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1. Introduction     

The origins of thermodynamics date back to the first half of the nineteenth century, when 
the industrial revolution occurred in Europe. Initially developed for engineers only, 
thermodynamics focused its attention on studying the functioning of thermal machines. 
Years after the divulgation of results obtained by Carnot on the operation of thermal 
machines, Clausius, Kelvin, Rankine, and others, re-discussed some of the ideas proposed 
by Carnot, so creating classical thermodynamics. The conceptual developments introduced 
by them, in the mid of XIX century, have allowed two new lines of thought: the kinetic 
theory of gases and equilibrium thermodynamics. Thus, thermodynamics was analyzed on 
a microscopic scale and with a mathematical precision that, until then, had not been possible 
(Truesdell, 1980). However, since mathematical rigor had been applied to thermodynamics 
through the artifice of timelessness, it has become a science restricted to the study of systems 
whose states are in thermodynamic equilibrium, distancing itself from the other natural 
sciences.  
The temporal approach was resumed in the mid-twentieth century only, by the works of 
Onsager (Onsager, 1931a, b), Eckart (Eckart, 1940) and Casimir (Casimir, 1945), resulting in 
the thermodynamics of irreversible processes (De Groot & Mazur, 1984). Later in 1960, 
Toupin & Truesdell (Toupin & Truesdell, 1960) started the modern thermodynamics of 
continuous media, or continuum mechanics, today the most comprehensive thermodynamic 
theory. This theory uses a rigorous mathematical treatment, is extensively applied in 
computer modeling of various materials and eliminates the artificial separation between 
thermodynamics and chemical kinetics, allowing a more consistent approach to chemical 
processes. 
In this chapter, a radical simplification of thermodynamics of continuous media is obtained 
by imposing the homogeneous restriction on the process, that is, all the extensive and 
intensive properties of the system are functions of time, but are not functions of space. 
Improved physical understanding of some of the fundamental concepts of thermodynamics, 
such as internal energy, enthalpy, entropy, and the Helmholtz and Gibbs energies is 
presented. Further, the temporal view is applied to the first and second laws of 
thermodynamics. The conservation of linear and angular momenta, together with the rigid 
body concept, stresses the union with mechanics for the first law. For the second law, 
intrinsic characteristics of the system are central for understanding dissipation in thermally 
homogeneous processes. Moreover, including the definitions for non equilibrium states, the 
basic intensive properties of temperature, pressure and chemical potential are re-discussed. 
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This is accomplished without making use of statistical methods and by selecting a 
mathematically coherent, but simplified temporal theory. 

2. Some basic concepts 

2.1 Continuous media and thermodynamic properties 
The concept of continuous medium is derived from mathematics. The set of real numbers is 
continuous, since between any two real numbers there is infinity of numbers and it will 
always be possible to find a real number between the pair of original numbers, no matter 
how close they are (Mase & Mase, 1999).  Similarly, the physical space occupied by a body is 
continuous, although the matter is not continuous, because it is made up of atoms, which 
are composed of even smaller particles. Clearly, a material body does not fill the space it 
occupies, because the space occupied by its mass is smaller than the space occupied by its 
volume. But, according to the continuity of matter assumption, any chemical homogeneous 
body can be divided into ever-smaller portions retaining all the chemical properties of the 
original body, so one can assume that bodies completely fill the space they occupy. 
Moreover, this approach provides a solid mathematical treatment on the behavior of the 
body, which is correctly described by continuous real functions of time (Bassi, 2005a; Nery 
& Bassi, 2009a). 
With continuity imposed on matter, the body is called a system and, obviously, the mass 
and the volume of any system occupy the same space. If the outside boundary of the system 
is impermeable to energy and matter, the system is considered isolated. Otherwise, the 
system will be considered closed if the boundary that separates it from the outside is 
impermeable to mass only. The amount of any thermodynamic quantity is indirectly or 
directly perceived by an observer located within the system. A thermodynamic quantity 
whose amount cannot be verified by an observer located within an isolated system is not a 
property. The value assigned to any property is relative to some well established referential 
(m, mole etc.), but a referential does not need to be numerically well defined (the concept of 
mole is well established, but it is not numerically well defined).  
Properties are further classified into intensive, additive extensive and non-additive 
extensive properties. Intensive properties are those that, at time t, may present real values at 
each point <n1, n2, n3> of the system. Thus, if α is an intensive property, there is a specific 
temporal function α = α (t, n1, n2, n3) defining the values of α. Examples of intensive 
properties are pressure, density, concentration, temperature and their inverses. In turn, 
extensive properties are those that have null value only (additive) or cannot present a real 
value (non-additive) at all points of the system. Examples of additive extensive properties 
are volume, mass, internal energy, Helmholtz and Gibbs energies, entropy and amount of 
substance. Inverses of additive extensive properties are non-additive extensive properties, 
but the most useful of these are products of additive extensive properties by inverses of 
additive extensive properties, such as the mean density of a system (Bassi, 2006a). 

2.2 Mathematical formalism 

Let a continuous function y= f(x) be defined in an open interval of real numbers (a, b). If a 
fixed real number x within this range is chosen, there is a quotient, 

 
( ) ( )f x+ h f x

h

−
, (1) 
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where h is a positive or negative real and x+h is a real within the interval (a, b). If h 
approaches zero and the limit of the quotient tends to some well defined real value, then 
that limit defines the derivative of the function y= f(x) at x (Apostol, 1967), 

 ( ) ( ) ( )
h

f x+ h f xy
f x lim

x h→

−
= =

0

d
 '

d
. (2) 

The first equality of Equation 2 could still be represented by dy= f '(x)dx, but not by 
multiplication of both its sides by the inverse of dy, because the values of dy and dx may be 
null and their inverses may diverge, thus the integrity of Equation 2 would not be 
maintained. It is fundamental to remember that the dy and dx values include not only finite 
quantities but necessarily zero, because there is a qualitative difference between null and 
finite quantities, no matter how small the finite quantities become. Thus, as well as Equation 
2 cannot be multiplied by the inverse of dy, the equation dy= f '(x)dx does not refer to an 
interval y2 - y1 = f(x2) - f(x1), no matter how small the finite interval becomes, but uniquely to 
the fixed real value x (as well as Equation 2). 
Certainly, both the mathematical function and its derivative should maintain consistency 
with physical reality. For example, the w= w(t) and q= q(t) functions and their derivatives 
should express the intrinsic characteristics of work and heat and should retain their 
characteristics for any theory where these quantities are defined.  Thus, because the Fourier 

equation for heat conduction defines 
t

dq
d

, acceptance of its validity implies accepting the 

existence of a differentiable temporal function q= q(t) in any natural science. However, 
evidently the acceptance of the Fourier equation do not force all existing theories to include 
the equality q= q(t). Surely, it will not be considered by timeless thermodynamics, but that is 
a constraint imposed on this theory. 
Differential equations mathematically relate different quantities that an observer would be 
able to measure in the system. Some of these relations arise from specific properties of the 
material (constitutive functions), while others follow the physical laws that are independent 
of the nature of the material (thermodynamic functions). If the process is not specified, the 
differentiable function of state z= u(x, y), and the process functions z, respectively 
correspond to an exact and inexact differential equations. Indeed, one has 

 M(x,y) x N(x,y) y z+ =d d d , (3) 

where 
( ) ( )M x,y u x,y

y y x

⎛ ⎞∂ ∂∂
= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 and 
( ) ( )N x,y u x,y

x x y

⎛ ⎞∂ ∂∂
= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 for z= u(x, y). Because 

( ) ( )u x,y u x,y

y x x y

∂ ∂
=

∂ ∂ ∂ ∂

2 2

, if 

 
( ) ( )N x,y M x,y

x y

∂ ∂
=

∂ ∂
, (4) 

then z= u(x, y) and the differential equation (Equation 3) is said to be exact. Otherwise, it is 
inexact. Thus, for an exact differential equation the function z= u(x, y) can be found, but for 
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solving an inexact differential equation the process must be specified. An important 
mathematical corollary indicates that the integral of an exact differential equation is 
independent of the path that leads from state 1 to state 2 (Bassi, 2005b; Agarwal & O’Regan, 
2008), because it equals ( ) ( )z z u x ,y u x ,y− = −2 1 2 2 1 1 , while this is not true for integrals of 

inexact differential equations. 
Mathematically, the concept of state comprises the smallest set of measurements of system 
properties, at time t, enough to ensure that all measures of properties of the system are 
known, at that very moment. The definition of state implies that if ┏ is the value of any 
property of the system at instant t and Ξ is the state of the system at that same time, there 
must be a constitutive or thermodynamic function ┏ =┏(Ξ). On the other hand, if Y does not 
correspond to the value of a property of the system at time t, the existence of a function 
Y=Y(Ξ) is not guaranteed. This shows that all integrals of exact differential equations are 
function of state differences between two states, while differential equations involving the 
differentials of properties included in Ξ generally are inexact (Nery & Bassi, 2009b). Thus, all 
properties are functions of state and, if the process is not specified, all functions of state are 
properties. 

2.3 Relative and absolute scales 

Consider a sequence of systems ordered according to the continuous increment of a specific 
property of them, as for example their volume. This ordering may be represented by a 
continuous sequence of real numbers named a dimensionless scale. Dimensionless scales 
can be related each other by choosing functions whose derivatives are always positive. 
Linear functions do not alter the physical content of the chosen property, but non-linear 
ones do not expand or contract proportionally all scale intervals. Thus, dimensionless scales 
related by non-linear functions attribute different physical characteristics to the considered 
property. For instance, because the dimensionless scales corresponding to empirical and 
absolute temperatures are related by a non-linear function, empirical temperatures cannot 
be substituted for absolute temperatures in thermodynamic equations.  
The entire real axis is a possible dimensionless scale. Because the real axis does not have a 
real number as a lower bound neither as an upper bound, it is not sufficient to choose a 
value in the scale and relate this value to a particular system, in order to convert the 
dimensionless scale to a dimensional one (Truesdell, 1984). To do this, it is essential to 
employ at least two values, as for empirical temperature scales. But only one value is needed 
if a pre-defined unit is used, as in the case of the Pascal unit for pressure (Pa=Kg m-1s-2, 
where Kg, m and s are, respectively, the pre-defined units for mass, distance and time). The 
dimensional scales for empirical temperatures and for pressure are examples of relative 
scales. 
So, if X belongs to the real axis, for -∞< X <∞ one may propose the new dimensionless scale 

 Y= exp(X). (5) 

This new scale, contrasting with the previous one, only includes the positive semi-axis of 
real numbers with the zero lower bound being as unattainable as the lower bound of the 
real axis, -∞. By imposing X=0, Equation 5 gives Y=1, where the dimensionless 1 can be 
related to any system for defining the scale unit. Any scale containing only the positive 
semi-axis of real numbers that assigns a well defined physical meaning to Y=1 is a 
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dimensional scale called absolute. The physical contents of some properties, as for example 
the volume, require absolute scales for measuring their amounts in the system (for the 
volume, Y=1 may be assigned to 1 m3 and there is not a null volume system). 

3. First law of thermodynamics 

3.1 Internal energy 
According to the thermodynamics of continuous media, the mathematical expression for the 
first law of thermodynamics is a balance of energy that, along with the balance equations of 
mass and linear and angular momenta, applies to phenomena that involve the production or 
absorption of heat. In this approach, conservation of linear and angular momenta is explicit 
in the energy balance, while in classical thermodynamics conservation of linear and angular 
momenta are implicitly assumed. Actually, because classical thermodynamics focuses its 
attention on systems which are macroscopically stationary, linear and angular momenta are 
arbitrarily zero, restricting the study of several physical systems (Liu, 2002).   
The principle of conservation of energy was first enunciated by Joule, near the mid of XIX 
century, who demonstrated through numerous experiments that heat and work are 
uniformly and universally inter-convertible. Moreover, the principle of conservation of 
energy requires that for any positive change in the energy content of the system, there must 
be an inflow of energy of equal value. Similarly, for any negative change of the energy 
content of the system, there must be liberation of the same energy value. 
Consider a body whose composition is fixed. Moreover, suppose that the positions and 
relative orientations of the constituent particles of the body are unchanged, but the body can 
move in space. This body is defined as rigid body and its energy content is the body's 
energy ER. Now, consider that the restrictions on the number of particles, their positions and 
orientations are abolished, so the body's energy is E. Thus, the energy content of the body 
can be separated into two additive parts 

 E= U+ER ,  (6) 

where U is the internal energy and represents the sum of the energies of the motions, of the 
constituent particles and into them, which do not change the total linear and angular 
momenta of the body (internal motions). 
While the energy of the rigid body is well defined by the laws of mechanics, the 
comprehension of internal energy values depends on the microscopic model adopted to 
describe material bodies. The difference ( ) ( )a b b aU = U t -U t→Δ , between the internal energy 
at two instants ta and tb of a gas supposed ideal, can be experimentally determined. 
However, it is not possible to experimentally determine the internal energy of any body at 
instant t. 
Similarly, the energy exchange between a body and its exterior is divided into two additive 
portions named heat and work. Heat, q, is an exchange of energy in which total linear and 
angular momenta of the body, as well as total linear and angular momenta of its exterior, 
are not changed. Thus, heat involves only the internal energies of the body and its exterior 
and cannot be absorbed or emitted by the energy of a rigid body (Moreira & Bassi, 2001; 
Bassi, 2006b). In turn, work, w, involves both the internal and rigid body energies. Hence, 
there is no restriction on the rigid body absorption or emission of work (Williams, 1971). 
Equation 6, as well as the concepts of rigid body energy, internal energy, heat and work is 
valid not only for bodies, but also for systems. 
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Considering the time of existence of a process in a closed system, the heat exchanged from 
the initial instant t# until the instant t is denoted by Δq(t)= q(t)-q#, where q# represents the 
heat exchanged from a referential moment until the initial instant t# of the process and q(t) 
indicates the heat exchanged from the referential moment until instant t. Likewise, one has 
Δw(t)= w(t)-w#, ΔwR(t)= wR(t)–wR# and, by imposing q#= 0, w#= 0 and wR#= 0, respectively 
Δq(t)= q(t), Δw(t)= w(t) and ΔwR(t)= wR(t). Assuming ΔER(t)= ER(t)-ER#  and ΔU(t)= U(t)-U# , 
energy conservation implies that 

 ΔER(t)+ ΔU(t)= Δq(t)+ΔwR(t)+Δw(t) , (7) 

where Δw(t) indicates the portion of the work that is transformed into internal energy or 
comes from it. 
The more general statement of the first law of thermodynamics is: 
 

“The internal energy and the energy of rigid body do not interconvert (Šilhavý, 1989).” 
 

Therefore, according to the statement on the first law and Equation 7,  

  ΔER(t)= ΔwR(t), (8) 

and, subtracting Equation 8 from Equation 7,  

 ΔU(t)= Δq(t)+Δw(t). (9) 

Equation 9 is the mathematical expression of the first law of thermodynamics for closed 
systems. For the range from ta to tb , where t#< ta ≤ t ≤ tb <t#, Equation 9 may be written 

 
d dq dw

d d d
d d d

b b b

a a a

t t t

t t t

U
t t t

t t t
= +∫ ∫ ∫ , (10) 

and, by making ta→t and tb→t, the limit of Equation 10 is 

 
U

t t t
= +

d dq dw
d d d

, (11) 

where 
U

t

d
d

 is the rate of change of internal energy of the system at time t, and 
t

dq
d

 and 
t

dw
d

 

are respectively the thermal and the non thermal powers that the system exchanges with the 
outside at that instant. Defining the differentials 

 dU= 
U

t
t

d
d

d
, dq= t

t

dq
d

d
 and dw= t

t

dw
d

d
, (12) 

Equation 11 may be written 

 dU= dq+dw. (13) 

Considering the entire range of existence of a process t# < t < t# and imposing q#= 0 and  
w#= 0, Equation 9 can be rewritten 

 ΔU= q+w, (14) 
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which is the most usual form of the first law. Equations 9 to 14 reflect the conservation of 
energy in the absence of changes of total linear and angular momenta.  
Because differentials are not extremely small finite intervals, it should be noted that 
Equation 9 cannot be extrapolated to Equation 13. But in some textbooks Equation 13 is 
proposed considering that: (a) dU is an exact differential, but dq and dw are inexact 
differentials or (b) dq and dw are finite intervals, while dU is a differential. Such 
considerations arise from a mistaken view of the differential concept. Indeed: (1) in order to 
a differential equation to have mathematical meaning, its differentials must be defined using 
derivatives, as in Equations 3 (by using the process specifications if needed) and 12; (2) the 
subtraction of two different well-defined real values corresponds to a well-defined finite 
interval and produces a well-defined real, no matter how small, but never a differential, 
which is an undetermined real and (3) there are exact and inexact differential equations, but 
there is not such classification for differentials. In short, Equation 13 is a consequence of 
Equation 9 if and only if the differentials dU, dq and dw are defined using derivatives, 
while the validity of Equation 14 does not require this (Gurtin, 1971; Nery & Bassi, 2009b). 

3.2 Enthalpy 

Suppose a closed system whose outside homogeneously exerts, on the system boundary, a 
well defined constant pressure p' during the entire existence of a process occurring in the 
system, including the initial and final instants of the process. Additionally, consider 
homogeneous the system pressure at the initial, p#, and final, p#, process instants, that is, 
consider that, at the initial and final process instants, the system is in mechanical 
equilibrium with outside, so that p#= p#= p'. Therefore, for a process under constant 
pressure it is necessary that the system be in mechanical equilibrium at t# and t# , but it is 
not necessary that this also occurs during the existence interval of the process, t#< t <t#. If, 
excluding the volumetric work performed by p' or against p', Δwnv(t) is the work exchanged  
by the system from the initial instant to an instant t such that t#< t <t#, thus, for a process 
under constant pressure occurring in a closed system, 

 Δwnv(t)+Δq(t)= ∆U(t)+Δ(pV)(t)= ΔH(t), (15) 

because the enthalpy at instant t, H(t), is defined by 

 H(t)= U(t)+(pV)(t). (16) 

If Δwnv(t)= 0, Equation 15 indicates that the heat exchanged with the outside during a 
process under constant pressure is the enthalpy change ΔH(t) (Planck, 1945). This result is of 
fundamental importance for thermo-chemistry, because in this system the enthalpy behaves 
similarly to the internal energy in a closed system limited by rigid walls. In analogy to the 
mathematical expression of the first law of thermodynamics for closed systems (Equation 9), 
ΔH indicates the module and the direction of the exchange of energy Δwnv(t)+Δq(t) between 
the system and its surroundings.  Considering Δwnv(t)= 0, if ΔH <0 the process is said to be 
exothermic and, if ΔH >0, the process is endothermic. 

4. Second law of thermodynamics 

4.1 Statement for the second law  

The first law of thermodynamics is not sufficient to determine the occurrence of physical or 
chemical processes. Whereas the first law addresses just the energetic content of system, the 
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second law demands further conditions for the existence of a process. Treatises on classical 
thermodynamics contain several statements about the second law, which are frequently 
associated with the works of Clausius, Kelvin, Carnot and Planck. Despite some differences 
among the various statements, all of them claim that to produce an amount of work in a 
cyclic process, the system must not only absorb heat, but it must also emit some amount of it 
(Kestin, 1976).  
This is equivalent to the establishment that, for any closed system at a homogeneous 
temperature, work and internal energy may always be converted into heat according to the 
first law, but there is a limit for the rate of absorbing heat,  

 
t t
≤

dq dS
T

d d
, (17) 

and for the rate of producing work (Šilhavý, 1997), 

  
U

- -
t t t
≤

dw dS d
T

d d d
, (18) 

where T is the homogeneous absolute temperature and S is the entropy. The variables T, S 
and U correspond to properties of the closed system but, because time derivatives of state 
functions are not state functions (Nery & Bassi, 2009b), Equation 17 does not necessarily 
impose a constraint on the rate of heat absorption. On the contrary, given this rate, 

Equation 17 causes an entropy rate increase at least equal to 
t

1 dq
T d

 and, given 
U

t

d
d

, 

Equation 18 shows that a larger entropy rate increase corresponds to a larger rate of 
producing work. But the system must return to the same state for cyclic processes, thus in 
such processes restrictions are imposed to the variations of state functions. Indeed, Equation 
17 indicates that, for thermally homogeneous cyclic processes that occur in closed systems 
(Serrin, 1979), 

 ≤∫
dq

0
T¶ . (19) 

Equation 17 also introduces the idea of dissipation (Šilhavý, 1983). If the dissipation is 
defined by 

 
t t t
≡ −

d dS dq
T

d d d
δ

, (20) 

Equation 17 shows that 

 
t
≥

d
0

d
δ

. (21) 

Hence, the second law of thermodynamics asserts that there exists in nature an amount 
which, by changes on a closed system at homogeneous temperature, either remains constant 
(non-dissipative processes) or increases (dissipative processes). The concept of dissipation 
presented here is analogous to friction (Truesdell, 1984). However, it is an internal friction in 
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the system and not between the system and its outside. Dissipation always occurs 
when, in the state considered, there is a tendency to change the internal motions of the 
system.  
So far, the second law of thermodynamics has been defined for thermally homogeneous 
closed systems. If additional restrictions are imposed on the system such as system isolation, 
according to Equations 17 and 21 the second law states that 

  
t
≥

dS
0

d
 and 

t
≥

d
0

d
δ

. (22) 

Equation 22 confirms that dissipation may occur even for a system which do not exchange 
energy with its outside, reinforcing the fact that dissipation is an internal phenomenon of 
the system. Isolated systems are not the only special thermally homogeneous closed 
systems of interest. Thus, some specific situations are detailed in the following text.  But, 
first, note that thermodynamic reservoirs are not considered in this approach because, by 
definition, reservoirs are systems which do not obey the same physical laws of the system 
under study. However, it is possible to make experimentally confirmed deductions by 
imposing that the environment obeys the same physical laws as the body (Hutter, 1977; 
Serrin, 1979; Nery & Bassi, 2009b). Now, consider a thermally homogeneous closed 
system under: 

Adiabatic process: If no heat exchange with the outside is imposed, 
t

dq
d

= 0 and, according 

to Equation 17, 

 
t
≥

dS
0

d
. (23) 

An important consequence obtained from Equation 23 is that, in a non-dissipative process, 
the words “adiabatic” and “isentropic” have the same meaning, but for a dissipative 

adiabatic process clearly 
t
>

dS
0

d
(Truesdell, 1991). 

Isoenergetic process: If an isoenergetic process is considered, but interactions between the 
system and its outside are allowed, Equation 18 shows that 

 
t t

− ≤
dw dS

T
d d

. (24) 

Thus, for a non-dissipative process the entropy of a system can be decreased by doing work 
on the system. This is a very interesting assertion, because it eliminates the wrong idea that 
in any process whatever the entropy of a system always remains either constant or 
increases. Obviously, if the absence of both volumetric and non-volumetric work is 

imposed, changes of 
t

dS
d

 coincide with those of an adiabatic process (Day, 1987).  

Isentropic process: If entropy S is maintained constant, from Equation 17 

 
t
≤

dq
0

d
. (25) 
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Thus, heat cannot be absorbed in an isentropic process. A non-dissipative isentropic process 
is adiabatic and the change of internal energy coincides with the work exchanged. In the 
absence of both volumetric and non-volumetric work, Equation 25 becomes 

 
U

t
≤

d
0

d
. (26) 

Thus, if no work is exchanged during the process, the internal energy does not increase in an 
isentropic process. 
Isothermal process: If the homogeneous temperature is kept constant in time, the time 
derivative of the Helmholtz energy, 

 A(t)= U(t)-(TS)(t), (27) 

is 

 
U

-
t t t
=

dA d dS
T

d d d
, (28) 

and, using Equation 28, Equation 18 can be described by 

 
t t
≤

dA dw
d d

. (29) 

Hence, in an isothermal process, the increase of Helmholtz energy is not greater than the 
work done on the system. In addition, if no work is exchanged during the process, 

 
t
≤

dA
0

d
. (30) 

Equation 30 implies that the Helmholtz energy does not increase. Note that all these 
conclusions are restricted to isothermal processes. If the process is thermally homogeneous, 

but not isothermal, instead of Equation 29 the correct relation is 
t t t
≤ −

dA dw dT
S

d d d
, which is 

far more complicated. 
Isothermal-isobaric process: If both temperature and pressure are homogeneous and 
constant in time, the time derivative of the Gibbs energy, 

 G(t)= H(t)-(TS)(t), (31) 

is 

 -
t t t
=

dG dH dS
T

d d d
, (32) 

and Equation 18 can be replaced by 

 nvd dS dV dw
T p

d d d d
U

-
t t t t

+ ≤ . (33) 

Using Equation 16, Equation 33 may be written 
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 nvdH dS dw
T

d d d
-

t t t
≤ , (34) 

or, using Equation 32, 

 
t t
≤ nvdG dw

d d
. (35) 

For example, for a spontaneous process 
t
nvdw

d
 may be zero, thus 

t
≤

dG
0

d
. If an isothermal-

isobaric endothermic reaction is spontaneous, T
t

dS
d

 is positive and large enough to surpass 

the positive value 
t

dH
d

. Therefore, isothermal-isobaric endothermic reactions are driven by 

the increase of entropy. On the other hand, for a spontaneous isothermal-isobaric 

exothermic reaction, entropy may decrease but 
t

dH
d

must be negative enough to surpass the 

negative value T
t

dS
d

. 

Although thermally homogeneous processes must be studied, natural (heterogeneous) 
processes must also be mentioned. All natural processes will approach thermal 
homogeneity as the forward process rate decreases, in relation to a finite thermal 
homogenization rate considered constant. If this happens in a closed system, the process 
will approach obedience to Equation 17. Nevertheless, because the process tends to a 

stationary state, the dissipation 
t

d
d
δ

 tends to zero faster than Equation 17 becomes obeyed. 

This means that when the forward process rate of the process tends to zero, both a thermally 
homogeneous dissipative process and a natural process tend towards a thermally 
homogeneous non-dissipative process. On the other hand, a natural process will approach a 
thermally homogeneous dissipative process when its thermal homogenization rate is 
increased, in relation to a finite and constant forward rate of the natural process. Thus, 
Equation 17 is a limiting equation for natural processes. 

4.2 Maximization of missing information 

A possible statistical way for expressing the second law of thermodynamics is: 
 

“A system may change over time until the state with the highest density of possible 
microstates is reached. Once this state is achieved, the system cannot alter it anymore, unless 
the conditions imposed on the system are modified.” 
 

To illustrate this statement of the second law, consider a sphere divided by an imaginary 
diametrical plane into two compartments I and II. Also, consider two indistinguishable 
mathematical points moving at random, so the probability of occurrence of any of the 
following microstates is equal to 1/4: “x in I, y in II“, “y in I, x in II“, “x and y in I“ and “x 
and y in II“. However, since the x and y points are indistinguishable, the probability of the 
state “one point in I, one point in II“ is twice the probability of occurrence for each one of the 
states “two points in I“ and “two points in II“ (Bassi, 2005c). Because probability theory rests 
upon set theory, it is reasonable to introduce states as sets of equally probable microstates.  
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Now, suppose a gas consisting of only 10 molecules occupying the entire volume of a closed 
vessel. The probability that all molecules are in the left half of the vessel at the same time t is 
1/210 =1/1024, that is, for every 1024 seconds this configuration could be observed, on 
average, during one second. However, thermodynamics deals only with macroscopic 
systems, where the number of constituents is of the order of the Avogadro constant. So, for 
one mole of molecules in a gaseous state, the probability that all they are in the left or right 
half of the vessel is, for all purposes, zero and then one can consider that such state does not 
exist. But, because the thermodynamic state varies continuously, the concept of the number 
of microstates corresponding to each state must be replaced by the continuously varying 
non-dimensional density of microstates, γ ≥ 1, related to each state (Fermi, 1956). 
In general, for a macroscopic system the density of possible microstates may be considered 
null for all states, except for the state with the highest density of possible microstates, which 
is called the stable state. But, because potential barriers can restrain changes of state, the 
system may remain in an unstable state until a perturbation suddenly alters the system 
state. This is the reason for not imposing that the system will change over time until the 
state with the highest density of possible microstates is reached, in the statistical statement 
of the second law. Note that, as the density of possible microstates corresponding to the 
state increases, the partial knowledge about the state of the system decreases. Thus, in the 
stable state the ignorance (missing information) about the characteristics of the system is 
maximized. 

4.3 Missing structural information and other missing information 

In the previous section 4.1 the existence of a thermodynamic property called entropy was 
introduced, which helps in understanding how a thermodynamic process will evolve. In the 
present section, an interpretation of entropy is presented, based on the structural 
characteristics of the system. First, by supposing that the values for all properties that cannot 
change in an isolated system (such as mass, volume, and internal energy) are already 
known, for any system define structural information as additional information. Then, for 
any system, entropy is proportional to the quantity φ of missing structural information 
(Brillouin, 1962; Gray, 1990). 
In an isolated system the missing structural information is associated with the density of 
microstates by 

 φ= cln(γ), (36) 

where c is an arbitrary constant of proportionality that defines the unit for measurement of 
missing structural information. By considering c= kB, where kB is the Boltzmann constant, 
Equation 36 is written 

 S= kBln(γ), (37) 

which is the familiar relationship between entropy and the density of microstates of the 
isolated system (Boltzmann, 1964). Note that the entropy is proportional to the missing 
structural information for whatever system but, only for an isolated system, entropy is 
proportional to the logarithm of the density of microstates. Using the statistical statement 
for the second law, Equation 37 indicates that: 
 

“In an isolated system, the entropy never decreases as time increases.” 
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Therefore, the combined effect of the first and second laws of thermodynamics states that, as 
time progresses, the internal energy of an isolated system may redistribute without altering 
its total amount, in order to increase the entropy until the latter reaches a maximum, at the 
stable state. This statement coincides with the known extreme principles (Šilhavý, 1997). 
The interpretation of entropy as a measure of the well defined missing structural 
information allows a more precise comprehension of this important property, without 
employing subjective adjectives such as organized and unorganized. For example, consider 
a gaseous isolated system consisting of one mole of molecules and suppose that all the 
molecules occupy the left or right half of the vessel. The entropy of this state is lower than 
the entropy of the stable state because, for an isolated system, the entropy is related to the 
density of microstates (which, for this state, is lower than the density for the stable state) 
and, for any system, the entropy is related to the ignorance about the structural conditions 
of the system (which, for this state, is lower than the ignorance for the stable state). Thus, the 
entropy does not furnish any information about whether this state is ordered or not 
(Michaelides, 2008). 
Because γ ≥ 1, according to Equation 37 entropy is an additive extensive property whose  
maximum lower bound value is zero, so that S ≥ 0. But it is not assured that, for all systems, 
S can in fact be zero or very close zero.  For instance, unlike crystals in which each atom has 
a fixed mean position in time, in glassy states the positions of the atoms do not cyclically 

vary. That is, even if the temperature should go to absolute zero, the entropies of glassy 
systems would not disappear completely, so that they present the residual entropy 

 SRES= kBln(γG), (38) 

where γG > 1 represents the density of microstates at 0 K. This result does not contradict 
Nernst’s heat theorem. Indeed, in 1905 Walther Nernst stated that the variation of entropy 
for any chemical or physical transformation will tend to zero as the temperature approaches 
indefinitely absolute zero, that is, 

 ( )
0

lim
→

Δ =
T

S 0 . (39) 

But there is no doubt that the value of SRES, for any substance, is negligible when compared 
with the entropy value of the same substance at 298.15 K. Therefore, at absolute zero the 
entropy is considered to be zero. This assertion is equivalent to the statement made by 
Planck in 1910 that, as the temperature decreases indefinitely, the entropy of a chemical 
homogeneous body of finite density tends to zero (Planck, 1945), that is, 

 ( )
0

lim
→

=
T

S 0 . (40) 

This assertion allows the establishment of a criterion to distinguish stable states from steady 
states, because stable states are characterized by a null limiting entropy, whereas for steady 
states the limiting entropy is not null (Šilhavý, 1997). 
Although it is known that γ is not directly associated with the entropy for a non-isolated 
system, γ still exists and is related to some additive extensive property of the system 
denoted by ζ (Tolman, 1938; Mcquarrie, 2000). By requiring that the unit for ζ is the same as 
for S, the generalized Boltzmann equation is written 
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 ζ= kBln(γ), (41) 

where ζ is proportional to some kind of missing information. Considering the special 
processes discussed in the previous section 4.1, in some cases the property denoted by ζ 

(Equation 41) can be easily found. For instance, since 
t
≤

dA
0

d
 for an isothermal process in a 

closed system which does not exchange work with its surroundings, then ζ= U
- -=

A
S

T T
 for 

thermally homogeneous closed systems that cannot exchange work with the outside. 
Analogously, if both the temperature and the pressure of a closed system are homogeneous 

and the system can only exchange volumetric work with the outside, then ζ= G H
S

T T
- -= . 

5. Homogeneous processes 

5.1 Fundamental equation for homogeneous processes 

During the time of existence of a homogeneous process, the value of each one of the 
intensive properties of the system may vary over time, but at any moment the value is the 
same for all geometric points of the system. The state of a homogeneous system consisting of 
J chemical species is characterized by the values of entropy, volume and amount of 
substance for each one of the J chemical species, that is, the state is specified by the set  of 
values ┎= <S, V, n1, ..., nJ>. Obviously, this assertion implies that all other independent 
properties of the system, as for instance its electric or magnetic polarization, are considered 
material characteristics which are held constant during the time of existence of the process. 
Should some of them vary, the set of values ┎ would not be enough for specifying the state 
of the system, but such variations are not allowed in the usual theory. This assertion also 
implies that S exists, independently of satisfying the equality dq= TdS. This approach was 
proposed by Planck and is very important, since it allows introducing the entropy without 
employing concepts such as Carnot cycles (Planck, 1945).   
Thus, at every moment t the value of the internal energy U is a state function U(t)= U(S(t), 
V(t), n1(t), ..., nJ(t)). Moreover, since this function is differentiable for any set of values ┎= <S, 
V, n1, ..., nJ>, the equation defining the relationship between dU, dS, dV, and dn1, ..., dnJ, is 
the exact differential equation 

 ( ) ( ) ( )
J

j

U U U
U

=

∂ ∂ ∂
= Φ + Φ + Φ
∂ ∂ ∂∑ j

j1

d dS dV dn
S V n

. (42) 

The internal energy, the entropy, the volume and the amounts of substance are called the 
phase (homogeneous system) primitive properties, that is, all other phase properties can be 
derived from them. For instance, the temperature, the pressure and the chemical potential of 

any chemical species are phase intensive properties respectively defined by ( )U∂
= Φ
∂

T
S

, 

( )U∂
= − Φ

∂
p

V
 and ( )U∂

= Φ
∂

j
jn

μ  for j= 1, …, J. Thus, by substituting T, p and jμ  for their 

corresponding derivatives in Equation 42, the fundamental equation of homogeneous 
processes is obtained, 
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J

j

U
=

= − +∑ j j

1

d TdS pdV dnμ . (43) 

Equation 43 cannot be deduced from both Equation 13 and the equalities dq= TdS and  
dw= -pdV (Nery & Bassi, 2009b). Since the phase can exchange types of work other than the 
volumetric one, these obviously should be included in the expression of first law, but the 
fundamental equation of homogeneous processes might not be altered. For instance, an 
electrochemical cell exchanges electric work, while the electric charge of the cell does not 
change, thus it is not included in the variables defining the system state, and a piston 
expanding against a null external pressure produces no work, but the cylinder volume is not 
held constant, thus the volume is included in the variables defining the system state. 
Moreover, there is not a “chemical work”, because chemical reactions may occur inside 
isolated systems, but work is a non-thermal energy exchanged with the system outside 
(section 3.1). 
Equations 13 and 43 only coincide for non-dissipative homogeneous processes in closed 
systems that do not alter the system composition and exchange only volumetric work with 
the outside. But neither Equation 13, nor Equation 43 is restricted to non-dissipative 
processes, and a differential equation for dissipative processes cannot be inferred from a 
differential equation restricted to non-dissipative ones, because differential equations do not 
refer to intervals, but to unique values of the variables (section 2.2), so invalidating an 
argument often found in textbooks. Indeed, homogeneous processes in closed systems that 
do not alter the system composition and exchange only volumetric work with the outside 
cannot be dissipative processes. Moreover, Equation 13 is restricted to closed systems, while 
Equation 43 is not. In short, Equation 43, as well as the corresponding equation in terms of 
time derivatives, 

 
J

j

U

t t t t=
= − +∑ j

j

1

d dS dV dn
T p

d d d d
μ , (44) 

refer to a single instant and a single state of a homogeneous process, which needs not to be a 
stable state (a state in thermodynamic equilibrium).  
The Equations 43 and 44 just demand that the state of the system presents thermal, baric and 
chemical homogeneity. Because each phase in a multi-phase system has its own 
characteristics (for instance, its own density), ┎ separately describes the state of each phase 
in the system. But, because the internal energy, the entropy, the volume and the amounts of 
substance are additive extensive properties, their differentials for the multi-phase system 
can be obtained by adding the corresponding differentials for a finite number of phases. 
Thus, the thermal, baric and chemical homogeneities guarantee the validity of Equations 43 
and 44 for multi-phase systems containing a finite number of phases.   
Further, if an interior part of the system is separated from the remaining part by an 
imaginary boundary, this open subsystem will still be governed by Equations 43 and 44. 
Because any additive extensive property will approach zero when the subsystem under 
study tends to a point, sometimes it is convenient to substitute u= u(s, v, c1, …, cJ), where 

u
M
U

= , =
S

s
M

, =
V

v
M

, =
j

j
n

c
M

 for j= 1, …, J,  and M is the subsystem mass at instant t, for 

U= U(S, V, n1, ..., nJ). Hence, the equation 
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J

j=
= − +∑ j j

1

du Tds pdv dcμ , (45) 

may substitute Equation 43. Indeed, Equation 45 is a fundamental equation of continuum 
mechanics. 

5.2 Thermodynamic potentials 

Not only is the function U= U(┎) differentiable for all values of the set ┎, but also the 

functions ( )U∂
Φ

∂S
, ( )U∂

Φ
∂V

, and ( )U∂
Φ

∂ jn
 for j= 1,…,J are differentiable. Moreover, because 

( )U∂
Φ ≠

∂

2

2 0
S

, ( )U∂
Φ ≠

∂

2

2 0
V

, and ( )U∂
Φ ≠

∂

2

2
j

0
n

 for j= 1,…,J at any instant t, the state of any 

phase, besides being described by the set of values ┎, can also be described by any of the 
following sets 

 ( ) ( ) ( )( ) ( ) ( )J
U

t t , t , t ,..., t
∂

Φ ≡ Φ
∂

V 1S n n
V

, (46) 

 ( ) ( )( ) ( ) ( ) ( )J
U

t t , t , t ,..., t
∂

Φ ≡ Φ
∂

S 1V n n
S

, (47) 

 ( ) ( ) ( ) ( ) ( )( ) ( )nj 1
j

S V n n
n

J
U

t t , t , t ,..., t ,..., t
∂

Φ ≡ Φ
∂

, (48) 

 ( ) ( )( ) ( )( ) ( ) ( )J
U U

t t , t , t ,..., t
∂ ∂

Φ ≡ Φ Φ
∂ ∂

SV 1n n
S V

, (49) 

 

among others. Actually, the phase state is described by any one of a family of 2J+2 possible 
sets of values and, for each set, there is an additive extensive property which is named the 
thermodynamic potential of the set (Truesdell, 1984). For instance, the thermodynamic 
potential corresponding to ┎S(t) is the Helmholtz energy A and, from Equation 43 and the 
definition A= U-TS, 

 
J

j=

= − − +∑ j j

1

dA SdT pdV dnμ , (50) 

where ( )∂
Φ ≠

∂

2

S2

A
0

T
,  ( )∂

Φ ≠
∂

2

S2

A
0

V
, and ( )∂

Φ ≠
∂

2

S2
j

A
0

n
 for j= 1,…,J at any instant t.  

Analogously, the thermodynamic potential corresponding to ┎V(t) is the enthalpy  
H= U+pV, 

 
J

j=

= + +∑ j j

1

dH TdS Vdp dnμ , (51) 
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and ( )∂
Φ ≠

∂

2

V2

H
0

S
, ( )∂

Φ ≠
∂

2

V2

H
0

p
, and ( )∂

Φ ≠
∂

2

V2
j

H
0

n
 for j= 1,…,J at any instant t. The 

thermodynamic potential referring to the set ┎nj(t) is Yj= U- jμ nj. By substituting 
Equation 43 in the expression for dYj it follows that 

 j 1 1 j j J JdY TdS pdV dn n d dn... ...μ μ μ= − + + − + + , (52) 

and ( )∂
Φ ≠

∂

2
j

nj2

Y
0

S
, ( )∂

Φ ≠
∂

2
j

nj2

Y
0

V
, ( )∂

Φ ≠
∂

2
j

nj2
i

Y
0

n
 for i= 1,…,J but i≠j, and ( )∂

Φ ≠
∂

2
j

nj2
j

Y
0

μ
 at any 

instant t. Finally, the thermodynamic potential corresponding to ┎SV(t) is the Gibbs energy 
G= U-TS+pV, 

 
J

j=

= − + +∑ j j

1

dG SdT Vdp dnμ , (53) 

and ( )∂
Φ ≠

∂

2

SV2

G
0

T
,  ( )∂

Φ ≠
∂

2

SV2

G
0

p
, and ( )∂

Φ ≠
∂

2

SV2
j

G
0

n
 for j= 1,…,J at any instant t. Note that 

U is the thermodynamic potential corresponding to ┎= <S, V, n1, ..., nJ>, but S is not a 
thermodynamic potential for the set 1V n n JU, , , ,< … > , since it is not possible to ensure that 

the derivative ( )
2

12

S
V n n

V JU, , , ,
∂

…
∂

 is not zero. Thus, the maximization of S for the stable 

states of isolated systems does not guarantee that S is a thermodynamic potential. 

5.3 Temperature 

When the volume and the amount of all substances in the phase do not vary, U is a 

monotonically increasing function of S, and then the partial derivative ( )U∂
Φ

∂S
 is a positive 

quantity. Thus, because this partial derivative is the definition of temperature, 

 ( )T 0
S

U∂
= Φ >
∂

. (54) 

Because the internal energy is the thermodynamic potential corresponding to the set of 

values ┎, 
U∂

≠
∂

2

2 0
S

 and, to complete the temperature definition, the sign of this second 

derivative must be stated. In fact, ( ) ( )
2

2

T
0

S S
U∂ ∂

Φ = Φ >
∂ ∂

. Thus, temperature is a concept 

closely related to the second law of thermodynamics but the first scale of temperature 
proposed by Kelvin in 1848 emerged as a logical consequence of Carnot’s work, without 
even mentioning the concepts of internal energy and entropy. 
Kelvin’s first scale includes the entire real axis of dimensionless real numbers and is 
independent of the choice of the body employed as a thermometer (Truesdell 
 & Baratha, 1988). The corresponding dimensional scales of temperature are called 
empirical. In 1854, Kelvin proposed a dimensionless scale including only the positive semi-
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axis of the real numbers. For the corresponding absolute scale (section 2.3), the 

dimensionless 1 may stand for a phase at 
.

1
273 15

 of the temperature value of water at its 

triple point. The second scale proposed by Kelvin is completely consistent with the gas 
thermometer experimental results known in 1854. Moreover, it is consistent with the heat 
theorem proposed by Nernst in 1905, half a century later. 

Because, according to the expression ( )T
0

S
∂

Φ >
∂

,  the variations of temperature and entropy 

have the same sign, when temperature tends to its maximum lower bound, the same must 
occur for entropy. But, if the maximum lower bound of entropy is zero as proposed by 
Planck in 1910, when this value is reached a full knowledge about a state of an isolated 
homogeneous system should be obtained. Then, because the null absolute temperature is 
not attainable, another statement could have been made by Planck on Nernst’s heat 
theorem:  
 

“It is impossible to obtain full knowledge about an isolated homogeneous system.” 

5.4 Pressure 

In analogy to temperature, pressure is defined by a partial derivative of U= U(S, V, n1, ...nJ), 

 ( )U∂
= − Φ

∂
p

V
, (55) 

or, alternatively, by 

 ( )∂
= − Φ

∂ S

A
p

V
. (56) 

But, for completing the pressure definition, the signs of the second derivatives of U and A 
must be established. Actually, it is easily proved that these second derivatives must have the 

same sign, so that it is sufficient to state that ( )∂
Φ <

∂
S

p
0

V
, in agreement with the mechanical 

concept of pressure. Equation 55 demonstrates that, when p>0, U increases owing to the 
contraction of phase volume. Hence, according to the principle of conservation of energy, 
for a closed phase with constant composition and entropy, p>0 indicates that the absorption 
of energy from the outside is followed by volumetric contraction, while p<0 implies that 
absorption of energy from outside is accompanied by volumetric expansion. The former 
corresponds to an expansive phase tendency, while the latter corresponds to a contractive 
phase tendency. Evidently, when p= 0 no energy exchange between the system and the 
outside follows volumetric changes. So, the latter corresponds to a non-expansive and non-
contractive tendency. 
It is clear that p can assume any value, in contrast to temperature. Hence, the scale for 
pressure is analogous to Kelvin´s first scale, that is, p can take any real number. For gases, p 
is always positive, but for liquids and solids p can be positive or negative. A stable state of a 
solid at negative pressure is a solid under tension, but a liquid at negative pressure is in a 
meta-stable state (Debenedetti, 1996). Thermodynamics imposes no unexpected restriction 

www.intechopen.com



On the Two Main Laws of Thermodynamics 

 

117 

on the value of ( )∂
Φ

∂
S

p
T

but, because in most cases this derivative is positive, several 

textbooks consider any stable state presenting a negative value for this derivative as being 
anomalous. The most well known “anomaly” is related to water, even though there are 
many others. 

5.5 Chemical potential 

In analogy to pressure, the chemical potential is defined by a partial derivative of U= U(S, V, 
n1, ..., nJ), 

 ( )U∂
= Φ
∂

j
jn

μ , (57) 

or, alternatively, by 

 ( )∂
= Φ
∂

j SV
j

G
n

μ . (58) 

Moreover, to complete the chemical potential definition the signs of the second derivatives 
of U and G must be established. Because these derivatives must have the same sign, it is 

enough to state that ( )∂
Φ >

∂
j

SV
j

0
n
μ

, which illustrates that both jμ and nj must have variations 

with the same sign when temperature, pressure and all the other J-1 amounts of substance 
remain unchanged. Remembering that, for the jth chemical species the partial molar value zj 
of an additive extensive property z is, by definition, 

 ( )z
z

∂
= Φ
∂

j SV
jn

, (59) 

Equation 58 shows that jμ = Gj , that is, the chemical potential of the jth chemical species is its 
partial molar Gibbs energy in the phase. 
Although jμ  is called a chemical potential, in fact jμ  is not a thermodynamic potential like 
U, H, A, Yj and G.  This denomination is derived from an analogy with physical potentials 
that control the movement of charges or masses. In this case, the chemical potential controls 
the diffusive flux of a certain chemical substance, that is, jμ  controls the movement of the 
particles of a certain chemical substance when their displacement is only due to random 
motion. In order to demonstrate this physical interpretation, let two distinct but otherwise 
closed phases with the same homogeneous temperature and pressure be in contact by 
means of a wall that is only permeable to the jth species. Considering that both phases can 
only perform volumetric work and are maintained at fixed temperature and pressure, 
according to Equations 35 and 53 

 = + ≤j1 j1 j2 j2dG dn dn 0μ μ , (60) 

where the subscripts “1” and “2” describe the phases in contact. But, because dnj2 = - dnj1 , it 
follows that 
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 ( )− ≤j1 j2 j1dn 0μ μ . (61) 

Thus, dnj1 > 0 implies 1 2 0j jμ μ− ≤ , that is, the substance j flows from the phase in which it has 
a larger potential to the phase in which its chemical potential is smaller. 

6. Conclusion 

By using elementary notions of differential and integral calculus, the fundamental concepts 
of thermodynamics were re-discussed according to the thermodynamics of homogeneous 
processes, which may be considered an introductory theory to the mechanics of continuum 
media. For the first law, the importance of knowing the defining equations of the 
differentials dq, dw and dU was stressed. Moreover, the physical meaning of q, w and U 
was emphasized and the fundamental equation for homogeneous processes was clearly 
separated from the first law expression. 
In addition, for the second law, a thermally homogeneous closed system was used. This 
approach was employed to derive the significance of Helmholtz and Gibbs energies. 
Further, entropy was defined by using generic concepts such as the correspondence 
between states and microstates and the missing structural information. Thus, it was shown 
that the concept of entropy, which had been defined only for systems in equilibrium, can be 
extended to other systems much more complex than the thermal machines. The purpose of 
this chapter was to expand the understanding and the applicability of thermodynamics. 
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