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1. Introduction

The diffusion dynamics in time-dependent potentials plays a central role in the phenomenon
of stochastic resonance (Gammaitoni et al., 1998; Chvosta & Reineker, 2003a; Jung & Hänggi,
1990; 1991), in physics of Brownian motors (Reimann, 2002; Astumian & Hänggi,
2002; Hänggi et al., 2005; Allahverdyan et al., 2008; den Broeck et al., 2004; Sekimoto et al.,
2000) and in the discussion concerning the energetics of the diffusion process
(Parrondo & de Cisneros, 2002) – these papers discuss history, applications and existing
literature in the domain.
Diffusion in a time-dependent potential where the dynamical system communicates with a
single thermal bath can be regarded as an example of an isothermal irreversible process.
Investigating the work done on the system by the external agent and the heat exchange
with the heat bath (Sekimoto, 1999; Takagi & Hondou, 1999) one immediately enters the
discussion of the famous Clausius inequality between the irreversible work and the
free energy. If the energy considerations concern a small system, the work done on
the system has been associated with individual realizations (trajectories) of the diffusive
motion, i.e. the work itself is treated as a random variable whose mean value enters the
thermodynamic considerations. An important achievement in the field is the discovery
of new fluctuation theorems, which generalize the Clausius identity in giving the exact
mean value of the exponential of the work. This Jarzynski identity (Bochkov & Kuzovlev,
1981a;b; Evans et al., 1993; Gallavotti & Cohen, 1995; Jarzynski, 1997b;a; Crooks, 1998; 1999;
2000; Maes, 2004; Hatano & Sasa, 2001; Speck & Seifert, 2004; Seifert, 2005; Schuler et al.,
2005; Esposito & Mukamel, 2006; Hänggi & Thomas, 1975) enables one to specify the free
energy difference between two equilibrium states. This is done by repeating real time (i.e.
non-equilibrium) experiment and measuring the work done during the process. The identity
has been recently experimentally tested (Mossa et al., 2009; Ritort, 2003).
In the presentChapter we discuss four illustrative, exactly solvablemodels in non-equilibrium
thermodynamics of small systems. The examples concern: i) the unrestricted diffusion in the
presence of the time-dependent potential (SEC. 2) (Wolf, 1988; Chvosta & Reineker, 2003b;
Mazonka & Jarzynski, 1999; Baule & Cohen, 2009; Hänggi & Thomas, 1977), ii) the restricted
diffusion of non-interacting particles in the presence of the time-dependent potential (SEC. 3)
(Chvosta et al., 2005; 2007; Mayr et al., 2007), iii) the restricted diffusion of two interacting
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2 Thermodynamics

particles in the presence of the time-dependent potential (SEC. 4) (Rödenbeck et al., 1998;
Lizana & Ambjörnsson, 2009; Kumar, 2008; Ambjörnsson et al., 2008; Ambjörnsson & Silbey,
2008; Barkai & Silbey, 2009), and iv) the two-level systemwith externally driven energy levels
(SEC. 5) (Chvosta et al., 2010; Šubrt & Chvosta, 2007; Henrich et al., 2007; Hänggi & Thomas,
1977).
A common feature of all these examples is the following. Due to the periodic driving, the
system approaches a definite steady state exhibiting cyclic energy transformations. The exact
solution of underlying dynamical equations allows for the detailed discussion of the limit
cycle. Specifically, in the setting i), we present the simultaneous probability density for the
particle position and for the work done on the particle. In the model ii), we shall demonstrate
that the cycle-averaged spatial distribution of the internal energy differs significantly from the
corresponding equilibrium one. In the scenario iii), the particle interaction induces additional
entropic repulsive forces and thereby influences the cycle energetics. In the two-level model
iv), the system communicates with two heat baths at different temperatures. Hence it can
perform a positive mean work per cycle and therefore it can be conceived as a simple
microscopicmotor. Having calculated the full probability density for the work, we can discuss
also fluctuational properties of the motor performance.

2. Diffusion of a particle in a time-dependent parabolic potential

Consider a particle, in contact with a thermal bath at the temperature T which is dragged
through the environment by a time-dependent external force. Assuming a single degree
of freedom, the location of the particle at a time t is described by the time-inhomogeneous
Markov process X(t). Let the particle moves in the time-dependent potential

V(x, t) =
k

2
[x− u(t)]2 . (1)

We can regard the particle as being attached to a spring, the other end of which moves with an
instantaneous velocity u̇(t) ≡ du(t)/dt. Furthermore, assume that the thermal forces can be
modeled as the sum of the linear friction and the Langevin white-noise force. We neglect the
inertial forces. Then the equation of motion for the particle position is (van Kampen, 2007):

Γ
d

dt
X(t) = − ∂

∂x
V(x, t)

∣

∣

x=X(t)
+N(t) = −k [X(t)− u(t)] +N(t) , (2)

where Γ is the particle mass times the viscous friction coefficient, and N(t) represents the
delta-correlated white noise 〈N(t)N(t′)〉 = 2DΓ2 δ(t − t′). Here D = kBT/Γ is the diffusion
constant and kB is the Boltzmann constant.
We observe the motion of the particle. Assuming a specific trajectory of the particle we are
interested in the total work done on the particle if it moves along the trajectory. Taking into
account the whole set of all possible trajectories, the work becomes a stochastic process. We
denote it asW(t) and it satisfies the stochastic equation (Sekimoto, 1999)

d

dt
W(t) =

∂

∂t
V(X(t), t) = −ku̇(t)[X(t)− u(t)] (3)

with the initial conditionW(0) = 0. Differently speaking, if the particle dwells at the position x
during the time interval [t, t+ dt] then the work done on the particle during this time interval
equals V(x, t+ dt)−V(x, t) (for the detailed discussion cf. also SEC. 5).
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Four Exactly Solvable Examples in Non-Equilibrium Thermodynamics of Small Systems 3

The above system of stochastic differential equations for the processes X(t) and W(t) can
be translated into a single partial differential equation for the joint probability density
G(x,w, t | x0). The function G(x,w, t | x0) describes the probability of achieving the position x
at the time t and performing the work w during the time interval [0, t]. The partial differential
equation reads (Risken, 1984; van Kampen, 2007)

∂

∂t
G(x,w, t | x0) =

{

D
∂2

∂x2
+

k

Γ

∂

∂x
[x− u(t)] + [x− u(t)] u̇(t)

∂

∂w

}

G(x,w, t | x0) ,

G(x,w, t | x0) = δ(x− x0)δ(w) . (4)

This equation can be solved by several methods. For example, one can use the Lie algebra
operator methods (Wilcox, 1967; Wolf, 1988), or one can calculate the joint generating
functional for the coupled process in question (Baule & Cohen, 2009). Our approach will
be based on the following property of EQ. 4: if at an arbitrary fixed instant the probability
density G(x,w, t | x0) is of the Gaussian form, then it will preserve this form for all subsequent
times. This follows from the fact that all the coefficients on the right hand side of EQ. 4 are
polynomials of the degree at most one in the independent variables x and w (van Kampen,
2007). Accordingly, the function G(x,w, t | x0) corresponds to a bivariate Gaussian distribution
and it is uniquely defined by the central moments (Mazonka & Jarzynski, 1999):

x(t) = 〈X(t)〉 , w(t) = 〈W(t)〉 ,
σ2
x(t) =

〈

[X(t)]2
〉

− [x(t)]2 , σ2
w(t) =

〈

[W(t)]2
〉

− [w(t)]2 , (5)

cxw(t) = 〈X(t)W(t)〉 − x(t)w(t) .

The simplest way to calculate these moments is to use EQS. (2) and (3) (Gillespie, 1992;
van Kampen, 2007). The result is

x(t) = u(t)− exp

(

− k

Γ
t

)

∫ t

0
dt′ u̇(t′)exp

(

k

Γ
t′
)

+ [x0 − u(0)]exp

(

− k

Γ
t

)

, (6)

σ2
x(t) =

ΓD

k

[

1− exp

(

−2
k

Γ
t

)]

, (7)

cxw(t) = −2ΓDexp

(

− k

Γ
t

)

∫ t

0
dt′ u̇(t′)sinh

(

k

Γ
t′
)

, (8)

w(t) = −k
∫ t

0
dt′ u̇(t′)[x(t′)− u(t′)] , σ2

w(t) = −2k
∫ t

0
dt′ u̇(t′)cxw(t′) . (9)

Surprisingly, the variance σ2
x (t) does not depend on the function u(t). Moreover, in the

asymptotic regime t ≫ Γ/k, the variance σ2
x (t) attains the saturated value ΓD/k. This means

that the marginal probability density for the particle position assumes a time-independent
shape.
Up to now our considerations were valid for an arbitrary form of the function u(t). We now
focus on the piecewise linear periodic driving. We take u(t+ λ) = u(t) and

u(t) = −2vt for t ∈ [0,τ[ , u(t) = −2vτ + vt for t ∈ [τ,λ[ , (10)

where v> 0 and 0< τ < λ. The parabola is first moving to the left with the velocity 2v during
the time interval [0,τ[. Then, at the time τ it changes abruptly its velocity and moves to the
right with the velocity v during the rest of the period λ, cf. FIG. 1 d).
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4 Thermodynamics

Due to the periodic driving the system’s response (6)-(9) approaches the limit cycle. FIG. 1
illustrates the response during two such limit cycles. First, note that the mean position of
the particle x(t) “lags behind” the minimum of the potential well u(t) (see the panel a)).
The magnitude of this phase shift is given by the second term in EQ. (6) and therefore it is
proportional to the velocity v. In the adiabatic limit of the infinitely slow velocity v → 0 the
probability distribution for the particle position is centred at the instantaneous minimum of
the parabola.
Consider now the mean work done on the system by the external agent during the time
interval [0, t[ (panel b)). w(t) increases if either simultaneously u(t) > x(t) and u̇(t) > 0, or
if simultaneously u(t) < x(t) and u̇(t) < 0. For instance, assume the parabola moves to the
right and, at the same time, the probability packet for the particle coordinate is concentrated
on the left from the instantaneous position of the parabola minimum u(t). Then the dragging
rises the potential energy of the particle, i.e. the work is done on it and the mean input power
is positive. Similar reasoning holds if either simultaneously u(t) > x(t) and u̇(t) < 0, or if
simultaneously u(t) < x(t) and u̇(t) > 0. Then the mean work w(t) decreases and hence
the mean input power is negative. The magnitude of the instantaneous input power is
proportional to the instantaneous velocity u̇(t). Therefore it is bigger during the first part
of the period of the limit cycle in comparison with the second part of the period. Finally, let
us stress that the mean work per cycle wp = w(t+ λ)−w(t) is always positive, as required by
the second law of thermodynamics.
The variance of the work done on the particle by the external agent σ2

w(t) shows qualitatively
the same behaviour as w(t).
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Fig. 1. The central moments (6)-(9) in the time-asymptotic regime. The driving is represented
by the position of the potential minimum u(t) and it is depicted in the panel d). In all panels
(except of the panel c)) the curves are plotted for two periods λ of the driving. The panel a)
shows the mean position of the particle, x(t), which lags behind the minimum of the
potential well. The panel b) shows the mean work w(t) done on the particle by the external
agent. In the panel c) we observe the saturation of the variance of the particle’s position
σ2
x (t). In the panel e) we present the correlation function cxw(t). The panel f) illustrates the

variance σ2
w(t) of the work done on the particle by the external agent. The parameters used

are: k = 1kgs−2, D = 1m2 s−1, Γ = 1kgs−1, v = 0.825ms−1, λ = 10s, τ = 10/3s.
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Four Exactly Solvable Examples in Non-Equilibrium Thermodynamics of Small Systems 5

3. Barometric process with time-dependent force

3.1 Dynamics

In this Section we discuss a spatially restricted one-dimensional diffusion process occurring in
a half-space under the influence of a harmonically oscillating and space-homogeneous driving
force. We are interested in the solution of the Langevin equation

Γ
d

dt
X(t) = − ∂

∂x
V(x, t)

∣

∣

x=X(t)
+N(t) , (11)

for an overdamped Brownian particle moving in the time-dependent potential V(x, t), where
V(x, t) = −xF(t), if x ≥ 0, and V(x, t) = ∞, for x < 0. Here N(t) is the δ-correlated Langevin
force, and Γ equals the particle mass times the viscous friction coefficient. Differently
speaking, while localised on the positive half-line, the particle is acted upon by the Langevin
force N(t) and by the spatially-homogeneous, time-dependent force F(t). Additionally, we
assume a reflecting barrier at the origin, i.e. the diffusion is restricted on the positive half-line.
As an auxiliary problem, consider first the spatially unrestricted one-dimensional diffusion in
the field of a spatially-homogeneous and time-dependent force F(t). The probability density
for the position of the diffusing particle reads (Hänggi & Thomas, 1975; 1977; Wolf, 1988)

G(x, t|x′, t′) = 1√
π

1
√

4D(t− t′)
exp

{

− 1

4D(t− t′)

[

x− x′ −
∫ t

t′
v(t′′) dt′′

]2
}

. (12)

The Green function yields the solution of the Smoluchowski diffusion equation for the initial
condition π(x) = δ(x − x′) imposed at time t′. Qualitatively, it represents the gradually
spreading Gaussian curve whose centre moves in time, the drift being controlled by the
protocol (time-dependent scenario) of the external force. The momentary value of the

mean particle position is given by the expression x′ +
∫ t
t′ dsv(s), where v(t) = F(t)/Γ is

the time-dependent drift velocity. The spreading of the Gaussian curve is controlled by the
thermal-noise strength parameter D = kBT/Γ.
We now assume that the particle is initially (i.e. at the time zero) fully localised at a fixed
point x′ > 0, and we place at the origin of the coordinate system the reflecting boundary.
The Green function U(x, t|x′,0) which solves the problemwith the reflecting boundary can be
constructed in two steps (cf. the detailed derivation in REF. (Chvosta et al., 2005)). First, one
has to solve the Volterra integral equation of the first kind

D
∫ t

0
G(0, t|0, t′)U(0, t′|x′,0)dt′ =

∫ 0

−∞
G(x, t|x′,0)dx . (13)

Here both the kernel and the right hand side follow directly from EQ. (12). The
unknown function U(0, t|x′,0) represents, as the designation suggests, the time evolution
of the probability density for the restricted diffusion at the boundary. Secondly, the final
space-resolved solution emerges after performing just one additional quadrature:

U(x, t|x′,0) = G(x, t|x′,0)− D
∫ t

0

∂

∂x
G(x, t|0, t′)U(0, t′|x′,0)dt′ . (14)

The resulting function is properly normalized, i.e. we have
∫ ∞

0 U(x, t|x′,0)dx = 1 for any t≥ 0
and for any fixed initial position x′ > 0.
Up to now, our reasoning is valid for any form of the external driving force. A negative
instantaneous force pushes the particle to the left, i.e. against the reflecting boundary at the
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origin. In this case, the force acts against the general spreading tendency stemming from the
thermal Langevin force. A positive instantaneous force amplifies the diffusion in driving the
particle to the right. We now restrict our attention to the case of a harmonically oscillating
driving force F(t) = Γv(t)with the drift velocity v(t) = v0 + v1 sin(ωt). The three parameters,
v0, v1, and ω occurring in this formula together with the diffusion constant D yield the
full description of our setting. Specifically, if v1 = 0, the external force has only the static
component and the explicit solution of the integral equation (13) is well known, cf. the formula
(29) in (Chvosta et al., 2005). U(0, t|x′,0) approaches in this case either zero, if v0 ≥ 0, or the
value |v0|/D, if v0 < 0. Having the oscillating force, the most interesting physics emerges if
the symmetrically oscillating component superposes with a negative static force, i.e. if v1 > 0,
and v0 < 0. This case is treated in the rest of the Section.
Considering the integral equation (13), the basic difficulty is related with the non-convolution
structure of the integral on the left-hand side. It may appear that any attempt to perform
the Laplace transformation must fail. But it has been demonstrated in REF. (Chvosta et al.,
2007) that this need not be the case. The paper introduces, in full details, a special procedure
which yields the exact time-asymptotic solution of EQ. (13). Here we confine ourselves to the
statement of the final result and to its physical consequences.
First of all, we introduce an appropriate scaling of the time variable. Adopting any such
scaling, the four model parameters will form certain dimensionless groups. However, there
are just two “master” combinations of the parameters which control the substantial features
of the long-time asymptotic solution. These combinations emerge after we introduce the
dimensionless time τ = [v20/(4D)] t (we assume D > 0). If we insert the scaled time into
EQ. (12), the exponent will include solely the combinations κ = |v0|v1/(2ωD) and θ =
4ωD/v20. The first of them measures the scaled amplitude of the oscillating force, the second
one its scaled frequency. We now define an infinite matrix R−+ with the matrix elements

〈m | R−+ |n 〉 = I|m−n|(−κ
√
1− imθ + κ) . (15)

Here m,n are integers and Ik(z) is the modified Bessel function of order k with argument
z. We use the standard bra-ket notation. Notice that the matrix elements depend solely on
the above dimensionless combinations κ and θ. As shown in REF. (Chvosta et al., 2005), the
time-asymptotic dynamics can be constructed from the matrix elements of the inverse matrix

R
−1
−+. In fact, the so called complex amplitudes

fk = 〈k | R
−1
−+ |0〉 , k = 0,±1,±2, . . . , (16)

define through EQ. (17) below the full solution. The zeroth complex amplitude f0 equals
one. The amplitudes fk and f−k are complex conjugated numbers. Generally, their absolute
value | fk| decreases with increasing the index k. The even (odd) amplitudes are even (odd)
in the parameter κ. Summing up the whole procedure, the probability density at the origin
U(0, t|x′,0) asymptotically approaches the function

Ua(0, t) =
|v0|
D

+∞

∑
k=−∞

fk exp(−ikθτ) =
|v0|
D

{

1+ 2
∞

∑
k=1

ak(κ,θ) cos [kωt+ φk(κ,θ)]

}

. (17)

In the last expression, we have introduced the real amplitudes of the higher harmonics
ak(κ,θ) = | fk| and the phase shifts φk(κ,θ) = −arctan (Im fk/Re fk). Except for the
multiplicative factor |v0|/D, the asymptotic form of the probability density at the boundary is
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Four Exactly Solvable Examples in Non-Equilibrium Thermodynamics of Small Systems 7

controlled solely by the parameters κ and θ. For example, changing the diffusion constant D
and, at the same time, keeping a constant value of the product Dω, the time-asymptotic form
of the reduced function fa(t) = (D/|v0|)Ua(0, t) will not change. Notice that, for any value of
the parameters κ and θ, the time average of the probability density at the boundary equals the
equilibrium value of this quantity in the problem without driving force. We have calculated
the complex amplitudes (16) via a direct numerical inversion of the matrix R−+ defined in
(15). Of course, the infinite-ordermatrix R−+ must be first reduced onto its finite-order central
block. The matrix elements of the reduced matrix are again given by EQ. (15), presently,
however, m,n = 0,±1,±2, . . . ,±N. The integer N has been taken large enough such that its
further increase doesn’t change the results, within a predefined precision. In this sense, the
numerical results below represent the exact long-time solution of the problem in question.
Up to now, we have only discussed the time-dependence of the probability density at the
boundary. As a matter of fact, the knowledge of the complex amplitudes fk allows for a rather
detailed discussion of many other features of the emerging diffusion process. First of all,
we focus on the time- and space-resolved probability density for the particle coordinate. We
remind that, regardless of the initial condition, the static drift towards the origin (v0 < 0,
v1 = 0) induces the unique equilibrium density πeq(x) = (|v0|/D)exp [−x|v0|/D], x ≥ 0.
Assuming the oscillating drift, we are again primarily interested in the time-asymptotic
dynamics. In this regime, the probability density U(x, t|x′,0) does not depend on the initial
condition (as represented by the variable x′), and it exhibits at any fixed point x≥ 0 oscillations
with the fundamental frequency ω. We can write

U(x, t|x′,0) ∼ Ua(x, t) =
+∞

∑
k=−∞

uk(x)exp(−ikωt) . (18)

Presently, however, the Fourier coefficients uk(x) depend on the coordinate x. An interesting
quantity will be the time-averaged value of the density in the asymptotic regime. This is
simply the dc component u0(x) of the above series. We already know that the value of this
function at the origin is u0(0) = |v0|/D, i.e. it equals the value of the equilibrium density
in the static case at the origin, u0(0) = πeq(0). Generically, we call the difference between
the time-averaged value of a quantity in the oscillating-drift problem and the corresponding
equilibrium value of this quantity in the static case as “dynamical shift”. Hence we conclude
that there is no dynamical shift of the density profile at the origin. But what happens for x> 0?
Assume that the complex amplitudes fk are known. Then we know also the time-asymptotic
solution of the integral equation (13) and the subsequent asymptotic analysis can be based
on the expression (14). Leaving out the details (cf. again REF. (Chvosta et al., 2007)), the
x-dependent Fourier coefficients in EQ. (18) are given by the expression

uk(x) =
|v0|
D

〈k |L−−E(x)R++ | f 〉 , k = 0,±1,±2, . . . . (19)

Here | f 〉 is the column vector of the complex amplitudes, i.e. fk = 〈k | f 〉. Moreover, we
have introduced the diagonal matrix E(x), and the two matrixes L−−, R++ with the matrix
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8 Thermodynamics

elements

〈m |E(x) |n 〉 =
δmn

2

[

1+
1√

1− imθ

]

exp

[

−x
|v0|
2D

(√
1− imθ + 1

)

]

, (20)

〈m |L−− |n 〉 = I|m−n|(−κ
√
1− inθ − κ) , (21)

〈m |R++ |n 〉 = I|m−n|(+κ
√
1− imθ + κ) , (22)

where m and n are integers. FIG. 2 illustrates the time-asymptotic density within two periods
of the external driving. Surprising features emerge provided both κ ≪ 1, and θ ≫ 1. Under
these conditions, the time-averaged probability density u0(x) exhibits in the vicinity of the
boundary a strong dependence on the x-coordinate. It can even develop a well pronounced
minimum close to the boundary and, simultaneously, a well pronounced maximum localized
farther from the boundary. In between the two extreme values, there exists a spatial region
where the time-averaged gradient of the concentration points against the time-averaged force.
The situation is depicted in FIG. 3 where we have used the same parameters as in FIG. 2.
Notice the positive dynamical shift σ = μ0 − μeq of the mean coordinate. Here μ0 is the
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Fig. 2. Time- and space-resolved probability density in the time-asymptotic regime. For any
fixed x, the function Ua(x, t) is a periodic function, the period being 2π/ω. We have plotted
it for two periods. The parameters used are: v0 = −0.1ms−1, v1 = 4.0ms−1, ω = 2.0rads−1,
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corresponding static problem. The arrows mark the time-averaged mean position μ0 in the
oscillating-force problem, and the equilibriummean position in the static problem
μeq = D/|v0|. Their difference σ = μ0 − μeq represents the dynamical shift of the mean
position.

time-averaged mean coordinate

μ0 = lim
t→∞

ω

2π

∫ t+2π/ω

t
dt′ μ(t′,x′) , μ(t,x′) =

∫ ∞

0
dx xU(x, t|x′,0) . (23)

The exact value of the shift is determined by the complex amplitude f1 (Chvosta et al., 2007)
through σ = (v1/ω)Re f1. The small-v1 expansion of the dynamical shift starts with the term
v21, i.e. it cannot be described by a linear response theory. If we plot σ as the function of the
temperature T = DΓ/kB (Chvosta et al., 2007), it exhibits a resonance-like maximum.
Summarizing, the approach elaborated above yields a rather complete picture of the
time-asymptotic motion of the diffusing particle. Depending on its distance from the
impenetrable boundary, it exhibits non-harmonic oscillations which can be represented as
a linear combination of several higher harmonics. The amplitudes and the phases of the
harmonics are strongly sensitive to the distance from the boundary. The calculation does not
include any small-parameter expansion.

3.2 Energetics

Assuming again the time-dependent potential V(x, t) = −x[F0 + F1 sin(ωt)], where F0 = Γv0,
F1 = Γv1, the internal energy

E(t,x′) =
∫ ∞

0
dxV(x, t)U(x, t|x′,0) = −Γ [v0 + v1 sin(ωt)]μ(t,x′) , (24)

asymptotically approaches a x′-independent periodic function, say Ea(t). In this
time-asymptotic regime, the system exhibits periodic changes of its state. The work done
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on the system during one such cycle equals to the heat dissipated during the period. An
interesting quantity is the time-averaged internal energy

E0 = lim
t→∞

ω

2π

∫ t+2π/ω

t
dt′ E(t′,x′) . (25)

We can show that E0 is always bigger than the equilibrium internal energy Eeq = DΓ = kBT
in the static problem. Differently speaking, in the time-averaged sense, the external driving
enforces a permanent increase of the internal energy, as compared to its equilibrium value.
Having periodic changes of the internal energy, the work done on the system during one
period must equal to the heat dissipated during the period. However, their behavior during
an infinitesimal time interval within the period is quite different. Generally speaking, the heat
(≡ the dissipated energy) can be identified as the “work” done by the particle on the heat bath
(Takagi & Hondou, 1999; Sekimoto, 1999). It arises if and only if the particle moves, i.e. it is
inevitable connected with the probability density current. More precisely, within our setting,
the heat released to the heat bath during the time interval [0, t] is given as

Q(t,x′) =
∫ t

0
dt′

∫ ∞

0
dx

[

− ∂

∂x
V(x, t′)

]

J(x, t′|x′,0) =
∫ t

0
dt′ F(t′) I(t′,x′) , (26)

where I(t,x′) =
∫ ∞

0 dx J(x, t|x′ ,0) is the integrated probability current, and J(x, t|x′,0) =
[

v(t)− D ∂
∂x

]

U(x, t|x′,0) is the local probability current. The heat released during any

infinitesimal time interval is positive. Actually, at any given instant, the force F(t) and the
motion of the particle have the same direction. Hence the function which form the integrand
in the last expression in EQ. (26) is always nonnegative.
The external agent does work on the system by increasing the potential V(x, t) while the
position of the particle is fixed. Thus the work done at a given instant depends on the
momentary position of the particle. In the stationary regime, summing over all possible
positions and over one time period, we get (Chvosta et al., 2005)

W =
∫ 2π/ω

0
dt′

∫ ∞

0
dx

[

∂

∂t′
V(x, t′)

]

Ua(x, t
′) = −F1ω

∫ 2π/ω

0
dt′ cos(ωt′)μa(t

′) . (27)

The work done on the system per cycle equals the area enclosed by the hysteresis curve
which represents the parametric plot of the oscillating force versus the mean coordinate in
the stationary regime μa(t). This quantity must be positive. Otherwise, the system in contact
with the single heat bath would produce positive work on the environment during the cyclic
process in question. On the other hand, the work done on the system during a definite
time interval within the period can be both positive and negative. In order to be specific,

let W
(i)
a , i = 1, . . . ,4, denote the work done by the external field on the system during the

ith quarter-period of the force modulation. During the first quarter-period the slope of the
potential decreases and the particle does a positive work on the environment, irrespective

to its momentary position. Thus we have W
(1)
a < 0. Nevertheless, the farther is the particle

from the boundary the bigger is the work done by it during the fixed time interval. Within
the second and the third quarter-period, the slope of the potential increases and the positive

work is done by the external agent. Hence we have W
(2)
a > 0 and W

(3)
a > 0. However W

(2)
a is

bigger than |W(1)
a |, since during the second quarter-period, when the work W

(2)
a > 0 is done,

the mean distance of the particle from the boundary is bigger than it was during the first
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quarter-period. Similar reasoning holds for the comparison of the work done by the external

agent during the third and the fourth quarter-period. We have W
(4)
a < 0, and W

(3)
a > |W(4)

a |.
On the whole, since the periodic changes of the potential are inevitably associated with the
changes of the particle position, the time-averaged work done by the external agent during
one fundamental period must be always positive.

4. Two interacting particles in time-dependent potential

Up to now, we have been discussing the diffusion dynamics of just one isolated Brownian
particle. Let us now turn to the case of two interacting particles diffusing under the action of
the time-dependent external force in a one-dimensional channel.
In order to incorporate the simplest inter-particle interaction, the particles can be represented
as rods of the length l. The hard-core interaction in such system means that the space occupied
by one rod is inaccessible to the neighbouring rods. Generally, the diffusion of hard rods can
be mapped exactly onto the diffusion of point particles (particles with the linear size l = 0)
by the simple rescaling of space variables (see e.g. (Lizana & Ambjörnsson, 2009)). Hence
without loss of generality all further considerations will be done for systems of point particles.
Consider two identical hard-core interacting particles, each with the diffusion constant D,
diffusing in the potential V(x, t) (cf. the preceding Section). Due to the hard-core interaction,
particles cannot pass each other and the ordering of the particles is preserved during the
evolution. Starting with y1 < y2, we have

− ∞ < X1(t) < X2(t) < +∞ (28)

for any t. We shall call the particle with the coordinate X1(t) (X2(t)) the left (right) one.
If the instantaneous coordinates of the two particles differ (x1 
= x2) they both diffuse
as non-interacting ones. This enables to reduce the diffusion problem for two identical
hard-core interacting particles onto the diffusion of one “representative” particle in the
two-dimensional half-plane x1 < x2. Namely, it suffices to require that the probability current
for this representative particle in the direction perpendicular to the line x1 = x2 vanishes at this
line. Except of that, the dynamics of the representative particle inside the half-plane x1 < x2
is controlled by the Smoluchowski equation

∂

∂t
p(2)(x1,x2, t |y1,y2, t0) = −

2

∑
j=1

∂

∂xj

{

v(t)− D
∂

∂xj

}

p(2)(x1,x2, t |y1,y2, t0) . (29)

Differently speaking, the hard-core interaction is implemented as the boundary condition
(

∂

∂x2
− ∂

∂x1

)

p(2)(x1,x2, t |y1,y2, t0)
∣

∣

∣

∣

x1=x2

= 0 . (30)

Returning to the original picture, the two hard-core interacting particles in one dimension will never
cross each other.
Assuming the initial positions y1 < y2, consider the function which is defined as

p(2)(x1,x2, t |y1,y2, t0) = U(x1, t |y1, t0)U(x2, t |y2, t0) +
+U(x1, t |y2, t0)U(x2, t |y1, t0) , (31)

within the phase space R2 : −∞ < x1 < x2 < +∞ , and which vanishes elsewhere. Here
U(x, t |y, t0) is the solution of the corresponding single-particle problem. This function fulfills
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12 Thermodynamics

both EQ. (29) and EQ. (30). The proof is straightforward and it can be generalized to the
N-particle diffusion problem in a general time- and space-dependent external potential.

4.1 Dynamics

Similarly as in the preceding Section, we now assume the particles are driven by the
space-homogeneous and time-dependent force F(t) = F0 + F1 sin(ωt). The corresponding
drift velocity is v(t) = v0 + v1 sin(ωt) (cf. the preceding Section). The time-independent
component pushes the particles to the left against the reflecting boundary at the origin (if
F0 < 0), or to the right (if F0 > 0). The time-dependent component F1 sin(ωt) harmonically
oscillates with the angular frequency ω. In the rest of this Section we treat the case F0 < 0.
On the whole our model includes four parameters F0, F1, ω, and D. Notice that the hard-core
interaction among particles acts as a purely geometric restriction. As such, it is not connected
with any “interaction parameter”.
If we integrate the joint probability density (31) over the coordinate x1 (x2) of the left (right)
particle we obtain the marginal probability density describing the dynamics of the right (left)
particle:

pL(x, t |y1,y2, t0) ≡
∫ +∞

0
dx2 p

(2)(x,x2, t |y1,y2, t0) , (32)

pR(x, t |y1,y2, t0) ≡
∫ +∞

0
dx1 p

(2)(x1,x, t |y1,y2, t0) . (33)

Notice that the both marginal densities depend on the initial positions of the both particles. Of
course, this is the direct consequence of the interaction among the particles.
Let us now focus on the time-asymptotic dynamics which, as usually, includes the most
important physics in the problem. If F0 < 0 and F1 = 0, the probability density of the single
diffusing particle relaxes to the exponential function πeq(x) (cf. FIG. 3). Using EQ. (31), the
equilibrium two-particle joint probability density is

p
(2)
eq (x1,x2) = θ(x2 − x1)

( |v0|
D

)2

exp

[

−(x1 + x2)
|v0|
D

]

. (34)

Hence the equilibrium probability density of the left particle reads

p
(eq)
L (x) = 2θ(x)

|v0|
D

exp

(

−2x
|v0|
D

)

. (35)

The only difference between this density and πeq(x) is the factor “2” which occurs in the

above exponential and as the multiplicative prefactor. Thus p
(eq)
L (x) takes a higher value at

the boundary and, as the function of the coordinate x, it decreases more rapidly than the
single-particle equilibrium density πeq(x). As for the right particle, its equilibrium density
could not be so simply related with πeq(x). It reads

p
(eq)
R (x) = 2θ(x)

|v0|
D

exp

(

−x
|v0|
D

)[

1− exp

(

−x
|v0|
D

)]

. (36)

Notice that it vanishes at the reflecting boundary and it attains its maximum value p
(eq)
R (xm) =

|v0|/(2D) at the coordinate xm = D log(2)/|v0|.

164 Thermodynamics

www.intechopen.com



Four Exactly Solvable Examples in Non-Equilibrium Thermodynamics of Small Systems 13

Fig. 4. Time- and space-resolved probability densities in the time-asymptotic regime. We
have used the parameters v0 = −1.0ms−1, v1 = 1.0ms−1, D = 1.0m2s−1, ω = 0.4πrads−1.

Let us now take F0 < 0 and F1 > 0. We can simply use the expansion (18) from the preceding
Section and insert it into EQ. (31). After this step, the time-asymptotic marginal densities (32),
(33) read

p̃L(x, t) = 2
+∞

∑
k=−∞

[

+∞

∑
n=−∞

uk−n(x) ln(x)

]

exp(−ikωt) , (37)

p̃R(x, t) = 2
+∞

∑
k=−∞

[

+∞

∑
n=−∞

uk−n(x) rn(x)

]

exp(−ikωt) , (38)

where we have introduced the abbreviations

lk(x) =
|v0|
D

〈k |L−−EL(x)R++ | f 〉 , (39)

rk(x) =
|v0|
D

〈k |L−−ER(x)R++ | f 〉 , (40)

k = 0,±1,±2, ... .

The matrices on the right hand sides are given by EQS. (20)-(22) and by the integrals EL(x) ≡
∫ +∞

x dx′E(x′), ER(x) ≡
∫ x
0 dx′E(x′) from the matrix (20).

In order to analyse the densities p̃L(x, t) and p̃R(x, t) numerically, we have to curtail both the
infinite vector of the complex amplitudes | f 〉 and the infinite matrices L−−, R++, EL(x) and
ER(x). Using these controllable approximations, we obtain the full time- and space-resolved
form of the functions p̃L(x, t), p̃R(x, t). FIG. 4 illustrates the resulting non-linear “waves”.

4.2 Energetics

The equilibrium internal energy of a particle is calculated as the spatial integral from the
product of the stationary potential V(x) = −xF0 times the equilibrium probability density.

For the single diffusing particle the result is E(eq) = DΓ = kBT. In the case of two interacting
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particles, the equilibrium internal energy of the left (right) particle reads E
(eq)
L = kBT/2

(E
(eq)
R = 3kBT/2). The equilibrium internal energies do not depend on the slope of the

stationary potential V(x) and they linearly increase with the temperature T. Notice that
the effective repulsive force among the interacting particles increases (decreases) the internal
energy of the right (left) particle. However, the total internal energy of the system of two
interacting particles is equal to the total internal energy of the system of two non-interacting

particles, i.e., E
(eq)
L + E

(eq)
R = 2E(eq). As the hard-core interaction does not contribute to the

total energy, the effective repulsive force necessarily arises from a purely entropic effect.
This property stems from a zero range of the interaction and it also holds in a general
(non-equilibrium) situations.
Now, consider the time-dependent potential V(x, t) = −xF(t). Let the system be in the
time-asymptotic regime. The internal energy of the diffusing particle at the time t is defined as
the average of the potential V(x, t) over all possible positions of the particle at a given instant.
In the single-particle case the internal energy at the time t (say, E(t)) is given by EQ. (24).
Similarly, in the case of two interacting particles, the internal energies of the left and the right
particle are

EL(t) = −[F0+ F1 sin(ωt)]μL(t) , (41)

ER(t) = −[F0+ F1 sin(ωt)]μR(t) , (42)

respectively. Here, μL(t) (μR(t)) denotes the mean position of the left (right) particle in the
asymptotic regime.
Generally speaking, the internal energies E(t), EL(t), ER(t) are periodic functions of time with
the fundamental period 2π/ω. The total internal energy of two interacting particles is equal
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Fig. 5. The internal energies within two periods of the driving. The solid black line shows the
energy E(t), the dashed blue line depicts ER(t) and the dot-dashed red line illustrates EL(t).
In the panels a1) and a2) we take F1 = 1.0N, in the panels b1) and b2) we take F1 = 3.0N.
The static component (F0 = −1.0N), the frequency (ω = 0.4π s−1), and the diffusion constant
(D = 1.0m2s−1) are the same in all panels.
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to the total internal energy of two non-interacting particles. In symbols EL(t) + ER(t) = 2E(t).
FIG. 5 shows the time-dependency of the internal energies E(t), EL(t), ER(t) within two
periods of the driving force and for the different parameters F0, F1, ω, and D. First of all,
notice the effect of the entropic repulsive force which stems from the hard-core interaction.
We see that there is no qualitative difference between the oscillations of the function E(t) and
the functions EL(t), ER(t). Hence the hard-core interaction changes only quantitative features
of the energetics of individual particles as compared to the diffusion without interaction.
One of this quantitative changes, the most striking one at a first glance, is the change of the
amplitudes of the internal energies EL(t), ER(t) as compared to E(t).
Oscillations of the internal energies express the combine effect of both the periodically
modulated heat flow to the bath and the periodic exchange of the work done on the particle
by an external agent. Without loss of generality let us now analyse the energetics of the
single-diffusing particle (solid black lines in FIG. 5). At the beginning of the period we choose
the instant when the driving force takes the value F0 and tends to increase. It is increasing up
to the value F0 + F1. In the panel a2) F0 + F1 = 0 N, in the panel b2) F0 + F1 = 2 N. During
this interval, the internal energy is decreasing towards its minimum due to the positive work
which the system does on its surroundings. The smaller the value of the amplitude F1 (panel
a 2)) the closer is the process to the quasi-static one and the smaller is the work done by the
system. The decreasing tendency of the internal energy is being partially compensated by the
heat coming from the heat bath. On the other hand, for larger amplitudes F1 (panel b2)), the
heat is almost entirely being released to the reservoir. Hence the greater the amplitude F1 the
lower minimum values of the internal energy are observed.
During the next part of the period, the driving force is decreasing form the value F0 + F1 to its
minimum value F0 − F1. In the panel a2) F0 − F1 = −2 N, in the panel b2) F0 − F1 = −4 N.
Within this interval the slope −F(t) of the potential V(x, t) is permanently increasing, hence
the positive work is performed on the system. This work constitutes the most significant
contribution to the changes of the internal energy. The internal energy is increasing up to its
maximum and, finally, it is decreasing due to the strong heat flow from the system to the bath
at the end of this time-interval.
Within the last part of the period, the driving force and the internal energy are decreasing to
their initial values which they attain at the beginning of the period. Within this time interval
the slope of the potential V(x, t) decreases. Consequently, the positive work is performed by
the system on its surrounding. Notice the sudden change of the slope of the internal energy
at the beginning of this interval. This effect is more pronounced for the greater amplitudes
F1 (panel b 2)). It is connected with the fact that the system starts to exert work on its
surroundings. The greater the amplitude F1 the less significant the contribution of this work
to the change of the internal energy as compared with the heat flow from the system to the
reservoir (the more significant contribution of the work would cause faster decreasing of the
internal energy as should be seen from the panel a2)).

Finally let us discus the internal energies averaged over the period, i.e., Ē = ω
2π

∫ 2π/ω
0 dtE(t),

ĒL = ω
2π

∫ 2π/ω
0 dtEL(t), ĒR = ω

2π

∫ 2π/ω
0 dtER(t). A remarkable fact is that differences Ē− E(eq),

ĒL − E
(eq)
L , and ĒR − E

(eq)
R are always greater than zero. Differently speaking, in the

time-averaged sense, the external driving induces a permanent increase of the particle’s internal
energy as compared to its equilibrium value.
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5. Dynamics of a molecular motor based on the externally driven two-level system

Consider a two-level system with time-dependent energies Ei(t), i = 1,2, in contact with
a single thermal reservoir at temperature T. In general, the heat reservoir temperature
T may also be time-dependent. The time evolution of the occupation probabilities pi(t),
i= 1,2, is governed by the Master equation (Gammaitoni et al., 1998) with the time-dependent
transition rates. The rates depend on the reservoir temperature but they also incorporate
external parameters which control the driving protocol. To be specific the dynamics of the
system is described by the time-inhomogeneous Markov processD(t). The state variable D(t)
assumes the value i (i = 1,2) if the system resides at the time t in the ith state. Explicitly, the
Master equation reads

d

dt
R(t | t′) = −

(

λ1(t) −λ2(t)
−λ1(t) λ2(t)

)

R(t | t′) , R(t′ | t′) = I , (43)

where I is the unit matrix and R(t, t′) is the transition matrix with the matrix elements
Rij(t | t′) = 〈 i |R(t | t′) | j 〉. These elements are the conditional probabilities

Rij(t | t′) = Prob
{

D(t) = i |D(t′) = j
}

. (44)

The occupation probabilities at the observation time t are given by the column vector
|p(t, t′)〉= R(t | t′) |φ(t′)〉. Here φi(t

′) = 〈 i |φ(t′)〉 denotes the occupational probabilities at the
initial time t′. Due to the conservation of the total probability, the system (43) can be reduced to
just one non-homogeneous linear differential equation of the first order. Therefore the Master
equation (43) is exactly solvable for arbitrary functions λ1(t), λ2(t) (Šubrt & Chvosta, 2007).
The rates λ1(t), λ2(t) are typically a product of an attempt frequency ν to exchange the state
and an acceptance probability. We shall adopt the Glauber form

λ1(t) =
ν

1+ exp{−β(t) [E1(t)− E2(t)]}
, λ2(t) = λ1(t)exp{−β(t) [E1(t)− E2(t)]} . (45)

Here, ν−1 sets the elementary time scale, and β(t) = 1/ [kBT(t)]. The rates (45) satisfy the
(time local) detailed balance condition (van Kampen, 2007) and they saturate at large energy
differences (see (Einax et al., 2010) for a further discussion).
We now introduce the setup for the operational cycle of the engine. Within a given period,
two branches with linear time-dependence of the state energies are considered with different
velocities. Starting from the value h1, the energy E1(t) linearly increases in the first branch
until it attains the value h2 > h1, at the time t+. Afterwards, in the second branch, the energy
E1(t) linearly decreases and it reassumes the starting value h1 at the time t− + t+. We always
take E2(t) = −E1(t), i.e.

E1(t) = −E2(t) =

⎧

⎨

⎩

h1 +
h2 − h1

t+
t , t ∈ [0, t+] ,

h2 − h2 − h1
t− (t− t+) , t ∈ [t+, t+ + t−] .

(46)

This pattern will be periodically repeated, the period being tp = t+ + t−.
As the second ingredient, we need to specify the temperature schedule. The two-level system
will be alternately exposed to a hot and a cold reservoir, which means that the function β(t)
in EQ. (45) will be a piecewise constant periodic function. During the first (second) branch, it
assumes the value β+ (β−). Let us stress that the change of the heat reservoirs at the end of
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the individual branches is instantaneous. The switching of the reservoirs necessarily implies
a finite difference between the new reservoir temperature and the actual system (effective)
temperature. Even if the driving period tends to infinity (a quasi-static limit), we shall observe
a positive entropy production originating from the relaxation processes initiated by the abrupt
change of the contact temperature. Differently speaking, our engine operates in an inherently
irreversible regime and there exists no reversible limit of the limit cycle.
The explicit form of the solution R(t |0) of the Master equation (43) with the rates (45) and the
periodically modulated energies (46) can be found in (Chvosta et al., 2010). Starting from an
arbitrary initial condition |φ(t′)〉 the system’s response approaches a steady state. In order to
specify the limit cycle we require that the system’s state at the beginning of the cycle coincides
with the system state at the end of the cycle. Differently speaking, we have to solve the
equation |π〉 = R(tp |0) |π〉 for the unknown initial state |π〉. In the course of the limit cycle,
the state of the system is described by the column vector |p(t)〉= R(t |0) |π〉with the elements
pi(t) = 〈 i |p(t)〉, t ∈ [0, tp].
This completes the description of the model. Any quantity describing the engine’s
performance can only depend on the parameters h1, h2, β±, t±, and ν.

5.1 Energetics of the engine

During the limit cycle, the internal energyU(t) = ∑
2
i=1Ei(t)pi(t) changes as

d

dt
U(t) =

2

∑
i=1

Ei(t)
d

dt
pi(t) +

2

∑
i=1

pi(t)
d

dt
Ei(t) =

d

dt
[Q(t) +W(t)] , t ∈ [0, tp] . (47)

Here, Q(t) is the mean heat received from the reservoirs during the time interval [0, t].
Analogously, W(t) is the mean work done on the system from the beginning of the limit
cycle till the time t. If W(t) < 0, the positive work −W(t) is done by the system on the
environment. Therefore the oriented area enclosed by the limit cycle in FIG. 7 represents the
workWout ≡−W(tp) done by the engine on the environment per cycle. This area approaches
its maximum absolute value in the quasi-static limit. The internal energy, being a state
function, fulfilsU(tp) =U(0). Therefore, if the workWout is positive, the same total amount of
heat has been accepted from the two reservoirs during the limit cycle. As long as the both heat
reservoirs are at the same temperature (β+ = β−), the caseWout > 0 will never occur. That the
perpetum mobile is actually forbidden can be traced back to the detailed balance condition in
(43).
We denote the system entropy at the time t as Ss(t), and the reservoir entropy at the time t as
Sr(t). They are given by

Ss(t)

kB
= − [p1(t) ln p1(t) + p2(t) ln p2(t)] , (48)

Sr(t)

kB
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−β+

∫ t

0
dt′E1(t

′)
d

dt′
[p1(t

′)− p2(t
′)] , t ∈ [0, t+] ,

Sr(t+)− β−
∫ t

t+
dt′E1(t

′)
d

dt′
[p1(t

′)− p2(t
′)] , t ∈ [t+, tp] .

(49)

Upon completing the cycle, the system entropy re-assumes its value at the beginning of the
cycle. On the other hand, the reservoir entropy is controlled by the heat exchange. Owing
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Fig. 6. Thermodynamic quantities as functions of time during the limit cycle. Left panel:
internal energy, mean work done on the system, and mean heat received from both
reservoirs; the final position of the mean work curve marks the work done on the system per
cycle W(tp). Since W(tp) < 0, the workWout = −W(tp) has been done on the environment.
The internal energy returns to its original value and, after completion of the cycle, the
absorbed heat Q(tp) equals the negative work −W(tp). Right panel: entropy Ss(t) of the
system and Sr(t) of the bath, and their sum Stot(t); after completing the cycle, the system
entropy re-assumes its initial value. The difference Stot(tp)− Stot(0) > 0 equals the entropy
production per cycle. It is always positive and quantifies the degree of irreversibility of the
cycle. Note that at the times t+ and tp, strong increase of Stot(t) always occurs due to the

instantaneous change of the reservoirs. The parameters used are h1 = 1 J, h2 = 5 J, ν = 1 s−1,
t+ = 5 s, t− = 15 s, β+ = 0.5 J−1 and β− = 0.1 J−1.

to the inherent irreversibility of the cycle we observe always a positive entropy production
per cycle, i.e., Sr(tp)− Sr(0) > 0. The total entropy Stot(t) = Ss(t) + Sr(t) increases for any
t ∈ [0, tp]. The rate of the increase is the greater the larger is the deviation of the representative
point in the p−E diagram from the corresponding equilibrium isotherm (a large deviation,
e.g., can be seen in the p−E diagram in FIG. 7 c). Due to the instantaneous exchanges of baths
at t+ and tp, strong increase of Stot(t) always occurs after these instants. A representative
example of the overall behaviour of the thermodynamic quantities (mean work and heat, and
entropies) during the limit cycle is shown in FIG. 6.
Up to now, we have discussed the averaged thermodynamic properties of the engine. We now
turn to the fluctuations of its performance.

5.2 Fluctuations of the engine’s thermodynamic properties

By treating the state variable and work variable as the two components of a combined
stochastic process, it is possible to derive a partial differential equation for the time
evolution of the work probability density (or the heat probability density), see, for example,
(Schuler et al., 2005; Imparato & Peliti, 2005b;c;a). For completeness, we outline the procedure
in the present context.
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Heuristically, the underlying time-inhomogeneous Markov process D(t) can be conceived
as an ensemble of individual realizations (sample paths). A realization is specified by a
succession of transitions between the two states. If we know the number n of the transitions
during a path and the times tk

n
k=1 at which they occur, we can calculate the probability that

this specific path will be generated. A given paths yields a unique value of the microscopic
work done on the system. For example, if the system is known to remain during the time
interval [tk, tk+1] in the ith state, the work done on the system during this time interval is
simply Ei(tk+1)− Ei(tk). The probability of an arbitrary fixed path amounts, at the same time,
the probability of that value of the work which is attributed to the path in question. Viewed
in this way, the work itself is a stochastic process and we denote it as W(t). We are interested
in its probability density ρ(w, t) = 〈δ(W(t)− w) 〉, where 〈 . . . 〉 denotes the average over all
possible paths.
We now introduce the augmented process {W(t),D(t)} which simultaneously reflects both
the work variable and the state variable. The augmented process is again a time
non-homogeneous Markov process. Actually, if we know at a fixed time t′ both the present
state variable j and the work variable w′, then the subsequent probabilistic evolution of the
state and the work is completely determined. The work done during the time period [t′, t],
where t > t′, simply adds to the present work w′ and it only depends on the succession of the
states after the time t′. And this succession by itself cannot depend on the dynamics before
time t′.
The one-time properties of the augmented process will be described by the functions

Gij(w, t |w′, t′) = lim
ǫ→0

Prob{W(t) ∈ (w,w+ ǫ)andD(t) = i |W(t′) = w′ andD(t′) = j}
ǫ

,

(50)

where i, j = 1,2. We represent them as the matrix elements of a single two-by-two matrix
G(w, t |w′, t′),

Gij(w, t |w′, t′) = 〈 i |G(w, t |w′, t′) | j 〉 . (51)

We need an equation which controls the time dependence of the propagator G(w, t |w′, t′)
and which plays the same role as the Master equation (43) in the case of the simple two-state
process. This equation reads (Imparato & Peliti, 2005b; Šubrt & Chvosta, 2007)

∂

∂t
G(w, t |w′, t′) = −

{(

dE1(t)
dt 0

0
dE2(t)

dt

)

∂

∂w
+

(

λ1(t) −λ2(t)
−λ1(t) λ2(t)

)

}

G(w, t |w′, t′),

(52)

where the initial condition is G(w, t′ |w′, t′) = δ(w − w′)I. The matrix equation represents
a hyperbolic system of four coupled partial differential equations with the time-dependent
coefficients.
Similar reasoning holds for the random variable Q(t) which represents the heat accepted by
the system from the environment. Concretely, if the system undergoes during a time interval
[tk, tk+1] only one transition which brings it at an instant τ ∈ [tk, tk+1] from the state i to the
state j, the heat accepted by the system during this time interval is Ej(τ)− Ei(τ). The variable

Q(t) is described by the propagator K(q, t | q′, t′) with the matrix elements

Kij(q, t | q′, t′) = lim
ǫ→0

Prob
{

Q(t) ∈ (q,q+ ǫ) ∧ D(t) = i |Q(t′) = q′ ∧ D(t′) = j
}

ǫ
. (53)
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It turns out that there exists a simple relation between the heat propagator and the work
propagator G(w, t |w′, t′). Since for each path, heat q and work w are connected by the first
law of thermodynamics, we have q = Ei(t)− Ej(t

′)− w for any path which has started at the

time t′ in the state j and which has been found at the time t in the state i. Accordingly,

K(q, t | q′, t′) =
(

g11(u11(t, t
′)− q, t | q′, t′) g12(u12(t, t

′)− q, t | q′, t′)
g21(u21(t, t

′)− q, t | q′, t′) g22(u22(t, t
′)− q, t | q′, t′)

)

, (54)

where uij(t, t
′) = Ei(t)− Ej(t

′).
The explicit form of the matrix G(w, t) which solves the dynamical equation (52) with the
Glauber transition rates (45) and the periodically modulated energies (46) can be found in
(Chvosta et al., 2010). Heaving the matrix G(w, t) for the limit cycle, the matrix K(q, t) is
calculated using the transformation (54).
In the last step, we take into account the initial condition |π 〉 at the beginning of the limit cycle
and we sum over the final states of the process D(t). Then the (unconditioned) probability
density for the work done on the system in the course of the limit cycle reads

ρ(w, t) =
2

∑
i=1

〈 i |G(w, t)|π 〉 . (55)

Similarly, the probability density for the heat accepted during the time interval [0, t] is

χ(q, t) =
2

∑
i=1

〈 i |K(q, t)|π 〉 . (56)

The form of the resulting probability densities and therefore also the overall properties of
the engine critically depend on the two dimensionless parameters a± = νt±/(2β± |h2 − h1|).
We call them reversibility parameters 1. For a given branch, say the first one, the parameter
a+ represents the ratio of two characteristic time scales. The first one, 1/ν, describes the
attempt rate of the internal transitions. The second scale is proportional to the reciprocal
driving velocity. Contrary to the first scale, the second one is fully under the external control.
Moreover, the reversibility parameter a+ is proportional to the absolute temperature of the
heat bath, kB/β+.
FIG. 7 illustrates the shape of the limit cycle together with the functions ρ(w, tp), χ(q, tp) for
various values of the reversibility parameters. Notice that the both functions ρ(w, tp) and
χ(q, tp) vanishes outside a finite support. Within their supports, they exhibit a continuous
part, depicted by the full curve, and a singular part, illustrated by the full arrow. The height
of the full arrow depicts the weight of the corresponding δ-function. The continuous part of
the function ρ(w, tp) develops one discontinuity which is situated at the position of the full
arrow. Similarly, the continuous part of the function χ(q, tp) develops three discontinuities.
If the both reversibility parameters a± are small, the isothermal processes during the both
branches strongly differ from the equilibrium ones. The indication of this case is a flat
continuous component of the density ρ(w, tp) and a well pronounced singular part. The
strongly irreversible dynamics occurs if one or more of the following conditions hold. First, if
ν is small, the transitions are rare and the occupation probabilities of the individual energy

1The reversibility here refers to the individual branches. As pointed out above, the abrupt change in
temperature, when switching between the branches, implies that there exists no reversible limit for the
complete cycle.
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Fig. 7. Probability densities ρ(w, tp) and χ(q, tp) for the work and the heat for four
representative sets of the engine parameters (every set of parameters corresponds to one
horizontal triplet of the panels). The first panel in the triplet shows the limit cycle in the p−E
plane (p(t) = p1(t)− p2(t) is the occupation difference and E(t) = E1(t)). In the parametric
plot we have included also the equilibrium isotherm which corresponds to the first stroke
(the dashed line) and to the second stroke (the dot-dashed line). In all panels we take
h1 = 1 J, h2 = 5 J, and ν = 1 s−1. The other parameters are the following. a in the first triplet:
t+ = 50 s, t− = 10 s, β+ = 0.5 J−1, β− = 0.1 J−1, a± = 12.5 (the bath of the first stroke is colder
than that of the second stroke). b in the second triplet: t+ = 50 s, t− = 10 s, β+ = 0.1 J−1,
β− = 0.5 J−1, a+ = 62.5, a− = 2.5 (exchange of β+ and β− as compared to case a, leading to a
change of the traversing of the cycle from counter-clockwise to clockwise and a sign reversal
of the mean values W(tp) ≡ 〈W(tp) 〉 and Q(tp)≡ 〈Q(tp) 〉 ). c in the third triplet: t+ = 2 s,

t− = 2 s, β+ = 0.2 J−1, β− = 0.1 J−1, a+ = 1.25, a− = 2.5 (a strongly irreversible cycle
traversed clockwise with positive work). d in the fourth triplet: t+ = 20 s, t− = 1 s,
β± = 0.1 J−1, a+ = 25, a− = 1.25 (no change in temperatures, but large difference in duration
of the two strokes;W(tp) is necessarily positive). The height of the red arrows plotted in the
panels with probability densities depicts the weight of the corresponding δ-functions.

levels are effectively frozen during long periods of time. Therefore they lag behind the
Boltzmann distribution which would correspond to the instantaneous positions of the energy
levels. More precisely, the population of the ascending (descending) energy level is larger
(smaller) than it would be during the corresponding reversible process. As a result, the
mean work done on the system is necessarily larger than the equilibrium work. Secondly, a
similar situation occurs for large driving velocities v±. Due to the rapid motion of the energy
levels, the occupation probabilities again lag behind the equilibrium ones. Thirdly, the strong
irreversibility occurs also in the low temperature limit. In the limit a± → 0, the continuous
part vanishes and ρ(w, tp) = δ(w).
In the opposite case of large reversibility parameters a±, the both branches in the p−E plane
are located close to the reversible isotherms. The singular part of the density ρ(w, tp) is
suppressed and the continuous part exhibits a well pronounced peak. The density ρ(w, tp)
approaches the Gaussian function centered around the men work. This confirms the general
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considerations (Speck & Seifert, 2004). In the limit a± → ∞ the Gaussian peak collapses to
the delta function located at the quasi-static work (Chvosta et al., 2010). The heat probability
density χ(q, tp) shows similar properties as ρ(w, tp).
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2003: Bose-Einstein condensation-entropy, Birkhäuser, Basel, pp. 195–229.
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