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1. Introduction

There is no doubt that thermodynamics is a theory of universal proportions whose laws
reign supreme among the laws of nature and are capable of addressing some of science’s
most intriguing questions about the origins and fabric of our universe. The laws of
thermodynamics are among the most firmly established laws of nature and play a critical
role in the understanding of our expanding universe. In addition, thermodynamics forms
the underpinning of several fundamental life science and engineering disciplines, including
biological systems, physiological systems, chemical reaction systems, ecological systems,
information systems, and network systems, to cite but a few examples. While from
its inception its speculations about the universe have been grandiose, its mathematical
foundation has been amazingly obscure and imprecise (Truesdell (1969; 1980); Arnold (1990);
Haddad et al. (2005)). This is largely due to the fact that classical thermodynamics is a physical
theory concerned mainly with equilibrium states and does not possess equations of motion.
The absence of a state space formalism in classical thermodynamics, and physics in general,
is quite disturbing and in our view largely responsible for the monomeric state of classical
thermodynamics.
In recent research, Haddad et al. (2005; 2008) combined the two universalisms of
thermodynamics and dynamical systems theory under a single umbrella to develop a
dynamical system formalism for classical thermodynamics so as to harmonize it with classical
mechanics. While it seems impossible to reduce thermodynamics to a mechanistic world
picture due to microscopic reversibility and Poincaré recurrence, the system thermodynamic
formulation of Haddad et al. (2005) provides a harmonization of classical thermodynamics
with classical mechanics. In particular, our dynamical system formalism captures all of
the key aspects of thermodynamics, including its fundamental laws, while providing a
mathematically rigorous formulation for thermodynamical systems out of equilibrium by
unifying the theory of heat transfer with that of classical thermodynamics. In addition, the
concept of entropy for a nonequilibrium state of a dynamical process is defined, and its global
existence and uniqueness is established. This state space formalismof thermodynamics shows
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2 Thermodynamics

that the behavior of heat, as described by the conservation equations of thermal transport
and as described by classical thermodynamics, can be derived from the same basic principles
and is part of the same scientific discipline. Connections between irreversibility, the second
law of thermodynamics, and the entropic arrow of time are also established in Haddad et al.
(2005). Specifically, we show a state irrecoverability and, hence, a state irreversibility
nature of thermodynamics. State irreversibility reflects time-reversal non-invariance, wherein
time-reversal is not meant literally; that is, we consider dynamical systems whose trajectory
reversal is or is not allowed and not a reversal of time itself. In addition, we show
that for every nonequilibrium system state and corresponding system trajectory of our
thermodynamically consistent dynamical system, there does not exist a state such that the
corresponding system trajectory completely recovers the initial system state of the dynamical
system and at the same time restores the energy supplied by the environment back to its
original condition. This, along with the existence of a global strictly increasing entropy
function on every nontrivial system trajectory, establishes the existence of a completely
ordered time set having a topological structure involving a closed set homeomorphic to the
real line giving a clear time-reversal asymmetry characterization of thermodynamics and
establishing an emergence of the direction of time flow.
In this paper, we reformulate and extend some of the results of Haddad et al. (2005). In
particular, unlike the framework in Haddad et al. (2005) wherein we establish the existence
and uniqueness of a global entropy function of a specific form for our thermodynamically
consistent system model, in this paper we assume the existence of a continuously
differentiable, strictly concave function that leads to an entropy inequality that can be
identified with the second law of thermodynamics as a statement about entropy increase.
We then turn our attention to stability and convergence. Specifically, using Lyapunov
stability theory and the Krasovskii-LaSalle invariance principle, we show that for an
adiabatically isolated system the proposed interconnected dynamical system model is
Lyapunov stable with convergent trajectories to equilibrium states where the temperatures
of all subsystems are equal. Finally, we present a state-space dynamical system model for
chemical thermodynamics. In particular, we use the law ofmass-action to obtain the dynamics
of chemical reaction networks. Furthermore, using the notion of the chemical potential (Gibbs
(1875; 1878)), we unify our state space mass-action kinetics model with our thermodynamic
dynamical system model involving energy exchange. In addition, we show that entropy
production during chemical reactions is nonnegative and the dynamical system states of our
chemical thermodynamic state space model converge to a state of temperature equipartition
and zero affinity (i.e., the difference between the chemical potential of the reactants and the
chemical potential of the products in a chemical reaction).

2. Mathematical preliminaries

In this section, we establish notation, definitions, and provide some key results necessary for
developing the main results of this paper. Specifically, R denotes the set of real numbers, Z+

(respectively, Z+) denotes the set of nonnegative (respectively, positive) integers, R
q denotes

the set of q× 1 column vectors, R
n×m denotes the set of n×m real matrices, P

n (respectively,

N
n) denotes the set of positive (respectively, nonnegative) definite matrices, (·)T denotes

transpose, Iq or I denotes the q × q identity matrix, e denotes the ones vector of order q,

that is, e � [1, . . . ,1]T ∈ R
q, and ei ∈ R

q denotes a vector with unity in the ith component
and zeros elsewhere. For x ∈ R

q we write x ≥≥ 0 (respectively, x >> 0) to indicate that
every component of x is nonnegative (respectively, positive). In this case, we say that x is
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nonnegative or positive, respectively. Furthermore, R
q
+ and R

q
+ denote the nonnegative and

positive orthants of R
q, that is, if x ∈ R

q, then x ∈ R
q
+ and x ∈ R

q
+ are equivalent, respectively,

to x ≥≥ 0 and x >> 0. Analogously, R
n×m
+ (respectively, R

n×m
+ ) denotes the set of n × m

real matrices whose entries are nonnegative (respectively, positive). For vectors x,y ∈ R
q,

with components xi and yi, i = 1, . . . ,q, we use x ◦ y to denote component-by-component

multiplication, that is, x ◦ y � [x1y1, . . . ,xqyq]
T. Finally, we write ∂S ,

◦
S , and S to denote the

boundary, the interior, and the closure of the set S , respectively.

We write ‖ · ‖ for the Euclidean vector norm, V ′(x) � ∂V(x)
∂x for the Fréchet derivative of V

at x, Bε(α), α ∈ R
q, ε > 0, for the open ball centered at α with radius ε, and x(t) → M as

t → ∞ to denote that x(t) approaches the set M (that is, for every ε > 0 there exists T > 0

such that dist(x(t),M) < ε for all t > T, where dist(p,M) � infx∈M ‖p− x‖). The notions of
openness, convergence, continuity, and compactness that we use throughout the paper refer
to the topology generated on D ⊆ R

q by the norm ‖ · ‖. A subset N of D is relatively open
in D if N is open in the subspace topology induced on D by the norm ‖ · ‖. A point x ∈ R

q

is a subsequential limit of the sequence {xi}
∞
i=0 in R

q if there exists a subsequence of {xi}
∞
i=0

that converges to x in the norm ‖ · ‖. Recall that every bounded sequence has at least one
subsequential limit. A divergent sequence is a sequence having no convergent subsequence.
Consider the nonlinear autonomous dynamical system

ẋ(t) = f (x(t)), x(0) = x0, t ∈ Ix0 , (1)

where x(t) ∈ D ⊆ R
n, t ∈ Ix0 , is the system state vector, D is a relatively open set, f : D → R

n

is continuous on D, and Ix0 = [0,τx0), 0 ≤ τx0 ≤ ∞, is the maximal interval of existence for the
solution x(·) of (1). We assume that, for every initial condition x(0) ∈ D, the differential
equation (1) possesses a unique right-maximally defined continuously differentiable solution
which is defined on [0,∞). Letting s(·,x) denote the right-maximally defined solution of
(1) that satisfies the initial condition x(0) = x, the above assumptions imply that the map
s : [0,∞) × D → D is continuous (Hartman, 1982, Theorem V.2.1), satisfies the consistency
property s(0,x) = x, and possesses the semigroup property s(t, s(τ,x)) = s(t + τ,x) for all
t,τ ≥ 0 and x ∈ D. Given t ≥ 0 and x ∈ D, we denote the map s(t, ·) : D → D by st and
the map s(·,x) : [0,∞) → D by sx. For every t ∈ R, the map st is a homeomorphism and has
the inverse s−t.
The orbit Ox of a point x ∈ D is the set sx([0,∞)). A set Dc ⊆ D is positively invariant relative
to (1) if st(Dc) ⊆ Dc for all t ≥ 0 or, equivalently, Dc contains the orbits of all its points. The
set Dc is invariant relative to (1) if st(Dc) = Dc for all t ≥ 0. The positive limit set of x ∈ R

q is
the set ω(x) of all subsequential limits of sequences of the form {s(ti,x)}

∞
i=0, where {ti}

∞
i=0

is an increasing divergent sequence in [0,∞). ω(x) is closed and invariant, and Ox = Ox ∪
ω(x) (Haddad & Chellaboina (2008)). In addition, for every x ∈ R

q that has bounded positive
orbits, ω(x) is nonempty and compact, and, for every neighborhood N of ω(x), there exists
T> 0 such that st(x)∈N for every t> T (Haddad & Chellaboina (2008)). Furthermore, xe ∈D
is an equilibrium point of (1) if and only if f (xe) = 0 or, equivalently, s(t,xe) = xe for all t ≥ 0.
Finally, recall that if all solutions to (1) are bounded, then it follows from the Peano-Cauchy
theorem (Haddad & Chellaboina, 2008, p. 76) that Ix0 = R.

Definition 2.1 (Haddad et al., 2010, pp. 9, 10) Let f = [ f1, . . . , fn]
T : D ⊆ R

n
+ → R

n. Then f is

essentially nonnegative if fi(x) ≥ 0, for all i = 1, . . . ,n, and x ∈ R
n
+ such that xi = 0, where xi

denotes the ith component of x.
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4 Thermodynamics

Proposition 2.1 (Haddad et al., 2010, p. 12) Suppose R
n
+ ⊂ D. Then R

n
+ is an invariant set with

respect to (1) if and only if f : D → R
n is essentially nonnegative.

Definition 2.2 (Haddad et al., 2010, pp. 13, 23) An equilibrium solution x(t) ≡ xe ∈ R
n
+ to (1)

is Lyapunov stable with respect to R
n
+ if, for all ε > 0, there exists δ = δ(ε) > 0 such that if

x ∈ Bδ(xe) ∩ R
n
+, then x(t) ∈ Bε(xe) ∩ R

n
+, t ≥ 0. An equilibrium solution x(t) ≡ xe ∈ R

n
+ to

(1) is semistable with respect to R
n
+ if it is Lyapunov stable with respect to R

n
+ and there exists

δ > 0 such that if x0 ∈ Bδ(xe) ∩ R
n
+, then limt→∞ x(t) exists and corresponds to a Lyapunov stable

equilibrium point with respect to R
n
+. The system (1) is said to be semistable with respect to R

n
+ if

every equilibrium point of (1) is semistable with respect to R
n
+. The system (1) is said to be globally

semistable with respect to R
n
+ if (1) is semistable with respect to R

n
+ and, for every x0 ∈ R

n
+,

limt→∞ x(t) exists.

Proposition 2.2 (Haddad et al., 2010, p. 22) Consider the nonlinear dynamical system (1) where f is

essentially nonnegative and let x ∈ R
n
+. If the positive limit set of (1) contains a Lyapunov stable (with

respect to R
n
+) equilibrium point y, then y = limt→∞ s(t,x).

3. Interconnected thermodynamic systems: A state space energy flow perspective

The fundamental and unifying concept in the analysis of thermodynamic systems is the
concept of energy. The energy of a state of a dynamical system is the measure of its ability
to produce changes (motion) in its own system state as well as changes in the system states
of its surroundings. These changes occur as a direct consequence of the energy flow between
different subsystems within the dynamical system. Heat (energy) is a fundamental concept of
thermodynamics involving the capacity of hot bodies (more energetic subsystems) to produce
work. As in thermodynamic systems, dynamical systems can exhibit energy (due to friction)
that becomes unavailable to do useful work. This in turn contributes to an increase in
system entropy, a measure of the tendency of a system to lose the ability to do useful work.
In this section, we use the state space formalism to construct a mathematical model of a
thermodynamic system that is consistent with basic thermodynamic principles.
Specifically, we consider a large-scale system model with a combination of subsystems
(compartments or parts) that is perceived as a single entity. For each subsystem
(compartment) making up the system, we postulate the existence of an energy state variable
such that the knowledge of these subsystem state variables at any given time t = t0, together
with the knowledge of any inputs (heat fluxes) to each of the subsystems for time t ≥ t0,
completely determines the behavior of the system for any given time t ≥ t0. Hence, the
(energy) state of our dynamical system at time t is uniquely determined by the state at time t0
and any external inputs for time t≥ t0 and is independent of the state and inputs before time
t0.
More precisely, we consider a large-scale interconnected dynamical system composed
of a large number of units with aggregated (or lumped) energy variables representing
homogenous groups of these units. If all the units comprising the system are identical
(that is, the system is perfectly homogeneous), then the behavior of the dynamical system
can be captured by that of a single plenipotentiary unit. Alternatively, if every interacting
system unit is distinct, then the resulting model constitutes a microscopic system. To develop
a middle-ground thermodynamic model placed between complete aggregation (classical
thermodynamics) and complete disaggregation (statistical thermodynamics), we subdivide

54 Thermodynamics

www.intechopen.com



Heat Flow, Work Energy, Chemical Reactions, and
Thermodynamics: A Dynamical Systems Perspective 5

Si

Sj

S1

Sq σqq(E)

σjj(E)

σii(E)

σ11(E)
G1

Gi

Gj

Gq

φij(E)

Fig. 1. Interconnected dynamical system G .

the large-scale dynamical system into a finite number of compartments, each formed by
a large number of homogeneous units. Each compartment represents the energy content
of the different parts of the dynamical system, and different compartments interact by
exchanging heat. Thus, our compartmental thermodynamic model utilizes subsystems or
compartments to describe the energy distribution among distinct regions in space with
intercompartmental flows representing the heat transfer between these regions. Decreasing
the number of compartments results in a more aggregated or homogeneous model, whereas
increasing the number of compartments leads to a higher degree of disaggregation resulting
in a heterogeneous model.
To formulate our state space thermodynamic model, consider the interconnected dynamical
system G shown in Figure 1 involving energy exchange between q interconnected subsystems.
Let Ei : [0,∞) → R+ denote the energy (and hence a nonnegative quantity) of the ith
subsystem, let Si : [0,∞)→ R denote the external power (heat flux) supplied to (or extracted

from) the ith subsystem, let φij : R
q
+ → R, i �= j, i, j= 1, . . . ,q, denote the net instantaneous rate

of energy (heat) flow from the jth subsystem to the ith subsystem, and let σii : R
q
+ → R+, i =

1, . . . ,q, denote the instantaneous rate of energy (heat) dissipation from the ith subsystem to

the environment. Here, we assume that φij : R
q
+ → R, i �= j, i, j = 1, . . . ,q, and σii : R

q
+ → R+,

i= 1, . . . ,q, are locally Lipschitz continuous on R
q
+ and Si : [0,∞)→ R, i= 1, . . . ,q, are bounded

piecewise continuous functions of time.
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6 Thermodynamics

An energy balance for the ith subsystem yields

Ei(T) = Ei(t0) +

⎡

⎣

q

∑
j=1, j �=i

∫ T

t0
φij(E(t))dt

⎤

⎦−
∫ T

t0
σii(E(t))dt+

∫ T

t0
Si(t)dt, T ≥ t0, (2)

or, equivalently, in vector form,

E(T) = E(t0) +
∫ T

t0
w(E(t))dt−

∫ T

t0
d(E(t))dt+

∫ T

t0
S(t)dt, T ≥ t0, (3)

where E(t) � [E1(t), . . . ,Eq(t)]T, t ≥ t0, is the system energy state, d(E(t)) � [σ11(E(t)), . . . ,

σqq(E(t))]T, t≥ t0, is the system dissipation, S(t)� [S1(t), . . . ,Sq(t)]
T, t≥ t0, is the system heat

flux, and w= [w1, . . . ,wq]T : R
q
+ → R

q is such that

wi(E) =
q

∑
j=1, j �=i

φij(E), E ∈ R
q
+. (4)

Since φij : R
q
+ → R, i �= j, i, j = 1, . . . ,q, denotes the net instantaneous rate of energy flow from

the jth subsystem to the ith subsystem, it is clear that φij(E) = −φji(E), E ∈ R
q
+, i �= j, i, j =

1, . . . ,q, which further implies that eTw(E) = 0, E ∈ R
q
+.

Note that (2) yields a conservation of energy equation and implies that the energy stored
in the ith subsystem is equal to the external energy supplied to (or extracted from) the ith
subsystem plus the energy gained by the ith subsystem from all other subsystems due to
subsystem coupling minus the energy dissipated from the ith subsystem to the environment.
Equivalently, (2) can be rewritten as

Ėi(t) =

⎡

⎣

q

∑
j=1, j �=i

φij(E(t))

⎤

⎦− σii(E(t)) + Si(t), Ei(t0) = Ei0, t ≥ t0, (5)

or, in vector form,

Ė(t) = w(E(t))− d(E(t)) + S(t), E(t0) = E0, t≥ t0, (6)

where E0 � [E10, . . . ,Eq0]
T, yielding a power balance equation that characterizes energy flow

between subsystems of the interconnected dynamical system G . We assume that φij(E) ≥

0, E ∈ R
q
+, whenever Ei = 0, i �= j, i, j = 1, . . . ,q, and σii(E) = 0, whenever Ei = 0, i =

1, . . . ,q. The above constraint implies that if the energy of the ith subsystem of G is zero,
then this subsystem cannot supply any energy to its surroundings nor can it dissipate

energy to the environment. In this case, w(E) − d(E), E ∈ R
q
+, is essentially nonnegative

(Haddad & Chellaboina (2005)). Thus, if S(t) ≡ 0, then, by Proposition 2.1, the solutions to
(6) are nonnegative for all nonnegative initial conditions. See Haddad & Chellaboina (2005);
Haddad et al. (2005; 2010) for further details.
Since our thermodynamic compartmental model involves intercompartmental flows
representing energy transfer between compartments, we can use graph-theoretic notions
with undirected graph topologies (i.e., bidirectional energy flows) to capture the compartmental
system interconnections. Graph theory (Diestel (1997); Godsil & Royle (2001)) can be useful
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in the analysis of the connectivity properties of compartmental systems. In particular,
an undirected graph can be constructed to capture a compartmental model in which the
compartments are represented by nodes and the flows are represented by edges or arcs. In
this case, the environment must also be considered as an additional node.
For the interconnected dynamical system G with the power balance equation (6), we define

a connectivity matrix1 C ∈ R
q×q such that for i �= j, i, j = 1, . . . ,q, C(i,j) � 1 if φij(E) �≡ 0 and

C(i,j) � 0 otherwise, and C(i,i) � −∑
q
k=1,k �=iC(k,i), i = 1, . . . ,q. Recall that if rankC = q− 1, then

G is strongly connected (Haddad et al. (2005)) and energy exchange is possible between any
two subsystems of G . The next definition introduces a notion of entropy for the interconnected
dynamical system G .

Definition 3.1 Consider the interconnected dynamical system G with the power balance equation (6).

A continuously differentiable, strictly concave function S : R
q
+ → R is called the entropy function of

G if

(

∂S(E)

∂Ei
−

∂S(E)

∂Ej

)

φij(E)≥ 0, E ∈ R
q
+, i �= j, i, j= 1, . . . ,q, (7)

and
∂S(E)

∂Ei
=

∂S(E)
∂Ej

if and only if φij(E) = 0 with C(i,j) = 1, i �= j, i, j = 1, . . . ,q.

It follows from Definition 3.1 that for an isolated system G , that is, S(t) ≡ 0 and d(E) ≡ 0, the
entropy function of G is a nondecreasing function of time. To see this, note that

Ṡ(E) =
∂S(E)

∂E
Ė

=
q

∑
i=1

∂S(E)

∂Ei

q

∑
j=1, j �=i

φij(E)

=
q

∑
i=1

q

∑
j=i+1

(

∂S(E)

∂Ei
−

∂S(E)

∂Ej

)

φij(E)

≥ 0, E ∈ R
q
+, (8)

where
∂S(E)

∂E �
[

∂S(E)
∂E1

, . . . ,
∂S(E)

∂Eq

]

and where we used the fact that φij(E) = −φji(E), E ∈ R
q
+,

i �= j, i, j = 1, . . . ,q.

Proposition 3.1 Consider the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical
system G with the power balance equation (6). Assume that rankC = q − 1 and there exists an

entropy function S : R
q
+ → R of G . Then, ∑

q
j=1 φij(E) = 0 for all i = 1, . . . ,q if and only if

∂S(E)
∂E1

= · · · =
∂S(E)

∂Eq
. Furthermore, the set of nonnegative equilibrium states of (6) is given by

E0 �
{

E ∈ R
q
+ :

∂S(E)
∂E1

= · · · = ∂S(E)
∂Eq

}

.

1The negative of the connectivity matrix, that is, -C, is known as the graph Laplacian in the literature.
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8 Thermodynamics

Proof. If
∂S(E)

∂Ei
= ∂S(E)

∂Ej
, then φij(E) = 0 for all i, j = 1, . . . ,q, which implies that ∑

q
j=1 φij(E) = 0

for all i = 1, . . . ,q. Conversely, assume that ∑
q
j=1 φij(E) = 0 for all i = 1, . . . ,q, and, since S is an

entropy function of G , it follows that

0 =
q

∑
i=1

q

∑
j=1

∂S(E)

∂Ei
φij(E)

=
q−1

∑
i=1

q

∑
j=i+1

(

∂S(E)

∂Ei
−

∂S(E)

∂Ej

)

φij(E)

≥ 0,

where we have used the fact that φij(E) = −φji(E) for all i, j = 1, . . . ,q. Hence,

(

∂S(E)

∂Ei
−

∂S(E)

∂Ej

)

φij(E) = 0

for all i, j= 1, . . . ,q. Now, the result follows from the fact that rank C = q− 1.

Theorem 3.1 Consider the isolated (i.e., S(t)≡ 0 and d(E) ≡ 0) interconnected dynamical system G
with the power balance equation (6). Assume that rankC = q− 1 and there exists an entropy function

S : R
q
+ → R of G . Then the isolated system G is globally semistable with respect to R

q
+.

Proof. Since w(·) is essentially nonnegative, it follows from Proposition 2.1 that E(t) ∈ R
q
+,

t ≥ t0, for all E0 ∈ R
q
+. Furthermore, note that since eTw(E) = 0, E ∈ R

q
+, it follows that

eTĖ(t) = 0, t≥ t0. In this case, eTE(t) = eTE0, t≥ t0, which implies that E(t), t≥ t0, is bounded

for all E0 ∈ R
q
+. Now, it follows from (8) that S(E(t)), t ≥ t0, is a nondecreasing function of

time, and hence, by the Krasovskii-LaSalle theorem (Haddad & Chellaboina (2008)), E(t) →

R� {E ∈ R
q
+ : Ṡ(E) = 0} as t → ∞. Next, it follows from (8), Definition 3.1, and the fact that

rankC = q− 1, that R =
{

E ∈ R
q
+ :

∂S(E)
∂E1

= · · ·= ∂S(E)
∂Eq

}

= E0.

Now, let Ee ∈ E0 and consider the continuously differentiable function V : R
q → R defined by

V(E)� S(Ee)− S(E)− λe(e
TEe − eTE),

where λe �
∂S
∂E1

(Ee). Next, note that V(Ee) = 0, ∂V
∂E (Ee) =− ∂S

∂E (Ee) + λee
T = 0, and, since S(·)

is a strictly concave function, ∂2V
∂E2 (Ee) = − ∂2S

∂E2 (Ee)> 0, which implies that V(·) admits a local
minimum at Ee. Thus, V(Ee) = 0, there exists δ > 0 such that V(E)> 0, E ∈ Bδ(Ee)\{Ee}, and
V̇(E) =−Ṡ(E)≤ 0 for all E ∈ Bδ(Ee)\{Ee}, which shows that V(·) is a Lyapunov function for

G and Ee is a Lyapunov stable equilibrium of G . Finally, since, for every E0 ∈ R
n
+, E(t) → E0

as t → ∞ and every equilibrium point of G is Lyapunov stable, it follows from Proposition 2.2

that G is globally semistable with respect to R
q
+.

In classical thermodynamics, the partial derivative of the system entropy with respect to the
system energy defines the reciprocal of the system temperature. Thus, for the interconnected
dynamical system G ,

Ti �

(

∂S(E)

∂Ei

)−1

, i = 1, . . . ,q, (9)
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represents the temperature of the ith subsystem. Condition (7) is a manifestation of the second
law of thermodynamics and implies that if the temperature of the jth subsystem is greater than
the temperature of the ith subsystem, then energy (heat) flows from the jth subsystem to the

ith subsystem. Furthermore,
∂S(E)

∂Ei
= ∂S(E)

∂Ej
if and only if φij(E) = 0 with C(i,j) = 1, i �= j, i, j =

1, . . . ,q, implies that temperature equality is a necessary and sufficient condition for thermal
equilibrium. This is a statement of the zeroth law of thermodynamics. As a result, Theorem 3.1
shows that, for a strongly connected system G , the subsystem energies converge to the set
of equilibrium states where the temperatures of all subsystems are equal. This phenomenon
is known as equipartition of temperature (Haddad et al. (2010)) and is an emergent behavior in
thermodynamic systems. In particular, all the system energy is eventually transferred into
heat at a uniform temperature, and hence, all dynamical processes in G (system motions)
would cease.
The following result presents a sufficient condition for energy equipartition of the system, that
is, the energies of all subsystems are equal. And this state of energy equipartition is uniquely
determined by the initial energy in the system.

Theorem 3.2 Consider the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical system
G with the power balance equation (6). Assume that rankC = q− 1 and there exists a continuously

differentiable, strictly concave function f : R+ → R such that the entropy function S : R
q
+ → R of

G is given by S(E) = ∑
q
i=1 f (Ei). Then, the set of nonnegative equilibrium states of (6) is given by

E0 = {αe : α ≥ 0} and G is semistable with respect to R
q
+. Furthermore, E(t)→ 1

q ee
TE(t0) as t→ ∞

and 1
q ee

TE(t0) is a semistable equilibrium state of G .

Proof. First, note that since f (·) is a continuously differentiable, strictly concave function it
follows that

(

d f

dEi
−

d f

dEj

)

(Ei − Ej)≤ 0, E ∈ R
q
+, i, j= 1, . . . ,q,

which implies that (7) is equivalent to

(

Ei − Ej

)

φij(E) ≤ 0, E ∈ R
q
+, i �= j, i, j = 1, . . . ,q,

and Ei = Ej if and only if φij(E) = 0 with C(i,j) = 1, i �= j, i, j = 1, . . . ,q. Hence, −ETE is

an entropy function of G . Next, with S(E) = − 1
2E

TE, it follows from Proposition 3.1 that

E0 = {αe ∈ R
q
+, α ≥ 0}. Now, it follows from Theorem 3.1 that G is globally semistable

with respect to R
q
+. Finally, since eTE(t) = eTE(t0) and E(t) → M as t → ∞, it follows

that E(t) → 1
qee

TE(t0) as t → ∞. Hence, with α = 1
qe

TE(t0), αe = 1
qee

TE(t0) is a semistable

equilibrium state of (6).
If f (Ei) = loge(c + Ei), where c > 0, so that S(E) = ∑

q
i=1 loge(c + Ei), then it follows

from Theorem 3.2 that E0 = {αe : α ≥ 0} and the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0)
interconnected dynamical system G with the power balance equation (6) is semistable. In
this case, the absolute temperature of the ith compartment is given by c + Ei. Similarly, if
S(E) = − 1

2E
TE, then it follows from Theorem 3.2 that E0 = {αe : α ≥ 0} and the isolated

(i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical system G with the power balance
equation (6) is semistable. In both these cases, E(t) → 1

q ee
TE(t0) as t → ∞. This shows

that the steady-state energy of the isolated interconnected dynamical system G is given by
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1
qee

TE(t0) =
1
q ∑

q
i=1 Ei(t0)e, and hence, is uniformly distributed over all subsystems of G .

This phenomenon is known as energy equipartition (Haddad et al. (2005)). The aforementioned
forms of S(E) were extensively discussed in the recent book by Haddad et al. (2005) where
S(E) = ∑

q
i=1 loge(c+ Ei) and −S(E) = 1

2E
TE are referred to, respectively, as the entropy and

the ectropy functions of the interconnected dynamical system G .

4. Work energy, free energy, heat flow, and Clausius’ inequality

In this section, we augment our thermodynamic energy flow model G with an additional
(deformation) state representing subsystem volumes in order to introduce the notion of
work into our thermodynamically consistent state space energy flow model. Specifically, we
assume that each subsystem can perform (positive) work on the environment as well as the
environment can perform (negative) work on the subsystems. The rate of work done by the ith

subsystem on the environment is denoted by dwi :R
q
+×R

q
+ →R+, i= 1, . . . ,q, the rate of work

done by the environment on the ith subsystem is denoted by Swi : [0,∞) → R+, i = 1, . . . ,q,
and the volume of the ith subsystem is denoted by Vi : [0,∞)→ R+, i = 1, . . . ,q. The net work
done by each subsystem on the environment satisfies

pi(E,V)dVi = (dwi(E,V)− Swi(t))dt, (10)

where pi(E,V), i = 1, . . . ,q, denotes the pressure in the ith subsystem and V � [V1, . . . ,Vq]T.
Furthermore, in the presence of work, the energy balance equation (5) for each subsystem can
be rewritten as

dEi = wi(E,V)dt− (dwi(E,V)− Swi(t))dt− σii(E,V)dt+ Si(t)dt, (11)

where wi(E,V) � ∑
q
j=1, j �=iφij(E,V), φij : R

q
+ × R

q
+ → R, i �= j, i, j = 1, . . . ,q, denotes the net

instantaneous rate of energy (heat) flow from the jth subsystem to the ith subsystem, σii :

R
q
+ × R

q
+ → R+, i = 1, . . . ,q, denotes the instantaneous rate of energy dissipation from the ith

subsystem to the environment, and, as in Section 3, Si : [0,∞) → R, i = 1, . . . ,q, denotes the
external power supplied to (or extracted from) the ith subsystem. It follows from (10) and (11)
that positive work done by a subsystem on the environment leads to a decrease in internal
energy of the subsystem and an increase in the subsystem volume, which is consistent with
the first law of thermodynamics.
The definition of entropy for G in the presence of work remains the same as in Definition 3.1
with S(E) replaced by S(E,V) and with all other conditions in the definition holding for every
V >> 0. Next, consider the ith subsystem of G and assume that Ej and Vj, j �= i, i= 1, . . . ,q, are
constant. In this case, note that

dS

dt
=

∂S

∂Ei

dEi

dt
+

∂S

∂Vi

dVi

dt
(12)

and define

pi(E,V)�

(

∂S

∂Ei

)−1( ∂S

∂Vi

)

, i = 1, . . . ,q. (13)
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It follows from (10) and (11) that, in the presence of work energy, the power balance equation
(6) takes the new form involving energy and deformation states

Ė(t) = w(E(t),V(t))− dw(E(t),V(t)) + Sw(t)− d(E(t),V(t)) + S(t),

E(t0) = E0, t≥ t0, (14)

V̇(t) = D(E(t),V(t))(dw(E(t),V(t))− Sw(t)), V(t0) = V0, (15)

where w(E,V) � [w1(E,V), . . . ,wq(E,V)]T, dw(E,V) � [dw1(E,V), . . . , dwq(E,V)]T, Sw(t) �

[Sw1(t), . . . ,Swq(t)]T, d(E,V)� [σ11(E,V), . . . ,σqq(E,V)]T, S(t)� [S1(t), . . . ,Sq(t)]
T, and

D(E,V)� diag

[

(

∂S

∂E1

)(

∂S

∂V1

)−1

, . . . ,

(

∂S

∂Eq

)(

∂S

∂Vq

)−1
]

. (16)

Note that
(

∂S(E,V)

∂V

)

D(E,V) =
∂S(E,V)

∂E
. (17)

The power balance and deformation equations (14) and (15) represent a statement of the first
law of thermodynamics. To see this, define the work L done by the interconnected dynamical
system G over the time interval [t1, t2] by

L �

∫ t2

t1
eT[dw(E(t),V(t))− Sw(t)]dt, (18)

where [ET(t),VT(t)]T, t ≥ t0, is the solution to (14) and (15). Now, premultiplying (14) by eT

and using the fact that eTw(E,V) = 0, it follows that

∆U = −L+ Q, (19)

where ∆U = U(t2)− U(t1) � eTE(t2) − eTE(t1) denotes the variation in the total energy of
the interconnected system G over the time interval [t1, t2] and

Q�

∫ t2

t1
eT[S(t)− d(E(t),V(t))]dt (20)

denotes the net energy received by G in forms other than work.
This is a statement of the first law of thermodynamics for the interconnected dynamical system
G and gives a precise formulation of the equivalence between work and heat. This establishes
that heat and mechanical work are two different aspects of energy. Finally, note that (15)
is consistent with the classical thermodynamic equation for the rate of work done by the
system G on the environment. To see this, note that (15) can be equivalently written as
dL = eTD−1(E,V)dV, which, for a single subsystem with volume V and pressure p, has the
classical form

dL = pdV. (21)
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It follows from Definition 3.1 and (14)–(17) that the time derivative of the entropy function
satisfies

Ṡ(E,V) =
∂S(E,V)

∂E
Ė+

∂S(E,V)

∂V
V̇

=
∂S(E,V)

∂E
w(E,V)−

∂S(E,V)

∂E
(dw(E,V)− Sw(t))

−
∂S(E,V)

∂E
(d(E,V)− S(t)) +

∂S(E,V)

∂V
D(E,V)(dw(E,V)− Sw(t))

=
q

∑
i=1

∂S(E,V)

∂Ei

q

∑
j=1, j �=i

φij(E,V) +
q

∑
i=1

∂S(E,V)

∂Ei
(Si(t)− di(E,V))

=
q

∑
i=1

q

∑
j=i+1

(

∂S(E,V)

∂Ei
−

∂S(E,V)

∂Ej

)

φij(E,V)

+
q

∑
i=1

∂S(E,V)

∂Ei
(Si(t)− di(E,V))

≥
q

∑
i=1

∂S(E,V)

∂Ei
(Si(t)− di(E,V)), (E,V) ∈ R

q
+ × R

q
+. (22)

Noting that dQi � [Si − σii(E)]dt, i = 1, . . . ,q, is the infinitesimal amount of the net heat
received or dissipated by the ith subsystem of G over the infinitesimal time interval dt, it
follows from (22) that

dS(E)≥
q

∑
i=1

dQi

Ti
. (23)

Inequality (23) is the classical Clausius inequality for the variation of entropy during an
infinitesimal irreversible transformation.
Note that for an adiabatically isolated interconnected dynamical system (i.e., no heat exchange
with the environment), (22) yields the universal inequality

S(E(t2),V(t2)) ≥ S(E(t1),V(t1)), t2 ≥ t1, (24)

which implies that, for any dynamical change in an adiabatically isolated interconnected
system G , the entropy of the final system state can never be less than the entropy of the initial

system state. In addition, in the case where (E(t),V(t)) ∈Me, t ≥ t0, where Me � {(E,V) ∈

R
q
+×R

q
+ : E= αe, α ≥ 0, V ∈R

q
+}, it follows fromDefinition 3.1 and (22) that inequality (24) is

satisfied as a strict inequality for all (E,V) ∈ (R
q
+ ×R

q
+)\Me. Hence, it follows fromTheorem

2.15 of Haddad et al. (2005) that the adiabatically isolated interconnected system G does not

exhibit Poincaré recurrence in (R
q
+ × R

q
+)\Me.

Next, we define the Gibbs free energy, the Helmholtz free energy, and the enthalpy functions for
the interconnected dynamical system G . For this exposition, we assume that the entropy of G
is a sum of individual entropies of subsystems of G , that is, S(E,V) = ∑

q
i=1Si(Ei,Vi), (E,V) ∈
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R
q
+ × R

q
+. In this case, the Gibbs free energy of G is defined by

G(E,V) � eTE−
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1

Si(Ei,Vi) +
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1( ∂S(E,V)

∂Vi

)

Vi ,

(E,V) ∈ R
q
+ × R

q
+, (25)

the Helmholtz free energy of G is defined by

F(E,V)� eTE−
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1

Si(Ei,Vi), (E,V) ∈ R
q
+ × R

q
+, (26)

and the enthalpy of G is defined by

H(E,V)� eTE+
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1( ∂S(E,V)

∂Vi

)

Vi, (E,V) ∈ R
q
+ × R

q
+. (27)

Note that the above definitions for the Gibbs free energy, Helmholtz free energy, and enthalpy
are consistent with the classical thermodynamic definitions given by G(E,V) = U + pV −
TS, F(E,V) = U − TS, and H(E,V) = U + pV, respectively. Furthermore, note that if the
interconnected system G is isothermal and isobaric, that is, the temperatures of subsystems of G
are equal and remain constant with

(

∂S(E,V)

∂E1

)−1

= · · ·=

(

∂S(E,V)

∂Eq

)−1

= T > 0, (28)

and the pressure pi(E,V) in each subsystem of G remains constant, respectively, then any
transformation in G is reversible.
The time derivative of G(E,V) along the trajectories of (14) and (15) is given by

Ġ(E,V) = eTĖ−
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1 [ ∂S(E,V)

∂Ei
Ėi +

∂S(E,V)

∂Vi
V̇i

]

+
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1( ∂S(E,V)

∂Vi

)

V̇i

= 0, (29)

which is consistent with classical thermodynamics in the absence of chemical reactions.
For an isothermal interconnected dynamical system G , the time derivative of F(E,V) along
the trajectories of (14) and (15) is given by

Ḟ(E,V) = eTĖ−
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1 [ ∂S(E,V)

∂Ei
Ėi +

∂S(E,V)

∂Vi
V̇i

]

= −
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1( ∂S(E,V)

∂Vi

)

V̇i

= −
q

∑
i=1

(dwi(E,V)− Swi(t))

= −L, (30)
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where L is the net amount of work done by the subsystems of G on the environment.
Furthermore, note that if, in addition, the interconnected system G is isochoric, that is, the
volumes of each of the subsystems of G remain constant, then Ḟ(E,V) = 0. As we see in the
next section, in the presence of chemical reactions the interconnected system G evolves such
that the Helmholtz free energy is minimized.
Finally, for the isolated (S(t) ≡ 0 and d(E,V) ≡ 0) interconnected dynamical system G , the
time derivative of H(E,V) along the trajectories of (14) and (15) is given by

Ḣ(E,V) = eTĖ+
q

∑
i=1

(

∂S(E,V)

∂Ei

)−1( ∂S(E,V)

∂Vi

)

V̇i

= eTĖ+
q

∑
i=1

(dwi(E,V)− Swi(t))

= eTw(E,V)

= 0. (31)

5. Chemical equilibria, entropy production, and chemical thermodynamics

In its most general form thermodynamics can also involve reacting mixtures and combustion.
When a chemical reaction occurs, the bonds within molecules of the reactant are broken, and
atoms and electrons rearrange to form products. The thermodynamic analysis of reactive
systems can be addressed as an extension of the compartmental thermodynamic model
described in Sections 3 and 4. Specifically, in this case the compartments would qualitatively
represent different quantities in the same space, and the intercompartmental flows would
represent transformation rates in addition to transfer rates. In particular, the compartments
would additionally represent quantities of different chemical substances contained within the
compartment, and the compartmental flows would additionally characterize transformation
rates of reactants into products. In this case, an additional mass balance equation is included
for addressing conservation of energy as well as conservation of mass. This additional
mass conservation equation would involve the law of mass-action enforcing proportionality
between a particular reaction rate and the concentrations of the reactants, and the law of
superposition of elementary reactions assuring that the resultant rates for a particular species
is the sum of the elementary reaction rates for the species.
In this section, we consider the interconnected dynamical system G where each subsystem
represents a substance or species that can exchange energy with other substances as well
as undergo chemical reactions with other substances forming products. Thus, the reactants
and products of chemical reactions represent subsystems of G with the mechanisms of heat
exchange between subsystems remaining the same as delineated in Section 3. Here, for
simplicity of exposition, we do not consider work done by the subsystem on the environment
nor work done by the environment on the system. This extension can be easily addressed
using the formulation in Section 4.
To develop a dynamical systems framework for thermodynamics with chemical reaction
networks, let q be the total number of species (i.e., reactants and products), that is, the number
of subsystems in G , and let Xj, j = 1, . . . ,q, denote the jth species. Consider a single chemical
reaction described by

q

∑
j=1

AjXj
k

−→
q

∑
j=1

BjXj, (32)
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where Aj, Bj, j = 1, . . . ,q, are the stoichiometric coefficients and k denotes the reaction rate. Note
that the values of Aj corresponding to the products and the values of Bj corresponding to the
reactants are zero. For example, for the familiar reaction

2H2 +O2
k

−→ 2H2O, (33)

X1, X2, and X3 denote the species H2, O2, and H2O, respectively, and A1 = 2, A2 = 1, A3 = 0,
B1 = 0, B2 = 0, and B3 = 2.
In general, for a reaction network consisting of r ≥ 1 reactions, the ith reaction is written as

q

∑
j=1

AijXj
ki−→

q

∑
j=1

BijXj, i = 1, . . . ,r, (34)

where, for i = 1, . . . ,r, ki > 0 is the reaction rate of the ith reaction, ∑
q
j=1AijXj is the reactant

of the ith reaction, and ∑
q
j=1BijXj is the product of the ith reaction. Each stoichiometric

coefficient Aij and Bij is a nonnegative integer. Note that each reaction in the reaction network

(34) is represented as being irreversible.2 Reversible reactions can be modeled by including
the reverse reaction as a separate reaction. The reaction network (34) can be written compactly
in matrix-vector form as

AX
k

−→ BX, (35)

where X= [X1, . . . ,Xq]T is a column vector of species, k= [k1, . . . ,kr ]
T ∈ R

r
+ is a positive vector

of reaction rates, and A ∈ R
r×q and B ∈ R

r×q are nonnegative matrices such that A(i,j) = Aij

and B(i,j) = Bij, i = 1, . . . ,r, j = 1, . . . ,q.

Let nj : [0,∞) → R+, j = 1, . . . ,q, denote the mole number of the jth species and define

n � [n1, . . . ,nq]
T. Invoking the law of mass-action (Steinfeld et al. (1989)), which states that, for

an elementary reaction, that is, a reaction in which all of the stoichiometric coefficients of the
reactants are one, the rate of reaction is proportional to the product of the concentrations of
the reactants, the species quantities change according to the dynamics (Haddad et al. (2010);
Chellaboina et al. (2009))

ṅ(t) = (B− A)TKnA(t), n(0) = n0, t ≥ t0, (36)

where K � diag[k1, . . . ,kr] ∈ P
r and

nA �

⎡

⎢

⎢

⎢

⎣

∏
q
j=1 n

A1j

j

...

∏
q
j=1n

Arj

j

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

nA11

1 · · ·n
A1q
q

...

nAr1
1 · · ·n

Arq
q

⎤

⎥

⎥

⎦

∈ R
r
+. (37)

For details regarding the law of mass-action and Equation (36), see Erdi & Toth (1988);
Haddad et al. (2010); Steinfeld et al. (1989); Chellaboina et al. (2009). Furthermore, let Mj > 0,

2Irreversibility here refers to the fact that part of the chemical reaction involves generation of products
from the original reactants. Reversible chemical reactions that involve generation of products from the
reactants and vice versa can be modeled as two irreversible reactions; one of which involves generation of
products from the reactants and the other involving generation of the original reactants from the products.
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j = 1, . . . ,q, denote the molar mass (i.e., the mass of one mole of a substance) of the jth species,
let mj : [0,∞) → R+, j = 1, . . . ,q, denote the mass of the jth species so that mj(t) = Mjnj(t),

t ≥ t0, j = 1, . . . ,q, and let m � [m1, . . . ,mq]T. Then, using the transformation m(t) = Mn(t),

where M� diag[M1, . . . ,Mq] ∈ P
q, (36) can be rewritten as the mass balance equation

ṁ(t) = M(B− A)TK̃mA(t), m(0) = m0, t≥ t0, (38)

where K̃ � diag

[

k1

∏
q
j=1M

A1j
j

, . . . , kr

∏
q
j=1M

Arj
j

]

∈ P
r.

In the absence of nuclear reactions, the total mass of the species during each reaction in (35)
is conserved. Specifically, consider the ith reaction in (35) given by (34) where the mass of the
reactants is ∑

q
j=1 AijMj and the mass of the products is ∑

q
j=1 BijMj. Hence, conservation of

mass in the ith reaction is characterized as

q

∑
j=1

(Bij − Aij)Mj = 0, i = 1, . . . ,r, (39)

or, in general for (35), as

eTM(B− A)T = 0. (40)

Note that it follows from (38) and (40) that eTṁ(t) ≡ 0.
Equation (38) characterizes the change in masses of substances in the interconnected
dynamical system G due to chemical reactions. In addition to the change of mass due to
chemical reactions, each substance can exchange energy with other substances according to
the energy flow mechanism described in Section 3; that is, energy flows from substances at
a higher temperature to substances at a lower temperature. Furthermore, in the presence
of chemical reactions, the exchange of matter affects the change of energy of each substance
through the quantity known as the chemical potential.
The notion of the chemical potential was introduced by Gibbs in 1875–1878 (Gibbs (1875;
1878)) and goes far beyond the scope of chemistry effecting virtually every process in nature
(Baierlein (2001); Fuchs (1996); Job & Herrmann (2006)). The chemical potential has a strong
connection with the second law of thermodynamics in that every process in nature evolves from
a state of higher chemical potential towards a state of lower chemical potential. It was postulated
by Gibbs (1875; 1878) that the change in energy of a homogeneous substance is proportional
to the change in mass of this substance with the coefficient of proportionality given by the
chemical potential of the substance.
To elucidate this, assume the jth substance corresponds to the jth compartment and consider
the rate of energy change of the jth substance of G in the presence of matter exchange. In this
case, it follows from (5) and Gibbs’ postulate that the rate of energy change of the jth substance
is given by

Ėj(t) =

⎡

⎣

q

∑
k=1,k �=j

φjk(E(t))

⎤

⎦− σjj(E(t)) + Sj(t) + µj(E(t),m(t))ṁj(t), Ej(t0) = Ej0,

t≥ t0, (41)

where µj : R
q
+ × R

q
+ → R, j = 1, . . . ,q, is the chemical potential of the jth substance. It follows

from (41) that µj(·, ·) is the chemical potential of a unit mass of the jth substance. We assume
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that if Ej = 0, then µj(E,m) = 0, j= 1, . . . ,q, which implies that if the energy of the jth substance
is zero, then its chemical potential is also zero.
Next, using (38) and (41), the energy and mass balance equations for the interconnected
dynamical system G can be written as

Ė(t) = w(E(t)) + P(E(t),m(t))M(B− A)TK̃mA(t)− d(E(t)) + S(t), E(t0) = E0,

t≥ t0, (42)

ṁ(t) = M(B− A)TK̃mA(t), m(0) = m0, (43)

where P(E,m)�diag[µ1(E,m), . . . ,µq(E,m)]∈R
q×q and where w(·), d(·), and S(·) are defined

as in Section 3. It follows from Proposition 1 of Chellaboina et al. (2009) that the dynamics of
(43) are essentially nonnegative and, since µj(E,m) = 0 if Ej = 0, j = 1, . . . ,q, it also follows
that, for the isolated dynamical system G (i.e., S(t) ≡ 0 and d(E) ≡ 0), the dynamics of (42)
and (43) are essentially nonnegative.
Note that, for the ith reaction in the reaction network (35), the chemical potentials of the
reactants and the products are ∑

q
j=1AijMjµj(E,m) and ∑

q
j=1 BijMjµj(E,m), respectively. Thus,

q

∑
j=1

BijMjµj(E,m)−
q

∑
j=1

AijMjµj(E,m)≤ 0, (E,m) ∈ R
q
+ × R

q
+, (44)

is a restatement of the principle that a chemical reaction evolves from a state of a greater
chemical potential to that of a lower chemical potential, which is consistent with the
second law of thermodynamics. The difference between the chemical potential of the
reactants and the chemical potential of the products is called affinity (DeDonder (1927);
DeDonder & Rysselberghe (1936)) and is given by

νi(E,m) =
q

∑
j=1

AijMjµj(E,m)−
q

∑
j=1

BijMjµj(E,m)≥ 0, i = 1, . . . ,r. (45)

Affinity is a driving force for chemical reactions and is equal to zero at the state of chemical
equilibrium. A nonzero affinity implies that the system in not in equilibrium and that chemical
reactions will continue to occur until the system reaches an equilibrium characterized by zero
affinity. The next assumption provides a general form for the inequalities (44) and (45).

Assumption 5.1 For the chemical reaction network (35) with the mass balance equation (43), assume
that µ(E,m)>> 0 for all E �= 0 and

(B− A)Mµ(E,m)≤≤ 0, (E,m) ∈ R
q
+ × R

q
+, (46)

or, equivalently,

ν(E,m) = (A− B)Mµ(E,m)≥≥ 0, (E,m) ∈ R
q
+ × R

q
+, (47)

where µ(E,m) � [µ1(E,m), . . . ,µq(E,m)]T is the vector of chemical potentials of the substances of G

and ν(E,m)� [ν1(E,m), . . . ,νr(E,m)]T is the affinity vector for the reaction network (35).
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Note that equality in (46) or, equivalently, in (47) characterizes the state of chemical
equilibrium when the chemical potentials of the products and reactants are equal or,
equivalently, when the affinity of each reaction is equal to zero. In this case, no reaction occurs
and ṁ(t) = 0, t≥ t0.
Next, we characterize the entropy function for the interconnected dynamical system G with
the energy and mass balance equations (42) and (43). The definition of entropy for G in the
presence of chemical reactions remains the same as in Definition 3.1 with S(E) replaced by
S(E,m) and with all other conditions in the definition holding for every m >> 0. Consider
the jth subsystem of G and assume that Ek and mk, k �= j, k= 1, . . . ,q, are constant. In this case,
note that

dS

dt
=

∂S

∂Ej

dEj

dt
+

∂S

∂mj

dmj

dt
(48)

and recall that

∂S

∂E
P(E,m) +

∂S

∂m
= 0. (49)

Next, it follows from (49) that the time derivative of the entropy function S(E,m) along the
trajectories of (42) and (43) is given by

Ṡ(E,m) =
∂S(E,m)

∂E
Ė+

∂S(E,m)

∂m
ṁ

=
∂S(E,m)

∂E
w(E) +

(

∂S(E,m)

∂E
P(E,m) +

∂S(E,m)

∂m

)

M(B− A)TK̃mA

+
∂S(E,m)

∂E
S(t)−

∂S(E,m)

∂E
d(E)

=
∂S(E,m)

∂E
w(E) +

∂S(E,m)

∂E
S(t)−

∂S(E,m)

∂E
d(E)

=
q

∑
i=1

q

∑
j=i+1

(

∂S(E,m)

∂Ei
−

∂S(E,m)

∂Ej

)

φij(E) +
∂S(E,m)

∂E
S(t)−

∂S(E,m)

∂E
d(E),

(E,m) ∈ R
q
+ × R

q
+. (50)

For the isolated system G (i.e., S(t) ≡ 0 and d(E) ≡ 0), the entropy function of G is a
nondecreasing function of time and, using identical arguments as in the proof of Theorem

3.1, it can be shown that (E(t),m(t))→R�
{

(E,m) ∈ R
q
+ × R

q
+ :

∂S(E,m)
∂E1

= · · · = ∂S(E,m)
∂Eq

}

as

t → ∞ for all (E0,m0) ∈ R
q
+ × R

q
+.

The entropy production in the interconnected system G due to chemical reactions is given by

dSi(E,m) =
∂S(E,m)

∂m
dm

= −
∂S(E,m)

∂E
P(E,m)M(B− A)TK̃mAdt, (E,m) ∈ R

q
+ × R

q
+. (51)

If the interconnected dynamical system G is isothermal, that is, all subsystems of G are at the
same temperature

(

∂S(E,m)

∂E1

)−1

= · · · =

(

∂S(E,m)

∂Eq

)−1

= T, (52)
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where T > 0 is the system temperature, then it follows from Assumption 5.1 that

dSi(E,m) = −
1

T
eTP(E,m)M(B− A)TK̃mAdt

= −
1

T
µT(E,m)M(B− A)TK̃mAdt

=
1

T
νT(E,m)K̃mAdt

≥ 0, (E,m) ∈ R
q
+ × R

q
+. (53)

Note that since the affinity of a reaction is equal to zero at the state of a chemical equilibrium,

it follows that equality in (53) holds if and only if ν(E,m) = 0 for some E ∈ R
q
+ and m ∈ R

q
+.

Theorem 5.1 Consider the isolated (i.e., S(t)≡ 0 and d(E) ≡ 0) interconnected dynamical system G
with the power and mass balance equations (42) and (43). Assume that rankC = q − 1, Assumption

5.1 holds, and there exists an entropy function S : R
q
+ × R

q
+ → R of G . Then (E(t),m(t)) → R as

t→ ∞, where (E(t),m(t)), t≥ t0, is the solution to (42) and (43) with the initial condition (E0,m0) ∈

R
q
+ × R

q
+ and

R=

{

(E,m) ∈ R
q
+ × R

q
+ :

∂S(E,m)

∂E1
= · · · =

∂S(E,m)

∂Eq
and ν(E,m) = 0

}

, (54)

where ν(·, ·) is the affinity vector of G .

Proof. Since the dynamics of the isolated system G are essentially nonnegative, it follows from

Proposition 2.1 that (E(t),m(t)) ∈ R
q
+ × R

q
+, t ≥ t0, for all (E0,m0) ∈ R

q
+ × R

q
+. Consider a

scalar function v(E,m) = eTE+ eTm, (E,m)∈R
q
+×R

q
+, and note that v(0,0) = 0 and v(E,m)>

0, (E,m) ∈ R
q
+ ×R

q
+, (E,m) �= (0,0). It follows from (40), Assumption 5.1, and eTw(E)≡ 0 that

the time derivative of v(·, ·) along the trajectories of (42) and (43) satisfies

v̇(E,m) = eTĖ+ eTṁ

= eTP(E,m)M(B− A)TK̃mA

= µT(E,m)M(B− A)TK̃mA

= −νT(E,m)K̃mA

≤ 0, (E,m) ∈ R
q
+ × R

q
+, (55)

which implies that the solution (E(t),m(t)), t ≥ t0, to (42) and (43) is bounded for all initial

conditions (E0,m0) ∈ R
q
+ × R

q
+.

Next, consider the function ṽ(E,m) = eTE+ eTm−S(E,m), (E,m)∈R
q
+×R

q
+. Then it follows

from (50) and (55) that the time derivative of ṽ(·, ·) along the trajectories of (42) and (43)
satisfies

˙̃v(E,m) = eTĖ+ eTṁ− Ṡ(E,m)

= −νT(E,m)K̃mA −
q

∑
i=1

q

∑
j=i+1

(

∂S(E,m)

∂Ei
−

∂S(E,m)

∂Ej

)

φij(E)

≤ 0, (E,m) ∈ R
q
+ × R

q
+, (56)
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which implies that ṽ(·, ·) is a nonincreasing function of time, and hence, by the

Krasovskii-LaSalle theorem (Haddad & Chellaboina (2008)), (E(t),m(t)) → R � {(E,m) ∈

R
q
+ × R

q
+ : ˙̃v(E,m) = 0} as t → ∞. Now, it follows from Definition 3.1, Assumption 5.1, and

the fact that rankC = q− 1 that

R =

{

(E,m) ∈ R
q
+ × R

q
+ :

∂S(E,m)

∂E1
= · · ·=

∂S(E,m)

∂Eq

}

∩{(E,m) ∈ R
q
+ × R

q
+ : ν(E,m) = 0}, (57)

which proves the result.
Theorem 5.1 implies that the state of the interconnected dynamical system G converges to
the state of thermal and chemical equilibrium when the temperatures of all substances of G
are equal and the masses of all substances reach a state where all reaction affinities are zero
corresponding to a halting of all chemical reactions.
Next, we assume that the entropy of the interconnected dynamical system G is a sum of

individual entropies of subsystems of G , that is, S(E,m) = ∑
q
j=1Sj(Ej,mj), (E,m) ∈ R

q
+ × R

q
+.

In this case, the Helmholtz free energy of G is given by

F(E,m) = eTE−
q

∑
j=1

(

∂S(E,m)

∂Ej

)−1

Sj(Ej,mj), (E,m) ∈ R
q
+ × R

q
+. (58)

If the interconnected dynamical system G is isothermal, then the derivative of F(·, ·) along the
trajectories of (42) and (43) is given by

Ḟ(E,m) = eTĖ−
q

∑
j=1

(

∂S(E,m)

∂Ej

)−1

Ṡj(Ej,mj)

= eTĖ−
q

∑
j=1

(

∂S(E,m)

∂Ej

)−1[
∂Sj(Ej,mj)

∂Ej
Ėj +

∂Sj(Ej,mj)

∂mj
ṁj

]

= µT(E,m)M(B− A)TK̃mA

= −νT(E,m)K̃mA

≤ 0, (E,m) ∈ R
q
+ × R

q
+, (59)

with equality in (59) holding if and only if ν(E,m) = 0 for some E ∈ R
q
+ and m ∈ R

q
+, which

determines the state of chemical equilibrium. Hence, the Helmholtz free energy of G evolves
to a minimum when the pressure and temperature of each subsystem of G are maintained
constant, which is consistent with classical thermodynamics. A similar conclusion can be
arrived at for the Gibbs free energy if work energy considerations to and by the system are
addressed. Thus, the Gibbs and Helmholtz free energies are a measure of the tendency for
a reaction to take place in the interconnected system G , and hence, provide a measure of the
work done by the interconnected system G .

6. Conclusion

In this paper, we developed a system-theoretic perspective for classical thermodynamics
and chemical reaction processes. In particular, we developed a nonlinear compartmental
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model involving heat flow, work energy, and chemical reactions that captures all of the key
aspects of thermodynamics, including its fundamental laws. In addition, we showed that the
interconnected compartmental model gives rise to globally semistable equilibria involving
states of temperature equipartition. Finally, using the notion of the chemical potential, we
combined our heat flow compartmental model with a state space mass-action kinetics model
to capture energy and mass exchange in interconnected large-scale systems in the presence
of chemical reactions. In this case, it was shown that the system states converge to a state of
temperature equipartition and zero affinity.
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Job, G. & Herrmann, F. (2006). Chemical potential – a quantity in search of recognition, Eur. J.

Phys. 27: 353–371.
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. (1989). Chemical Kinetics and Dynamics,

Prentice-Hall, Upper Saddle River, NJ.
Truesdell, C. (1969). Rational Thermodynamics, McGraw-Hill, New York, NY.

71Heat Flow, Work Energy,
Chemical Reactions, and Thermodynamics: A Dynamical Systems Perspective

www.intechopen.com



22 Thermodynamics

Truesdell, C. (1980). The Tragicomical History of Thermodynamics 1822-1854, Springer-Verlag,
New York, NY.

72 Thermodynamics

www.intechopen.com



Thermodynamics

Edited by Prof. Mizutani Tadashi

ISBN 978-953-307-544-0

Hard cover, 440 pages

Publisher InTech

Published online 14, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Progress of thermodynamics has been stimulated by the findings of a variety of fields of science and

technology. The principles of thermodynamics are so general that the application is widespread to such fields

as solid state physics, chemistry, biology, astronomical science, materials science, and chemical engineering.

The contents of this book should be of help to many scientists and engineers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wassim M. Haddad, Sergey G. Nersesov and VijaySekhar Chellaboina (2011). Heat Flow, Work Energy,

Chemical Reactions, and Thermodynamics: a Dynamical Systems Perspective, Thermodynamics, Prof.

Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from:

http://www.intechopen.com/books/thermodynamics/heat-flow-work-energy-chemical-reactions-and-

thermodynamics-a-dynamical-systems-perspective



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


