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1. Introduction     

Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic diseases 
characterized by high blood glucose concentrations resulting from defects in insulin 
secretion, insulin action or both [American Diabetes Association, 2008a]. Diabetes has been 
classified into two major categories, namely, type 1 and type 2 diabetes. Type 1 diabetes, 
which accounts for only 5-10% of those with diabetes, is caused by the cell-mediated 
autoimmune destruction of the insulin producing β-cells in the pancreas leading to absolute 
insulin deficiency. On the other hand, type 2 diabetes is a more prevalent category (i.e. 
accounts for ~90-95% of those with diabetes) and is a combination of resistance to insulin 
action and an inadequate compensatory insulin secretion. The chronic hypergycemia of 
diabetes is associated with long-term microvascular (diabetic neuropathy, nephropathy and 
retinopathy) and macrovascular (coronary artery disease, peripheral arterial disease, and 
stroke) complications. 
Diabetes treatment requires the control of clinical and non-clinical variables affecting the 
blood glucose metabolism [American Diabetes Association, 2008b]. It is widely recognized 
that the tight glycemic control can prevent or reduce the progress of many long-term 
complications of diabetes. However, a major limiting factor in the glycemic management of 
type 1 and insulin treated type 2 diabetes is hypoglycemia, which is the condition where the 
blood glucose is much lower than normal levels. Thus, for most patients with type 1 
diabetes, either using multiple insulin injections or insulin pump therapy, self-monitoring of 
blood glucose should be carried out three or more times a day, whereas, for patients using 
less frequent insulin injections or non-insulin therapies, the self-monitoring of blood glucose 
could be useful in achieving their glycemic targets. Recently, continuous glucose monitoring 
(CGM) systems have been developed which provide many significant benefits in diabetes 
management, especially for those patients with hypoglycaemia unawareness. Moreover, 
diabetes control further necessitates the monitoring and analysis of patient’s contextual 
information, such as medication, diet, physical activity and his overall lifestyle. For instance, 
in type 1 diabetic patients, exercise can cause hypoglycemia in the case where the 
medication dose or the carbohydrate consumption is not altered. 
In addition to the general guidelines that the patient follows during his daily life, several 
diabetes management systems have been proposed to further assist the patient in the self-
management of the disease. One of the most essential components of a diabetes 
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management system concerns the predictive modelling of the glucose metabolism. It is 
evident that the prediction of glucose concentrations could facilitate the appropriate patient 
reaction in crucial situations such as hypoglycemia. Thus, several recent studies have 
considered advanced data-driven techniques for developing accurate predictive models of 
glucose metabolism. Data-driven techniques mainly depend on the input – output data from 
experiments and do not require any knowledge about the physiology of diabetes. These 
techniques exploit the information hidden in the data (e.g. medication, diet, physical 
activity, glucose measurements) in order to learn the glucose response to various stimuli. In 
this direction, the appearance of advanced continuous glucose sensing technologies as well 
as of activity monitoring devices could significantly enhance the prediction of glucose. CGM 
technology is used to aid in modelling the real-time trends in glucose data. However, the 
CGM systems do not measure the blood glucose but the glucose in the subcutaneous (s.c.) 
tissues. Finally, given the complexity of the glucoregulatory system, the data-driven 
techniques are considered to be beneficial compared to the contrary approach employing 
mathematical simulation models. 
The scope of this chapter is (a) to present to the reader the current state of the art in 
predictive models of glucose metabolism in diabetes and (b) to describe a new approach to 
the problem by employing machine learning techniques using free – living data. The chapter 
is organised as follows. In Section 2, the related work in the field of modelling the glucose 
metabolism in diabetic patients is reviewed thoroughly. In Section 3, the proposed glucose 
prediction method and the derived results are presented. Finally, in Section 4, we discuss 
the achievements in the field and compare all relative works by identifying their advantages 
and disadvantages. 

2. State of the art in glucose prediction    

Several studies have been presented in the literature aiming at the prediction of glucose in 
diabetic patients. The reported methods can be divided into two major groups. The first one 
includes mathematical models that simulate the underlying physiology of the glucose – 
insulin regulatory system. Compartmental models, which are a class of linear dynamic 
models, have been widely used for studying various aspects of normal physiology and the 
pathophysiology of diabetes [Carson & Cobelli, 2001; Makroglou et al., 2006]. Recently, new 
important quantitative knowledge has been gained on glucose metabolism and control by 
insulin (e.g., the EGP profile during a meal, the hepatic glucose production, the muscle 
glucose utilization, the kinetics of regular and slowly acting insulin after a s.c. injection), 
which has allowed the development of new and more accurate simulation models [Dalla 
Man et al., 2007]. Nevertheless, they are still limited because of the inherent complexity of 
the glucose – insulin system. On the other hand, the second group of methods provides 
data-driven models which are able to predict the glucose concentration based only on 
existing input-output data. Several specific methods are available for formulating such data 
models, including methods of machine learning and time series analysis. In what follows, 
we will review the relevant literature on data-driven models of glucose metabolism. 

2.1 Machine learning methods 

The prediction of the glucose time series as a function of the input variables can be 
considered as a regression problem with a time component. The fact that the relationship 
between input variables (i.e. medication, diet, physical activity, stress etc.) and glucose 
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levels is nonlinear, dynamic, interactive and patient-specific [Tresp et al., 1999], necessitates 
the application of non-linear regression models such as artificial neural networks, support 
vector regression and Gaussian processes. Different types of neural networks have been 
considered in modelling the blood glucose metabolism, such as multilayer perceptron 
(MLP) [Kok, 2004; Zitar & Al-Labali, 2005; Quchani & Tahami, 2007], radial basis function 
(RBF) [Baghdadi & Nasrabadi, 2007], wavelet [Zainuddin et al., 2009], time series 
convolution [Tresp et al., 1999] and recurrent neural networks (RNN) [Tresp et al., 1999; 
Mougiakakou et al., 2006]. Additionally, Gaussian processes have derived prominent results 
regarding glucose prediction [Valletta et al., 2009]. 
The predictive performance of MLP neural network has been compared with that of Elman 
RNN in [Quchani & Tahami, 2007]. The aim of this study was the prediction of the blood 
glucose concentration before lunch based on the following features: (a) dosage of short-
acting insulin, (b) dosage of long-acting insulin, (c) amount of carbohydrates, (d) stress level 
(from 1 to 4 discrete levels), (d) exercise level (from 1 - 4), (e) blood glucose concentration 
before breakfast and (f) period of time between two consecutive measurements of glucose. 
The data were obtained from 10 type 1 diabetic patients treated by a conventional s.c. 
insulin therapeutic regimen. The results showed that the Elman RNN outperform the MLP 
network to a significant extent (mean absolute error 10.4 mg/dl vs. 24.15 mg/dl). 
An interesting approach for the prediction of glucose in type 1 diabetes was followed by 
[Kok, 2004; Baghdadi & Nasrabadi, 2007; Zainuddin et al., 2009] in which the day is split 
into four intervals (i.e. morning, afternoon, evening, night) and a different model is built for 
each one based on the fact that the blood glucose concentrations for these intervals are 
uncorrelated. The predictions of glucose at the end of each interval were made using 19 
different features regarding dosage of short-acting insulin, dosage of long-acting insulin, 
past blood glucose measurements, amount of carbohydrates, exercise level and stress level. 
The only difference between the above mentioned works concerns the feature selection 
technique and the neural network that is employed. 
A number of prediction models specific to type 1 diabetes, including non-linear 
compartmental models, time series convolution neural networks and RNNs, were compared 
in [Tresp et al., 1999]. The combination of the RNNs with a linear error model gave the best 
results deriving a root mean squared error (RMSE) of 51 mg/dl. The inputs that were used 
for this model are the following: (a) dosage of short-acting insulin, (b) dosage of long-acting 
insulin, (c) amount of fast carbohydrates, (d) amount of intermediate carbohydrates, (e) 
amount of slow carbohydrates, (f) duration of regular exercise, (g) duration of intense 
exercise and (h) past blood glucose level estimates. One remarkable characteristic of this 
approach is that the effects of food, insulin and exercise on blood glucose were 
approximated by linear response functions. The efficiency of RNNs has been also 
demonstrated in [Mougiakakou et al., 2006] where CGM data were used for the prediction 
of the s.c. glucose concentration in type 1 diabetic patients. Similarly with Tresp et al., 
compartmental models found in the literature were employed to simulate the kinetics of 
insulin and the absorption of carbohydrates. They report an average RMSE of 24.08 mg/dl 
in case where the teacher forcing learning algorithm was applied. 
The Gaussian processes have also been used successfully for the prediction of glucose. More 
specifically, a Gaussian processes prediction model for type 1 diabetic patients was 
developed in [Valletta et al., 2009] based on continuous glucose measurements, physical 
activity information as well as information regarding food intake and insulin injections. The 
prediction model was evaluated on data collected from 18 patients with type 1 diabetes. A 
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CGM sensor was used to gather the patient’s glucose concentration every five minutes. 
Additionally, physical activity information was collected by a multi-sensor body monitor, 
the so-called SenseWear armband activity monitor (BodyMedia Inc.). Given the dynamic 
effects of food, insulin and physical activity on glucose levels, the authors introduced time 
lag variables for each input that were determined by simulations. Although no quantitative 
results were provided, it seems that this method can predict glucose in the short-term 
reasonably well and is able to follow the trends in glucose time series. 

2.2 Time series analysis 

Time series analysis provides methods that can be used to identify systematic patterns in 
time series data (such as trends and seasonalities) as well as methods for time series 
modelling and prediction (i.e. system identification). The autocorrelation analysis of CGM 
time series [Bremer and Gough, 1999] made clear that glucose dynamics have a detectable 
structure and, thus, the glucose can be predicted by exploiting its recent history. Since that 
work, several studies have considered autoregressive (AR) prediction models based on 
CGM data [Sparacino et al., 2007; Gani et al., 2009; Gani et al., 2010]. In addition, several 
multivariate time series models have been developed that are enhanced with external 
information regarding insulin, food and physical activity [Stahl et al., 2009; Rollins et al., 
2010]. However, these approaches should take into account the non-stationary behaviour of 
the glucose time series. 
Two simple prediction methods have been applied for the first time to real CGM time series, 
obtained from 28 type 1 diabetic patients over a period of 48 hours, in [Sparacino et al., 
2007]. In particular, the CGM time series was described by either a first order polynomial 
model or a first order AR model in which the parameters were dynamically identified 
through weighted linear least squares. In order to remove the high frequency noise from the 
raw CGM signals, Sparacino et al. applied a low-pass first-order Butterworth filter. For a 30 
min prediction length with weight equal to 0.8, the AR model produces a median RMSE of 
20.32 mg/dl and detects the positive and negative trends with an average time lag of 3.79 
min and 10.06 min, respectively. Overall, the relative performance of the polynomial and the 
autoregressive models is quite similar during negative trends; in contrast, the autoregressive 
model performs better during positive trends. In addition, AR models of higher order were 
found to be unstable and AR models with fixed parameters to yield unacceptable prediction 
lags with delays equal to the prediction length. 
The use of CGM data and AR models for the prediction of glucose has been also suggested 
by Gani et al. [Gani et al., 2009]. They have proposed an AR model of an order of 30 with 
fixed coefficients which successfully predicts the s.c. glucose concentration of patients with 
type 1 diabetes. The s.c. glucose measurements were collected by 9 patients for 
approximately 5 days. Similarly with Sparacino et al., the CGM data were smoothed by 
applying the Tikhonov regularization approach. The construction of AR models through 
regularized least squares resulted in AR coefficients that reflect the temporal dependencies 
in the glucose signal, and in stable, accurate predictions. In particular, the AR model is able 
to yield 30 min glucose concentration predictions with an average RMSE of 1.8 mg/dl and a 
negligible prediction time lag of 0.2 min, and 60 min glucose concentration predictions with 
an average RMSE of 12.6  mg/dl and average prediction lag of 12.3 min. Gani et al. argue 
that AR models of low order, such that proposed by Sparacino et al., can produce acceptable 
predictions, but they introduce significant delays between predicted and measured values, 
because they are not sufficient to capture the temporal variations of the glucose signal. In 
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addition, they confirm the instability of the AR models of order higher than one, which is 
also reported by Sparacino et al., in the case where the AR coefficients are not regularized. 
In a subsequent work [Gani et al., 2010], the authors showed that their method results in AR 
models in which the coefficients do not vary significantly among different individuals, 
suggesting the feasibility of obtaining individual-independent predictive models. For this 
purpose, they employed data from three separate studies, involving patients with both type 
1 and type 2 diabetes, and utilizing three different CGM devices. The results of this 
investigation were attributed to the fact that the features of the glucose signals in the 
frequency domain were found common among patients. Considering that the AR models 
represent the signal’s frequency information and are invariant with respect to the signal’s 
amplitude and phase, the development of similar models was predictable. 
Many researchers have incorporated in their time series models the influence of external 

input variables. Stahl et al. [Stahl et al., 2009] investigated the ability of a variety of linear 

and non-linear system identification methods (i.e. autoregressive moving average (ARMA) 

linear regression, autoregressive moving average with exogenous input (ARMAX) linear 

regression, Wiener model identification, subspace-based identification) to predict the blood 

glucose concentration for the next two hours with a reasonable accuracy. This target 

accuracy was defined as a standard deviation of the prediction error less than 18 mg/dl in 

the 95% of the cases. The identified models were fitted to real data collected during the first 

six months of a newly diagnosed type 1 diabetic patient who used a traditional blood 

glucose meter. For modelling purposes, the blood glucose samples were interpolated using 

a least-squares spline method to obtain a sampling rate of 15 min. In addition, the 

absorption of injected insulin from the s.c. tissues as well as the digestion and absorption of 

carbohydrates were described using compartmental models and proposed models found in 

the literature. The linear models (ARMAX, subspace-based and general transfer function 

models) were proved insufficient to predict the glucose responses. Therefore, a log-

normalized linear model based on subspace-based identification and a GTFM-Wiener model 

was employed; nevertheless, the prediction error was rather improved. 

Recently, a causation modelling methodology with the ability to infer the s.c. glucose 

concentration using an extensive set of highly correlated non-invasive input variables has 

been developed [Rollins et al., 2010]. More specifically, the inputs concerned food (i.e. 

carbohydrates, fats, and proteins), physical activity and stress. This study was initiated by 

the requirement to determine the independent, dynamic contribution of each input to the 

overall dynamics of glucose response. For this reason, the predicted glucose was completely 

determined from measured input data only and previously measured glucose levels did not 

used in its inference. Accordingly, the s.c glucose concentration was modelled though a 

block-oriented Wiener network that uses non-linear, in the parameters’ space, response 

surfaces. The prediction method was evaluated using real data of a type 2 diabetic patient 

collected under free-living conditions over a period of 25 consecutive days. For 5 min 

predictions, they report an average absolute error of 13.3 mg/dl and a correlation coefficient 

of 0.7, and they argue that one critical reason for not being able to achieve better results is 

probably due to lack of information about insulin. However, one important characteristic of 

this approach is that its predictive accuracy is not limited by the size of the prediction 

horizon, since it does not depend on past glucose measurements. Moreover, the analysis of 

the independent dynamic response of each input revealed significant conclusions regarding 

their effect on dynamic glucose behaviour. 
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3. The proposed method     

Prediction of glucose can be used to provide immediate feedback to the diabetic patients 

about how the glucose is affected by their lifestyle and treatment. In addition, it offers the 

means of making real-time suggestions regarding modifications to diet and activity related 

profile as well as diabetes medications in order to avoid critical events. This study 

investigates the ability to model the glucose metabolism of type 1 diabetic patients using a 

multi-parametric set of data recorded under free-living conditions. The proposed method 

considers the effect of diet, medication, and physical activity on glucose control with the aim 

to provide accurate glucose predictions. 

3.1 Materials and methods 
3.1.1 Materials 

Seven patients with type 1 diabetes participated in this study who were treated with insulin 
injections (insulin doses and types were different for each patient). The observation period 
of the study was on average 10 days (range from 5 – 14 days). All patients wore the 
Guardian Real-Time CGM system (Medtronic Minimed) that monitors the s.c. glucose 
concentrations every 5 min. The glucose sensor calibration requires at least four blood 
glucose measurements to be made daily using a standard blood glucose meter. In addition, 
the glucose sensors have to be replaced every 3 days. The patients were also equipped with 
the SenseWear body monitoring system (BodyMedia Inc.) which monitors their daily 
physical activities. The SenseWear armband collects data using five sensors: heat flux, skin 
temperature, near body temperature, galvanic skin response and a two axis accelerometer. 
Finally, information regarding the food intake (i.e. type of food, serving sizes and time) and 
the insulin injections (type, dose and time) was recorded by the patients using a specially 
designed paper diary. The food composition (i.e. calories, carbohydrates, fat etc.) was 
postanalyzed by a dietician. 

3.1.2 The method 

The method for the prediction of the s.c. glucose concentration is presented schematically in 

Figure 1. It comprises compartmental models of the glucose – insulin regulatory system and 

a predictive model of glucose. The compartmental models are used to simulate (a) the 

ingestion and absorption of carbohydrates (the Meal Model), (b) the absorption and the 

pharmacokinetics / pharmacodynamics of subcutaneously administered insulin (the Insulin 

Model) as well as (c) the impact of exercise on glucose - insulin metabolism (the Exercise 

Model). In addition, support vector machines for regression (SVR) are employed to provide 

individualized glucose predictions. The input variables of the proposed model include the 

rate of glucose appearance in plasma after a meal, Ra, the plasma insulin concentration, Ip, 

the s.c. glucose measurements, gl, as well as a set of physical activity related variables. As it 

can be seen from Figure 1, we assume two different approaches to investigate the physical 

activity’s effects on diabetes. In the first approach, the Metabolic Equivalent of Task (MET), 

the heat flux (hf) and the skin temperature (st) variables, which are recorded by the 

SenseWear armband, are used as inputs in the model. The second approach utilizes the 

alterations in circulating glucose and insulin concentrations (Gexer, Ie) during and shortly 

after exercise as computed by the Exercise Model. The main components of our method are 

presented in the following subsections. 
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Fig. 1. Schematic representation of the proposed method 

3.1.2.1 The insulin model 

The absorption of subcutaneously injected insulin is described by the pharmacokinetic 
model proposed in [Tarin et al., 2005]. This model describes the diffusion of insulin through 
the s.c. depot, the molecular dissociation of insulin (hexameric/dimeric) and the absorption 
of insulin into the bloodstream by the following nonlinear partial differential equations: 
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where ch, cd, cb are the hexameric, dimeric and bound insulin concentrations in the s.c. tissue, 
respectively, D is the diffusion constant, db is a non-dimensional factor that reduces the 
diffusion effect, P is the dimeric-to-hexameric association rate, Q is the corresponding 
equilibrium constant, κ is the proportional factor of disengagement of hexameric insulin 
from the bound state, ch,max is the maximum concentration of hexameric insulin and Bd is the 
absorption rate constant. The bound state in this model is a virtual state introduced to model 
the dynamics of long-acting insulin analogues e.g. Glargine. As can be observed from these 
equations, the diffusion process of insulin in the s.c. tissue is considered to be isotropic i.e. 
homogeneous and with rotational symmetry with respect to the origin (injection site). 
Additionally, it is assumed that only the dimeric form of insulin can be absorbed into the 
plasma with a rate proportional to its concentration. Hence, the exogenous insulin flow 
(U/min) into the bloodstream is given by: 

 ( ) ( )= ∫ , ,
sc

ex d d

V

I t B c t r dV  (4) 
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where Vsc is the complete s.c. volume. This model allows the description of all insulin 
formulations through the adequate selection of the parameters Q, D, Bd, k, ch,max, and db. 
However, the system of partial differential equations has no closed solution and therefore, a 
time and space discretization is implemented for the numerical calculation of the dimeric 
insulin concentration. 
To estimate the plasma insulin concentration, Ip (uU/ml), a compartmental modelling 
approach is used [Cobelli et al., 1982]. The model describes the concentration – time 
evolution of plasma insulin Ip, hepatic insulin Ih and interstitial insulin Ii after a s.c. injection 
and is given as follows: 

 
( ) ( ) ( ) ( )1 2 3 ,ex

p p h i
d

I t
I k I t k I t k I t

V
= − + +�  (5) 

where Vd is the plasma insulin distribution volume, and k1, k2, k3 are the rate constants of 

plasma, hepatic and interstitial insulin elimination, respectively. The input to this 

physiological model is the exogenous insulin flow, Iex(t), and the output is the plasma 

insulin concentration Ip. Figure 2(a) shows the exogenous insulin flow profile of Aspart and 

Glargine insulin injections resulting from the insulin therapy of Patient 4 over a time 

horizon of two days. It can be seen that the profile varies substantially depending on the 

injected insulin doses and formulations, i.e. insulin Glargine has a slower onset of action and 

a longer duration of action than Aspart insulin, whose activity peaks rapidly. The plasma 

insulin concentration of the combined effect of both insulin types is depicted in Figure 2(b). 

The long action of Glargine insulin, which resembles the basal insulin secretion of non-

diabetic individuals, as well as the effect of Aspart insulin, which is used for controlling the 

postprandial hyperglycemia, can be observed. 
 

 

Fig. 2. (a) Exogenous insulin flow of Patient 4 as computed by the insulin compartmental 
model, (b) Cummulative profile of plasma insulin (Aspart and Glargine) concentration of 
Patient 4 as computed by the insulin compartmental model 

3.1.2.2 The meal model 

The model by Lehmann and Deutch [Lehmann & Deutch, 1992] is used to describe the 

ingestion and absorption of carbohydrates intake. This model describes the rate of 

appearance of glucose in plasma on the assumption that the rate of gastric emptying is a 

trapezoidal function and that the intestinal glucose absorption follows first order linear 

kinetics. The amount of glucose in the gut, qgut, after the ingestion of a meal containing D 

grams of glucose equivalent carbohydrates is defined as: 
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 ( ) ( )= − +� ( ) , ,gut abs gut emptq t k q t G t D  (6) 

where kabs is the rate constant of intestinal absorption and Gempt (mg/min) is the gastric 
emptying function. 
The function Gempt is described by: 
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corresponds to the duration of the period for which the gastric emptying function is 
constant and maximum (Vmax), and Tasc, Tdes are the duration of rising up and dropping 
periods of Gempt, respectively. Then, the rate of appearance of glucose in plasma (mg/min) is 
given as: 

 ( ) ( ).a abs gutR t k q t=  (9) 

The values for the model parameters have been derived from [Lehmann & Deutch, 1992] 
and are assumed to be patient-independent. 

3.1.2.3 The exercise model 

The model used to derive the exercise-induced changes on glucose – insulin metabolism is 

based on a recent study of Roy & Parker [Roy & Parker, 2007]. In particular, we have 

developed an algorithm that extracts the most significant exercise events by analyzing the 

measurements provided by the SenseWear armband. Then, the physiological processes, 

which occur during an exercise event and at the recovery period, are simulated utilizing the 

model presented in [Roy & Parker, 2007]. This model describes the effect of exercise on the 

dynamics of glucose and insulin as follows: 

 ( ) ( )max
1 2 2 ,prod prodG a PVO t a G t= −�  (10) 

 ( ) ( )max
3 2 4 ,up upG a PVO t a G t= −�  (11) 

 ( ) ( )max
5 2 6 .e eI a PVO t a I t= −�  (12) 

The terms Gprod and Gup represent the rates (mg/min) of hepatic glucose production 
(glycogenolysis) and glucose uptake induced by exercise, respectively, while the Ie 
(uU/(ml.min)) denotes the rate of insulin removal from the circulatory system during and 
after exercise. In addition, although the corresponding equation is not given here, the rate of 
glycogenolysis during prolonged exercise decreases by a factor of Ggly due to the depletion 
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of glycogen stores in the liver. The dynamics of glycogenolysis are described in detail in 
[Roy & Parker, 2007]. The intensity of the exercise (intense walking) as recorded by the 
activity device over time for Patient 1 is shown in Figure 3(a) along with the computed 
metabolic response of the patient. More specifically, Figure 3(b) illustrates the glucose 
uptake rate (Gup) and the hepatic glucose production rate (Gprod - Ggly) during and after 
exercise, where it can be observed that the effects of exercise progressively attenuate during 
the recovery period. The rate of insulin removal from plasma (Ie), as shown in Figure 3(c), 
exhibits also similar behaviour. 

As shown in the equations (10-12), the exercise intensity is quantified by the percentage of 

the maximum oxygen consumption ( max
2PVO ). Since the SenseWear armband does not 

report the oxygen uptake (VO2) during exercise, the term max
2PVO  was calculated by: 

 max 2
2 max max

2 2

3.5
,

VO MET
PVO

VO VO
= =  (13) 

where max
2VO  is the maximal oxygen uptake and depends on patient’s age, gender and 

physical status. For each patient, the max
2VO   value was derived from reference tables.  

 

 

Fig. 3. The effects of an exercise event on metabolism of Patient 1. (a) Data from sensors, (b) 
Glucose uptake and production rate as computed by the exercise compartmental model, (c) 
Insulin removal rate as computed by the exercise compartmental model 

The implications of exercise in the glucose – insulin regulatory system are incorporated into 
the proposed method by introducing an additional input variable, the Gexer, which describes 
the blood glucose variation (mg/min) during exercise and at the recovery period: 

 ( ) .exer prod gly upG G G G= − −  (14) 

Accordingly, the insulin dynamics are modified by adding the term Ie in the equation (5), 
resulting in: 
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Regarding the parameters for the exercise model, they are obtained from [Roy & Parker, 2007].  

3.1.2.4 The glucose predictive model 

In this study, a support vector machine for regression [Smola & Scholkopf, 2003; Bishop, 

2006] is employed to predict the s.c. glucose concentrations. Let us consider that the training 

data set D comprises N input vectors x1, …, xN ( i dx R∈ ) with corresponding target glucose 

values t1, …, tN. In ε-SVR our goal is to find a linear model of the form: 

 ( ) ( ) ,Ty x w x bφ= +  (16) 

which must satisfy the following conditions: 

 ( ) ,n n
nt y x ε ξ≤ + +  (17) 

 ( ) ˆ .n n
nt y x ε ξ≤ − +  (18) 

The function ( )xφ  denotes a fixed feature-space transformation and w and b are the weights 

and bias parameters, respectively. The error function for ε-SVR is defined as: 

 ( ) 2

1

1ˆ ,
2

N

n n
n

C wξ ξ
=

+ +∑  (19) 

which must be minimized subject to the constraints ˆ, 0n nξ ξ ≥ , as well as (17) and (18). This 

can be achieved by introducing the Lagrange multipliers ˆ, 0n na a ≥   and  ˆ, 0n nμ μ ≥   and by 

minimizing the Lagrangian:  

 

( ) ( )

( ) ( )

2

1 1

1 1

1ˆ ˆˆ
2

ˆˆ    .

N N

n n n n n n
n n

N N

n n n n n n n n
n n

L C w

y t y t

ξ ξ μ ξ μ ξ

α ε ξ α ε ξ

= =

= =

= + + − +

− + + + − + + +

∑ ∑

∑ ∑
 (20) 

Solving the optimization problem, it is found that the predictions for the new inputs can be 

made using: 

 ( ) ( )
1

ˆ( ) , ,
N

n
n n

n

y x a a k x x b
=

= − +∑  (21) 

where ( ) ( ) ( ), ' '
T

k x x x xφ φ=  is the kernel function. From the corresponding Karush-Kuhn-

Tucker (KKT) conditions, which state that at the solution the product of the dual variables 

and the constraints must vanish, results that ˆ 0n na a = . Therefore, the SVR provides a sparse 

solution, since the only terms that have to be evaluated in the predictive model are those 

which involve the support vectors, i.e. the data in the training set for which exactly one of 

the Lagrange multipliers is greater than zero. 
To be more specific, given the input x, the prediction of the s.c. glucose concentration, y, at 

the time t+l, assuming that t is the current time, is given by: 
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 ( )1( ) , , .t l t l dy x y x x+ += …  (22) 

where ( ) ( ), , ,i i i ix x t x t n t= − Δ…   with i =1,…, d, denotes the inputs in the model, in tΔ   is 

the time lag for the input xi, tΔ  is the sampling time and l is the prediction length. 

3.2 Model training and evaluation 

The proposed method is evaluated using the dataset obtained from seven type 1 diabetic 

patients. The SVR is trained individually for each patient and a V-fold cross validation 
algorithm is used to avoid over-fitting. More specifically, V-fold cross validation splits the 
dataset D in k equal parts, where k is defined as the total number of days for which the 

patient is monitored. Thus, the value of V coincides with the value of k and each fold 
contains the data of the ith day, with i =1,…, k. The SVR is built using a linear kernel function 
and the parameter ε in the ε-insensitive loss function is set equal to 0.001. The regularization 
parameter C is optimized using a grid search method. Similarly, V-fold cross validation is 

used by the search method to calculate the optimal values for that parameter. 
Time lags of 30 min are considered for the Ip, Ra and gl input variables, while the time lag for 
the exercise-related inputs (i.e. MET, st, hf and Gexer) is assumed to be 3 hours. The sampling 
time, Δt, was 5 min for all the above cases. Predictions are performed for four different 
values of prediction length l, i.e. 15, 30, 60 and 120 min. 
The predictive accuracy of the proposed method is assessed by calculating the RMSE, and 
the correlation coefficient, r, for each patient’s test set. Furthermore, the Clarke’s Error Grid 
Analysis (EGA) [Kovatchev et al., 2004; Clarke, 2005] is used to assess the clinical 
significance of the errors between the predicted and the measured s.c. glucose 

concentrations. The Clarke’s EGA method uses a Cartesian diagram, in which the predicted 
values are displayed on the y-axis, whereas the values from glucose sensor are displayed on 
the x-axis. This diagram is subdivided into 5 zones: A, B, C, D and E. The points that fall 

within zones A and B represent sufficiently accurate or acceptable glucose results, points in 
zone C may result in unnecessary corrections, points in zone D could lead to incorrect 
treatments, and points in zone E represent erroneous treatment. 

3.3 Results 

The RMSE (mg/dl) and r values obtained from the first approach are reported in Table 1. It 
can be observed that the short-term glucose predictions (i.e. for 15 and 30 min) present low 
error and high degree of correlation with the real glucose profiles. More specifically, the 
average value of RMSE for 15 min and 30 min predictions is equal to 9.60 mg/dl and 16.23 
mg/dl, respectively. In both cases, the predicted glucose concentrations exhibit a strong 
correlation with the measured values (i.e. 0.95 and 0.88). However, as prediction length 
increases (i.e. for 60 and 120 min), the performance of the proposed method significantly 
decreases. Concerning the 60 min predictions, the derived results are still adequate 
compared to the previous values, whereas, the accuracy of the 120 min predictions is 
considerably lower. In addition, the predictions for some patients (i.e. Patient 2, 3, 5, 6, 7) are 
found systematically more accurate, in terms of RMSE, than for Patient 1 and Patient 4 
which most probably resulted from better model training due to the longer follow-up 
period; nevertheless, slight differences are observed in the associated r values. For the 
second approach, the derived results, as it is shown in Table 2, are almost equal to those for 
the first approach. 
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Prediction Length 

15 min 30 min 60 min 120 min No. of 
Patient RMSE 

(mg/dl)
r 

RMSE 
(mg/dl)

r 
RMSE 

(mg/dl)
r 

RMSE 
(mg/dl) 

r 

Patient 1 12.57 0.96 21.36 0.90 33.06 0.75 62.29 0.28 

Patient 2 9.69 0.95 16.32 0.87 24.52 0.68 31.11 0.37 

Patient 3 9.33 0.95 15.85 0.87 25.77 0.67 33.91 0.46 

Patient 4 11.92 0.92 19.24 0.81 29.06 0.62 39.25 0.40 

Patient 5 6.45 0.91 11.04 0.91 17.89 0.70 26.22 0.48 

Patient 6 10.85 0.95 18.38 0.86 24.82 0.72 34.64 0.49 

Patient 7 6.42 0.98 11.45 0.93 18.84 0.82 23.48 0.70 

Average 
(SD) 

9.60 
(2.45) 

0.95 
(0.02) 

16.23 
(3.87) 

0.88 
(0.04) 

24.85 
(5.33) 

0.71 
(0.06) 

35.84 
(12.81) 

0.45 
(0.13) 

Table 1. Prediction results obtained from the first approach (exercise described only by 
sensor data) 

Prediction Length 

15 min 30 min 60 min 120 min No. of 
Patient RMSE 

(mg/dl)
r 

RMSE 
(mg/dl)

r 
RMSE 

(mg/dl)
r 

RMSE 
(mg/dl) 

r 

Patient 1 12.07 0.96 19.93 0.91 30.99 0.80 55.43 0.46 

Patient 2 9.58 0.96 15.91 0.88 24.06 0.69 31.24 0.42 

Patient 3 9.28 0.95 15.59 0.87 25.35 0.69 33.82 0.44 

Patient 4 11.73 0.92 18.97 0.82 28.70 0.63 37.99 0.35 

Patient 5 6.50 0.90 11.09 0.91 16.78 0.65 23.80 0.47 

Patient 6 11.18 0.95 18.95 0.86 26.58 0.70 37.18 0.46 

Patient 7 6.20 0.98 11.69 0.94 21.19 0.80 33.60 0.51 

Average 
(SD) 

9.51 
(2.39) 

0.95 
(0.03) 

16.02 
(3.55) 

0.88 
(0.04) 

24.81 
(4.74) 

0.71 
(0.07) 

36.15 
(9.70) 

0.44 
(0.05) 

Table 2. Prediction results obtained from the second approach (exercise described by 
compartmental modelling) 

Clarke’s EGA clearly shows that the vast majority of the predicted-measured glucose points 
lay in zones A and B, which indicate clinically acceptable results. On the other hand, a small 
amount of points belong to the other zones (i.e. C, D and E), which indicate potentially 
dangerous overestimation or underestimation of the actual values. Figure 4 represents the 
Clarke’s EGA plots for Patient 5, in the case where the first approach is followed. In this 
figure, it is shown that as the prediction length increases, the plots become more spread, as 
expected. Tables 3 and 4 report the average results obtained from the two different 
approaches, respectively. We observe that nearly all the points lay in zones A and B, even if 
a higher prediction length is considered. Occasional points belong to the C zone, whereas 
only a few points belong to the D zone. Finally, no points belong to the erroneous E zone. In 
addition, no differences are evident between the results obtained from the two approaches. 
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Fig. 4. Clarke’s EGA diagrams for Patient 5 based on the first approach. (a) – (d) correspond 
to different prediction lengths (i.e. 15, 30, 60, 120 min) 
 

Prediction Length 
Zone 

15 min 30 min 60 min 120 min

Zone A 98.86 % 92.54 % 80.02 % 62.91 % 

Zone B 1.08 % 6.97 % 18.49 % 33.78 % 

Zone C 0.00 % 0.02 % 0.07 % 0.37 % 

Zone D 0.06 % 0.47 % 1.42 % 2.94 % 

Zone E 0.00 % 0.00 % 0.00 % 0.00 % 

Table 3. Average percentages of points falling into the different zones of the Clarke’s EGA 
for the first approach (exercise described only by sensor data) 
 

Prediction Length 
Zone 

15 min 30 min 60 min 120 min

Zone A 98.58 % 92.54 % 79.96 % 60.10 % 

Zone B 1.35 % 6.89 % 18.33 % 36.84 % 

Zone C 0.00 % 0.02 % 0.09 % 0.20 % 

Zone D 0.07 % 0.55 % 1.62 % 2.86 % 

Zone E 0.00 % 0.00 % 0.00 % 0.00 % 

Table 4. Average percentages of points falling into the different zones of the Clarke’s EGA 
for the second approach (exercise described by compartmental modelling) 
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4. Discussion 

Glucose metabolism is a non-linear, dynamic system, the behaviour of which has been 
extensively modelled by data-driven methods. Table 5 provides a summary of most of the 
studies on glucose prediction in diabetes reported in the literature, along with a short 
description of methods used, input variables and patient types. 
During the last decade, the application of machine learning methods in predictive modelling 
of glucose concentration in patients with diabetes has gained much attention. Simple feed 
forward neural networks [Kok, 2004; Zitar & Al-Labali, 2005; Quchani & Tahami, 2007; 
Baghdadi & Nasrabadi, 2007] as well as more sophisticated types such as recurrent [Tresp et 
al., 1999; Mougiakakou et al., 2006] and wavelet neural networks [Zainuddin et al., 2009] 
have been utilised up to now for the prediction of the glucose concentration in diabetic 
patients. The results obtained in these works show that reasonably accurate glucose 
predictions can be made; however, a direct comparison between them is not feasible since 
they refer to different prediction horizons. Furthermore, the performance of these methods 
highly depends on the input which is used. Firstly, the fact that the predictions are mainly 
based on glucose measurements recorded 3-4 times per day inevitably affects the output of 
the prediction. Nevertheless, the development of glucose sensors introduced the utilization 
of CGM data for the prediction of glucose which was a breakthrough in the field 
[Mougiakakou et al., 2006]. In addition, in most of these studies the physical activity is 
qualitatively described, except for the work of Valletta et al. [Valletta et al., 2009] which 
employs Gaussian processes to model the glucose variations in response to real activity data 
recorded continuously throughout the day. Given that activity plays an important role in 
glucose regulation, this consideration constitutes a substantial limitation. 
The prediction of glucose in diabetic patients has also been addressed through time series 
analysis. The fact that glucose can be predicted by exploiting the recent history of CGM data 
was initially suggested by Bremer and Gough [Bremer and Gough, 1999]. This was further 
demonstrated by the findings of three subsequent studies [Sparacino et al., 2007; Gani et al., 
2009; Gani et al., 2010] showing that AR models can provide stable, accurate predictions. 
One advantage of AR models consists in the interpretability of the AR coefficients, which 
describe the temporal dependencies in the glucose signal. In addition to this, the estimation 
of the model parameters involves a convex optimization problem with a unique minimum. 
Apart from AR models, linear and non-linear time series models with external input 
variables have also been developed [Stahl et al., 2009; Rollins et al., 2010]. It is noteworthy 
that in the study of Rollins et al. [Rollins et al., 2010] employing a block-orient Wiener 
network, real data from an activity device are utilised to quantify the effect of physical 
activity. Equally important, the authors made an attempt to examine the individual dynamic 
characteristics of each input regarding food, insulin, and activity in order to interpret their 
effects on glucose behaviour. However, much of modern theory of time series is concerned 
with stationary time series and, therefore, it is needed to establish some conditions, e.g. 
CGM data must be a first and second order stationary process. 
The problem of glucose prediction in diabetic patients from a multi-parametric set of free-
living data (i.e. food, insulin, physical activity and continuous glucose measurements) has 
been addressed in the context of Gaussian processes [Valletta et al., 2009] and Wiener 
networks [Rollins et al., 2010]. The same problem is treated here with the aid of support 
vector machines for regression. Accounting for the physiological processes related to 
diabetes (i.e insulin absorption, gut absorption), we employed appropriate compartmental 
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models found in the literature. In addition, we assumed two different approaches to 
investigate the activity’s effects on diabetes. For the first time, to the best of our knowledge, 
the changes on glucose - insulin levels induced by exercise are incorporated into a glucose 
predictive model, and, moreover, an exercise model is fed with real sensor data to indicate 
the exercise intensity. 
 

Study 
Diabetes 
Type (No of 
Patients) 

Input Variables Method 

Zitar & Al-Labali, 
2005 

Type 2 (70) BG, Insulin, Meal 
Announcement (1 or 0), 
Exercise 
Announcement (1, 0) 

MLP Neural Network 

Quchani & 
Tahami, 2007 

Type 1 (10) BG, Insulin, CHO, 
Exercise Levels, Stress 
Levels  

Elman RNN 

Kok, 2004 Type 1 (1) BG, Insulin, CHO, 
Exercise Levels, Stress 
Levels 

MLP Neural Network 

Baghdadi & 
Nasrabadi, 2007 

Type 1 (1) BG, Insulin, CHO, 
Exercise Levels, Stress 
Levels 

RBF Neural Network 

Zainuddin et al., 
2009 

Type 1 (1) BG, Insulin, CHO, 
Exercise Levels, Stress 
Levels  

Wavelet Neural Network 

Tresp et al., 1999 Type 1 (1) BG, Insulin, CHO, 
Exercise Duration 

RNN 

Mougiakakou et 
al., 2006 

Type 1(4) CGM Data, Insulin, 
CHO 

RNN 

Valletta et al., 2009 Type 1 (18) CGM Data, Insulin, 
CHO, Exercise Data 

Gaussian Processes 

Sparacino et al., 
2007 

Type 1 (28) CGM Data AR model 

Gani et al., 2009 Type 1 (9) CGM Data AR model 

Stahl et al., 2009 Type 1(1) BG, Insulin, CHO ARMA, ARMAX, Wiener 
and Subspace-Based 
System Identification 

Rollins et al., 2010 Type 2 (1) CGM Data, CHO, Fats, 
Proteins, Exercise Data 

Block-Oriented Wiener 
Network 

This work Type 1(7) CGM Data, Insulin, 
CHO, Exercise Data 

SVR 

Table 5. Summary of works on glucose prediction in diabetic patients using data-driven 
techniques (BG: blood glucose, CHO: carbohydrates) 

The application of compartmental models describing the absorption of subcutaneously 
administered insulin and the absorption of glucose from the gut following a meal is also 
reported in several studies [Mougiakakou et al., 2006; Valleta et al., 2009; Stahl et al., 2009] 
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dealing with the problem of the prediction of glucose. Compartmental analysis of these 
processes is necessitated because the data collected by the patients (i.e. food, insulin) are 
non-uniformly sampled; on the contrary most of the predictive methods require uniformly 
sampled data. Nevertheless, response functions can also be used for this purpose as in 
[Tresp et al., 1999; Rollins et al., 2010]. On the other hand, the reason why we used exercise 
compartmental models was to examine if accurate predictions could be achieved from 
simulation outputs (made from real exercise data) which model the metabolic response not 
only during exercise but also during the recovery period. The overall approach has the 
advantages of SVR. First we must consider that the optimization problem is transformed 
into a dual convex quadratic programming leading to a global minimum. Moreover, 
compared with the existing kernel regression modelling approaches (i.e. RBF), it gives 
significant algorithmic and representation advantages by producing sparser models. Finally, 
it has to be mentioned that SVR is effective even on large and high dimensional datasets, 
which is the case in glucose prediction problems. 
The results obtained in the present study make clear that the glucose concentration in patients 
with type 1 diabetes can be predicted with a sufficient numerical accuracy in the short-term. 
The increase in the length of prediction leads to more significant deviations of the obtained 
predictions from the reference glucose concentrations as also reported in previous studies 
[Sparacino et al., 2007; Stahl et al., 2009; Gani et al., 2009]. Small differences were observed in 
the predictive accuracy among the patients of our study, which indicates that the proposed 
scheme could be applied to most of type 1 patients (given that lifestyle data are recorded in a 
similar way). It becomes apparent from the Clarke’s EGA that the performance of the 
proposed prediction method is also significant from a clinical point of view since practically all 
of our predictions do not fall in the zones which would lead to incorrect or erroneous 
treatment (i.e. C - E). A direct comparison of the present study could be performed with that of 
Valletta et al. [Valletta et al., 2009]; however, the authors provide no quantitative results. 
Compared to [Rollins et al., 2010], we found more accurate predictions, but we have to 
consider that the model proposed by Rollins et al. does not exploit information about insulin, 
since it concerns type 2 diabetic patients. Although the studies employing AR models [Stahl et 
al., 2009; Gani et al., 2009] produced better results, they largely depend on the assumption that 
the CGM data are described by a stationary process. 
Tables 1 and 2 show that the two approaches which were used to describe the physical 
activity yielded almost equal results. Since in the second approach the predictions are based 
only on segments containing significant (discrete) exercise events, this would imply that 
sufficient predictions could still be achieved without necessitating the activity monitor to be 
worn continuously throughout the day, but only during exercise, which practically 
enhances the possibilities of a predictive system to be acceptable by the patients. Moreover, 
this second modelling approach can accept as input descriptive exercise event 
announcements manually notified by the patient; however, the predictive accuracy in that 
case should be tested. In addition, the ability to analyse and predict the effects of exercise on 
glucose metabolism can be exploited for providing to the patient advices on hypothetical 
scenarios for forthcoming exercise events. The above advantages offered by exercise 
compartmental modelling are extremely useful for diabetes advisory systems. 
Considering the intra- and inter-individual variability in the metabolic response to food, 
insulin and exercise, it could be very important to estimate the parameters involved in the 
compartmental models from each patient’s data. However, this process would require the 
conduction of tracer experiments, and thus it was not included in this study. Another 
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simplification in our study was that the influence of the fats, proteins and other food 
nutrients on the dynamics of the digestive and absorptive processes, as well as the effect of 
the glycemic index, was not considered. Also, there are factors affecting the insulin 
absorption and insulin kinetics (e.g. site of injection, ambient and body temperature), which 
have not been investigated. The introduction of these variables in our study would lead to 
more realistic modelling of the glucose metabolism; therefore, it will be taken into account in 
the future. We also intend to improve the performance of the SVR by determining the most 
appropriate kernel function and by estimating the parameter ε in the insensitive loss 
function, but our final objective is to form a generalized predictive model that can be 
applied to group of patients. 
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