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1. Introduction 

Microchannel Heat transfer has the very potential of wide applications in cooling high 
power density microchips in the CPU system, the micropower systems and even many other 
large scale thermal systems requiring effective cooling capacity. This is a result of the micro-
size of the cooling system which not only significantly reduces the weight load, but also 
enhances the capability to remove much greater amount of heat than any of large scale 
cooling systems. It has been recognized that for flow in a large scale channel, the heat 
transfer Nusselt number, which is defined as hD/k, is a constant in the thermally developed 
region where h is the convective heat transfer coefficient, k is thermal conductivity of the 
fluid and D is the diameter of the channel. One can expect that as the size of the channel 
decrease, the value of convective heat transfer coefficient, h, becomes increasing in order to 
maintain a constant value of the Nusselt number. As the size of the channel reduces to 
micron or nano size, the heat transfer coefficient can increase thousand or million times the 
original value. This can drastically increase the heat transfer and has generated much of the 
interest to study microchannel heat transfer both experimentally and theoretically.  
On the other hand, the lab-on-chip system has seen the rapid development of new methods 
of fabrication, and of the components — the microchannels that serve as pipes, and other 
structures that form valves, mixers and pumps — that are essential elements of 
microchemical ‘factories’ on a chip. Therefore, many of the microchannels are used to 
transport fluids for chemical or biological processing. Specially designed channel is used for 
mixing of different fluids or separating different species. It appears that mass or momentum 
transport process inside the channel is very important. In fact, the transfer process of the 
mass is very similar to the transfer process of the heat due to similarity of the governing 
equations for the mass and the heat (Incropera et al., 2007). It can be readily derived that the 
Nusselt number divided by the Prandtl number to the nth power is equal to the Sherdwood 
number (defined as the convective mass transfer coefficient times the characteristic length 
and divided by the diffusivity of the mass) divided by the Schmidt number (defined as the 
kinematic viscosity divided by the diffusivity of the mass) to the nth power. Understanding 
of the heat transfer can help to understand the mass transfer or even the momentum transfer 
inside the microchannel (Incropera et al., 2007).  
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However, the conventional theories, such as the constitutive equations describing the stress 
and the rate of deformation in the flow, or the Fourier conduction law, are all established 
based on the observation of macroscopic view of the flow and the heat transfer process, but 
do not consider many of the micro phenomena occurred in a micro-scale system, such as the 
rarefaction or the compressibility in the gas flow, and the electric double layer phenomenon 
in the liquid flow, which can significantly affect both the flow and the heat transfer in a 
microchannel. Therefore, both the flow and the heat transfer process in a microchannel are 
significantly different from that in a large scale channel. A thorough discussion and analysis 
for both the flow and the heat transfer process in the microchannels are required. In 
addition, experimental study to confirm and validate the analysis is essential. However, 
accurate measurements of flow and heat transfer information in a microchannel rely very 
much on the exquisite fabrication of both the microchannel and the microsensors by the 
MEMS techniques. Successful fabrication of these complicated microchannel system requires 
a good knowledge on the MEMS techniques. Especially, accurate measurement of the heat 
transfer inside a microchannel heavily relies on the successful fabrication of the 
microchannel integrated with arrays of miniaturized temperature and pressure sensors in 
addition to the fabrication of micro heaters to heat up the flow. 
It appears that microfluidics has become an emerging science and technology of systems 
that process or manipulate small (10-9 to 10-18 liters) amounts of fluids, using channels with 
dimensions of tens to hundreds of micrometres (George, 2006; Vilkner et al., 2004; 
Craighead, 2006). Various long or short micro or nanochannels have used in the system to 
transport fluids for chemical or biological processing. The basic flow behavior in the 
microchannel has been studied in certain depth (Bayraktar & Pidugu, 2006; Arkilic & 
Schmidt., 1997; Takuto et al., 2000; Wu & Cheng, 2003). The major problem in the past is the 
difficulty to install micro pressure sensors inside the channel to obtain accurate pressure 
information along the channel. Therefore, almost all of the pressure information is based on 
the pressures measured at the inlet and the outlet outside of the channel, which is used to 
reduce to the shear stress on the wall. The measurements have either neglected or 
subtracted an estimated entrance or exit pressure loss. These lead to serious measurement 
error and conflicting results between different groups (Koo & Kleinstreuer, 2003). The 
friction factor or skin friction coefficient measured in microchannel may be either much 
greater, less than or equal to the one in large scale channel. Different conclusions have been 
drawn from their measurement results and discrepancies are attributed to such factors as, 
an early onset of laminar-to turbulent flow transition, surface roughness (Kleinstreuer & 
Koo 2004; Guo & Li 2003), electrokinetic forces, temperature effects and microcirculation 
near the wall, and overlooking the entrance effect. In addition, when the size or the height of 
the microchannel is much smaller than the mean free path of the molecules or the ratio of 
the mean free path of the molecules versus the height of the microchannel, i.e. Kn number, is 
greater than 0.01, one has to consider the slip flow condition on the wall (Zohar et al. 2002; 
Li et al. 2000; Lee et al., 2002). It appears that more accurate measurements on the pressure 
distribution inside the microchannel and more accurate control on the wall surface 
condition are necessary to clarify discrepancies amount different work. 
The lack of technologies to integrate sensors into the microchannel also occurs for 
measurements of the heat transfer data. All the heat transfer data reported is based on an 
average of the heat transfer over the entire microchannel. That is, by measuring the bulk 
flow temperature at the inlet and the outlet of the channel, the average heat transfer for this 
channel can be obtained. No temperature sensors can be inserted into the channel to acquire 
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the local heat transfer data. Therefore, detailed information on the local heat transfer 
distribution inside the channel is not reported. In addition, the entry length information and 
the heat transfer process in the thermal fully developed region is lacking. Besides, the wall 
roughness inside the channel could not be controlled or measured directly in the tube. 
Therefore, its effect on the heat transfer is not very clear. This was attributed to cause large 
deviation in heat transfer among different work (Morini 2004; Rostami et al., 2002; Guo & Li, 
2003; Obot, 2002). It appears that accurate measurements of the local heat transfer are 
required to clarify the discrepancies among different work.  
Therefore, in this chapter, a comprehensive review of microchannel flow and heat transfer 
in the past and most recent results will be provided. A thorough discussion on how the 
surface forces mentioned above affect the microchannel flow and heat transfer will also be 
presented. A brief introduction on the MEMS fabrication techniques will be presented. We 
have developed MEMS techniques to fabricate a microchannel system that can integrate 
arrays of the miniaturized both pressure and temperature sensor. The miniaturized sensors 
developed will be tested to ensure the reliability, and calibrated for accurate measurements. 
In fact, fabrication of this microchannel system requires very complicated fabrication steps 
as mention by Chen et al. 2003a and 2003b. Successful fabrication of this channel which is 
suitable for measurements of both the local pressure drop and heat transfer data is a 
formidable task. However, fabrication of this complicated system can be greatly simplified 
by using polymer material (Ko et al., 2007). This requires fabrication of pressure sensor 
using polymer materials (Ko et al., 2008). The polymer materials that have a very low 
thermal conductivity can be fabricated as channel wall to provide very good thermal 
insulation for the channel and significantly reduce streamwise conduction of heat along the 
wall. This allows measurements of very accurate local heat transfer inside the channel. In 
addition, the height of the channel can be controlled at desired thickness by spin coating the 
polymer at desired thickness. The shape of the channel can be readily made by 
photolithography. All the design and fabrication techniques for both the channel and the 
sensor arrays will be discussed in this chapter. Measurements of both the local pressure 
drop and heat transfer inside the channel will be presented and analyzed. Therefore, the 
contents of the chapter are briefly described as follows: 
1. Gas flow and the associated heat transfer characteristics in microchannels. 
2. Liquid flow and heat transfer characteristics in microchannels including (a) the single 

phase and (b) the two phase flows. 
3. MEMS fabrication techniques  
4. Discussion on recent developments and challenges faced for MEMS fabrication of the 

microchannel system. 
5. Working principle and fabrication of the miniaturized pressure and temperature 

sensors. 
6. Fabrication of the complicated microchannel system integrated with arrays of either or 

both the miniaturized pressure and temperature sensors. 
7. Local heat transfer and pressure drop inside the microchannels. 

2. Gas flow characteristics in microchannels 

Recent development of micromachining process which has been used to miniaturize the 
fluidic devices has become a focus of interest to industry, e.g. micro cooling devices, micro 
heat exchangers, micro valves and pumps, and lab-on-chips, more studies have been 
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dedicated to this field. The fluid flows in micro scale capillary tube can be traced back to 
Knudsen at 1909. However, it has been very difficult to perform an experiment for micro 
scale flow and make detailed observation in a micro-channel due to the lack of techniques to 
fabricate a microchannel and make arrays of small sensors on the channel surface. Up to the 
present, most of the important information on micro scale thermal and flow characteristics 
inside the microchannel can not be obtained and measured. Instead, the flow and heat 
transfer experiments performed for micro scale flow in the past are mostly based on the 
measurements of pressures or temperatures at inlet and outlet of the channel and the mass 
flow rate, or the measurements on the surface of a relatively large scale channel. Therefore, 
some of peculiar transport processes which are not important in a large scale channel may 
play a dominant role to affect the flow and heat transfer process in the micro scale channel, 
e.g. the rarefaction effect of the gas flow. Therefore, the rarefaction of a gas flow in the 
microchannel should be taken into account in the analysis. 

2.1 Theoretical analysis  
In order to describe the rarefaction of gaseous flow, a ratio of the mean free path to the 
characteristic length of the flow called Knudsen number (Kn) has been used as a 

dimensionless parameter. The Knudsen number is defined as λ/Dc, where “λ” denotes the 
mean free path of gas molecules and “Dc” denotes the characteristic dimension of the 
channel. For convenience, it has been suggested (Tsien, 1948) that the rarefaction in gases 
can be typically classified into three flow regions by the magnitude of the Knudsen number, 
which are “the continuum flow regime”, “the free-molecular flow regime” and “the near-
continuum flow regime”, as described as follows.  
1. Continuum flow regime: This regime is defined for flow with Kn < 0.001. In this regime, 

the theories of the gas flow and fluid properties completely conform to the continuum 
assumption, and the Knudsen numbers approach to zero. In addition, the modified 
classical theories of the liquid flow are also suitable in this regime. 

2. Near-continuum flow regime: this flow regime is defined in the range with 
0.001 ≤ Kn < 10. The Knudsen number in this flow regime is still large enough that the 
flow is subject to a slight effect of rarefaction. The flow can be considered as a 
continuum in the core region except in the region adjacent to the wall where a small 
departure from the continuum such as velocity-slip or temperature jump is assumed. 
For convenience, one can further subdivide the flow into two regimes, i.e. the slip-flow 
regime and the transition-flow regime. In the slip-flow regime, the macroscopic 
continuum theory, therefore, is still valid due to small departures from the continuum. 
However, in order to conform to the real-gas behavior, it is necessary to adopt some 
appropriate corrections for the slip of fluid at the boundary. The slip-flow regime is 
defined in the range of 0.001 ≤ Kn < 0.1 while the transition-flow regime is defined in 
the range of 0.1 ≤ Kn < 10. In the transition-flow regime, the intermolecular collisions 
and the collisions between the gaseous molecules and the wall are of more or less equal 
importance. The flow configuration can be regarded as neither a continuum, nor a free-
molecular flow. There is no simplified approach to attack this problem. Some 
conventional methods, such as, directly solving the complete sets of Boltzmann 
equations or using the empirical correlations from the experimental data, have been 
adopted.  

3. Free-molecular flow regime: This flow regime is defined in the region with 10 ≤ Kn. The 
rarefaction effect dominates the entire flow field. The gas is so rarefied that 
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intermolecular collisions can be negligible. Hence, the flow characteristic is described 
by the kinetic theory of gas. Only interaction between gas molecules and boundary 
surface is considered. 

Meanwhile, it has also been suggested (Tsien, 1946) that one can employ the kinetics theory 
of gases or the conventional heat transfer theory to study the gas flow in the continuum flow 
regime. When the gaseous rarefaction is within the range of the free-molecular flow regime, 
the kinetics theory of gases is suitable for use. However, in the range of the near-continuum 
flow regime, there has been no well-established method. In the slip-flow regime the gas flow 
can be considered as continuum. Hence, we can employ the macroscopic continuum theory 
to study the heat transfer in gases by taking account the velocity-slip and temperature-jump 
conditions at the wall. In the transition-flow regime the transport mechanisms in the 
rarefied gas are between the continuum and the free molecule flow regime, it is incorrect to 
consider the gas as a continuum or free molecule medium. Therefore, the theoretical study 
in the transition regime is very difficult. Many of the works (Ko et al., 2008, 2009, 2010; Bird 
et al., 1976a; Eckert and Drake, 1972; Yen, 1971; Ziering, 1961; Takao, 1961; Kennard, 1938) 
intend to develop some convenient methods to solve this problem, such as enlarging the 
validation of macroscopic continuum theory by using some corrections in boundary 
conditions or developing mathematical schemes to directly solve the highly nonlinear 
Boltzmann equation. However, these approaches are still not successful. 
For theoretical study of the rarefied-gas flow, Kundt and Warburg (1875) have been the first 
to propose an important inference by experimental observation. They found an interesting 
phenomenon that the gaseous flow exhibits a velocity-slip on solid wall when the pressure 
in the system is sufficiently low. This phenomenon later has been confirmed by the 
analytical results from kinetics theory of gas by Maxwell (1890). In addition, Maxwell also 
defined a parameter “fS” called tangential momentum accommodation coefficient to modify 
the departures from the theoretical assumptions and real-gas behavior in molecular collision 
processes. The value of fS will presumably depend upon the character of the interaction 
between the gaseous molecules and the wall, such as the surface roughness or the 
temperature etc. In the observations of wall slip, Timiriazeff (1913) made the first direct 
measurements of wall slip. However, the most accurate measurements of velocity slip are 
undoubtedly made by Stacy and Van Dyke, respectively. Hence, a sound theory used to 
describe the rarefied gas behaviors has been established successfully. In the heat transfer 
studies, Smoluchowski (1910) has performed the first experiments for a heated rarefied gas 
flow and found the temperature-jump occurring on the solid wall.  
Kennard (1938) has suggested that it could be analogous to the phenomenon of velocity slip 
and thus developed an approximate expression to describe this temperature discontinuity. 
In a flow field with a temperature of the gas flow different from the neighboring solid wall, 
there exists a temperature difference in a small distance “g”, which is called temperature 
jump distance, between the gas and the solid wall. The jump distance “g” is inversely 
proportional to the pressure but directly proportional to the mean-free-path of the gas. Due 
to the very small jump distance, it looks as having a discontinuity in the temperature 
distribution between the gas flow and the neighboring solid wall. By using the thermal 
accommodation coefficient proposed by Knudsen (1934) and the concepts of heat transfer 
mechanism between gas molecules defined by Maxwell, a theory for the microscopic heat 
transfer occurred in the rarefied gas flows has been successfully established. 
In addition, the gas flow in a micro-channel also involves other problems, such as 
compressibility and surface roughness effects. Therefore, other dimensionless parameters, 

www.intechopen.com



 Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 

 

82 

such as the Mach number, Ma, and the Reynolds number, Re, should also be adopted. The 
relationship among these parameters has been derived and can be expressed as follows. 

 Re
2

k Ma

Kn

π
=  (2-1) 

where k is the specific heat ratio (cp/cv) of the gas. Since both Ma and Kn vary with 
compressibility of gas in the channel, the value of Re should vary according to the above 
equation. The full set of governing equations for two dimensional, steady and compressible 
gas flows can be written as follows (Khantuleva et al., 1982): 
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The boundary conditions for the velocity slip and temperature jump on the top and bottom 
walls are shown as follows (Wadsworth et al., 1993): 
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where σu and σT  are the momentum and the energy accommodation coefficient, respectively. 
λ, γ and h are the mean free path, the specific heat ratio and the height of the microchannel, 
respectively. Review of the recent literature indicates that compressible gas flow problems 
have been studied from the slip to the continuum flow regimes, however, different results 
are obtained in the micro-channels as described in the following paragraphs. 
To analyze the rarefied gas characteristics in the near-continuum flow regime, the methods 
used (Takao, 1961; Kennard, 1938) in the classical kinetics theory of gas include (1) the 
small-perturbation approach, (2) the moment methods and (3) the model equation. The 
mathematical procedures of the small-perturbation approach are to use the perturbation 
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technique to linearize the Boltzmann equation. Since this method can be used in both the 
near-continuum regime and the near free-molecules regime, therefore, it is suitable for 
practical applications. The moment methods are first to make adequate assumptions in the 
velocity distribution f such as to express f in terms of a power series, i.e. f = fo(1 + a1(Kn) + 
a2(Kn)2 +…) as proposed by Chapman and Enskog. Then, substitute the assumed velocity 
distribution into the Boltzmann equation. The methods of the model equation are to 
construct a physics model, such as the B-G-K model proposed by Bhatnagar, Gross and 
Krook (1954), to simplify the expression of Boltzmann equation. Since the governing 
equation of the system is greatly simplified by the appropriate assumptions in the previous 
two methods, these approaches can be used for limited ranges of flows. In the numerical 
simulation (Bird, 1976a; Yen, 1971; Ziering, 1961), a very efficient computational scheme, i.e. 
DSMC (Direct Simulation Monte Carlo) method, has been developed. However, this method 
still suffers from the highly nonlinear behavior in the Boltzmann equation. Meanwhile, the 
use of different approach to solve even the same physical problem will encounter different 
difficulties due to the different advantages and limitations faced by each method. In 
addition, the predictions from the analysis should be confirmed by the experiments. 
In the studies of numerical calculation, Beskok and Karniadkis (1994) have developed a 
scheme called “spectral element technique” to simulate the momentum and heat transfer 
processes of a rarefied gas subjected to either a channel-flow or an external-flow condition. 
The results have indicated that when the gas passes through a micro-channel at velocity-slip 
condition, it can cause a significant reduction in drag coefficient CD on the walls. This is 
mainly caused by the thermal-creep effect when the Knudsen number increases 
significantly. Meanwhile, they have also addressed that the thermal-creep effect of the gas 
flow in a uniformly heated micro-channel can increase the mass flow rate, and the increase 
can be greatly enhanced by raising the inlet velocity. In addition, other effects, i.e. the 
compressibility and the viscous heating effects that may be occurred in the rarefied gas flow 
should also be considered. Chu et al. (1994) has used numerical analysis to evaluate the 
efficiency of heat removal when gas flows through an array of micro-channel under 
continuum or the velocity-slip condition. This numerical simulation is intended to study the 
cooling performance inside a micro-channel array that fabricated in a silicon chip. The 
numerical approaches have adopted the finite-difference methods incorporated with SOR 
(Successive over-relaxation) techniques to solve the problem with Neumann boundary 
conditions. The assumptions used include fully developed hydrodynamic condition, fully 
developed thermal condition and uniform heating on the bottom wall with the top wall well 
insulated. From the numerical results they have found that even though the temperature-
jump causes decrease in Nusselt number that is contrary to continuum flow, the entire heat 
transfer performance were still higher than the case of continuum flow; this peculiar 
phenomenon is mainly due to the velocity-slip effects that induce greater mass flow per unit 
time into the channel. Therefore, the design of gas flow through a micro-channel array at the 
slip-flow regime as cooling is suggested. Fan and Xue (1998) have used the numerical 
method of the “DSMC” to simulate the gas flow in micro-channels at the slip-flow regime. 
They have assumed that the gas flow is simultaneously subjected to the effects of the 
velocity-slip and the compressibility. In addition, the effects of pressure ratio “Po” between 
two ends of the micro-channel on the flow are also studied. Simulation analysis was carried 
out under different ratios of Po, and the results indicated that the velocity-profiles of the 
flow near both ends of the channel are deviated from the parabolic profile. The mean flow 
velocity near the channel outlet increases greatly by increasing the ratio of Po. The deviation 
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from the parabolic profile is caused mainly by both the entrance and the exit effect of the 
microchannel, only the flow field far from the end of the micro-channel can conform to the 
fully developed flow conditions. The second account of flow acceleration is not only 
significantly affected by the velocity-slip, but also induced by the compressibility of gas. 
Since the compressibility effect causes decrease in both the density and the pressure near the 
exit of channel, and the greater decrease in the exit pressure can accelerate the flow again to 
make up the density drop. Therefore, acceleration of the flow in a microchannel can be 
increased by increasing the pressure ratio Po. Meanwhile the slip flow characteristics in the 
channel can be observed from the simulation results for the shear stress and velocity 
distributions near the wall region. The results further exhibit that the compressibility 
induced by the increase of Po can greatly affect the gas flow behavior when the flow in the 
microchannel is at the slip-flow regime. 

2.2 Experimental measurements 
For experiments of gas flow in micro-channels, Wu and Little (1983) have measured the 
friction factors for both laminar and turbulent gas flows in trapezoidal channels. The widths 

of the channels are from 130 to 200 μm and the depths are from 30 to 60 μm, respectively. 
The working fluids used include nitrogen, helium and argon gases. The friction factors, f, 
obtained in his experiment are larger than the theoretical prediction for the critical Reynolds 
number less than 400. The deviations of the data form the prediction are attributed to the 
very high degree of surface roughness and measurement uncertainty. For a nitrogen gas 
flow in micro-tubes, the effects of wall surface roughness on the pressure drop or the friction 
factors are studied by Choi et al. (1991) for both laminar and turbulent flow. The micro-tube 
diameters are from 3 to 81 μm and the wall roughness is from 0.00017 to 0.0116. It is found 
that the Poiseuille number, Po, which is defined as f × Re, is 53 in the laminar region when 

the diameter of the tube is less than 10 μm. The Po of 53 in his experiment is lower than the 
theoretical value of 64 for fully developed laminar flow in the large scale tube, where the Po 
is kept as a constant. In the experiments of turbulent flow region, the results indicate that 
the Colburn analogy is not valid when the diameter of micro-tubes is less than 80 μm. 
Some of pressure drop measurements have a good agreement with the predictions of the 
conventional theory. Acosta et al. (1985) has measured the friction factors in rectangular 
micro-channels, and the results are very close to the friction factor predicted by the 
conventional theory in small aspect ratios channels. Lalonde et al. (2001) has studied the 
friction factor of air flow in a micro-tube with a diameter of 52.8 μm. The experimental data 
has a good agreement with the predictions from the conventional theory. Turner et al. (2001) 
has performed an experiment to measure the friction factor with different working fluids, 
such as nitrogen, helium and air in microchannels with hydraulic diameters varying from 4 
to 100 μm. The walls of the rectangular channels consider both the rough and the smooth 
wall conditions. The results indicate that the friction factors in laminar region for both the 
rough and the smooth wall conditions have good agreement with the conventional theory. 
In contrast to the results that agree with the conventional theory, Pfahler et al. (1990a, 1990b) 
and Pfahler et al. (1991) have performed experiments to obtain the friction factor for 
working fluids of helium and nitrogen in micro-channels with the heights varying from 0.5 

to 40 μm. The results indicate a significant reduction of Cf (Poexp/Potheo) which is a function 
of channel depth. The Cf decreases with decreasing Re in the smallest channel. Yu et al. 
(1995) has performed the experiments of gas flow in a micro-channel with either a 
trapezoidal or a rectangular cross section. The hydraulic diameter varies between 1.01 and 
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35.91 μm. They have observed a friction factor smaller than the prediction of the 
conventional theory, and conclude that the deviation may be caused by both effects of 
compressibility and rarefaction of the gas. Harley et al. (1995) has performed the 
experiments for subsonic, compressible flow in a long micro-channel. The working fluids 
used are nitrogen, helium and argon gases. The channels are fabricated by silicon wafer, and 

the dimensions of the channels are 100 μm wide, 10 mm long with depths varied from 0.5 to 

20 μm. The experimental data have been presented in terms of the Po with hydraulic 

diameter from 1 to 36 μm. The measured friction factors agree with the theoretical 

prediction, but become smaller when the depth of channel decreases to 0.5 μm. The 
reduction in the friction factor is attributed to the occurrence of slip flow. The 
compressibility effects are also found by Li et al. (2000) who have performed an experiment 

of nitrogen gas flow in five different micro-tubes with diameters from 80 to 166 μm. The 
pressure drop along the tube became nonlinear when the Much number is higher than 0.3. 
In order to understand more detailed pressure information inside a micro-channel, arrays of 
the pressure sensors should be integrated in the micro-channel for measurement of pressure 
distribution. Pong et al. (1994) are the first to present that a rectangular micro-channel can be 
fabricated with integrated arrays of pressure sensors for pressure distribution 
measurements. Both the helium and the nitrogen gas are used as the working fluid in his 

study. The channels are from 5 to 40 μm wide, 1.2 μm deep and 3000 μm long. The 
experimental results indicate that the pressure distribution is not linear and is lower than 
the prediction based on the continuum flow analysis in the micro-channel. The non-linear 
effects are caused by both effects of rarefaction and compressibility of the gas due to the 
high pressure loss. Liu et al. (1995) have used the similar channel as in Pong et al. (1994) but 
having different shapes to perform the experiments. The channel has a uniform cross section 

and has the dimensions of 40 μm wide, 1.2 μm deep and 4.5 mm long. The pressure drop 
distribution found is also nonlinear. For the channel with non-uniform cross section, sudden 
pressure changes are found at locations where variations of the cross section occur. In the 
mean time, analysis of the channel flow has also been performed with the assumptions of a 
steady, isothermal, and continuum flow with wall slip condition. However, the analysis can 
not explain the small pressure gradients measured near the inlet and the outlet of the 
channel.  
Shih et al. (1996) has repeated the experiments of Pong by using a similar micro-channel 

with dimensions of 40 μm wide, 1.2 μm deep and 4000 μm long to measure the pressure 
distribution and mass flow rate for helium or nitrogen gas flow. The results of helium have 
a good agreement with the analysis based on the Navier-Stokes equations with slip 
boundary condition. The boundary condition of a slip flow on the wall is given by 

 ( / )wu Kn u yψ= ∂ ∂  (2-9) 

where ψ is momentum accommodation coefficient. In general, ψ = 1 has been used for 
engineering calculation. All the experimental data indicate a non-linear dependence of the 
pressure drop with the mass flow rate. Li et al. (2000) and Lee et al. (2002) have performed 
experiments for channels with orifice and venture elements. The dimensions of channels are 

40 μm wide, 1 μm deep and 4000 μm long. The working fluid used is nitrogen which has an 
inlet pressure up to 50 Psig. The mass flow rates are measured as a function of the pressure 
drop. The results indicate that the pressure distribution is non-linear and the pressure drop 
is a function of mass flow rate. The experimental data are used to compare with the 
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prediction from the Navier-Sotkes equation with a slip boundary condition. The friction 
factors for both channels with either the orifice or the venture are all lower than theoretical 
prediction. 
It appears that contradictory results have been found in the previous studies. More accurate 
measurements of the pressure drop and heat transfer inside a microchannel are required. 
This requires fabrication of a micro-channel system, integrated with arrays of micro 
pressure sensors or temperature sensors, fabricated by surface micromachining process. 
However, the microchannel fabricated previously with arrays of pressure sensor is limited 

to a channel height of 1.2 μm due to the use of oxide sacrificial layer which is deposited by 
chemical vapor deposition (CVD) process. Much thicker deposition of the oxide layer is not 
possible with the current technology. In addition, the channel structure is very weak due to 
fabrication of the channel wall with a very thin film, only gas flow is allowed for the 
experiment. Therefore, in order to provide a channel which has a much greater height and is 
suitable for liquid flow conditions with a strong wall, an entirely new fabrication process for 
the channel should be considered and designed. 

3. Liquid flow characteristics in microchannels 

The liquid flow can be regarded as a continuum even in a very small channel. However, 
liquid flow can become boiling when the wall temperature is higher than the vaporization 
temperature of the liquid. Therefore, the liquid flow regimes can be divided into the single 
phase flow and the two phase flow regime. The real behaviors of heat transfer in the laminar 
or the transition flow (before turbulent) regime are deviated significantly from the 
prediction using the continuum theory due to the nonlinear terms of the surface forces in the 
Navier-Stokes equations. The surface forces play a major role in the micro-scale liquid flow, 
which can be significantly affected by the geometry, the electro-kinetic transport process, the 
hydrophilic or hydrophobic of the surface condition etc. inside the microchannel.  

3.1 Experimental results 
Single-phase liquid flow is considered incompressible in a micro-channel. However, the 
geometric configurations, such as the aspect ratio, the geometric cross-section of the channel 
or the surface roughness etc., can significantly affect the characteristics of the flow and the 
heat transfer process in a microchannel. Harms et al. (1997, 1999) have observed a friction 
factor well predicted by the conventional theory in the laminar region. Webb et al. (1998) 
have observed that the conventional theory is able to predict the single phase heat transfer 
and the friction factor for a rectangular channel. Pfund et al. (1998) have studied the water 
flow in rectangular micro-channels at Reynolds numbers between 40 and 4000. The friction 
factor has a good agreement with the conventional theory in the laminar flow region, but 
increase by the surface roughness in the turbulence region. Xu et al. (1999, 2000) have 
fabricated the rectangular micro-channels by bonding an aluminum plate or a silicon wafer 
with a Plexi glass. The channels were etched on a silicon or aluminum substrate. The 

hydraulic diameters of the aluminum channels are from 46.8 to 344.3 μm and for silicon 

channels are from 29.59 to 79.08 μm, respectively. The experimental results for liquid flow in 
micro-channels have very good agreement with the prediction from the Navier-Stokes 
equation for a Newtonian flow in laminar region. Qu et al. (2000, 2002) has performed 
experiments for water in silicon micro-channels with trapezoidal cross section having 

hydraulic diameter from 51 to 169 μm. The pressure drop measured has a good agreement 
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with the prediction based on conventional theory. More experiments have indicated that the 
deviation from the prediction is attributed to the roughness of the channel wall and 
viscosity of the fluid. The friction factors obtained from these experiments are higher than 
the predictions from the conventional theory. Li et al. (2000, 2003) have fabricated different 
micro-tubes made by glass, silicon or stainless steel with diameters ranging from 79.9 to 

166.3 μm, 100.25 to 205.3 μm and from 128.6 to179.8 μm, respectively. The results of the 
friction factor measured for DI water, in glass and silicon micro-tubes where tube wall can 
be considered smooth, has good agreement with the conventional theory. The deviation of 
the data in the stainless steel tube is attributed to the surface roughness. They have 
concluded that the relative roughness of the wall can not be neglected for micro-tube in the 
laminar flow region. Sharp et al. (2000) have considered laminar flow of water in micro-

tubes with hydraulic diameters ranging from 75 to 242 μm. Their data agree with the 
conventional theory. Wu et al. (2003) have provided the experimental data of friction factor 
for DI water in smooth silicon micro-channels with trapezoidal cross section having 

hydraulic diameter from 25.9 μm to 291 μm. The results of their data have a good agreement 
with the prediction from the conventional theory. They conclude that the Navier-Stokes 
equations are still valid for laminar flow of DI water in microchannel with smooth wall and 

hydraulic diameters as small as 26 μm. 
Some work reported the friction factors that are very different from the theoretical 
prediction. Yu et al. (1995) has performed experiments of water flow in silica micro-tubes 

with diameters ranging from 19 to 102 μm and the Reynolds numbers between 250 and 
20000. The friction factors are lower than the theoretical predictions. Jiang et al. (1995, 1997) 
have studied water flow through rectangular or trapezoidal channels. The dimensions of the 

channels are 35 to 120 μm wide and 13.4 to 46 μm deep. The friction factor data are greater 
than the theoretical prediction, but become lower when the Reynolds numbers are between 
1 and 30. It appears that the deviations of the friction factor measured from the prediction 
may be attributed to the surface behaviors of the liquid flow, especially the surface 
roughness of the channel wall, the surface potential and the electro-kinetic effect induced by 
the electrical double layer (EDL) etc. as discussed in the following section. 

3.2 Analysis of electric double layer effect 
If the liquid contains a very few amount of ions (ex. impurities), the electrostatic charges on 
the non-conducting solid surface will attract the counter-ions in the liquid flow. The 
rearrangement of the charges on the solid surface and the balancing charges in the liquid is 
called the electrical double layer. The thickness of the EDL is significantly affected by the ion 
concentration, the liquid flow polarity, the surface roughness and the surface potential. A 
thicker EDL possibly induced by a lower ion concentration, a polar liquid, a poor surface 
roughness or a higher surface potential could cause a larger friction factor and pressure 
gradient. This can significantly reduce the flow velocity, and the heat transfer of a liquid 
flow in the microchannel. This is true for infinitely diluted solution such as the millipore 
water, the thickness of the EDL is considerably large (about 1 μm). However, for solution 
with high ionic concentration, the thickness of the EDL becomes very small, normally a few 
nanometer. In this case, therefore, the EDL effects on the flow in microchannels can be 
negligible. 
To account for the EDL effect for polar liquid flow in the microchannel, most of the work 
performed in the past is the theoretical simulation where the physical models can be 
formulated based on (1) the Poisson-Boltzmann equations for the EDL potential, (2) the 
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Laplace equations with the applied electrostatic field, and (3) the Navier-Stokes equations 
modified to include effects of the body force due to the interaction between electrical and 
zeta potential. However, the numerical results are always lower than the empirical data due 
to the unusual and complex surface behaviors described above. In addition, the aspect ratio 
and the geometric cross-section of the channels can also affect the thickness of the EDL. In 
general, the friction factor increases with decreasing the aspect ratio of the channels. A 
microchannel with a cross section of circular shape usually has the lowest friction factor. The 
friction factor in a silicon channel is larger than in a glass channel due to the different 
surface potential of the channel walls with millipore water. 
The Poisson-Boltzmann equations for the EDL potential in a rectangular microchannel are 
described as follows (Beskok & Karniadakis, 1994): 
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where ψ and ρe are the electrical potential and the net charge density per unit volume. ε is 

the dielectric constant of the solution. εo is the permittivity in vacuum. in ∞  and zi are the 

bulk ionic concentration and the valence of type i ions, respectively; e is the charge of the 
proton; kb is the Boltzmann constant; T is the absolute temperature.  
To account for the electric field effect, the Navier-Stokes equation describing the flow 
motion can be rewritten as following: 
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where Ex is an induced electric field (or called electrokinetic potential) and p is the hydraulic 
pressure in the rectangular microchannel. 
At a steady state, the net electrical current is zero, which means: 

 0s cI I I= + =  (3-5) 
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where Is and Ic are the streaming and the conduction currents, respectively. In addition, the 
net charge density is non-zero essentially only in the EDL region whose characteristic 
thickness is given by 1/k (k is the Debye-Huckel parameter). 
The conduction current, that is the transport of the excess charge in the EDL region of a 
rectangular microchannel, driven by the electrokinetic potential is given by: 

www.intechopen.com



Microchannel Heat Transfer   

 

89 

 
1

4 ( )c o xI E h w
k

λ= +  (3-7) 

 
1

2 2 2[2 /( )]o bk z e n k Tε ε∞=  (3-8) 

where λo is the bulk electrical conductivity (1/Ω m). h and w are the height and the width of 
the microchannel, respectively. Substituting Eq.(3-6) and Eq.(3-7) into Eq.(3-5), the 
electrokinetic potential (Ex) can be written as follows: 
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Both the Poisson-Boltzmann equation, Eq.(3-1) and Navier-Stokes equation, Eq.(3-4), can be 
solved numerically in order that both the EDL and the velocity fields in the rectangular 
microchannel can be determined.  

3.3 Comparison with the data 
Despite the theoretical prediction, some work presents occurrence of the electrical double 
layer of water flow in a micro-channel. Ren et al. (2001) have performed experiments to 
measure the interfacial electrokinetic effects of a liquid flow through rectangular silicon 

micro-channels with diameters of 28.1, 56.1 and 80.3 μm. Both the DI water and the KCl 
solutions with two different concentrations of 10-4 and 10-2 M are used as working fluid. 
The measured pressure drops for the pure DI water and the lower KCl concentration 
solution are significantly higher than that for higher concentration solution and the 
theoretical prediction. The authors have concluded that a significant increase in the friction 
factor is attributed to occurrence of the electrical double layer (EDL) which increases the 
pressure drop in the small micro-channels. Similar results have also been obtained by Li et 
al. (2001). 
To compare with the experimental results, the analytical predictions for both the flow and 
the heat transfer developed from continuum assumption indicate large discrepancy when 
the characteristic length of the micro-channel becomes small enough. In the studies of liquid 
flow, many investigators (Ren et al., 2001; Fan et al., 1998; Chen, 1996; Chu et al., 1994; Choi 
et al., 1991; White et al., 1991; Pfahler et al., 1990, 1991) have concluded that even though the 
liquids can be regarded as a continuum in a very small system, the real behaviors of heat 
transfer at the laminar or the transition (before turbulent) condition are deviated from the 
predictions based on the conventional theory. Usually, for the data published, the 
uncertainties of flow rate measured and friction factor estimated are 2-5 % and 10-15 %, 
respectively. For most heat transfer studies, the uncertainties are under ± 20 %. In summary, 
the geometric effects, such as the aspect ratio, the cross-section shape or the surface 
roughness etc., can significantly affect the characteristics of both the flow and the heat 
transport in a microchannel. The onset of transition to turbulent flow in smooth 
microchannels does not occur if the Reynolds number is less than 1000. For a laminar flow, 
the Nusselt number varies as the square root of the Reynolds number. In turbulent flow, 
however, the numerical studies are not applicable and thus many empirical correlations 
have been proposed, but were not verified. However, satisfactory estimates of the heat 

www.intechopen.com



 Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 

 

90 

transfer coefficients can be obtained with sufficient accuracy by using either experimental 
results in smooth channels with large hydraulic diameter or conventional correlations. 
Tso and Mahulikar (1998) have obtained the heat transfer for laminar liquid flow through a 
microchannel in both the thermal-developing region and the thermal-developed region. It is 
found that the Nusselt number decreases with increasing the Reynolds number not only in 
the thermal-developed region, but also in the thermal entry region. The results also indicate 
that the pressure distribution along the microchannel exhibits a non-linear profile. Despite 
much of the studies has addressed that the liquid flow appears a greatly complicated 
relation between Nusselt number and Reynolds number, however, all the results are very 
based on the assumption of continuum flow. Therefore, more detailed analysis combined 
with experiments is still required to clarify the role of the EDL and different results among 
different works. 

3.4 Two-phase flow phenomenon in the microchannel 
The two-phase flow or flow-boiling phenomenon in the microchannel exhibits some 

unusual characteristics. It is found that the bubbles are not rapidly generated even at a very 

high heat flux from the heated microchannel (Qu et al., 2000). Therefore, further 

experimental investigations on the flow boiling in microchannels were made by others (Ren 

et al., 2001; Peng & Wang, 1993; Lin and Pisano, 1991, 1994). In addition, the effect of 

microchannel scale, geometric configuration, liquid velocity, liquid sub-cooling and liquid 

concentration on the flow boiling were investigated. It is found that the heat transfer 

enhanced by a large more volatile component concentration is greater than the pure more 

volatile liquid. The heat transfer coefficient at the onset of flow boiling and in the partial 

nucleate boiling region was greatly influenced by the liquid concentration, the geometric 

configuration, the size of microchannel, and the flow velocity and sub-cooling, but not in the 

fully nucleate boiling region. Peng and Wang (2001), and Hu (1998) found the so-called 

“bubble extinction” behavior due to an induced vigorous nucleate boiling mode on a 

normal-sized heater or abnormal-sized channels. The normal bubbles could not successfully 

grow and form, if the channel height is less than a critical liquid space required. In order to 

interpret the unusual behavior observed in microchannel boiling, Peng and Wang (1994) 

proposed the concepts of “evaporating space” and “fictitious boiling”. In fact, the small 

bubbles that can form initially in microchannel will eventually collapse since the size of the 

bubble could not grow up exceed the critical radius of bubble (rc) formulated by 

conventional nucleation theory. The fictitious boiling occurred was attributed to the 

crowded tiny bubbles that grow and then collapse rapidly in a cyclic manner, and thereby 

mimicking a boiling state that can transfer large amount of heat. The observations suggest 

that close to bubble nucleation temperature the liquid will vigorously oscillate in the 

microchannel due to the emergence of tiny bubble embryos. More detailed explanations are 

given in (Jiang et al., 2001; Peng et al., 1998). 
The experiments by Peng and Wang (1993) for flow boiling of water have been carried out in 
a stainless steel microchannel with rectangular cross-section of 600 μm×700 μm. In a much 
smaller channel array, with hydrodynamic diameter of 40 and 80 μm, made on a silicon 
substrate by wet etch, three stable phase-change modes, i.e. local nucleation boiling, large 
bubble formation and annular flow, were observed depending on the input power level (Qu 
& Mudawar, 2003). However, bubbly flow, commonly observed in macrochannels, could 
not be developed in the microchannels. A stable annual flow was also observed in a micro-
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channel heat sink contained 21 parallel channels having a 231 μm × 713 μm cross-section 
(Lee et al., 2003). 
Lee et al. (2003) proposed that a nearly rectangular microchannel heat sink with 14 μm in 
depth integrated with a local heater and array of temperature sensors on silicon substrate 
was made to investigate the size and shape effects on the two-phase patterns in 
microchannel forced convection boiling. It is found that when the heat input power 
increases, the downstream movement of the transition region increases the void fraction and 
causes a lower devices temperature. However, at the high flow rate, the transition region 
almost occupies the entire channel, the increase in the heat input power results in a higher 
devices temperature. An annular pattern induced by flow boiling appears stably in 
triangular microchannels, but not in rectangular microchannels. Two-phase boiling or 
superheated flow has numerous promising applications such as in cooling of electronic 
components. The principle advantage of two-phase flow lies in the utilization of latent heat 
absorbed by the working fluid due to phase change from liquid to vapor without increasing 
the flow fluid temperature. In fact, two-phase flow heat transfer in microcahnnel is a very 
important and interesting problem indeed. 
However, much of the attention at later time has been given to the study of dynamic flow 
boiling instability in microchannels (Cheng et al., 2009; Wang et al., 2008; Wang et al., 2007; 
Kandlikar, 2006; Wu & Cheng, 2003, 2004; Brutin et al., 2003; Hetsroni et al., 2002; Hetsroni 
et al., 2001). A periodic annular flow and the periodic dry steam flow were observed for 
boiling of water in 21 silicon triangular microchannels having a diameter of 129 μm in 
(Hetsroni et al., 2001, 2002). However, two types of two-phase hydrodynamic instabilities, 
i.e. severe pressure drop oscillation and mild parallel channel instability were identified (Qu 
& Mudarwar, 2003) in the similar microchannels as in other work (Hetsroni et al., 2001). A 
simultaneous flow visualization and measurement was made on flow boiling of water in 
two parallel silicon microchannels of trapezoidal cross-section having hydraulic diameters 
of 158.8 μm and 82.8 μm, respectively (Wu & Cheng, 2003). The results shows that two-
phase flow and single-phase liquid flow appear alternatively in microchannels, which leads 
to large amplitude/long-period fluctuations with time in temperatures, pressures and mass 
flux. The flow pattern map in terms of heat flux versus mass flux showing stable and 
unstable flow boiling regimes in a single microchannel has been identified (Wu & Cheng, 
2004). It is found that stable and unstable flow-boiling modes existed in microchannels, 
depending on four parameters, namely, heat/mass flux ratio, inlet water subcooling, 
channel geometry, and physical properties of the working medium (Wang et al., 2007). In 
addition, the magnitudes of temperature and pressure fluctuations in the unstable flow-
boiling mode depend greatly on the configurations of the inlet/outlet connections with the 
microchannels (Wang et al., 2008). By fabricating an inlet restriction on each microchannel or 
the installation of a throttling valve upstream of the test section, reversed flow of vapor 
bubbles can be suppressed resulting in a stable flow-boiling mode. Based on the exit quality 
of the flow from a microchannel, more detailed flow regimes are identified (Cheng et al., 
2009). 
In the past, however, a very important issue, i.e. the surface wettability effect, has been 
overlooked in the study of boiling flow heat transfer in a microchannel. The boiling flow 
phenomenon found in the microchannel is only for certain surface wettability. By changing 
the material of the microchannel or surface wetting property, the boiling flow phenomenon 
may be completely different. This may cause discrepancy of flow patterns observed in 
different channels made by different materials. Phan et al. (2009) have found that the 
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wettability of a surface has a profound effect on the nucleation, growth and detachment of 
bubbles from the bottom wall in a tank. For hydrophilic (wetted) surfaces, it has been found 
that a greater surface wettability increases the vapor bubble departure radius and reduces 
the bubble emission frequency. Moreover, lower superheat is required for the initial growth 
of bubbles on hydrophobic (un-wetted) surfaces. However, the bubble in contact with the 
hydrophobic surface cannot detach from the wall and have a curvature radius increasing 
with time. At higher heat flux, the bubble spreads over the surface and coalesces with 
bubbles formed at other sites, causing a large area of the surface to become vapour 
blanketed. 
The wettability of channel surface has been studied by Liu et al. (2011) who have fabricated 

three different microchannels with identical sizes at 105 x 1000 x 30000 μm but at different 

wettability. The microchannels were made by plasma etching a trench on a silicon wafer. 

The surface made by the plasma etch process is hydrophilic and has a contact angle of 36o 

when measured by dipping a water droplet on the surface. The surface can be made 

hydrophobic by coating a thin layer of low surface energy material and has a contact angle 

of 103o after the coating. In addition, a vapor-liquid-solid growth process was adopted to 

grow nanowire arrays on the wafer so that the surface becomes super-hydrophilic with a 

contact angle close to 0o. Different boiling flow patterns on a surface with different 

wettability were found, which leads to large difference in temperature oscillations. Periodic 

oscillation in temperatures was not found in both the hydrophobic and the super-

hydrophilic surface. During the experiments, the heat flux imposed on the wall varies from 

230 to 354.9 kW/m2 and the flow of mass flux into the channel from 50 to 583 kg/m2s. 

Detailed flow regimes in terms of heat flux versus mass flux are also obtained. 

4. Basic MEMS fabrication techniques 

4.1 Chemical vapor deposition 
Chemical vapor deposition (CVD) is a typical technique to fabricate a thin film on a 

substrate. In a CVD process, gaseous reactants are introduced into a heated reaction 

chamber. The chemical reactive gases diffuse onto and absorbed by the substrate. Then 

thermal dissolution reaction of the reactive gases occurs which lead to deposition of a thin 

solid film on the heated substrate surfaces. Depending upon the relative pressure and the 

temperature used the CVD processes are categorized as: (1) the atmospheric pressure 

chemical vapor deposition (APCVD), (2) the low pressure chemical vapor deposition 

(LPCVD), and (3) the plasma-enhanced chemical vapor deposition (PECVD). The process 

temperatures of APCVD and LPCVD are ranged from 500oC to 850oC. In PECVD processes, 

a part of thermal energy is shared from the plasma source. Therefore, the process 

temperatures of the PECVD are lower on the order of 100oC to 350oC. The silicon based thin 

films such as poly-silicon, amorphous silicon, silicon dioxide, tetraethoxysilane (TEOS, 

Si(C2H5O)4) or silicon nitride film can be fabricated by using the CVD process. The chemicals 

used and the reaction occurred in the CVD process for different kinds of films are listed in 

Table 1. The poly-silicon film can be used for fabrication of pressure or temperature sensors 

or micro-heaters. The TEOS oxide layer is fabricated as insulator between each sensor layer. 

In addition, deposition of the silicon nitride film can be used to prevent penetration of 

moisture into the sensors during liquid flow experiments which may cause damage of the 

micro-sensors or micro electronics integrated in the micro-channel. 
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Films Chemical reactions 

Poly-silicon SiH4 → Si + 2 H2 

Silicon dioxide 
SiH4 + O2 → SiO2 + 2 H2 

SiCl2H2 + 2 N2O → SiO2 + 2 N2 + 2 HCl

TEOS (tetraethoxysilane) Si(OC2H5)4 → SiO2 + by-products 

Silicon nitride 
3 SiH4 + 4 NH3 → Si3N4 + 12 H2 

3 SiCl2H2 + 4 NH3 → Si3N4 + 6 HCl + 6 H2 

Table 1. Chemical reactions used in the CVD process for different kinds of films. 

4.2 Evaporation and sputtering deposition 
Both evaporation and sputtering deposition are classified as physical vapor deposition 

(PVD) process which can form different kinds of films on a substrate directly from a source 

material. PVD is typically used for deposition of electrically conducting layers such a metal 

or silicide. Evaporation deposition of a thin film on a substrate is done by sublimation of a 

heated source material in a vacuum chamber. The vapor flux from the source can be 

condensed and coated on the substrate surface. The evaporation methods can be further 

categorized as the vacuum thermal evaporation (VTA), the electron beam evaporation 

(EBE), and the molecular beam epitaxy (MBE).  

The simplest evaporator consists of a vacuum chamber with a crucible which can be heated 

to a high temperature, as shown in Figure 1(a) and 1(b) by a filament. The filament is used 

as a heater, which is made of Tungsten (W), a refractory (high temperature) metal. 

Evaporation is accomplished by gradually increasing the temperature of the filament until 

the source material melts. Filament temperature is then further raised to evaporate the 

source material from the crucible. The substrates are mounted on top of the crucible and are 

deposited with a thin film of evaporated material.  

In the electron beam (E-beam) evaporation system, the high-temperature filament is 

replaced with an electron beam, as shown in Figure 1(c). A high-intensity beam of electrons, 

with energy up to 15 keV, is focused on the source material to be evaporated in a crucible. 

The energy from the electron beam only melts a portion of the source material, which 

eventually evaporates and condenses on the substrate to form a thin layer. 

Sputtering deposition requires generation of plasma gas between high voltage electrodes, as 

shown in Figure 2, where positively ions can be accelerated and bombards on a target 

material (a cathode) so that flux of atoms can be sputtered and collected on the substrate. 

Usually, a physically inert gas, such as argon gas, is made into plasma by knocking out 

electrons of the molecules with high speed electrons emitted from the cathode. The 

sputtering deposition has the advantages of depositing various materials include not only 

for pure materials or metals, but also for compounds, alloys, refractory materials, or 

piezoelectric ceramics. In addition, puttering deposition has no shadowing effect as that 

occurred in evaporation deposition, which causes non-uniform deposition of a film. 

Therefore, sputtering deposition has been widely used for deposition of different kinds of 

films. 
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Fig. 1. (a) Schematic of the thermal evaporation system, (b) the use of filament or RF coil as 
heating source and (c) the use of electron beam as the heating source. 
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Fig. 2. Schematic of a sputtering system. 
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4.3 Photolithography  
Lithography is the most important technique for transferring micro-patterns onto substrate. 
Depending upon resolution required, the light sources used for lithography process can be a 
mercury lamp, a laser light, an electron beam, X-ray or an ion beam. However, 
photolithography using mercury lamp or laser light is the most popular method for low-cost 
and fast prototyping of micro-fluidic fabrications. This technique uses a photosensitive 
polymer layer, the so called photo-resist (PR), to transfer a desired pattern from a 
photomask to the substrate. The mask is a transparent glass plate or a plastic sheet with 
metal (chromium, Cr) or ink patterns. The photolithography process is shown in Figure 3. 
First, the photo-resist is spin coated onto the substrate. After light exposure and a 
developing process of the PR a desired pattern can be transferred from the photomask to the 
PR, and then transferred to the underneath layer by a wet or a dry etch process. The 
resolution of a proximity photolithography (R) process which depends on the wavelength 

(λ) of the light source can be written as follows: 

1R K
NA

λ
=  

where K1 is the optical system constant and NA is the numerical aperture of image lens 
system. The reduction of the resolution can be made by reducing the wavelength or 
increasing the NA. However, increasing the NA can lead to large reduction in the depth of 
the focus, which is very detrimental to the images. It appears that the resolution of 
photolithography is primarily determined by the wavelength of the light source.  
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Fig. 3. Process of photolithography: (a) spin coat the PR, (b) light exposure and (c) 
developing the PR. 
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4.4 Anisotropic wet etching 
Single crystal silicon can be anisotropically etched. In general, the etching rate is highly 
dependent on the crystal’s orientation in the single-crystal silicon as shown in Figure 4. Most 
of the chemical solutions have a distinct slow etching rate on the crystal face of (111), which 
practically causes a etch stop on this surface. This allows formation of microstructures with 
sharp edges and corners that can be defined in a single crystal substrate. For the different 
orientation silicon substrates, the angle between other crystal faces with respect to the (111) 
crystal face are shown in Figure 5. Different etchants, such as KOH, NaOH, TMAH 
(Tetramethyl ammonium hydroxide) and EDP (Ethylenediamine pyrochatechol), may be 
used for anisotropic wet etch for the silicon. The angles between different facets are 54.7o 
and 90o for {100} to {111} and {110} to {111}, respectively. However, using KOH solution the 
etching selectivities for different facets are around 400 and 600 for {100}/{111} and 
{110}/{111}, respectively. Therefore, V-shaped or rectangular cavities can be readily 
fabricated and obtained by this method. 
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Fig. 4. The crystal planes in silicon lattice structure. 
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Fig. 5. Anisotropic etching in the single crystal silicon. [Madou, 2002] 
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4.5 Deep reactive ion etching 
The process which can remove the materials from the surface of a substrate or a bulk 
substrate is called “ETCHING”. Anisotropic dry etching process does not depend on crystal 
orientation of silicon wafer. This micromachining process involves the exposure of the 
substrate to an ionized gas. Etching occurs through chemical or physical interaction between 
the ions in the gas and the atoms of substrate. The most often applied techniques can be 
divided into three groups: (1) physical sputter etching or ion beam etching, (2) chemical 
plasma etching and (3) combined physical/chemical etching. The physical method as so 
called “sputtering etching or ion beam etching” can achieve an anisotropic profile structure. 
As opposed to sputtering etching, chemical plasma etching is completely isotropic etching 
profile and has excellent selective properties. The etching rate of plasma etching is much 
faster than sputtering etching and is uncontrollable. However, the reactive ion etching (RIE) 
method combines the physical and chemical etchings to achieve excellent high selectivity 
and anisotropy for micromachining of silicon substrate. The etching rate ranges from 20 to 
200 nm/min. However, this low etching rate can not satisfy the micromachining of 
microchannel with a high aspect ratio structure.  
The problems of reactive ion etching (RIE) used in the micromachining process are that the 
sidewalls of the trenches are not vertical and the etching speeds are too slow. Therefore, two 
modified RIE techniques, i.e. the Bosch process and the cryogenic process, are developed to 
solve this problem. In the first approach, the Bosch process consists of cyclic etching and 
deposition process, as shown in Figure 6. In the etching step, silicon is etched by SF6 plasma. 
In the deposition step, the supply gas is switched to C4F8 so that a fluorocarbon polymer 
thin film with a thickness of 10 nm can be deposited on the side wall of the trench. In the 
next cycle, the polymer film at the bottom surface of the trench is removed by Ar ion 
bombardment, while the film at the sidewalls is intact, which can protect the sidewalls from 
the attack of the SF6. Usually, the etching rate of Bosch process ranges from 1 to 12 μm/min.  
In the second approach, i.e. the cryogenic process, the substrate is cooled down to -110 to -
195 oC with liquid Helium. The cryogenic temperatures allow reactant gas such as SF6 or O2 
to condense on the trench surface. The condensed film can protect the side-wall, while the 
condensed film on the bottom can be removed by the ion bombardment. The exposed 
bottom wall can be further etched into the substrate, as shown in Figure 7. 
 

Mask

Silicon substrate

Mask

Silicon substrate
 

(a) (b) (c)

SFx
+ CFx

+ SFx
+

 

Fig. 6. Anisotropic dry etching: Bosch process. (a) SFx+ etching, (b) CFx+ deposition and (c) 
SFx+ etching. 
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Fig. 7. Anisotropic dry etching: cryogenic process. 

4.6 Doping 
Doping is probably the best known semiconductor technique. Here, doping atoms are 

introduced into a silicon substrate in a defined way so that either n-type or p-type semi-

conductor layer can be formed. The techniques play an important role in fabrication of 

semiconductor devices. In addition to varying the electrical properties, doping can also 

improve wear and corrosion of a semiconductor material. The doping atoms, like boron or 

phosphorous, can create an etching stop layer in a silicon substrate, allowing fabrication of a 

thin film or microstructure at desired locations by wet etch when doping atoms can be 

placed in the desired location. 

4.6.1 Ion implantation 
Ion implantation is one of the most expensive technology processes, after photolithography, 

due to the complex systems involved. Ion implantation involves shooting charged ions, 

which are externally accelerated in a vacuum, into the silicon wafer. The ions can penetrate 

up to a few micrometers below the surface. The silicon disc is irradiated uniformly with 

scanning focused ion beam. By measuring the beam current, the amount of dopant 

implanted can be precisely controlled. In addition, the doping concentration obtained has 

improved homogeneity, the doping parameters can be easily adjusted, and the doping 

profile under the wafer’s surface can be accurately controlled.  

An ion implantation process usually includes the initial ion implantation and the following 

thermal annealing process. For example, after dopants are implanted into the central portion 

of a LPCVD polysilicon layer, the implanted layer requires annealing at 950 oC for 30 

minutes in a standard anneal furnace to re-crystallize the polysilicon layer and to diffuse the 

dopants uniformly across the layer (Ko et al., 2007; Liu, 2004; Qu et al., 2003). After 

annealing process, the doped polysilicon layer can be patterned. The variation of the 

resistivity of the doped LPCVD polysilicon with the boron concentration is shown in Figure 

8. This empirical data can be used to design arrays of polysilicon sensors or heaters 

integrated with the microchannel system. 
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Fig. 8. The resistivity of boron-doped LPCVD polysilicon at different boron concentrations. 

4.6.2 Dopant diffusion 
In the diffusion method, silicon wafers are put into a furnace under a high temperature 

range from 850 to 1050 oC, where dopant can be thermally diffused into the substrate. The 

sources of dopants can be either gases, liquids or solids. The solid dopant source can be BN, 

As2O3, P2O5, the liquid dopant source can BBr3, AsCl3, POCl3 while the gas dopant source 

can be B2H6, AsH3, PH3. However, the liquid dopant sources are the most frequently used. 

More detailed description can be found in the ref. (Sze, 2002). However, either of them has 

to be vaporized first and then the vapor can diffuse into the silicon substrate and form 

covalent bonding with the silicon lattice atoms. The main difficulty is the determination of 

the amount of dopant diffused into the substrate and the concentration of the doping atoms 

bonded in the silicon. Despite of the low cost, the method can only make a doping profile on 

the surface of a wafer, which restrains the wide applicability of this technique. 

5. Fabrication of microchannel by MEMS techniques 

5.1 Silicon based microchannel fabrication 
5.1.1 Bulk micromachining process 
Either isotropic or anisotropic etch process can be used to fabricate microchannels in a bulk 

material, such as a silicon or a glass substrate. A channel with a variety of cross-sectional 

shapes can be made by different etch processes, as shown in Figure 9. Different 

microchannels can be formed by either anisotropic etch of the {100} or {110} silicon wafers or 

by isotropic etch of silicon or glass substrate, respectively. Finally, either anodic or fusion 

bonding can be employed to bond and enclose the channels with a glass plate or a silicon 

wafer.  
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Fig. 9. Different microchannels made by bonding of bulk micromachined substrates in: (a) 
silicon-silicon, (b) glass-silicon, (c) silicon-glass, (d) silicon-silicon, (e) silicon-glass, (f) 
silicon-glass, (g) silicon-silicon, and (h) glass-glass. 

5.1.2 Surface micromachining process 
The surface micromachining is originated for deposition and patterning of thin layers into 

different structures, which may possibly use sacrificial layers to form microstructures. In 

this section, surface micromachining processes combined with deposition and etch of a 

polysilicon layer and the use of a sacrificial layer can be used to fabricate a microchannel. 

The fabrication process is described as follows:  

1. Deposit and pattern the sacrificial layer, as shown in Figure 10(a). 

2. Deposit and pattern the polysilicon layer as a microstructure, as shown in Figure 10(b). 

3. Remove the sacrificial layer, followed by rinsing and drying the microstructure, as 

shown in Figure 10(c). 

4. Seal the microstructure, as shown in Figure 10(d). 

However, by using the surface micromachining the maximum height of the channel allowed 

for fabrication is only within a few micrometers (1 to 2 μm) due to the limitation of CVD 

deposition for the sacrificial layer. In comparison with the bulk micromachining process, the 

channel fabricated by the bulk micromachining process can be as large as a few hundred 

micrometers in height. 

5.2 Polymer based microchannel fabrication 
5.2.1 SU-8 resist 
Photolithography of a thick resist is very beneficial for fabrication of a complicated 
microchannel system. Microchannel system can employ thick resists directly as a channel 
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Fig. 10. The use of surface micromachining process to fabricate a channel with the use of a 
sacrificial layer. 
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Fig. 11. Fabrication of SU-8 based microchannels with: (a) embedded metal mask, (b) 
removal of sacrificial layer and (c) direct use of the fusion bonding by SU-8. 
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structure or a template for channel molding or electroplating of metal to form a channel 

with high aspect ratios. The most popular thick photoresist used is EPON SU-8 epoxy resin 

which is a negative and transparent PR and can form a layer with a thickness from less than 

1μm to few mm. The SU-8 appears to be the most suitable one since it can be readily spin 

coated on the substrate at desired thickness, and patterned into required shape of channel 

by photolithography. Therefore, different sizes and shapes of channel can be readily made. 

However, the use of SU-8 layer as part of the substrate has precluded any high temperature 

fabrication process since the material cannot withstand processing temperature higher than 

200oC. The formation of a SU-8 channel structure should be at a low temperature process. 

In many microfluidics applications, a single SU-8 layer can be used to form desired number 

of microchannels that may be integrated with arrays of microfluidic components or sensors. 

The top and bottom of the channels can be sealed with a SU-8 coated glass or plastic plate, 

using subsequent blanket exposure as shown in Figure 11. 

5.2.2 PDMS molding 
Poly-dimethylsiloxane (PDMS) is an excellent bio-compatible and an elastomeric polymer 
material, which is frequently used for applications in μTAS (micro total analysis system) or 
lab-on-a-chip systems. This is attributed to a number of useful properties of this material, 
such as low cost, low toxic, transparent from visible into near ultraviolet in wavelengths and 
chemical inertness. 
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Fig. 12. Fabrication process for a (a) one-staged or (b) two-staged PDMS microchannels. 

www.intechopen.com



Microchannel Heat Transfer   

 

103 

PDMS is made by mixing different prepolymers. The weight ratio of the base and the curing 
agent can be 10:1 or 5:1. Then, the PDMS mixture is poured into a master and stays for a few 
minutes to self-level. The whole set is then cured at a low temperature in the range from 60 
to 80 oC for several hours. After peeling off, the structured PDMS membrane is bonded with 
the other substrates such as silicon, glass, plastic plate or PDMS plate etc. to complete the 
channels. Due to its simplicity in fabrication and rapid prototyping, PDMS molding is also 
called microcasting, which is a direct transfer of patterns. In many applications, the 
elastomeric PDMS can be used directly as a microfluidic device with microchannel 
connecting different components. Fabrication of PDMS into a microcannel is described as 
follows:  
1. Etch the silicon or glass master, as shown in Figure 12(a-1). 
2. Molding the PDMS microstructures, as shown in Figure 12(a-2). 
3. Seal and laminate the PDMS microstructures, as shown in Figure 12(a-3). 

5.2.3 Parylene 
Parylene is a polymer that can be deposited by a CVD process at a low or room temperature. 
The CVD process allows coating a conformal film with a thickness ranging from several 
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Fig. 13. Fabrication of Parylene based microchannels with: (a) removal of the sacrificial layer 
and (b) direct fusion bonding using Parylene. 
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micros to several millimeters. The basic types of Parylenes are Parylene N, C and D, all of 
which have good dielectric, electrical, physical and hydrophobic properties. However, 
Parylene D is modified from the same monomer by the substitution of the chlorine atom 
with two of the aromatic hydrogens. Parylene D is similar in properties to Parylens C, but 
with an additional property to withstand higher temperature. Deposition rates are fast, 
especially for Parylene C, which is normally deposited at a rate of about 10 μm/min. The 
deposition rates of Parylene N and Parylene D are slower. Parylene can be used in 
microfluidic devices as a structural material, which has a very low Young’s modulus. 
Fabrication of microchannel using Parylene is described as follows: 
1. Deposit a Parylene base on a provisional substrate, as shown in Figure 13(a-1). 
2. Deposit and pattern a sacrificial layer on the Parylene base, as shown in Figure 13(a-2). 
3. After Secondary deposition of a Parylene film on the top, then remove the sacrificial 

layer, as shown in Figure 13(a-3). 

6. Microsensors for pressure and temperature measurements 

6.1 Miniaturized temperature sensors and heaters 
6.1.1 Working principles 
When the polysilicon is doped heavily with boron, a relatively low resistivity that is 

independent of temperature can be obtained. This heavily doped polysilicon layer can be 

used as a heater. However, when the polysilicon is doped with a less amount of boron, a 

linear relationship between the resistivity and the temperature of the layer can be obtained 

and this doped polysilicon layer can be used as a temperature sensor. The temperature 

variation of the resistivity for the doped polysilicon layer at different concentrations has 

been demonstrated (Ko et al., 2007; Liu, 2004; Qu et al., 2003). Shen proposed that the 

resistance change with temperature is slightly nonlinear at low boron concentration. The 

temperature coefficient of the resistance (TCR) of the doped polysilicon layer is negative 

over the range covered and the temperature dependence increases with decreasing doping 

concentration, as shown in Figure 14 made by Shen (2003). It appears that for the boron 

concentration of 1020 atoms/cm3, the resistivity of the doped polysilicon layer is almost 

independent of temperature with a near zero TCR. The polysilicon doped at this 

concentration can be used as a heater which can provide a constant heating power for a long 

period of operation. Otherwise, for the boron concentration at 1019 atoms/cm3, the resistivity 

of the doped polysilicon layer has a linear relationship with temperatures. Therefore, the 

polysilicon doped at this concentration can be used as a temperature sensor. All the 

temperature sensors and heaters required and made in a microchannel system should be 

based on different doping conditions of the concentrations described above.  

6.1.2 Design consideration 
The total resistance of a device is proportional not only to the resistivity (ρ) and thickness (t) 

of the doped polysilicon layer, but also to the ratio of lR/wR, i.e. shape effect. The definition 

of resistance is written as follows: 

 R = (ρ/t)·(lR/wR) = RS ·(lR/wR) (6-1) 

where RS = (ρ/t) is called the sheet resistance of the material. lR and wR are the length and 
the width of the resistor, respectively.  
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Fig. 14. The relative resistance variation with temperature at different concentrations of 
boron doped in polysilicon (Shen, 2003). 

The TCR, α, is defined as follows: 

 ( / ) / /( )o oR R T R R Tα = Δ Δ = Δ ⋅ Δ   (6-2) 

oR R RΔ = −  

oT T TΔ = −  

where Ro is the resistance of the material at a reference temperature. R is the resistance of the 

material measured at certain temperature. The zero TCR means that the RΔ  is near zero and 
the resistance of the material is constant within the range of the temperatures measured. 
The resolution (Resoul.) of temperature sensor is defined as follows: 

 

 

 . /( )esoul oR R R T R= Δ ⋅ Δ ×  (6-3) 

For example, the size of temperature sensor designed is 80 μm×20 μm×0.4 μm in length, 

width and thickness, respectively. The material used as the sensor is polysilicon. The 

concentration of boron used for doping is 1019 atoms/cm3. The ρ is found to be 0.2034 Ω-cm, 

as shown in Figure 8. After a calculation, the sheet resistance (RS), total resistance (R) and 

TCR of temperature sensor are 5.085×103 Ω/squ., 20.34 kΩ at 23 oC and -4.286×10-3 /oC. 

Therefore, the resolution of the polysilicon sensor can be calculated and is found to be -87.18 

Ω/oC. It appears that the resolution of the temperature sensor made by the doped 

polysilicon is much better than any types of the thermocouples. 
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6.1.3 Fabrication processes (Ko et al., 2007, 2009; Liu,2004) 
1. A 0.3 μm thick LPCVD tetraethoxysilane (TEOS) oxide is deposited on the (100) wafer 

as a insulation layer between sensors to silicon substrate. 

2. Then, a 0.3 μm thick LPCVD polysilicon film is deposited and then implanted heavily 

with boron with a dose of 3×1015 atoms/cm2. This amount of dosage corresponds to a 

concentration of 1020 atoms/cm3 in the layer. After annealing at 950 oC for 30 minutes, 

the doped polysilicon is patterned as the heaters. In this doping concentration, the TCR 

of resistors are near zero, as shown in Figure 15(a).  

3. Next, after a deposition of a 0.3 μm thick LPCVD TEOS layer as insulation, the 

temperature sensors were made by depositing a 0.3 μm thick LPCVD polysilicon layer 

and then implanting with boron ions with a dose of 3×1014 atoms/cm2. This amount of 

dosage corresponds to a concentration of 1019 atoms/cm3 in the layer. After annealing at 

950 oC for 30 minutes to re-crystallize the polysilicon layer and to uniformly diffuse the 

dopant ions across the layer, the doped polysilicon was patterned. The concentration of 

1019 atoms/cm2 will give a linear relationship between the resistance and the 

temperature of the doped polysicon layer. Thus, after proper calibration, the doped 

polysilicon layer can be used as temperature sensors, as shown in Figure 15(b). 

4. Before metallization, a 0.3 μm thick LPCVD TEOS oxide is deposited as insulation. 

Then, contact holes were opened in this layer for metallization. The metallization was 

made by sputtering standard IC four layers of metals, i.e. Ti/TiN/Al-Si-Cu/TiN with a 

thickness of 0.04 µm/0.1 µm/0.9 µm/0.04 µm, respectively, onto the substrate surface. 

The metal layers were then patterned into circuits, as shown in Figure 15(c). 
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Fig. 15. Fabrication process of temperature sensor and heater (Ko et al., 2007; Liu, 2004). 
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6.1.4 Characteristics of temperature sensors and heaters 
All the temperature sensors and the heater fabricated on the silicon substrate have to be 

calibrated in a constant temperature oven to ensure a measurement accuracy of ± 0.1oC. In 
fact, all the temperature sensors and the heaters can be moved onto a glass substrate for 
other purpose. The procedure to move all the sensors and heaters onto a glass substrate will 
be described in section 6.2 or 7.2. In that case, the substrate now is a very low thermal 
conductivity material, it is difficult for the heat in the oven to conduct into the substrate, 
especially in the region for the channel formation, and to provide a uniform and constant 
temperature condition required for the calibration. Therefore, the calibration procedure will 
take a much longer time than the case with silicon substrate. The electric resistance 
measured in the doped polysilicon layer at various boron concentrations and temperatures 
is compared with the published data (Ko et al., 2007; Liu, 2004), as shown in Figure 16. It is 
found that the resistance in the current work for the concentration at 1020 atoms/cm3 agrees 
well with the published results. However, the data for the current case with the 
concentration at 1019 atoms/cm3 is slightly different from other work, as indicated by the red 
circle as shown in Figure 16. This difference is attributed to the use of different implantation 
equipments from different companies, and the batch deposition of LPCVD polysilicon layer 
with a 5-10 % uniformity can occur in a single wafer or from wafer to wafer. The 
characteristic curves of the polysilicon temperature sensor and the heater used in the present 
channel system are also shown in Figure 17 (Liu, 2004). It is found that the output signal of 
the temperature sensor has a linear relation with the temperatures and a high resolution of 
1.26 KΩ/oC. Therefore, this can provide a very accurate measurement in the temperature. In 
addition, the resistance of the heater does not vary with the temperature. This can readily 
provide a uniform and constant heating power required in the experiments. 
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Fig. 16. Comparison of the resistance variation with temperatures between works for the 
polysilicon doped at different concentrations (Ko et al., 2007; Liu, 2004). 
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Fig. 17. Characteristic curves of the polysilicon temperature sensor and the heater that can 
be used in the present channel system (Liu, 2004). 

6.2 Miniaturized pressure sensors 
6.2.1 Working principles 
Fabrication process of the micro pressure sensor has attracted much attention due to its 
wide industrial applications in various areas (Sze, 1994). In general, fabrication of pressure 
sensor adopts inorganic materials, e.g. piezoresistive sensor which is fabricated on a silicon 
substrate.  Fabrication of these kinds of piezoresistive pressure sensors can be classified into 
bulk (Sze, 1994; Peake et al., 1969; Tufte et al., 1962) and surface (Guckel, 1991; Sugiyama et 
al., 1991; Clark et al., 1979) micromachining process. In the conventional designs of pressure 
sensor, both the bulk and the surface micromachining can be used. For the bulk 
micromachining technique, KOH solution is usually used to etch into the silicon substrate to 
form cavities, allowing for diaphragm deformation, in trapezoid shape with a 54.7o inclined 
wall. Since the silicon substrate is relatively thick and the bottom region consumed is much 
larger than the top region where pressure diaphragm defines. The number of sensors per 
wafer fabricated with bulk micromachining is much less than that fabricated with surface 
micromachining. Fortunately, this sensor is readily made and the yield of sensor is very 
high.  
For the surface micromachining process, however, the number of sensors per wafer 
fabricated is much higher due to the fact that much smaller size of cavities for the pressure 
sensors can be made. However, the height of the cavities which allows deformation of 
diaphragm is made much smaller due to the use of sacrificial layer for later formation of the 
diaphragm. The sacrificial layer is deposited by chemical vapor deposition (CVD) process, 
which is relatively thin and is usually less than 2-3 μm. This has limited the height of the 
cavity defined by the sacrificial layer. Therefore, the pressure measurement range for the 
sensor made by the surface micromachining is much narrow. In addition, stiction of 
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diaphragm can readily occur in the drying of DI water rinse process after removal of the 
sacrificial tetraethyl orthosilicate (TEOS) or phosphorus silicate glass (PSG) oxide. Special 
attention should be made to avoid the problem of stiction (Kim et al., 1998; Komvopoulos, 
1996; Core et al., 1993; Legtenberg et al., 1993). In addition, the height of the cavity cannot be 
made large enough which will not give enough space for diaphragm deformation and allow 
the pressure measurement in a wider range. This is attributed to the use of sacrificial 
material, such as silicon oxide, that cannot be deposited thick enough by the CVD process. 
In view of the disadvantages of the inorganic pressure sensor fabricated by bulk or surface 
micromachining of silicon material, the current work proposes fabrication of pressure sensor 
with polymer material, such as SU-8. In a review of literature, there are few other polymer 
materials that were found for fabrication of sensor system (Madou, 2002; Martin et al., 1998; 
Shirinov et al., 1996). A schematic diagram for a cross-section view of the sensor is shown in 
Figure 18 where the cavity can be filled with pressurized gas that causes deflection of the 
diaphragm on the top. All the wall material used, including the diaphragm for the sensor, is 
SU-8 except for the sensing material and circuit system on the top. The fabrication process 
presented in this paper can make arrays of pressure sensors and has the advantages of both 
the bulk and the surface micromachining process. The process can fabricate a greater 
number of sensors per wafer, and the sensors fabricated allow wider measurement range of 
pressure. The substrate can be any material. Here we select Pyrex glass. The fabrication 
process is very simple and the sensor can be readily made by spin coat SU-8 layer and 
patterning with lithography. In addition, the height of the cavity which allows deformation 
of diaphragm can be varied readily by spin coat different thickness of the SU-8 layer. 
Especially, the SU-8 diaphragm is formed without use of sacrificial layer and subsequent DI 
water rinse processes after removal. Therefore, fabrication process has completely absence 
of diaphragm stiction and has a much higher yield. 
 

 

Fig. 18. A schematic diagram for a cross-section view of the pressure sensor designed. 

The SU-8 material has been widely used for formation of microfluidic system (Arshak et al., 
2006; Ribeiro et al., 2005; Lee et al., 2003), and relatively few in sensor system (Giordani et 
al., 2007). Therefore, current pressure sensor can also be readily applied and integrated into 
a microfluidic system or lab-on-chip (Pelletier et al., 2007; Trung et al., 2005; Vilkner et al., 

www.intechopen.com



 Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 

 

110 

2004) where pressure information is required. Arrays of current pressure sensors can be 
readily fabricated along the channel or in a micromixer for more detailed flow information. 
They can also be fabricated at inlet, outlet or inside of a micropump for evaluation of its 
performance. 
Theoretical modeling for the stress and deformation of the diaphragm is derived. Numerical 
calculation is provided for diaphragm design consideration. Finally, the current pressure 
sensors made can provide a much better thermal insulation than the ones made by the 
previous surface micromachining process of silicon because of the use of the extremely low 
thermal conductivity materials, such as the SU-8 and the Pyrex glass. The SU-8 material has 
a thermal conductivity of 0.2 W/mK (Monat et al., 2007) where the Pyrex glass has a value 
of 1.4 W/mK. This is highly important in the fabrication of a micro thermal system where 
thermal insulation should be seriously considered. More detailed fabrication techniques and 
performance evaluation of this sensor are also provided and discussed. 

6.2.2 Design consideration 
Before fabrication process, the size of the SU-8 diaphragm used in the pressure sensor 
should be determined from a proper analysis and design. The size of the SU-8 diaphragm is 
actually determined by the pressure range to be measured, the maximum strain that the 
diaphragm can sustain and the sensitivity required. The deformation of SU-8 diaphragm can 
be modeled as a square shell or plate with four edge clamped under a uniform normal 
pressure force as shown in Figure 19.  
 

 

Fig. 19. Schematic diagram for the square plate deformed under pressure force. 

From the solving of the governing equation for the deflection of the plate, the deflection of 
plate can obtain: 
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By letting n= 1, 3 and 5 only, the maximum deflection can be found as follows: 

 

4

2
max

3
(1 )

pb
u C

Eh
ν= −  (6-5) 

where C is 
4

0.032

1 α+
, with the assumption that all edges of the plate are clamped, and α is 

ratio of the width to the length of the plate. However, C obtained by Guckel (1990) is 0.0152. 

The comparison is shown in Figure 20, which shows that for the diaphragm size of 200μm 

by 200μm and the thickness of the diaphragm varying from three to thirteen micron, the 
numerical result from ANSYS calculation agrees very well with the approximate solutions 
of Westergaard and Guckel, respectively. Therefore, the ANSYS is adopted for calculation in 
the design for proper size of diaphragm.  
For a pressure range from 1 to 4 atms, the prediction for the maximum strain occurred in the 
plate versus the applied pressure force is presented in Figure 21 for different thickness of 
diaphragm. The maximum strain the SU-8 layer can sustain is found 0.77% (Guckel, 1991). 
Therefore, the rectangle presented in Figure 21 represents the safety region where the 
maximum strain is less than 0.77% for the diaphragm size designed. For a better sensitivity, 
i.e. more deflection, the size of 150μm×150μm wide at a thickness of approximately 9 μm is 
selected. 
 

 

Fig. 20. Comparison of the numerical result from the ANSYS with the analytical results and 
other published data. 

Polymer pressure sensor does not have the problems of narrow depth of cavity and stiction 

of diaphragm made by surface micromachining method. The most promising candidate for 

pressure sensor fabrication is the use of the photoresists, i.e. SU-8. The SU-8 can be readily 
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spin coated on the substrate from a few microns to a hundred microns thick. This can give 

us a much deeper cavity depth if diaphragm layer can be properly deposited on the top to 

enclose the cavity, as shown in Figure 18. The diaphragm designed uses the same material 

as the cavity side wall in order to reduce difference of the thermal expansion coefficient for 

the cavity wall and the diaphragm which may cause deflection of diaphragm and 

significantly affect measurement accuracy. In this way, one would face another problem of 

selecting suitable sacrificial material to fill into the cavity to create a flat surface in order to 

spin coat the SU-8 diaphragm on the above. In addition, the sensor material currently 

available, which is to be deposited on the top of diaphragm, is piezoresistive film that is a 

doped polysilicon layer deposited by LPCVD at a high temperature process. The use of high 

temperature process of doped polysilicon for sensor formation has precluded the possible 

use of SU-8 as both diaphragm and side wall of cavity. 

 

 

Fig. 21. The maximum strain variation with pressure for different sizes and thicknesses of 
SU-8 diaphragm. 

However, this difficulty can be readily overcome by reversing the fabrication process of the 
pressure sensor. That is, one can first deposit the the piezoresistive layer and the metal lines 
on the silicon substrate which is a high temperature process, and then the diaphragm and 
the cavity wall which is a low temperature process. The piezoresistive layer can be made 
with the polysilicon layer implanted with very high concentration of boron or phosphorous. 
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In the current process, one selects very high concentration of boron such that the resistivity 
variation with the temperature in the polysilicon layer can be minimized. From the 
experimental data plotted in (Shen, 2004; Kanda, 1982; Mason, 1969), for boron 
concentration greater than 1020 atms/cm3 the resistivity variation with temperature can be 
negligible small. Thus, this concentration of boron is adopted in the implantation process for 
the polysilicon layer. After implantation, the polysilicon is annealed for 30 mins at 950 oC. 
The next step is to spin coat SU-8 diaphragm, which has the flexibility to readily control the 
thickness. It is then followed by spin coat another layer of SU-8 for cavity wall at desired 
thickness. Thus, the formation of SU-8 layer will not go through a high temperature process. 
Finally, a Pyrex glass can be bonded with the patterned SU-8 layer on the top to enclose the 
cavities. Once the silicon substrate is completely removed by wet etch, a successful pressure 
sensors can be readily achieved. 

6.2.3 Fabrication processes (Ko, 2009) 
1. A 0.3 μm thick LPCVD TEOS oxide is deposited on the (100) wafer and used as 

protection mask for the upper layer devices during the later long period of TMAH wet 
etch to completely remove the Si wafer.  

2. Next, a 0.3 μm thick LPCVD polysilicon film is deposited and then implanted heavily 
with boron with a dose of 3×1015 atoms/cm2. This amount of dosage corresponds to a 
concentration of 1020 atoms/cm3 in the layer. After annealing at 950 oC for 30 minutes, 
the doped polysilicon is patterned as the pressure sensors. 

3. Before metallization, a 0.3 μm thick LPCVD TEOS oxide is deposited as insulation. 
Then, contact holes were opened in this layer for metallization. The metallization was 
made by sputtering standard IC four layers of metals, i.e. Ti/TiN/Al-Si-Cu/TiN with a 
thickness of 0.04µm/0.1µm/0.9µm/0.04µm, respectively, onto the substrate surface. 
The metal layers were then patterned into circuits, as shown in Figure 22(a). 

4. A 9 μm thick SU-8 layer is spin coated on the substrate as the pressure sensing 
diaphragm. Then, a 50 μm thick SU-8 layer is spin coated again on the substrate and 
patterned into the active cavity to allow for movement of the pressure diaphragm. It is 
noted that there is a soft bake before layer exposure to evaporate the solvent and a post 
exposure bake to make the edge between the exposed and unexposed region more 
sharp and clear. Finally, instead of using the hard bake, a high intensity of light is used 
to illuminate to complete the cross-linking of the resin since the hard bake will need a 
temperature at 200 oC that will damage the underneath thick epoxy layer. For the soft 
bake, the SU-8 layer is first maintained at 65 oC for 7 minutes with a 5 oC/minute 
ramping rate starting from room temperature, and then baked at 95 oC for 15 minutes 
with a 5 oC/minute ramping rate starting from 65 oC to release the internal residual 
stress of SU-8 thick layer. In fact, the success of the SU-8 channel strongly depends on 
the baking process after light exposure. 

5. It is now ready to move the devices made on the Si wafer onto a low thermal 
conductivity Pyrex glass. This is done first by bonding the silicon wafer with the Pyrex 
glass, as shown in Figure 22(b). 

6. After the bonding process, the silicon substrate is ready for removal and cleared off. 
This is done by wet etch the silicon with TMAH solution at 90 oC for 5-6 hours. Instead 
of using KOH, the selection of TMAH is attributed to its relatively high selectivity for 
silicon versus oxide. This can avoid the sensors attacked by the etchant during the long 
period of wet etch process since the protection layer of the sensors are made of TEOS 
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oxide. A successful movement of the pressure sensors onto the Pyrex glass substrate is 
shown in Figure 23(a). The cavities of the pressure sensors are successfully made, as 
shown in Figure 23(b). No distortion was found. 

7. Next, a 80 µm thick SU-8 layer is spin coated on the substrate and patterned by 
lithography to form a test section for the pressurized gas.  

8. A PMMA plate is then bonded, using epoxy resin, to enclose the test section, as shown 
in Figure 22(c). The pressure sensor is completed. 
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Fig. 22. Fabrication process of pressure sensor (Ko, 2009). 
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Fig. 23. Side view of SEM photographs. (a) Pressure sensor resistor embedded in SU-8 
diaphragm and (b) pressure sensor diaphragm and cavity made by SU-8 lithography (Ko, 
2009). 

6.2.4 Characteristics of pressure sensors (Ko, 2009) 
Since the arrays of pressure sensors were made of polysilicon layer doped with a designated 
concentration of 1020 atoms/cm3 of boron, the temperature coefficient of resistance (TCR) of 
the sensors is almost zero which can eliminate the temperature effect for the sensors. In 
addition, the resistance of sensors designed is very large and is about 57-58 KΩ. The 
pressure effect on the resistivity of the sensor is expected very large. Therefore, the sensors 
have a very high signal resolution. The complicated temperature compensation currents and 
the electrical signal amplifier are not required and used in this sensor system. The 
characteristic curves for the sensors were obtained, as shown in Figure 24. The results show 
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a very linear variation between the pressure and the resistance of the sensors. Since the 
diaphragm is made of SU-8 materials, which has a smaller Young’s modulus than the 
polysilicon film, this leads to a higher strain in the SU-8 film. Therefore, the resolution for 
the present SU-8 diaphragm sensors is much higher than the polysilicon diaphragm sensors 
and is found to be 20.88 ohm/psig.  
In order to test the reliability, i.e. the response, recovery and life time or fatigue of the 
current pressure sensors, a pressurized air is supplied to the sensor cavity for a period of 30 
seconds and then released. The repeated sharp rise and descend of the pressure, as shown in 
Figure 25, suggests that the present SU-8 pressure sensor has very good reliability. Higher 
frequency of pressure oscillation still indicates that response and recovery test in the current 
sensor is still reliable except a slight drop of the oscillation signal is observed, as shown in 
Figure 26. This slight drop in oscillation signal is attributed to the frictional heating of the 
polymer diaphragm due to high frequency of vibrations. The frication heating increases the 
temperature and leads to reduction of the resistance of the polysilicon sensor. After cooling 
the sensor back to the ambient temperature, oscillation signal recovers back to the original 
value. The frictional heating may not be readily seen in polysilicon sensor due to the very 
high thermal conductivity of the material that can rapidly dissipate the frictional heating. 
The test for membrane under high frequency oscillation of pressure has proceeded for more 
than three thousand cycles which is more than 24 hours and does not indicates creeping or 
fatigue of the SU-8 membrane. 
In addition, the sensor is put into oven at controlled temperatures for calibration at different 

temperatures. The results indicate that resistance variation at different temperatures is small 

and is less than 1% of the measured value. As one plots pressure variation versus 

temperature, as shown in Figure 27, the pressure variation is very small and less than 1 psig. 

The small pressure variation versus temperature may be attributed to the difference in the 

thermal expansion coefficient between the SU-8 and the Pyrex glass which causes small 

stress in the SU-8 side wall and the diaphragm. It is expected that replacing the Pyrex glass 

with other high temperature polymer plate, such as Poly(ether-ether-ketone) (PEEK), that 

can endure the high temperature annealing process of the SU-8 and have a closer thermal 

expansion coefficient to the SU-8, can further reduce the temperature effect on the pressure 

measurements.  

Finally, in order to ensure that the SU-8 side wall or the diaphragm of the sensor is not 

permeable to the air, permeability test for the SU-8 to the air is performed. This is done by 

sending pressurized air into the test section (chamber), as shown in Figure 22(c), of the 

sensor at desired pressure level and closing both the inlet and outlet valves. The pressure 

variation in the test section is monitored by the sensor for more than 7 days, and the signals 

are sent into computer for plotting. It appears that the pressure inside the test section is 

almost kept constant except for a slight variation due to noise from the instrument. The 

variation of the pressure due to noise is less than 1.76% of the total pressure during a long 

period of 7 day observation. This result indicates that the pressurized air inside the test 

section will not leak slowly through the SU-8 diaphragm into the pressure chamber, nor the 

pressurized air (in either the test section or the pressure chamber) will leak slowly through 

the SU-8 side wall into the ambient. This permeability test also indicates that the SU-8 

diaphragm will not creep under a constant pressure load of 350 kPa for 7 days. Therefore, 

one may expect that the SU-8 diaphragm will not creep as long as the pressure load is 

within the elastic deformation of the material unless when the material becomes aged. 
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Fig. 24. A very linear variation between the pressure and the resistance of the sensors (Ko, 
2009). 

 

 

Fig. 25. Response and recovery test for pressure sensor at different pulsed pressures (Ko, 
2009). 
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Fig. 26. Response and recovery test for pulsed pressure at high frequency (Ko, 2009). 

 

 

Fig. 27. Thermal stability test shows that the pressure signal is almost independent of 
temperature variation in the system (Ko, 2009). 
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7. Fabrication of microchannel integrated with arrays of miniaturized 
pressure sensors and temperature sensors  

The development and fabrication of a micro-flow heated channel for studies of local flow 

and heat transfer process is very important not only for the basic research but also for 

practical application in MEMS or NEMS thermal system. Unfortunately, most of the current 

micro-channel used (Choondal and Suresk, 2000; Yu et al., 1995) or fabricated (Jiang et al., 

1999; Tao and Mahulikar, 1998; Chu et al., 1994) could not provide a local or detailed flow 

and heat transfer information, but a global information (only for flow information at inlet 

and outlet). How to prevent or control heat loss are the most important considerations for 

heat transfer study. Most of the MEMS or NEMS techniques developed up to the present are 

to use silicon wafer, a very good thermal conductor that has a very high thermal 

conductivity (148 W/mK), as substrate to fabricate a microchannel (Pfahler et al., 1990; 

Pfahler et al., 1991; Arkilic and Breuer, 1994; Arkilic and Schmidt, 1997; Shih et al., 1996; Qu 

et al., 2000a and 2000b; Ren and Li, 2001; Ren et al., 2001a and 2001b). This will lead a large 

amount of heat loss from the inside channel to the outside ambient, a uniform heat flux 

boundary condition on the heated wall could not be maintained. Therefore, local heat 

transfer information in the channel cannot be obtained and understood.  

The idea to fabricate a suspended channel over an air layer (Wu et al., 1998) to reduce the 

heat loss may be adopted to fabricate a heat transfer channel. However, this kind of channel 

that has a very thin wall can be readily deformed by the high-pressure flow. This 

deformation is expected to significantly affect the detailed flow and heat transfer process 

inside the channel. In addition, the techniques involved in the fabrication are suitable for 

fabrication with a very small height (in a few micrometers) channel.  

The current work is to develop a novel fabrication procedure for a micro-channel system 

that can be used to study and obtain the flow and the local heat transfer coefficient inside 

the channel. One side of the channel wall can be heated uniformly and all the other 

sidewalls can be well insulated. In the meantime, the heated wall is integrated with an array 

of micro-temperature sensors and pressure sensors that can provide measurements of local 

temperature and local pressure of the heated wall and study the local flow and heat transfer 

process along the channel.  

Initially, both the heater and the array of temperature sensors and pressure sensors that are 

made of polysilicon layer doped with different concentration of boron are deposited on a 

(100) silicon wafer by LPCVD. Then, an ultra thick SU-8 layer is spin coated on the substrate 

and patterned into the active cavity of the pressure diaphragm. After SU-8 lithography 

process, both the heater and the array of the sensor layers are moved to the surface of a low 

thermal conductivity Pyrex glass. This was made by bonding the deposited silicon wafer 

with the Pyrex glass to use a thick layer of epoxy resin. Then, the TMAH (25 wt%) solution 

at 90 oC was used to etch and completely remove the silicon wafer. The next step is to spin a 

thick layer of SU-8 on the epoxy-glass substrate and form a micro-channel structure by 

lithography. The last step is to bond the epoxy-glass substrate with a thick PMMA plate to 

form a well-insulated and compact micro-channel. It is noted that both the SU-8 layer and 

PMMA plate are the very low thermal conductivity materials, as shown in Table 2. Design 

consideration and fabrication techniques involved in this processes will be discussed in the 

following sections. 
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7.1 Design consideration 
In the design of a micro-channel for the current flow and heat transfer study, the most 
important consideration is to reduce or control the amount of the heat loss from the channel 
to the ambient and to provide a uniform heat flux input on the wall that can be readily 
measured. To provide a uniform heat flux on the wall is not difficult. This can be achieved 
by selecting a resistor material that is independent of the temperature and distributing the 
resistor material uniformly on the channel wall. To pass a steady current through the 
resistor, a uniform heat generation along the wall can be obtained. However, the heater may 
have an uncontrollable heat loss at different locations such that the some of heat generated 
in the heater may lose to the substrate and the real heat input into the channel flow is not 
uniform. Thus, a uniform heat flux boundary condition on the wall cannot be obtained. In 
addition, the thermal energy inside the channel flow may lose to the wall and subsequently 
lose to the substrate if the wall is very conductive. Unfortunately, most of the MEMS 
techniques developed up to the present use silicon wafer, a very good thermal conductor 
that has a very high thermal conductivity, as a substrate to fabricate a micro-channel. These 
difficulties make the measurements and analysis of the heat transfer inside a formidable 
task. Chen et al. (2001) etched an air layer underneath the channel system to reduce the heat 
loss. This air layer is thick enough to effectively reduce the heat loss. However, it makes the 
heated wall very thin that the channel may distort itself during high-pressure gas or liquid 
flowing through the channel. In addition, the channel fabricated is very complicated. 
Although the design of using the air layer underneath the channel as insulation is a good 
idea, the fabrication process is very complicated and difficult, and the yield of the 
fabrication is very low. 
 

Material 
Thermal Conductivity 
(W/mK) at 300K 

Thermal Expansion Coefficient 
(ppm/K) at 300K 

Silicon 148 2.6 

Al-Cu-Si alloy 161 19.2 

Polysilicon 34 2.4 

Silicon nitride 16 0.8 

Silicon oxide 1.38 10.3 

Pyrex glass 1.4 2.8 

Epoxy resin 0.15 62.5 

PMMA plate 0.16 62 

SU-8 0.2* 52* 

Air 0.026  

Data can be found in data sheet for NATOTM SU-8 negative tone photoresists, formulations 50 and 100, 
released by Micro Chem Corp. 

Table 2. Thermal physical properties of the fabrication materials (Touloukian, 1970-1979). 

In general, the heat input into the channel flow system can be moved away from the bottom 
heated wall of the channel by the convective flow, i.e. air or water flow through the channel. 
However, some portion of the heat input, i.e. the heat loss, can be moved away to the 
ambient by the conduction of the substrate or the channel structure. In fact, most of heat loss 
occurs by the substrate conduction, especially for a substrate with a higher thermal 
conductivity. Thus, in order to effectively reduce the heat loss and maintain a uniform heat 
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flux boundary condition on the heated wall, several alternatives can be selected. One can 
use the thermal insulation materials on the back of the silicon substrate to reduce the heat 
loss. In addition, to reduce the spanwise heat conduction along the substrate, the thickness 
of the substrate can be reduced by mechanical polishing or particular wet etching 
techniques. In addition, instead of using the air layer underneath the channel, one was 
thinking of using other low thermal conductivity materials, such as Pyrex glass, as substrate. 
However, by a careful calculation even the Pyrex glass could not provide enough thermal 
insulation for both the channel and the heater. Other materials such as PMMA, polyimide or 
epoxy resin that have a much lower thermal conductivity, as shown in Table 2, can be used 
to avoid the heat loss from the heater to the ambient outside. An alternative insulation is to 
move the devices above the silicon wafer onto the Pyrex glass. This requires bonding the 
device with the Pyrex glass using epoxy resin, which is a low thermal conductivity material. 
Therefore, the epoxy resin can be served as both the bonding agent and a part of the 
substrate. This can significantly reduce both the normal and the spanwise conduction along 
the substrate. A schematic diagram designed for the microchannel integrated with arrays of 
micro pressure and temperature sensors is shown in Figure 29. 

 

 

Fig. 28. Micro-channel system with arrangements of arrays of micro pressure sensors, micro 
temperature sensors and two sets of heaters used for study of micro scale heat transfer and 
pressure drop of the flow. 

7.2 Fabrication process flow 
The entire fabrication process, as shown in Figure 29, is described in the following: 
1. A 0.3 μm thick LPCVD tetraethoxysilane (TEOS) oxide is deposited on the (100) wafer 

and used as protection mask for the upper layer devices during the later long period of 
TMAH wet etch to completely remove the Si wafer.  

2. The temperature sensors were made by depositing a 0.3 μm thick LPCVD polysilicon 
layer and then implanting with boron with a dose of 3×1014 atoms/cm2. This amount of 
dosage corresponds to a concentration of 1019 atoms/cm3 in the layer. After annealing at 
950oC for 30 minutes to re-crystallize the polysilicon layer and to uniformly diffuse the 
dopant ions across the layer, the doped polysilicon was patterned. The concentration of 
1019 atoms/cm2 will give a linear relationship between the resistivity and the 
temperature of the doped polysicon layer. Thus, after proper calibration, the doped 
polysilicon layer can be used as temperature sensors. 
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3. Next, after a deposition of a 0.3 μm thick LPCVD TEOS layer as insulation, a 0.3 μm 

thick LPCVD polysilicon film is deposited and then implanted heavily with boron with 

a dose of 3×1015 atoms/cm2. This amount of dosage corresponds to a concentration of 

1020 atoms/cm3 in the layer. After annealing at 950oC for 30 minutes, the doped 

polysilicon is patterned as the pressure sensors. 

4. Before metallization, a 0.3 μm thick LPCVD TEOS oxide is deposited as insulation. 

Then, contact holes were opened in this layer for metallization. The metallization was 

made by sputtering standard IC four layers of metals, i.e. Ti/TiN/Al-Si-Cu/TiN with a 

thickness of 0.04 µm/0.1 µm/0.9 µm/0.04 µm, respectively, onto the substrate surface. 

The metal layers were then patterned into circuits, as shown in Figure 29 (a). 

5. A 9 μm thick SU-8 layer is spin coated on the substrate as the pressure sensing 

diaphragm, as shown in Figure 29 (b). Then, a 50 μm thick SU-8 layer is coated again on 

the substrate and patterned into the active cavity to allow for movement of the pressure 

diaphragm. It is noted that there is a soft bake before layer exposure to evaporate the 

solvent and a post exposure bake to make the edge between the exposed and 

unexposed region more sharp and clear. Finally, instead of using the hard bake, a high 

intensity of light is used to illuminate to complete the cross-linking of the resin since the 

hard bake will need a temperature at 200 oC that will damage the underneath thick 

epoxy layer (refers to the epoxy layer mentioned in item 5 below). For the soft bake, the 

SU-8 layer is first maintained at 65 oC for 7 minutes with a 5 oC/minute ramping rate 

starting from room temperature, and then baked at 95 oC for 15 minutes with a 5 
oC/minute ramping rate starting from 65 oC to release the internal residual stress of SU-

8 thick layer. In fact, the success of the SU-8 channel strongly depends on the baking 

process after light exposure. 

6. It is now ready to move the devices made on the Si wafer onto a low thermal 

conductivity Pyrex glass. This is done first by bonding the silicon wafer with the Pyrex 

glass, as shown in Figure 29 (c), using epoxy resin as the bonding agent. Since the epoxy 

resin has a significantly lower thermal conductivity than the Pyrex glass, this can better 

reduce the heat loss from the channel to the ambient. 
7. After the bonding process, the silicon substrate is ready for removal and cleared off. 

This is done by a wet etch process. The silicon is etched with TMAH solution at 90 oC 
for 5-6 hours. Instead of using KOH, the selection of TMAH is attributed to its relatively 
high selectivity for silicon versus oxide. This can avoid the sensors attacked by the 
etchant during the long period of wet etch process since the protection layer of the 
sensors are made of TEOS oxide. After successful movement of the pressure sensors 
onto the Pyrex glass substrate, no distortion was found, as shown in Figure 29(d). 

8. Next, another SU-8 layer is spin coated on the epoxy-glass substrate at desired thickness 
and patterned by lithography to form a rectangular microchannel and cavities of the 
pressure sensors that connect with channel through narrow size tunnels. The side walls 
of the channel, the narrow tunnels, or the cavities of the pressure sensors are 
successfully made, as shown in Figures 30 (a), (b) and (c). It is noted that a similar post 
exposure bake should be made in order to obtain a nice shape of channel and cavities of 
the pressure sensor.   

9. A PMMA plate is then bonded, using epoxy resin, with the epoxy-glass substrate to 
enclose the channel and the cavities, as shown in Figure 29 (e). 

A picture for the completed channel is shown in Figure 30 (d). 
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Fig. 29. Fabrication process for the entire microchannel system. 

www.intechopen.com



 Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 

 

124 

 

 

 

www.intechopen.com



Microchannel Heat Transfer   

 

125 

 

Fig. 30. SEM photographs of SU-8 channel integrated with arrays of micro pressure sensors: 
(a) global view, (b) close view and (c) cross section view and (d) the completed 
microchannel (Ko, 2009). 

8. Local pressure drop and heat transfer characteristic inside a microchannel  

8.1 Liquid flow characteristics 
In order to compare with the experimental data, theoretical analysis of the flow 
characteristic inside the microchannel is performed. Since the microchannel has very wide in 
size as compared with the height, the microchannel flow can be assumed as parallel plate 
channel flow. Since the microchannel flow can rapidly become fully developed, as indicated 
in the later data measurement, the governing equation for fully developed flow in the 
microchannel can be greatly simplified. The solution can be readily found as follows 
(Incropera et al., 2007): 

 

2

2
1

( ) ( )
2 2 2

y dp H dp dp
u y y y Hy

dx dx dxμ μ μ
= − = −  (8-1) 

To integrate the equation transversely, the mean velocity of the flow in the channel can be 
obtained as follows: 

 

2

12

H dp
U

dxμ
= −  (8-2) 

where U is the mean velocity of the flow. From Eq. (6-2), the longitudinal pressure 
distribution can be found as follows: 

 
2

12
x i

U
p p x

H

μ
= −  (8-3) 

(d) 
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or 

2

12 Ul
p

H

μ
Δ =  

The Reynolds number here is defined as the liquid density times the mean velocity of the 
flow and the hydraulic diameter (Dh) of the rectangular channel divided by the dynamic 
viscosity of the liquid as follows: 

 Re
hUDρ

μ
=  (8-4) 

where is ρ the density of the water. The friction factor of flow can be calculated with a given 
pressure drop. 
For the liquid flow, Qu et al. (2000, 2002) has found that the pressure drop in microchannel 

is significantly higher than the theoretical analysis due to the roughness effect. To eliminate 
the wall roughness effect, therefore, the roughness on the wall surface of the current micro-
channel is minimized, and is less than ± 5 nm to 15 nm. This roughness is negligibly small in 

comparison with the height of the channel, which is either 68.2 μm or 23.7 μm. During the 
experiment, the pressure distributions measured at different Reynolds numbers are 
compared with the analysis, as shown in Figure 31(a) for the channel height at 34.7 μm. The 
pressure drop of the water is found significantly higher than the prediction by Eq. (8-3). A 

similar result was also found by Mala and Li (1998) who showed that the pressure drop of 
water in micro-tubes is significantly higher than the analysis. Under the same flow rate and 
tube diameter, the pressure drop in metal tubes is lower than in silica glass tubes. This can 

be attributed to the electric surface potential in the channel which attracts counterions in the 
liquid and causes formation of electric double layer on the wall. The thickness of the EDL in 
the micro channel for these three different solutions can be estimated by the inverse of the 
square root of the Debye-Huckel parameter (Mala et al. 1997) as follows: 
 

 1/2

2 2
( )
2

o b

i

T

z e n

εε κ
τ

∞

=  (8-5) 

 

where ε is the dielectric constant of the solution and εo is the permittivity of vacuum, κb is 
the Boltzmann constant, T is the absolute temperature, n∞ and zi are the bulk concentration 

and the valence of type i ions. Therefore, the EDL thickness is approximately 1 μm for water. 
In order to minimize the EDL effect, the working fluid used is changed to KCl solution at 
concentration of 10-4 M or 10-2 M, which can effectively remove the surface charges by the 

metal ions in the solution and significantly reduce the thickness of EDL. The EDL thickness 
is approximately 100 nm for the KCl solution with concentration of 10-4M and 1 nm for the 
KCl solution with concentration of 10-2M. The result indicates, as shown in Figure 31(a), that 
the pressure distribution for a higher KCl concentration (10-2 M) is significantly lower than 

for the pure DI water and is close to the analysis. It appears that the deviations for the 
experimental data of water from the prediction are attributed to surface charges and the 
EDL on the channel wall. The thicker the EDL, the greater is the deviation of the pressure 

drop from the analysis. The current finding for the reduction of EDL thickness which makes 
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the pressure drop in the microchannel approach to the analysis agrees with the results in 
Ren et al. (2001). When the channel height increases to 68.2 μm, the pressure drops for the 
case of the pure water and the cases of different concentrations of KCl solutions collapse 

into a single line, as shown in Figure 31(b), and are closer but higher than the analysis. It 
appears that the EDL of different fluids does not have a significant effect on the pressure 
drop in a greater height of channel even though the EDL of different fluids on the wall has 
different thickness. 

For a large scale channel, the entrance region can be clearly identified by the non-linear 
distribution of pressure distribution. However, in the entry region, no clear indication of 
non-linear distribution of pressure can be found, as shown in Figure 31(a) or 31(b). For large 
scale channel, the entry length can be estimated by the equation as follows Ren et al. (2001): 
 

 Lin = 0.02 Dh Re (8-6) 
 

For the channel height at 68.2 μm and Reynolds number at 128, the hydrodynamic entry 

length calculated from Eq. (8-6) is approximately 300 μm. However, pressure drop within 
300 μm does not indicated greater or nonlinear variation, as shown in Figure 31(b). It shows 
that the hydrodynamic entry region in microchannel is very short and could not be 
identified from the current pressure distribution measurements. It appears that the 

boundary layer in the entrance region of a microchannel develops very fast and becomes 
fully developed very close to the entrance.  
The same kinds of fluids are also performed in channels at the height of 23.7 μm. In the 

channel at the height of 23.7 μm, more deviations of the pressure drop data for different 
fluids occur, as shown in Figure 32(a) for pressure drop variation with the Reynolds 
numbers in the fully developed region. The pressure drop for water flow has the largest 
slop, and decreases when the concentration of KCl solution increases. These results clearly 

indicate the effect on the thickness of EDL relative to the height of channel. For water flow 
with a thicker EDL on the channel wall, the appearance of the EDL can increase the pressure 
drops by 13.4 % in the smaller height of channel (23.7 μm), but increase only 8.6 % in the 

greater height of channel (34.7 μm). For the channel height at 68.2 μm, all the pressure drop 
variations with the Reynolds number for different fluids collapse into a single line, as shown 
in Figure 32(b), and are closer but higher than the analysis. The higher pressure drop data 
for different fluids than the prediction by Eq. (8-3) can be attributed to the aspect ratio effect 

of the channel. The prediction by Eq. (8-3) is based on an analysis in a parallel plate channel, 
while the current channel with channel height of 68.2 μm or 23.7 μm has an aspect ratio of 
1:7.3 or 1:21, respectively.  

From the definition of the friction factor, 

 
2

2
1 2

2

w hD dp
f

U dxU

τ

ρρ
= =  (8-7) 

where Dh is hydrodynamic diameter of the channel cross section and is equal to 
2Hw/(H+w). 

The product of friction factor, f, and the Reynolds number is defined as the Poiseuille 
number (Po) (Baviere, 2004) and can be written as follows for parallel plate channel: 

www.intechopen.com



 Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 

 

128 

 Re 24Po f= =  (8-8) 

 

The parallel plate channel has an infinite width in z direction, the velocity is a two 
dimensional parabolic profile. However, when the channel width in the z direction is finite 
the velocity close to the side wall becomes three dimensional. The side wall effect can 

produce greater pressure drop. The smaller the channel width in the z direction, the greater 
the aspect ratio, the greater the pressure drop becomes. For large scale channel, the greater 
Po value for channel with greater aspect ratios has been calculated and correlated in terms 

of aspect ratio, α as follows Baviere et al. (2004): 
 
 

 Po(α) = 24 (1 - 1.3553 α + 1.9467 α2 - 1.7012 α3 + 0.9564 α4 - 0.2537 α5) (8-9) 
 

 

From Eqs. (8-7), (8-8) and (8-9) the pressure gradient can be re-calculated for the aspect ratio 

less than 1:21, as shown in Figure 33(a) and Figure 33(b) indicated by the red dash line. The 
pressure gradient predicted by Eq. (8-9) in the fully developed region agrees very well with 
the data for working fluid at the much higher concentration of KCl or when channel height 
is very large (68.2 μm) and EDL effect is negligible small. For clarity, the Po number for both 

the data and the prediction by Eq. (8-8) has been plotted as shown in Figure 33. The 
agreement between data and the prediction at channel height of 68.2 μm indicate that wall 
roughness in the current channel has a negligible effect on the pressure drop. Even at a 

smaller height of channel, 23.7 μm, the agreement between data at high concentration of KCl 
with negligible effect of EDL and the prediction further indicates the negligible effect of the 
wall roughness in the current channel. 
In order to compare with the pressure drop data published in the literature, the normalized 

friction constant which is most frequently used is adopted and written as follows. 
 

 
exp*

f

theory

Po
C

Po
=  (8-10) 

 

where the friction constant Poexp is found from the product of Re with the measured friction 
factor and Potheory is directly evaluated from Eq. (8-8). Large discrepancy among different 
works can be found as shown in Figure 34(a) and Figure 34(b). The data selected here for 
comparison are only limited to rectangular channels which have a channel height close to 

the current channel. More detailed sizes of the channels and the materials the channels used 
are also listed in the table underneath the figure. In general, the normalized friction 
constants for all the work in the past are not only much greater than unity which is a 

theoretical prediction for large scale channel, but also greater than the data of the current 
work. This is attributed to the use of the inlet and outlet pressure to calculate the pressure 
drop in the channel which is used to evaluate the friction constant. Most of the work in the 
past can not obtain the pressure inside the channel, but measure the pressure outside the 

channel at the inlet and outlet (Pfund et al., 2000; Xu et al., 2000; Papautsky et al.,1999; Peng 
et al., 1995). Since there is large pressure loss for flow entering or exiting the channel, the 
pressure drop measured outside the channel at the inlet and the outlet is much greater than 
the actual pressure drop in the channel. Therefore, much greater friction constants obtained 

from others are expected.  
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Fig. 31. Local pressure distributions at different Reynolds numbers in a micro-channel with 
channel height of (a) 34.7 μm and (b) 68.2 μm (Ko, 2009). 
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Fig. 32. Pressure drops at different Reynolds numbers in fully developed region a micro-
channel with (a) channel height of 23.7 μm and (b) channel height of 68.2 μm (Ko, 2009). 
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Fig. 33. The Poiseuille numbers at different Reynolds numbers in a micro-channel with (a) 
channel height of 68.2 μm and (b) channel height of 23.7 μm (Ko, 2009). 
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References Channel Material
Working 

Fluid 
Height 

(m) 
Width 

(m) 
Aspect 
Ratio 

Dh 

(m) 

Peng et al. (1995) stainless steel Water 100 200 0.5 133 

Pfund et al.(2000)
Polycarbonate- 

Gasket-Polyimide
Water 263 10000 0.263 416.4 

Xu et al. (2000) Glass-Silicon Water 43.7 415.3 0.106 79.08 

Ren et al. (2001) Silicon 
Water/K

Cl 
40.5 5000 0.0081 80.34 

Present work (Ko, 
2009) 

Polymer 
Water/K

Cl 
68.2 500 0.1364 120.02 
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Reference 
Channel 
Material

Working 
Fluid 

Height 
(m) 

Width 
(m) 

Aspect 
Ratio 

Dh 

(m) 

Papautsky (1999) Nickel Water 24.65 600 0.0411 47.35 

Papautsky-1(1999) Nickel Water 26.35 150 0.1757 44.82 

Ren et al. (2001) Silicon 
Water / 

KCl
28.2 5000 0.0056 56.08 

Present work 
(Ko, 2009) 

Polymer
Water / 

KCl
23.7 500 0.0474 45.24 

 
 
 
 
 

Fig. 34. (a) Comparison of the normalized friction constants between the current work and 
the published results for current channel with (a) 68.2 μm in height and (b) 23.7 μm in 
height. 
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In addition, data obtained from previous work scatter very much. The scatter in data among 

different works should not be attributed to the geometry of the channel which has a 

different aspect ratio since the comparison has already accounted for the aspect ratio effect. 

The scatter in data among different works is mostly attributed again to the use of the 

pressures at the inlet and the outlet outside the channel to evaluate the pressure drop inside 

the channel. This may lead to erroneous result. For example, the data from Xu et al., as 

shown in Figure 34(a) appears to be very good and is very close to the theoretical prediction. 

However, in a much smaller channel height, i.e. 15.4 μm, where the EDL effect can become 

significant and is expected to increase the pressure drop, the data from Xu et al. is identical 

to the theoretical prediction, as shown in Figure 34(a) of their paper (Xu et al., 2000). Most of 

the data did not discuss the effect of EDL except the work of Ren et al. (2001). Ren et al. has 

used a higher concentration of KCl solution to significantly reduce the thickness of the EDL 

and its effect on the pressure drop so that the friction constant in a smaller size of channel, 

as shown in Figure 34(b), with a higher concentration of KCl solution is smaller than the one 

with a lower concentration of KCl solution. However, all the data from Ren et al. are much 

greater than the theoretical prediction, as show in Figure 34(a) for a greater channel height 

and Figure 34(b) for a smaller channel height. The higher normalized friction constant 

obtained is attributed to the erroneous estimation of the entry length, which is used to 

estimate the pressure drop in the entry region, and the pressure loss at the exit. The 

normalized friction constant in Ren et al. is estimated from the pressure drop which is 

measured outside the channel at the inlet and the outlet and subtracted by the pressure drop 

in the entry region and the pressure loss at the outlet. Despite of this drawback, the data of 

Ren et al. consistently show that EDL can have a significant effect on the pressure drop 

when the channel height is small. The EDL effect can become small when a high 

concentration of KCl solution or a greater height of channel is used. These findings are also 

confirmed in our measurements. The agreement of the current pressure drop with the 

theoretical prediction suggests that much of the conflicting effects of the microchannel size 

on the pressure drop reported from previous work are clarified. From the comparison, one 

can further confirm the techniques and the fabrication of the micro-channel used in this 

study are suitable for precision pressure drop measurement. 

8.2 Flow characteristics for air 
8.2.1 Theoretical analysis  
Theoretical analysis of micro flow inside the channel is performed firstly, which is then used 
to compare with the data of pressure measured and analyze the characteristics of micro flow 
inside the channel. Since the channel has a large value in its width (500 μm) in comparison 
with its height (from 23 μm to 68 μm), the channel flow in the present study can be assumed 
as laminar flow between two parallel plates at steady state. The configuration with the 
coordinate system and flow velocity of micro-channel flow are defined in Figure 35. 
Therefore, the governing equations of the flow in this micro-channel system can be written 
in the following: 
Continuity equation: 

 0
u v

x y

ρ ρ∂ ∂
+ =

∂ ∂
 (8-11) 
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Navier-Stokes Equation: 

 

2 2

2 2
( ) ( )

u u p u u
u v

x y x x y
ρ μ

∂ ∂ ∂ ∂ ∂
+ = − + +
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 (8-12) 

 

2 2

2 2
( ) ( )

v v p v v
u v

x y x x y
ρ μ

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
 (8-13) 

 

 

Fig. 35. Schematic diagram and the coordinate system used for the micro-channel flow 
system. 

The micro-channel is actually fabricated by very low thermal conductivity materials which 
can be considered as well insulated channel. Therefore, the gas flow inside the channel can 
be assumed to be undergoing isentropic process as follows: 

 .
k

p
cons

ρ
=  (8-14) 

If non-slip boundary condition on the wall is used, then the boundary condition can be 
written as:  

 ( ) 0wU y =  (8-15) 

In Eq. (8-14), k is the ratio of specific heat Cp versus Cv. For micro flow in parallel plate 
channel, the height is much smaller than either the length or the width of the channel. One 
can assume that the gradient terms, normal to the surface of channel, in Navier-Stokes 
Equation are much larger than those along the channel. As a result, one can neglect terms 
that represent x-direction diffusion of momentum (along the channel) relative to those of y-
direction (normal to the channel surface). That is 

 

2 2

2 2
,

u u
u v and

y x y x

∂ ∂ ∂ ∂
>> >> >>

∂ ∂ ∂ ∂
 (8-16) 
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Therefore, the Navier-Stokes Equation for the micro-channel flow can be simplified as 

 

2

2

p u

x y
μ

∂ ∂
=

∂ ∂
 (8-17) 

 0
p

y

∂
=

∂
 (8-18) 

Eq. (8-17) and Eq. (8-18) means the pressure varies only in the streamwise direction. 
Therefore, Eq. (8-17) can be readily solved analytically. This equation is the same as channel 
flow in the fully developed region. The pressure distribution measurements presented in the 
later section indicate that the entry length of flow in micro-channel could hardly be 
observed. It means that the flow in most part of the micro-channel is fully developed except 
in the very short entry region where x is not large as compared with the width of the 
channel. The solution of Eq. (8-17) is a parabolic velocity profile as follows: 

 

2

2
1

( ) ( )
2 2 2

y dp H dp dp
u y y y Hy

dx dx dxμ μ μ
= − = −  (8-19) 

where H is the height of the channel. To integrate the above equation along y direction of 
the channel, the average velocity can be obtained. Therefore, the mass flow rate (Qm) of in 
the channel can be shown as follows: 
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o o
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= − = −  (8-20) 

where w is width of the channel and the subscript o refers to the condition at the outlet 
location of the last pressure sensor in the micro-channel. The above equation can be re-
arranged as follows: 
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= −  (8-21) 

One can integrate above equation from the entrance to any location, x, in the channel and 
obtain the pressures distribution inside the channel as follows: 
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Where the subscript i refers to the condition at the inlet location of the first pressure sensor 
in the micro-channel. To integrate Eq. (8-21) from the entrance to the end of the channel, the 
mass flow rate can be obtained explicitly as follows: 
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 (8-23) 

where l is the distance from the first pressure sensor to the last pressure sensor in the micro-
channel and is equal to 4000 μm. During the calculation of pressure distribution, the 
dynamic viscosity (μ) in the equation is based on the entrance temperature of the channel 
flow. 
For the case when the heat transfer occurs (with a given heat flux boundary condition on the 
wall), the wall is no longer adiabatic. The above equation can be modified with k replaced 
by n and is written as follows: 
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 (8-24) 

where n can be obtained by fitting the above equation to the pressure distribution data. In 
this way, the pressure variation with either the density or the temperature can be found by a 
polytropic process as follows: 

 .
n

p
const

ρ
=  (8-25) 

8.2.2 Experimental results of the pressure drop for air flow 
The wall roughness has been shown to play very important role on the pressure gradient, 
which contributed the scattering of friction factor data reported in others (Guo & Li, 2003; 
Kleinstreuer & Koo, 2004), in micro-channel flow. However, the wall information in most of 
the micro-channels reported in the literature is absent. Therefore, the wall roughness in the 
current channel is measured and studied. During etching and removing of the silicon 
substrate, the wall roughness of the channel has been minimized by proper etching process 
as described previously. The roughness of the current channel wall is measured by the 
profile meter using a small probe, scanning along axial location of the channel wall. The 
values of roughness are less than ± 5 nm to 15 nm. The relative roughness is much less than 
1 % as compared with the height of the channel (the smallest height of the channel is 23 μm). 
Therefore, accurate results of pressure drop were obtained based on the small roughness of 
the wall surface in the micro-channel in this study. Typical results of the pressure 
distributions, both by theoretical prediction and experiment, for height of channel at 23 μm 
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are shown with good agreement in Figure 36. Both experimental data and the theoretical 
prediction indicate that the pressure distribution inside is not linear, due to the 
compressibility effect of the air flow in the micro-channel, except when the flow speed in the 
channel is lower than 0.3 Mach, which can be assumed as incompressible condition. The 
agreement between experimental data and theoretical prediction is very good even in the 
upstream region close to the entrance. Therefore, this means that the pressure distribution in 
the region close to the entrance has reached a fully developed flow. This clearly indicates 
that the hydrodynamic entrance length in the micro-channel flow is very short as mentioned 
previously in the derivation of the pressure distribution equation. Therefore, the 
assumptions used in the analysis are thus confirmed. In addition, all the pressure data drop 
smoothly from the entrance to the exit. There is no any sudden change in the pressure 
gradient where flow may undergo an earlier onset of transition from laminar to turbulent 
flow as mentioned by others (Peng et al., 1994, 1996), which causes greater friction factor in 
micro-channel. 
The variation of the pressure difference between the inlet and the outlet with the volume 
flow rate is also measured and compared with theoretical prediction, as shown in Figure 37 
for the channel height varied from 23 μm to 55 μm. The agreement is still very good for any 
of the micro-channels. This result further indicates that there is not any reduction or 
enhancement in the friction on the wall either might be due to reduction in viscosity or 
surface roughness effect. There is again no any sudden change in the pressure drop which 
indicates that the flow may undergo an earlier onset of transition from laminar to turbulent 
flow as mentioned by others. The Reynolds number defined in Figure 37 is equal to the 
mean velocity of flow in the hydraulic diameter of the channel and divided by the kinematic 
viscosity of the air flow. 
 

 

Fig. 36. Comparisons of the pressure distributions between the current data and the 
analytical results for the airflow along the micro-channel. 
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It is noted that the friction factor in micro-channel of air flow is not a constant if one 
converts the pressure distribution in Figure 36 into the friction factor. This result is contrary 
to many of other experimental work which obtains a friction factor at a constant value 
(Takuto et al., 2000; Liu et al., 2004; Kohl et al., 2005; Bayraktar & Pidugu, 2006). That means 
that air flow in their micro-channels has been unconsciously assumed as incompressible. To 
calculate Reynolds number for the amount of mass flow rate in the current channel, the 
largest Reynolds number is very close to 2000, as shown in Figure 5.4, which is in the 
laminar regime. In the large scale channel, this is an extremely low Reynolds number flow 
condition and the flow usually can be assumed as incompressible. However, in the micro-
channel flow, the flow speed for Re = 2000 is 280 m/s for channel height of 55 μm. In this 
case, the March number for Re = 2000 is equal to 0.82, and the flow is highly compressible 
and can not be assumed as incompressible. To assume incompressible flow will lead to an 
erroneous skin friction coefficient. In fact, to assume incompressible flow, the friction factor 
obtained will be much smaller than in the large scale channel as presented in some of the 
other works. 
 

 

Fig. 37. Variation of the pressure difference between the inlet and the outlet with the mass 
flow rate or the Reynolds number. 

With the constant heat flux imposed on the wall, the pressure distribution is also measured 
as shown in Figure 38. The pressure variation along the channel is very similar to the case 
when the channel wall is insulated except that the magnitude of the pressure is higher. Eq. 
(8-24) is used to fit the pressure distribution data by varying the value of n in this equation. 
The value of n determined from the fit can be used to find the relationship between the 
pressure and the density in the microchannel under the constant heat flux condition. This 
pressure versus density relationship is required for determination of the heat transfer 
coefficient as described in the next section. 
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Fig. 38. Comparisons of the pressure distributions between the current data and the 
analytical results for the airflow along the microchannel for the case under constant wall 
heat flux, Eq. (8-24) is used to fit the data by varying the value of n. 

8.3 Local heat transfer for air flow 
In order to further study the heat transfer characteristics in the micro-channel, the current 
micro-channel is integrated with array of temperature sensors, pressure sensors and a set of 
heater. In the current experiment, the heat transfer coefficient, hb, is defined by the equation 
as follows: 

 
( )

b

w b

q
h

T T
=

−

$
 (8-26) 

where q$  is the heat flux imposed along the wall by the electric heater and is equal to the 
product of the voltage and the current passing through the heater divided by the total area 
of the heater. Tw is the wall temperatures measured by the temperature sensors along the 
channel at particular locations x. Tb is the bulk temperature of the flow which can be 
estimated from the amount of heat flux imposed on the wall which heats up the air flow and 
rises the temperature of the bulk flow. By applying a control volume and conservation of 
energy for the flow in the channel as discussed by Incropera et al. (2007), one can obtain a 
conservation equation of energy as follows: 

 h p bq D dx mc dTπ =$ $  (8-27) 

where m$  is the mass flow rate of the air in the channel. Rearranging and integrating the 
above equation from the inlet of the channel, one can obtain: 
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Therefore, 

 
h

b i

p
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T T x

mc

π
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$
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 (8-29) 

The local Nusselt number, Nub, can be defined as: 

 
b h

b

h D
Nu

k

×
=  (8-30) 

where k is thermal conductivity of the gas flow. Once heat transfer coefficient is obtained, 
the local Nusselt number can be found from the above equations. 

8.3.1 Direct measurements of the heat transfer for air flow 
The heat transfer experiments have been performed with air flow in a channel with channel 
height of 37 μm. The velocity of air flow is controlled by mass flow controller and is 
assumed in the laminar regime where the Re from 203 to 1006. The thermal conductivity of 
the air used in the Nusselt number is evaluated at the mean bulk temperature, i.e. an 
average of the bulk temperature of the flow at the inlet and the outlet of the channel. As 
shown in Figure 39 (a), the heat flux is varied from 5413 to 21652 W/m2 and the Reynolds 
number is kept at 500. The Nusselt numbers in the micro-channel with channel height at 37 
μm is significantly higher than that of theoretical prediction by the parallel plates channel 
(Rohsenow et al., 1985), and become closer as the heat flux on the wall decreases. For the 
case of heat flux equal or lower than 9623 W/m2, all the Nusselt number results collapse into 
a single line, as shown in Figure 39 (b), in the downstream of the channel where flow has 
become fully developed. The Nusselt number results collapsing into a single curve in the 
fully developed region agrees with theoretical results for prediction of large scale channel 
except that the Nusselt number is higher. This indicates that other effects, such as property 
variation with temperature, compressibility of flow, should be taken into account in order to 
obtain a good correlation of the heat transfer data. 

8.3.2 Correction for the bulk temperature 
The reason for this deviation may be partially attributed to property variation, such as 
compressible gas flow and leads to increase in the heat transfer. In order to account for the 
compressibility of the gas which can expand and reduce the kinetic energy of the flow, and 
change the bulk temperature of the flow, the theoretical calculation equation for the bulk 
temperature should be re-derived from concept of energy balance, as follows: 

 

2 2
2 1

2 1( ) ( )
2 2

U U
dq m e e= − + −$ $  (8-31) 

where e is enthalpy and the subscript indicates properties at different locations. For a 
differential control volume, the above equation can be written as: 
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Fig. 39. Experimental results for local Nusselt number distributions under (a) different 
heating flux conditions and (b) different Reynolds number. 
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2

( )
2

U
dq mde d= +$ $  (8-32) 

where w hdq q Dπ= $ , and pde c dT= , re-arranging the above equation, one obtains 

 

2

( )
2b w h

p p

U
ddT q D
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π
= −

$
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 (8-33) 

To integrate above equation from the entrance to the desired location, x, in the channel, one 
can obtain the bulk temperature of the flow as follows: 

 

2 2 1
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2 2

w h x i

b i

p p

q D U U
T T x
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π
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 (8-34) 

From the continuity equation, 

 1 1 1 2 2 2A U A Uρ ρ=  (8-35) 

The bulk temperature can be re-arranged as follows: 
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 (8-36) 

Since the current micro-channel is actually fabricated by very low thermal conductivity 
materials, the channel wall can be considered as well insulated. Without heat transfer into 
the channel, the gas flow inside the channel can be assumed to be undergoing isentropic 
process. For the case when a desired heat flux is imposed on the bottom wall, the gas is 
assumed under polytropic process and the pressure density relationship can be written as 
follows: 

 .
n

p
cons

ρ
=  (8-37) 

where n is a constant and is determined from the heating condition on the wall of the 
channel. Therefore, the density in Eq. (8-36) can be replaced by the local pressure as follows: 

 

22
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q D U p
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π ⎡ ⎤
⎢ ⎥= + − −⎢ ⎥
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$

$
 (8-38) 

8.3.3 Heat transfer data 
From the local pressures measured by current pressure sensors along the micro-channel, the 

bulk temperature can be re-calculated from the above equation. Therefore, the local Nusselt 
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numbers along the channel can be obtained and are presented in Figure 40 for different 

Reynolds number conditions. All the Nusselt number results collapse into a single curve in 

the fully developed region, as shown in Figure 40 (a) for different heat flux conditions. 

Again, for the case of heat flux at 9623 W/m2 the Nusselt numbers at different Reynolds 

numbers also collapse into a single curve in the fully developed region, as shown in Figure 

40 (b), but the curve is slightly lower than the prediction in large scale channel. Theoretical 

calculation for the heat transfer in large scale rectangular channel at different aspect ratios in 

the fully developed region has been performed and reported (Incropera et al., 2007). It is 

found that in large scale channel the Nusselt number is 4.55 for rectangular channel with 

aspect ratio of 1:10, but is 5.38 for ideal parallel plate channel. In fact, the current micro-

channel is not an ideal parallel plates channel and is a channel with aspect ratio of 1:13. 

Therefore, the lower Nusselt numbers of experimental results in the current channel than 

the prediction for parallel plates channel is expected and is attributed to the effect of aspect 

ratio. 

In order to compare the heat transfer in the entrance region, the flow is assumed to be 

hydrodynamically fully developed before entering into the channel and the problem 

becomes a thermal entry length problem because the hydrodynamic entry length is very 

short as defined as Eq. (8-6). In the thermal entry length region, the heat transfer process can 

be correlated in terms of the inverse Graetz number, where 

 
RePr

z

h

G
x

D

=  (8-39) 

The thermal entry length in the large scale tube can be usually expressed as (Incropera et al., 

2007),  

 1 ~ 0.05Gz−  (8-40) 

This expression or the entry length is found at the point when the Nusselt number results 

approach a constant value. From our heat transfer data, as shown in Figure 41, the entry 

length in the current micro-channel can be found and expressed as, 
 

 1 ~ 0.023Gz−  (8-41) 
 

It appears that the current heat transfer data does not have the same trend as in the large 

scale tube. This is attributed to the fact that the current micro-channel is not an ideal parallel 

plate channel. The correlation equation for parallel plates channel in the entry region (Naito, 

1984) can be expressed as follows: 
 

1 2 1 2 3 21 20.461043 (1 6.35257 33.4079 419.158 1537.84 )xNu Gz Gz Gz Gz Gz− −− −= + − + −  (8-42) 

 

Comparison of the correlation equation for the local Nusselt numbers between the 

prediction for large scale channel and the experimental data for micro-channel with a 

channel height of 37 μm is made in Figure 41. The agreement in entrance region is very good 

except in the fully develop region the current data is slightly low due to the aspect ratio 

effect. 
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Fig. 40. Re-calculated results for local Nusselt number distributions under (a) different 
heating flux conditions and (b) different Reynolds number. 
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Fig. 41. Comparison of the local Nusselt numbers between the prediction for large scale 
channel and the experimental data. 

Since some of the heat transfer data reported in the literature is the average heat transfer 

coefficient or the average Nusselt number, comparison with these data can be made when 

the average Nusselt number is defined as follows: 
 

 
0

1 x

ave bNu Nu dx
x

= ∫  (8-43) 

 

The average Nusselt numbers in the current micro-channel are obtained in the range of 

laminar flow and compared, as shown in Figure 42, with the correlation predicted by Naito 

for air flow in large scale parallel plates channel. The average Nusselt number is very close, 

but smaller than the correlation obtained by Naito. This is attributed to the effect of aspect 

ratio. The result is of interest to compare current heat transfer data with the results of others 

in micro or large scale channel. To avoid influence of EDL in liquid flow, comparison is 

limited to air flow in channels. In general, when Re > 2300, the flow inside channel becomes 

turbulent. The average Nusselt number for Re > 2300 is much larger than for Re < 2300 

(Morini, 2004; Incropera et al., 2007). For large scale channel, the Nusselt number in the two 

parallel plates is, in general, greater than that in circular tube (Incropera et al., 2007). This is 

indicated in Figure 43 where the average Nusselt number of the numerical results obtained 

by Naito and experimental results obtained by this study for two parallel plates, and is 

higher than the correlation obtained by Hausen for circular tube. The heat transfer 

correlations obtained by Choi (1991) is for air flow in mcirotubes. Their data is much smaller 

than the correlation of Hausen. The much lower value of Nusselt number and its large 
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increase with Reynolds number in Choi’s data was attributed to the streamwise conduction 

of heat along the micro-tube. The micro-tubes used in the past were made of stainless steel 

which is convenient for electric heating, and is expected to cause large streamwise 

conduction of heat in the finite thickness of the tube since the thermal conductivity of 

stainless steel is relatively high and is in the range from 13 to 15 W/mK depending upon the 

types of the steel used. However, the streamwise conduction of heat along the current 

micro-channel wall has been minimized due to the use of a thick layer of epoxy which has a 

very low thermal conductivity. In addition, wall roughness in the micro-tubes of Choi is 

expected large enough which may result the discrepancy. However, the roughness of their 

micro-tubes is not reported. When one goes into turbulent flow region, the heat transfer data 

from different work in micro-channel scatters very much, but are all higher than those in 

large scale channel (Wu & Little, 1983; Yu et al., 1995; Morini, 2004; Kays et al., 2005). It is 

noted that data from both the work of Dittus-Boelter and Gnielinski (Rohsenow et al., 1985) 

is for air flow in large scale tubes. The higher heat transfer data in micro-channel can be 

attributed to wall roughness effect in the micro-tubes. It has been realized (Kays et al., 2005; 

Incropera et al., 2007) that wall roughness can significantly enhance turbulent heat transfer 

in the large scale tube. Thus, wall roughness is expected to significantly enhance turbulent 

heat transfer in micro-channel. Unfortunately, wall roughness on each of the mcirotube wall 

was not reported and was expected to be very high in the micro stainless steel tubes if no 

special treatment on the surface is provided. 
 

 

 
 

Fig. 42. Comparison of the average Nusselt numbers in the current micro-channel with the 
correlation predicted by Naito for air flow in large scale parallel plates channel. 
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Fig. 43. Comparison of average Nusselt numbers between the current work and published 
data. 
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