρ ϕΔ = Δ − Δ = − −∫  (4.42) 

4.3.2 The two-sphere model for the solvent reorganization energy 

For the electron transfer reaction between the electron donor D with charges of Dq  and 

electron acceptor A with charge of Aq , the reaction process of transferring the charge of qΔ  

can be described by the following equation 

 D A D AD B A D B Aq q q q q q+Δ −Δ+ + → + +  (4.43) 

where B is bridge between the donor and acceptor, Dq q+ Δ  and Aq q− Δ  are the charge 

brought by the donor and acceptor after the electron transfer reaction. Here, we assume that 

all the point charges Dq , Aq , Dq q+ Δ  and Aq q− Δ  locate at the centers of the two spheres 

shown in Figure 2. Dr  and Ar  are the radii for donor and acceptor spheres respectively. The 

two spheres are surrounded by the solvent with sε , and the distance between the two 

spherical centers is d, which is assumed much larger than the radius of Dr  and Ar . 
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Similar to the treatment by Marcus [2], ignoring the image charge effect due to the surface 

polarization charge, the polarization potential due to charge variation Dq qΔ = Δ  on the 

surface of sphere D can be expressed as 

 D,s

1
( 1)

s

Q q
ε

= Δ − ， D,dy

op

1
( 1)Q q
ε

= Δ −  (4.44) 

in the medium of sε  and opε . Correspondingly the charge variation Aq qΔ = −Δ  in sphere A 

will induce the polarized charge on the surface of sphere A as 

 A,s

1
( 1)

s

Q q
ε

= −Δ − , A,dy

op

1
( 1)Q q
ε

= −Δ −  (4.45) 

 
 

 
 

Fig. 2. Two-sphere model 

Thus, in the medium of opε , the polarization charge ,dyDQ  due to DqΔ  will generate the 

polarization potential 
op

1
( 1)

D

q

r ε
Δ

−  at the center of sphere D, and A,dyQ  due to AqΔ will 

generate the polarization potential 
op

1
( 1)

q

d ε
Δ

− −  at the center of sphere D. Based on the 

principle of potential superposition, the total polarization potential at the center of sphere D 
can be expressed as 

 D,dy

op

1
( )( 1)

D

q q

r d
ϕ

ε
Δ Δ

Δ = − −  (4.46) 

With the similar treatment, the total polarization potential at the center of sphere A is 

 A,dy

op

1
( )( 1)

A

q q

r d
ϕ

ε
Δ Δ

Δ = − − −  (4.47) 
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For the solvent with dielectric constant sε , we have 

 D,eq

s

1
( )( 1)

D

q q

r d
ϕ

ε
Δ Δ

Δ = − −  (4.48) 

 A,eq

s

1
( )( 1)

A

q q

r d
ϕ

ε
Δ Δ

Δ = − − −  (4.49) 

With the zeroth approximation of multipole expansion for the solute charge distribution, the 
external charges at the position of donor and acceptor can be derived from eq. (C2) as 

 
op s

D,ex

s op( 1)
q q

ε ε
ε ε

−
= Δ

−
, 

op s

A,ex

s op( 1)
q q

ε ε
ε ε

−
= − Δ

−
 (4.50) 

Substituting eqs.(4.46)-(4.50) into eq.(4.33), the solvent reorganization energy in the two-

sphere and point charge model can be obtained as 

 
22

s op

s 2
s s op

( )( ) 1 1 2
( )

2 ( 1) D A

q

r r d

ε ε
λ

ε ε ε
−Δ

= + −
−

 (4.51) 

It is different from the traditional Marcus result [2,9] 

 
2

s op

M

s op

( )( ) 1 1 2
( )

2 D A

q

r r d

ε ε
λ

ε ε
−Δ

= + −  (4.52) 

The two sphere model is widely used to investigate the electron transfer reactions in solvent 
for its brief and simple expression. It is clear that the present two-sphere model will predict 
the solvent reorganization energy to be smaller than that by Marcus formula by a factor of 

s op

op s( 1)

ε ε
ε ε

−

−
. 

4.3.3 The spectral shift of photo-induced ionization energy in a single sphere 

Now we consider the simplest case for the nonequilibrium state: the solute charge 

distribution is point charge located at the center of the sphere with radius a, surrounded by 

the solvent with dielectric constant sε . This model can be adopted to treat the spectral shift 

of the vertical ionization energy. The atomic (or ionic) photo-induced ionization process in 

the medium with dielectric constants sε  or opε  can be represented as 

 1 2B BQ Qe−−⎯⎯⎯→  (4.53) 

where 2Q  and 1Q  are the solute charges before and after the ionization respectively. 

Induced by the charge change 2 1Q Q QΔ = − , the polarization charge on the sphere surface 

can be obtained as 

 surf s
eq

s

1
( )Q Q

ε
ε
−

Δ = Δ  (4.54) 
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opsurf

dy

op

1
( )Q Q

ε
ε
−

Δ = Δ  (4.55) 

in the medium of sε  and opε , and it will generate the polarization potential at the sphere 

center in these two cases as  

 2 1
eq

s

1
( 1)

Q Q

a
ϕ

ε
−

Δ = −  (4.56) 

 2 1
dy

op

1
( 1)

Q Q

a
ϕ

ε
−

Δ = −  (4.57) 

Recalling eq. (C2), the external charge condensed at the center can be achieved as 

 
op s

ex 2 1

s op

( )
( 1)

q Q Q
ε ε
ε ε

−
= −

−
 (4.58) 

Thus eqs. (4.39) and (4.41) can be simplified as 

 s ex eq dy

1
( )

2
qλ ϕ ϕ= Δ − Δ  (4.59) 

 

eq eq
ab s 2 2 1 1

op s op2 1 s 2 1
2 1 2 1

s op s op s s

1
( )

2
11 1 1 1 1

( ) ( ) [ ( 1) ( 1)]
2 ( 1) 2

h Q Q

Q Q Q Q
Q Q Q Q

a a a

ν λ ϕ ϕ

ε ε εε
ε ε ε ε ε ε

Δ = + −

− −− −
= − − + − − −

−

 (4.60) 

Further we have the form of the spectral shift in the vertical ionization of the charged 

particle, 

 
2

s op2 2 2
ab 1 2 1 22

s op s s

( )1 1 1
( ) ( )(1 )

2 ( 1) 2
h Q Q Q Q

a a

ε ε
ν

ε ε ε ε
−

Δ = − + − −
−

 (4.61) 

4.3.4 Spectral shift of point dipole in a sphere cavity 

Here we will adopt Onsager model of sphere cavity and point dipole moment to treat the 

nonequilibrium polarization in spectrum. The solute charge distribution is considered as the 

point dipole, locating at the center of single vacuum sphere with the radius a, as shown in 

Figure 3. The solute cavity is surrounded by the solvent with dielectric constant sε . The 

solute dipole will change from 1μ  to 2μ  due to the Franck-Condon transition in the light 

absorption process, and the light emission will lead to the inversed change of the solute 

dipole. 

First, the reaction field in the sphere cavity will be derived. In Figure 2, the total electric 

potential eq
1Φ  in equilibrium ground state satisfies the following differential equations and 

boundary conditions: 
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eq eq2 2
1,in 1,out

eq eq 1
1,in 1,in 2

0    ( );       0    ( )

cos

r a Φ r a

Φ
r

ϕ
μϕ θ

⎧∇ = < ∇ = >
⎪
⎨

= +⎪⎩

 (4.62) 

 

eq eq
1,in 0 1,out

eq eq
1,in 1,outeq eq

1,ln 1,out

| is finite,     | 0

,      ( )

r r

s

Φ

Φ Φ
Φ Φ r a

r r

ϕ

ε

→ →∞⎧ =
⎪
⎨ ∂ ∂

= = =⎪
∂ ∂⎩

 (4.63) 

where the subscripts “in” and “out” stand for inside and outside the sphere cavity and “θ” 

is the angle between the vectors of solute dipole and r. We assume that eq
1Φ  has the 

following form: 

 

eq 1
1,in 1p 2

1 1peq
1,out 2

cos cos

cos

E r
r

r

μθ θ

μ μ
θ

⎧ Φ = − +⎪⎪
⎨ +⎪Φ =⎪⎩

 (4.64) 

where the unknown 1pE  and 1pμ  are polarization field strength and equivalent dipole for 

the solvent polarization. The above eq. (4.64) can satisfy the differential equation (4.62). So, 

substituting eq. (4.64) into (4.63) leads to 

 

1 1p1
1p 2 2

1 1p1
1p 3 3

2( )2
s

E a
a a

E
a a

μ μμ

μ μμ ε

+⎧
− + =⎪⎪

⎨ +⎪− − = −⎪⎩

 (4.65) 

then we can obtain 

 s 1
1p 3

s

2( 1)

(2 1)
E

a

ε μ
ε
−

=
+

， s
1p 1

s

2( 1)

2 1

εμ μ
ε
−

= −
+

 (4.66) 

 
 

 

Fig. 3. Solvation model for single sphere 
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By substituting eq. (4.66) into eq. (4.64), the potentials inside and outside the sphere are 

 

eq s 1 1
1,in 3 2

s

eq 1
1,out 2

s

2( 1)
cos cos

(2 1)

3
cos

(2 1)

r

a r

r

ε μ μθ θ
ε

μ θ
ε

−⎧Φ = − +⎪ +⎪
⎨
⎪Φ =
⎪ +⎩

 (4.67) 

Therefore, the polarization potential inside the sphere cavity is 

 1s
1 3

s

2( 1)
cos

(2 1)

Ǎ
r

a

εϕ θ
ε
−

= −
+

 (4.68) 

Correspondingly, we can obtain the polarization field strength 1pE  inside the sphere and 

the total field outside the sphere for equilibrium ground state as 

 s 1
1p 3

s

2( 1)

(2 1) a

ε
ε
−

=
+

μ
E  (4.69) 

 1
1,out 3

s

3

(2 1) rε
⋅

=
+

μ r
E  (4.70) 

Thus, the polarization field due to the dipole change 2 1Δ = −μ μ μ  in medium with sε  and 

opε  can be achieved as 

 s
p,eq 3

s

2( 1)

(2 1) a

ε
ε
− Δ

Δ =
+

μ
E ，

op

p,dy 3
op

2( 1)

(2 1) a

ε
ε

− Δ
Δ =

+
μ

E  (4.71) 

Recalling eq. (C5), the introduced external dipole moment is 

 
op s

ex

s op

3

1 2 1

ε ε
ε ε

−
= Δ

− +
μ μ  (4.72) 

According to the definition of the solvent reorganization energy in eq. (4.34), we can obtain 

 

op s op s
s 3 3

s op op s

22
s op

3 2
s s op

2( 1)1 3 2( 1)
[ ]

2 1 2 1 (2 1) (2 1)

9( )( )

( 1)(2 1)(2 1)

a a

a

ε ε ε ελ
ε ε ε ε

ε εμ
ε ε ε

− − Δ − Δ
= Δ ⋅ −

− + + +

−Δ
=

− + +

μ μμ

 (4.73) 

According to the definition in eq. (4.41), we obtain the final form for the absorption spectral 

shift with single sphere and point dipole approximation as 
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eq eq
ab s 1 1p 2 2p

22 2 2
s op s 1 2

3 2 3
s s op s

1
( )

2

9( )( ) ( 1)

( 1)(2 1)(2 1) (2 1)

h

a a

ν λ

ε εμ ε μ μ
ε ε ε ε

Δ = + ⋅ − ⋅

−Δ − −
= +

− + + +

μ E μ E

 (4.74) 

The similar treatment can lead to the emission spectral shift as 

 

eq eq
em s 1 1 2 2

22 2 2
s op s 1 2

3 2 3
s s op s

1
( )

2

9( )( ) ( 1)

( 1)(2 1)(2 1) (2 1)

h

a a

ν λ

ε εμ ε μ μ
ε ε ε ε

Δ = − ⋅ − ⋅

−Δ − −
= −

− + + +

μ E μ E

 (4.75) 

4.4 Comments on traditional nonequilibrium solvation theory 

Nowadays, accompanying the development of computational methods and the progresses 

in computer science, solvent effect calculations at different levels have attracted much 

attention. Because most of chemistry and biochemistry reactions occur in solution, 

incorporation of the solvent effects into chemical models has been of great interest for 

several decades. Owing to the competitive advantages, continuum models are still 

playing a key role so far, although more and more explicit solvent methods, which take 

the microscopic structures of the solvent molecules into account, have been explored. 

There are two principal advantages of the continuum models. The first one is the 

reduction of the system’s numbers of freedom degrees. If we take explicitly a few of 

solvent layers which involve hundreds of solvent molecules, a huge number of degrees of 

freedom will be added. The first thing we must face with is a large number of 

conformations. In addition, the observable structural and dynamical properties of some 

specific solute we most concern will be averaged. In fact, if one realizes that the 

complementary methods based on some explicit solvent methods are also not perfectly 

accurate, one will find the continuum model accounts for the dominant parts of solvent 

effects. So the second advantage of the macroscopic continuum models provides rather 

good ways to treat the strong and long-range electrostatic forces that dominate many 

solvation phenomena. 

There are many circumstances in molecular modeling studies where a simplified 

description of solvent effects has advantages over the explicit modeling of each solvent 

molecule. The solute charge distribution and its response to the reaction field of the 

solvent dielectric, can be modeled either by quantum mechanics or by partial atomic 

charges in a molecular mechanics description. In spite of the severity of approximation of 

continuum models, it often gives a good account of equilibrium solvation energy, and 

hence widely used to estimate pKs, redox potential, and the electrostatic contributions to 

molecular solvation energy.       

Up to now, several models for the equilibrium solvation based on the continuous medium 

theory were developed. The simplest one is the Onsager model with a point-dipole of 

solute in a spherical cavity. One of the most remarkable successes of the calculation of 

equilibrium solvation for arbitrary solute cavity is the establishment of polarizable 

continuum model (PCM) by Tomasi. Thereafter, different procedures for solute-solvent 
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system have been developed. Introducing the numerical solution of the appropriate 

electrostatic potential into the popular quantum chemical packages yields different 

equilibrium solvation models. At present, a feature common to all the continuum 

solvation approximations is that the solute-solvent interactions are described in terms of 

the solute-reaction field interactions. The reaction field is due to the solvent polarization 

perturbed by the presence of solute, and the reaction field in turn perturbs the solute, 

until self-consistence is achieved. The reaction field is usually computed by solving the 

suitable Poisson equations. 

So far, most of continuum models are properly referred to as equilibrium solvation models. 

Besides the structures and properties of a thermodynamically equilibrated solute-solvent 

system, the processes that take place on longer timescales may thus be legitimately thought 

of as equilibrium processes with respect to solvation. However, the question arises how to 

apply continuum models to the very fast processes. For instance, the transition state 

structures in principle live for only a single vibrational period. In such cases, the solvent 

response may not have time to equilibrate with the electronic state change at the position of 

transition state. Hence, a continuum model developed based on the fully equilibrated 

solvation would overestimate the solvation free energy by the assumed equilibration. In 

fact, many cases concern the nonequilibrium solvation problems in solution. The typical 

examples are: condensed-phase electron transfer, spectral shifts of photon absorption and 

emission in solution, and vibrational spectrum in solution. Among them, the solvent 

reorganization energy of the electron transfer and the spectral shifts attracted the most 

attention. So, in the present comments, we confine ourselves to these two kinds of 

nonequilibrium solvent effects, although the nonequilibrium solvation problem exists in 

some other processes such as proton transfer. 

Let us date back to the beginning of the establishment of the nonequilibrium solvation 

theories. A brief overview on this topic will be helpful for us to clarify what fundamental 

defects exist in the present theories and application models. The concept of nonequilibrium 

solvation led to great progresses for people to understand the physics of fast processes in 

solution. Based on the separation of the two kinds of polarizations, orientational and 

electronic, Marcus applied the reversible work method to the establishment of the 

electrostatic free energy expression of the nonequilibrium solvation state. In Marcus’ 

original treatments, the electrostatic free energy of nonequilibrium state of solution was 

defined as the sum of reversible works done during charging process involving two steps as 

follows[2]   

 opeq non
1 1 2 2[ 0, 0] [ , ] [ , ]

A2,A1, sΦ Φ Φρ ρ ρ
εε= = ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→  (4.76) 

In eq.(4.76), Φ  denotes the total electric potential, including both the potential ψ  by the 

solute charge in vacuum and potential ϕ  due to the polarization of the medium. We confine 

our discussions only to the solute charge and the bound charge at present. The solute 

charge, which refers to the “free charge” from the viewpoint of electrodynamics, in principle 

represents the charge that can move about through the material. In practice what this 

ordinarily means is that free charges are not associated with any particular nucleus, but 

roam around at will. By contrast, the bound charges in dielectrics are attached to specific 

atoms or molecules. They are on a tight leash, and what they can do is to move a bit within 
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the atom or molecule. Such microscopic displacements are not as dramatic as the wholesale 

rearrangement of solute charge, but their cumulative effects account for the characteristic 

behaviors of dielectric materials. For convenience, we call hereafter ψ  the vacuum potential 

and ϕ  the polarization potential. We do not distinguish “free charge” and “solute charge”. 

Two terms, bound charge and polarized charge, are undistinguished in our previous works, 

but we use “bound charge” here.  

In the establishment of the nonequilibrium state, the first step, A1, charges the solute to 1ρ , 

and Φ  reaches an equilibrium in solvent of a static dielectric constant sε . In step A2, the 

solute is charged from 1ρ  to 2ρ  but only the electronic component of the solvent 

polarization, which corresponds to the optical dielectric constant opε  of the solvent, 

responds. The system arrives at a new state in which the electronic polarization of solvent 

reaches equilibrium with 2ρ  but the orientaional polarization does not. This state, we 

denote it by non
2 2[ , ]Φρ , is referred to as the “nonequilibrium” state. If we note that the 

potential change in step A2 is caused by the change of solute charge, but only the electronic 

polarization responds, we can take the nonequilibrium as a superposition of two 

“equilibrium” states, eq
1 1[ , ]Φρ  and op[ , ]ΦρΔ Δ . The former is a state in which 1ρ  

equilibrates with the medium of dielectric constant of sε , but the latter is such that the 

solute charge difference ρΔ  equilibrates in the hypothetical medium of a dielectric constant 

opε . Here we define the solute charge change and the potential change as 

 
2 1

eqnon
op 2 1Φ Φ Φ

ρ ρ ρΔ = −

Δ = −
 (4.77) 

As mentioned above, we divide the total potential Φ  into two constitutive parts: ψ  due to 

the solute charge in vacuum and ϕ  due to the bound charge. We need to distinguish eqϕ  of 

equilibrium from nonϕ  of nonequilibrium for the polarization potential but this is 

unnecessary for ψ . Therefore we have 

 eq eq
i i iΦ ψ ϕ= + ,  non non

i i iΦ ψ ϕ= +   (i=1,2)  (4.78) 

If we consider the inverse process of eq.(4.76) (denoted as as process B), we can write the 
analogue as 

 opeq non
2 2 1 1[ 0, 0] [ , ] [ , ]

B2,B1, sΦ Φ Φρ ρ ρ
εε= = ⎯⎯⎯⎯→ ⎯⎯⎯⎯→  (4.79) 

As mentioned above, we ignore the influence of solvent polarization upon the solute free 

charge, hence the charge distributions 1ρ  and 2ρ  in eq.(4.79) are supposed to be exactly the 

same as given in eq.(4.76). 
If the properties of the dielectric do not vary during the process, it is very common to 
integrate the work done in the charging process by the following equation, 

 d
V

W Φ Vδ δρ= ∫  (4.80) 
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The integration is over the whole space. Throughout this review, we use W to denote the 

work done and G the total free energy. But if we ignore the penetration of ρ  into the 

medium region, the integration will be in fact only carried out within the cavity occupied 

by the solute. Introducing a charging fraction α during step A1 of eq.(4.76), the 

electrostatic free energy of equilibrium state eq
1 1[ , ]Φρ  was expressed in the well-known 

form, i.e., 

 eq eq
1 A1 1 1(1 / 2) d

V

G W Φ Vρ= = ∫  (4.81) 

On the basis of step A1, step A2 introduces the further charge distribution change ρΔ , and 

the potential accordingly responds, so the charge distribution αρ  and the total electric 

potential Φα  during step A2 were expressed by Marcus as[2] 

 1 2 1( )αρ ρ α ρ ρ= + − and eq eqnon
1 2 1( )Φ Φ Φ Φα α= + −   ( 0 ~ 1α = )  (4.82) 

Therefore, the electrostatic free energy of nonequilibrium state was expressed by Marcus as 
the sum of work done in steps A1 and A2 [eq.(17) of ref.2], i.e. 

 eqnon non non
2 2 2 2 1 1 2(A) (1 / 2) ( )d

V

G Φ Φ Φ Vρ ρ ρ= + −∫   (4.83) 

Our following arguments will make it clear that eq.(4.83) is incorrect owing to the different 
response properties of the medium in equilibrium and nonequilibrium cases. 
In the work of Marcus, the solvent reorganization energy is defined as the difference of 
electrostatic free energies between the nonequilibrium state and the equilibrium state 
subject to the same solute charge distribution, i.e., 

 eqnon
o 2 2G Gλ = −  (4.84) 

Introducing the two-sphere approximation, the famous two-sphere model (as given by 

eq.(4.52) of estimating the reorganization energy was consequently developed and widely 

applied for decades. However, the Marcus two-sphere model often overestimates the 

solvent reorganization energy was, by a factor of about two for many electron transfer 

reactions[10,11]. For example, Basilevsky[12] developed a numerical method to evaluate the 

reorganization energy and applied it to the well-known Closs-Miller ET systems by using 

the conventional Marcus theory. However, the calculated values for the biphenyl-bridge-

naphthalene system were exaggerated by a factor of about 2 than those fitted from the 

experimental rate constants.  

The classical issue on the electrostatic free energy of nonequilibrium solvation in a 

continuous medium is revisited. The central idea, which has never been considered before, 

is to introduce a constrained equilibrium that is required to have the same charge 

distribution, polarization and entropy as the true nonequilibrium state (see Sections 1~3). 

Such a reference is certainly realizable via a quasistatic procedure. The location of the source 

for the tuning electric field exE  is yet completely irrelevant. From this reference, the 

electrostatic free energy of nonequilibrium solvation can directly be obtained in strict 

accordance with the principle of thermodynamics. It is also shown that the long lasting 
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problem that the solvent reorganization energy is always overestimated by the previous 

continuum models is solved in a natural manner. It is believed that the present paradigm is 

completely general and can be used to derive other thermodynamic quantities of the 

isothermal nonequilibrium system as well.  
The freezing of the state variables here is quite different from the treatment by Marcus. In 
fact, to freeze the variables of any nonequilibrium state is not only an abstract idea, but also 
a proper arrangement which can be used to realize the freezing. The fundamental difference 
between the Marcus approach and the present strategy is obvious. The freezing of the 
inertial polarization in Marcus work is just an idea without any measure, while our work 
realizes the freezing by introducing an external field. In our work, the whole polarization is 
kept frozen, not only the inertial part. 
We mention that here the problem in the traditional nonequilibrium solvation theory arises 
from the simple reversible work integration, without consideration of any variable that 
describes the nonequilibrium state. A reversible work method applying to a non-quasistatic 
process is obviously arbitrary and lack of thermodynamic support. On the contrary, in our 

treatment, we rigorously obey the thermodynamics and a crucial external variable exE , 

which is used to constrain the nonequilibrium state to an “equilibrium” one, enters the 
expression of solvent reorganization energy. More details can be found in the references 4~6. 

5. Appendix 

5.1 Appendix A：Proof of eq
2c ex 2'd dV V⋅ = ⋅∫ ∫E P E P  

In the constrained equilibrium state, there is the relations of ' 'sχ=P E  and eq eq
2 2sχ=P E , thus 

we have 

 eq eq eq
2 s 2 2'd 'd ' d

V V V

V V Vχ⋅ = ⋅ = ⋅∫ ∫ ∫E P E E E P  (A1) 

 eq eq
2c 2p ex 2 p' 2'd 'd d d

V V V V

V V V V⋅ + ⋅ = ⋅ + ⋅∫ ∫ ∫ ∫E P E P E P E P  (A2) 

 

Applying the formulas of 0∇ ⋅ =P , and σ⋅ =n P  with σ  being the surface polarized charge 

density, the second term on the left hand side of the above equation can be rewritten as   

 

2p 2p 2p

2p

2p 2p '
'

'd 'd ( ')d

( ')
'd ( ) '( )d '( ) d d '

| |

V V V

S S S S

V V V

S S S S

ϕ ϕ

σ
ϕ ϕ σ σ

⋅ = − ∇ ⋅ = − ∇ ⋅

= − ⋅ = − = −
−

∫ ∫ ∫

∫ ∫ ∫ ∫

E P P P

r
n P r r r

r r

 (A3) 

where 2pσ  and 'σ  represent the polarization surface charges corresponding to 2pE  and 'P  

respectively, while 2pϕ  denotes the equilibrium polarization potential, 2p 2p= −∇E ϕ . In the 

same way, the second term on the right hand side of eq. (A2) can be changed to the 

following form, 
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2peq eq

p 2 2 '
'

( ')
' d ' d '( ) d d '

| |
⋅ = − ∇ ⋅ = −

−∫ ∫ ∫ ∫
r

E P P r
r r

V V S S

V V S S
σ

ϕ σ  (A4) 

Substituting eqs. (A3) and (A4) into eq. (A2), we obtain the desired equality  

 eq
2c ex 2'd dV V⋅ = ⋅∫ ∫E P E P   (A5) 

5.2 Appendix B: The proof for the solvent reorganization energy in charge-potential 
form 

In the equilibrium medium, the divergency of the solvent polarization and surface polarized 

charge σ  can be expressed as  
 

 0∇ ⋅ =P ， σ⋅ =n P  (B1) 

 

Further by using dy dy( )ΦΔ = −∇ ΔE , we have 
 

 

s op

s dy dy eq

s

s op

dy dy eq

s

s op

dy dy eq

s

1
( ) ( )]d

2 1

1
[ ( )]d

2 1

1
( ) d

2 1

−
= ∇ Δ ⋅ Δ − Δ

−

−
= ∇ ⋅ Δ Δ − Δ

−

−
= Δ Δ − Δ ⋅

−

∫

∫

∫

P P

P P

P P n¶

V

V

S

Φ V

Φ V

Φ S

ε ε
λ

ε
ε ε
ε

ε ε
ε

 (B2) 

that is, 

 
s op

s dy dy eq

s

1
( )d

2 1
S

Φ S
ε ε

λ σ σ
ε
−

= Δ Δ − Δ
− ∫¶  (B3) 

 

which is applicable to solute cavities of general shapes and sizes. 

5.3 Appendix C：The brief expression for the solvent reorganization energy in sphere 

cavity model 

If the point charge q of the solute locate at the center of the sphere cavity with the radius of 

r , it will produce the electric field strength in vacuum as 
 

 c 2

q

r
=

r
E  (C1) 

Then we can set a point charge exq  at the center of the solute sphere, defined as 
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op s

ex

s op

1

1
q q

ε ε
ε ε

−
= Δ

−
 (C2) 

 

with 2 1q q qΔ = − , it can generate the needed external field strength in vacuum as  

 
op s op

ex dy2
s op s

( 1)
1

q

r

ε ε χ
ε ε χ

− Δ
= = − Δ

−
r

E E  (C3) 

If the solute charge can be regarded as the point dipole μ  at the sphere center, the field 

strength produce by it in vacuum is 

 c 3r

⋅
=
μ r

E  (C4) 

 

If we can place another point dipole exμ  at the center, defined by 

 
op s

ex

s op

3

( 1) 2 1

ε ε
ε ε

−
= Δ

− +
μ μ  (C5) 

 

then there will be the needed external field strength exE  as 

 
op s op

ex dy3
s op s

3
( 1)

( 1) 2 1 r

ε ε χ
ε ε χ

− Δ ⋅
= = − Δ

− +
μ r

E E  (C6) 

by using the relation of dy 3
op

3

2 1 rε
Δ ⋅

Δ =
+

μ r
E . It should be noticed that exE  is the vacuum 

field strength due to external charge and it will generate the additional polarization 'P , 

polarization field p 'E  and polarization potential 'ϕ  as  

 dy eq' = Δ − ΔP P P , p dy eq' = Δ − ΔE E E , dy eq'ϕ ϕ ϕ= Δ − Δ  (C7) 

 

in the medium with dielectric constant sε . By using ex exψ= −∇E  with exψ  being the vacuum 

potential due to 'P , we can obtain 
 

 
s ex ex ex ex

ex
ex ex

' '

1 1 1 1
'd ' d 'd ( ) '( )d

2 2 2 2
1 ( ') ' 1 '( ) 1

'( )d ( ')d ' 'd
2 | '| 2 | '| 2

V V V V

V V V V

dV dV
V V V

λ ψ ψ ψ ρ

ρ ρρ ρ ρ ϕ

= ⋅ = − ⋅∇ = ∇ ⋅ = −

= − = − = −
− −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

E P P P r r

r r
r r

r r r r

 (C8) 
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where 'ρ  is the polarized charge due to exE  in the medium. Substituting eq. (C7) into the 

above equation, it can be obtained that  

 s ex eq dy

1
( )d

2
Vλ ρ ϕ ϕ= Δ − Δ∫  (C9) 

 

This equation is the brief expression for the solvent reorganization energy with sphere 
cavity approximation.  
In the case of solute charge being point charge, eq. (C9) can be simplified as 

 s ex eq dy

1
( )

2
qλ ϕ ϕ= Δ − Δ  (C10) 

In another case with point charges Dq  and Aq  locating at the centers of electron donor’s and 

acceptor’s spheres, eq. (C9) can be rewritten as 
 

 s D,ex D,eq D,dy A,ex A,eq A,dy

1 1
( ) ( )

2 2
q qλ ϕ ϕ ϕ ϕ= Δ − Δ + Δ − Δ  (C11) 

 

In the case of solute point dipole, the dipole can be expressed as the product of the charge q  

and distance dl , i.e., qd=μ l , thus we have  
 

 dq q q qdϕ ϕ ϕ ϕ+ −− = = ⋅∇ = − ⋅l μ E  (C12) 

 

According to eqs. (C9) and (C12), the solvent reorganization energy with point dipole and 

sphere cavity approximation can be expressed as 

 s ex p,dy p,eq

1
( )

2
λ = ⋅ Δ − Δμ E E  (C13) 
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