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Data Retrieval and Visualization for Setting
Research Priorities in Biomedical Research

Hailin Chen and Vincent VanBuren
Texas A&M Health Science Center,
United States of America

1. Introduction

Over the past two decades, particularly after the completion of the human genome project,
biomedical research has produced a huge amount of data. With the expansion of
information technology, investigators have gained basic competency with integrating
different resource data sets into unions. The basic principle of this integration is to use the
co-occurrence of the same or similar (orthologous) elements in different data sets as links
between those data sets. Increasingly more experiment-based databases have been
established, which facilitates this integration of data sets. During this blooming period of
biomedical research, high-throughput experimental data is fuelling systems biology
research. In the pre-genomic era, researchers were only capable of conducting experiments
with a single gene or a single protein at a time, which could not provide a global perspective
on the molecular interactions that bridge the gap between external signal and internal
response. Within the past two decades, several high-throughput technologies have been
developed to address this difficulty. Expression microarrays detect the relative abundance
of gene transcripts by comparing two or more biological conditions, and have become a
common tool for screening thousands of genes for expression changes in response to a
perturbation, or to track transcriptional changes in developmental processes. As a way of
visualizing and interpreting the flood of data in recent years, the creation of biological
networks from data became a prevalent target in biomedical research recently, including the
construction of protein-protein interaction networks (PPN), gene regulatory networks
(GRN), and metabolic and signaling networks and pathways, as well as disease-related or
cell function-related networks. The integrative strategy of combining different data sets is a
natural way of setting up networks. Also, based on the data obtained from high-throughput
experiments, networks may be created by modeling the internal relationships of these data.
Several popular analytical approaches are being utilized to model networks (Gebert, et. al.,
2007; de Jong, 2002).

Boolean networks describe each element as a variable with the value 0 or 1 to represent the
state of the element as ‘off’ or ‘on’, respectively. Modeling networks by means of Boolean
network became popular in the wake of a groundbreaking study by Kauffman. Kauffman
employed Boolean networks to model the global properties of large-scale regulatory
systems, which is called Kauffman’s NK Boolean networks. An NK automaton is an
autonomous random network of N Boolean logic elements with each element having K
inputs and one output, all taking binary (0 or 1) values. If K is large, like K=N, the network
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behavior is essentially stochastic. However, when K~2, the network behaves with a high
degree of observed order. NK automata were thus condidered as a model of gene regulaory
network. Kauffman noted that the case of K~2 was appropriate for modelling gene
regulatory networks, especially in an evolutionary context (Kauffman, 1969). A Boolean
network G(V,F) is defined by a set of nodes corresponding to genes V = {xy,...,xn} and a list
of Boolean functions F = (fy,....f,). The future state of an element is completely determined
by the values of the states of other elements (regulators) by means of underlying logical
Boolean functions that are defined as part of the model.

Bayesian networks model the biological network with a directed acyclic graph. For each
element, a conditional distribution p(x, | parents(x,)) is defined, where parents(x,)
denotes the variables corresponding to the direct regulators of the element. Together
defining the Bayesian network, this conditional distribution for each element uniquely
specifies a joint probability distribution p(x ).

p(X) = H p(xv | xpu(v)) (1)

veV
Bayesian network modeling equation

Differential equations extract the network from high-throughput experimental data by
considering the instantaneous concentration of each element. The instantaneous
concentration of each element is completely determined by the concentration (x,,) of other

elements providing a regulation function.

dx;
L= £(xg e X, (2)
0 fi(x1 /00X, 1)

Differential equation modeling

Co-expression models networks from statistical analysis, and may be based on a large
number of data sets collected from public repositories. Co-expression is often based on co-
variance analysis. However, comparison between the co-variances among data sets having
different scales would be difficult. The Pearson correlation coefficient addresses this
difficulty. It measures the co-expression between every two elements with the value in the
range from -1 to 1, which allows networks to be established based on some threshold value
for the magnitude of the correlation.

CO?"T’(X,Y) — COV(X’ Y) E[(X — :uX)(Y [ IUY)] (3)

OxOy OxOy
Pearson correlation coefficient equation

Combining prior knowledge into the process of network inference is often accomplished
with supervised learning algorithms. The basic principle is to use natural inductive
reasoning for prediction of new regulations based on the similarity of their experimental
profiles to that of known regulatory elements. Knowledge-based simulation is also called
rule-based simulation in the field of artificial intelligenece. Rule-based simulations contain
two parts, the set of facts and the set of rules. Facts offer knowledge of each object in the
network, while rules including a condition component and an action component make
judgment on objects according to the conditions and operate upon the objects” behavior via
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actions once the conditions are satisfied. This simulation algorithm repeats the process of
matching the facts in the knowledgebase against the conditions in the rule part and executes
actions when the approriate conditions are satisfied (de Jong, 2002).

A variety of analytical approaches are being used to construct networks from either
established databases or from high-throughput experimental data. This has led to a need for
tools to visualize and analyze these networks. This need stimulated the ongoing creation of
numerous algorithms and software applications for constructing, manipulating and
analyzing networks. Many of those are general-purpose programs with applications to most
of the commonly employed types of complex networks, including social, transportation,
communication, and financial networks. Typically, transcriptional regulatory models are
constructed for a particular cellular process or physiological/disease pathway of interest.
The construction of networks from established databases or from high-throughput
experimental data offers a visual tool for developing new hypotheses regarding underlying
molecular interactions. These new well-informed hypotheses will serve as the basis for
conceiving new biomedical experiments to confirm or reject these predicted interactions,
and thus serve an important role in setting research priorities.

In this chapter, we are going to focus our attention on selected examples of data retrieval
and visualization tools, including the STRING database and Cytoscape, and compare these
popular tools with with our new web based software, StarNet and Cognoscente, for use in
setting research priorities for biomedical studies.

2. Data retrieval

The STRING database was primarily constructed from the integration of phylogenetic
profiles, a database of transcription units and a database of gene-fusion events by the Bork
and Snel groups (Snel et al., 2000; von Mering et al., 2003; von Mering et al., 2005; von
Mering et al., 2007, Jensen, et al., 2009). Users may infer putative protein-protein interactions
with a confidence score based on the constituent relationships in this integrative database.
Phylogenetic profiles are derived from an evolutionary tree. During evolution, functionally
linked proteins tend to be either preserved or eliminated in new species simultaneously.
This property of correlated evolution is characterized for each protein by its phylogenetic
profile, and STRING encodes the presence or absence of an orthologous protein in every
known genome. Those proteins having matching or similar profiles have a strong tendency
to be functionally linked. Transcriptional units (operons) are extracted from a number of
genomes by identifying the conserved gene clusters. Genes in a transcriptional unit are
hypothesized to be functionally linked. Gene-fusion events can be understood by the
following example. The interacting proteins GyrA and GyrB subunits of E.coli DNA gyrase
are orthologs of a single fused chain (topoisomerase II) in yeast. Thus, the similarities of
GyrA and GyrB to some segment of topoisomerase II might be used to predict their
functional interaction in E. coli. STRING is being developed as a multi-dimensional
database by combining its three original database components (phylogentics profiles,
transcription units, and and gene fusions) together with known protein-protein interactions,
an expression database and a database of putative protein-protein interactions found via a
text-mining search in Pubmed.

Below we show an example of a STRING query (http://STRING-db.org/) of the protein-
protein interactions seeded by Gata4, a well-known transcription factor in cardiac
development (Figure 1).
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Fig. 1. STRING search results for Gata4 from different databases: text-mining searching
database (A), phylogenetic profiles (B), transcription units database (C), gene-fusion events
database (D) and known protein-protein interaction database (E). F gives a summary result
of all searches, and includes a combined confidence score. Higher scores indicate greater
confidence in the putative interaction. Here the highest confidence is given to NKX2-5 as an
interactive partner of Gata4, as this is supported with experimental evidence.

www.intechopen.com



Data Retrieval and Visualization for Setting Research Priorities in Biomedical Research 213

Database

Fig. 2. Workflow of establishing the MySQL database for StarNet.

StarNet is a web-based interface for creating coexpression networks from correlated
microarray expression profiles, where the networks radiate from a selected seed gene
(Jupiter & VanBuren, 2008; Jupiter et al., 2009). To build this tool, we collected microarray
data for several species from NCBI's Gene Expression Omnibus (GEO), which contains
thousands of array experiments. Data was normalized and scaled using the justRMALite
(Robust Multichip Analysis) package within the BioConductor suite of tools on the R
statistical computing platform. Based on this normalized data, Pearson correlation
coefficients were computed for all pairwise comparisons of genes to populate a MySQL
database (Figure 2). The current version of StarNet, StarNet 2, expands the coverage from
mouse to ten different species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans,
S. cerevisiae, Arabidopsis and rice) and offers two alternate data sets (Full data cohort &
Development data cohort) for some of these species (human, rat, mouse and Drosophila).
For each organism represented, data was collected from between 148 (rice) and 3,763
(human) Affymetrix microarray samples (Table 1). In total, 12,762 arrays were used to build
our database, which is approximately 2.7% of the samples in GEO (as of August 2010).
StarNet allows cross-species comparisons by automatically doing gene lookups across
known orthologs. StarNet identifies gene pairs with high magnitude correlations across a
large number of experiments to offer strong statistical results that include confidence
intervals. To support an interpretation of the generated coexpression networks, StarNet
offers a database search of known interactions involving genes and gene products from the
prescribed networks. Thus, while tools such as STRING provide a data integration strategy
to retrieve likely functional protein-protein interactions, StarNet better facilitates
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exploratory analysis of selected data. In comparison, StarNet retrieves high-ranking
correlations between gene expression profiles constructed from a large collection of
microarray data to iteratively build star networks around a gene of interest, while STRING
retrieves putative relationships between elements via co-occurrence of the elements across a
number of already established databases. STRING makes explicit predictions from multiple
data sources, whereas StarNet provides multiple types of data that support the user’s ability
to make their own inferences. StarNet additionally supports the user’s judgment by
allowing greater flexibility in prescribing the relative size and topology of the networks
created.

Species Full Cohort Arrays Development Cohort Arrays Genes on Array
Homo sapiens 3,763 372 17,726
Mus musculus 2,145 239 16,631
Rattus norvegicus 1,882 247 11,427
Gallus gallus 164 - 12,491
Danio rerio 222 - 6,838
Drosophila melanogaster 454 195 13,060
Caenorhabditis elegans 381 - 15,015
Saccharomyces cerevisiae 254 - 5,566
Arabidopsis thaliana 3,249 - 21,281
Oryza sativa 148 - 23419

Table 1. Expression microarray data represented in StarNet. The second column is the
number of arrays used in the full condition, and the third is the number of arrays used in the
development condition. This open-access table was reproduced from Jupiter et al., 2009.

The sets of correlation coefficients calculated as described above for the MySQL database
have a relatively large memory footprint and contain a large amount of data that is of little
interest from our perspective (i.e. low magnitude correlations). Thus, this collection was
trimmed by selecting the 100,000 highest magnitude positive and negative correlations for
each cohort. As highly correlated groups of genes in a correlation network exhibit a high
amount of interconnectedness, this distribution doesn’t include all genes on an array. To
guarantee complete coverage for all genes on each respective platform, we constructed
another sub-distribution through gene-by-gene extraction of the ten highest magnitude
positive and negative correlations for the gene.

Below we used the gene Gata4, the same example used above in a STRING query, as our
seed gene in a StarNet query (http://vanburenlab.medicine.tamhsc.edu/StarNet2.html).
On the StarNet query page (Figure 3), the user selects a data set cohort, which is correlation
data for a collection of microarrays for a particular array platform (i.e. a particular
organism), with options for ten species. There are two alternate data sets, a Full data set
cohort and a Development data set cohort, available for rat, mouse, human and Drosophila.
The Development data set is a subset of the Full data set, where the array data used in the
Development cohort was derived from selected samples representing early embryos,
embryonic heart, and adult heart. The Full data cohort was dervied from a heterogeneous
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collection of samples from a variety of tissues types. The user may also select a second
cohort for pairwise comparison. The genecentric distribution, which was built by selecting
high magnitude correlations on a gene-by-gene basis, is the default distribution because this
distribution has complete coverage of the array platform. To create the genecentric
distribution, the ten largest positive correlations to each gene were selected, where the p-
value of the null hypothesis correlation was less than 0.05 (a two-tailed t-test was used to
compute p-values for each correlation coefficient). This was repeated for high magnitude
negative correlations, and the union of positive and negative correlations was constructed.

Query page
Basic settings
First cohort: Mus musculus DEVEL&IIEMEN:I' CE)HO&T —ﬂ
Enter a gene symbol or Entrez Gene 1D that corresponds to e —— . .
R S GCatad Cene symbol T‘ e I
Second cohort (optional): — None selected -- H
Choose a sub-distribution of correlation coeficients: Genecentric ?3
The number of connections each gene should make: 5 _31
The number of kevels (steps from the central gene) that should be 2 T\
drawn:
Submit Job

Advanced settings

Fig. 3. Gata4 was used as the seed gene to start a search in StarNet of the mouse
development data cohort, a set of precomputed pairwise correlations derived from selected
microarray data in mouse.

There are two additional classes of correlation distribution to choose from: 1. the genecentric
construction was repeated, but constrained to those genes whose GO (Ashburner, 2000)
annotation contains the term “transcription”; and 2. the same strategy was repeated for
those genes whose GO annotation contains either of the terms “transcription” or “signal”.
The number of connections each gene should make is specified by the user, with a default of five
connections. This parameter specifies the number of highest-ranking correlations to draw as
edges in the correlation network. The number of levels (default = two) specifies how many
steps from the central node to expand the search. With Gata4 as the seed gene, the default
settings will retrieve the five highest magnitude correlated genes with Gata4 (level 1, Table
2) and retrieves the five highest-magnitude correlated genes for each of those genes in the
MySQL expression correletion database. The web interface of StarNet retrieves a table of the
high magitude correlations, beginning with the high magnitude correlations with the query
gene, and reports the 95%- and 99 %-confidence intervals for each coefficient (Figure 4).

Although the quick pace of biomedical research is continually providing an enormous
quanity of experimental data, the synthetic analysis of that data to generate informed
hypotheses is progressing at a much slower rate, and building models via systematic review
of the literature can be a time-consuming and inefficient process for individual investigators.
Cognoscente is a new tool under development in our group for querying and visualizing
documented biomolecular interactions (Figure 5). It is a web-based database and freely
available, with no required user registration to make queries. Cognoscente’s knowledgebase
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can be utilized as a convenient tool for collecting prior knowledge to generate new
hypotheses and refine established networks using supervised learning algorithms.
Moreover, it offers users the ability to directly submit new interactions so that community
support can drive the completeness of the knowledgebase. For quality assurance and
attribution, registration is required to make new submissions to the database.

GenelID 1 GeneID 2 Pearson Correlation P-Value Number Of Arrays

! 14463 14465 0.7902 ~0 239 |
12406 14463 0.7759 ~0 239 |
14463 241556 0.7757 ~0 239 |
11975 14463 0.7565 ~0 239 |
14463 23871 0.7544 ~0 239 |
o 14463 21412 07493 o~ 239
14362 14463 0.7484 ~0 239
11749 14463 0.7481 ~0 239
14463 54195 0.7447 ~0 239

Table 2. High ranking set of correlation coefficients for GenelD 11463 (Gata4). In the
coefficient database, all the genes are indexed by the Entrez GenelD. The five highest-
magnitude correlated genes with 11463 (Gata4) are: 14465 (Gata6), 12406 (Serpinh1), 241556
(Tspan18), 11975 (Atp6vDal), and 23871 (Ets1). The five top-ranking correlations are
outlined by the dashed box.

3. Data visualization and analysis

Appropriate visualization of biological data can be a very powerful tool for drawing new
inferences from data. When used for the standard comparison of data from two samples,
visualizations showing clear differences can often obviate the need for statistical analysis.
Drawing graphs or networks is a powerful way to visualize a list of documented
biomolecular interactions, or for associations that are imputed from similarity metrics. These
types of visualizations can offer insights and understanding of complex relationships that
cannot be obtained as easily by reflecting on a pairwise list of interactions or associations.

In the previous section, we discussed how StarNet retrieves correlations based on a query
gene of interest, and compared this functionality with how STRING retrieves predicted
functional interactions. In this section, we focus on how StarNet, Cognoscente and
Cytoscape may be used to powerfully visualize biological data and knowledge. We discuss
how StarNet creates visualizations of the correlative network topologically, as well as other
visualizations provided by StarNet that support user interpretation of the biological
relevance of the correlation networks. StarNet allows user control over the general size and
topology of the networks produced, and performs a test of GO term enrichment for those
networks. The new HeatSeeker module in StarNet 2 draws false color maps comparing two
selected networks from different species or conditions. HeatSeeker makes an unbiased
comparison by combining the lists from both networks and then comparing only those
genes that share orthologs on both platforms. HeatSeeker thus offers insight into the
differential wiring of gene regulatory networks among different species or conditions
(Jupiter & VanBuren, 2008; Jupiter et al., 2009).
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Gene pairs

Edge list: mouse development cohort

Pearson Corr.

95% Confidence

99% Confidence

Coefficient Interval Interval
Gatad [1448)) ---- Gatab [14488) 0.78807 (n=239) [0.7359, 0.8326] [0.7T166, 0.8448)
Gata4 [1448)) ---- Berpinhl [12404) 0.77460 (n=238) [0.7183, 0.8208) [0.€6882, 0.8336)
Gatlad [1448)) ---- Atp6v0al [19875) 0.75459 {n=239) [0 6942, 0.8045) [0.6T27, 0.8182}
Gatad4 [Y4483) ---- Ets1 [23071]) 0.75407 (n=238) [0.6835, 0.B040] [0.6720, C.8178]
Gatad [14463] - Tspanis [241556] 0.75401 (n=239) [0.6835, 0,8040] {0.6719, 0.8178]
Gatab [14468] ---- Gatad [14483] 0.78807 (n=238} [0.7359, 0.8326] [0.7168, 0.8446]
Gatab [14488) ---- Serpinh1 [12408) 0.78420 (n=239) [0.7299, 0.8286) [0.7105. 0.8408)
Gata6 |[14488] ---- Bearf2 [224024) 0.6B336 (n=238) [0.6083, 0.7456] [0.5833, 0.7630])
Gatab |144088) ---- Tcf21 |21412] 0.68105 (n=239) [0.6066, 0.7437] [0.5804, D.7612}
Gatab [14488) ---- Fzd1 [14382) 0.67788 (n=239) [0 6028, 0.7410] [0.5765, 0.7587]
Serpinh1 [12408] ---- Calu [12321] 0.81122 (n=239) [0.7629, 0.8506] [0.7455, 0.8613]
Serpinht [12408] ---- Gatat [14463) 0.78420 (n=239) [0.7299, 0.8286] [0.7105; 0.8409]
Barpinh1 [12404] ---- Gatad [1444]] 0.77460 (n=239) [0.7183, 0.8208] [0.6982, 0.8336]
Serpinh1 (13484) ---- Sparc [20802) 0.77383 (n=239) [0.7T174, 0. 8202] [0.6972, 0.8330]
Serpinht |12408] ---- Tmem88 [103743) 0.75266 (n=239) [0.6918, 0.8029] [0.6702, 0.8168)
AtpBv0a1 [19978] «--- App [11820) 0.78215 (n=238) [0.7398, 0.8351] [0.7208, 0.8469)
AtpEvDat [19878] - Msn [17608] 0.7B480 (n=239) [0.7304, 0,8280] [0.7110. 0.8412]
Atp6w0al [19975] ---- Apip2 [11804] 0.78406 (n=238) [0.7298, 0.8285] [0.7103, 0.8408]
AtpBvDat [11978] ---- Twsgi [68940) 0.76852 (n=239) [0.7T122, 0.B167] [0.6817, 0.8287)
AtpEv0at [19978] ---- Arl2bp [107884] 0.76562 (n=238) [0.7075, 0.8135] [0.6867. 0.8257)
Ets1 |23071] ---- Col3at [12025) 0.86373 (n=239) [0.8275, 0.8828] [0.8144 0.9007)
Etsi [23871] ---- Anxa5 [11747) 0.85316 {n=238) [0.8144, 0,8843] [0.8004, D.8928]
Ets1 [23471) ---- Prkarta [10084) 0.84870 {n=239) [D.8102, 0.BB15) [0.79586, 0.8902]
Ets1 [23471] ---- Pja2 [224904) 0.83364 (n=2238) [0.7904, 0.BE8E] [0.7T747, 0.8T7B2)
Ets1 [23471] ---- Zcche24 [T1018) 0.83160 (n=239) [o.7878, 0.8670) [0.7720, 0.8T67)
Tspanid |241998) ---- Parva |87342) 0.B8604 (n=238) [0.8678, 0, 8185] [0.8575, 0.9246)
TspaniB [241858] ---- Gucy1b3 [34108] 0.87850 (n=239) [0.8459, 0.8046] [0.8340, 0.9118]
TepaniB [2493568] ---- B130005N14RIk [E6810]3] 0.85826 (n=238) [o.&8208, 0,8884) [D.80T1, D.89686]
Tspan18 [247886] ---- Tmem33 [103T743] 0.84246 (n=239) [0.8D12, D.B757] [0.TBE3, 0.8848)
TepaniB [241556] ---- Tef2! [21412] 0.B40B4 (n=238) [0.7982, 0.8744] [0.7842, 0.8836]
Fig. 4. Query results for the star network of correlations seeded by Gata4.
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Fig. 5. Screen capture of an excerpt of the documented interactions involving Gata4 reported
by Cognoscente.
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mouse development cohort correlation network
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Click on a network to view a full size image with node links to Entrez Gene.

Line colors represent strength of Pearson correfation coefficients based on the following scale

0.6779 - 0.7090 - 0.7402 -
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MNode color represenis the level with rezpect to the central node
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Fig. 6. Screen capture of StarNet result for a query with Gata4 showing the highest
correlated genes with Gata4 (Level 1) and the highest correlated genes with those first order
correlates (Level 2).

3.1 Visualization of correlation networks with StarNet and HeatSeeker

In StarNet, networks are constructed using a radial layout based on the highest correlations
for a gene (in this case, for Gata4), and is iteratively expanded according to the specified
number of levels. Graphs are drawn using AT&T’s Graphviz drawing package
(http:/ /www.graphviz.org) using the twopi layout program (Figure 6). Edges standing for
the correlations are colored such that darker edges represent stronger correlations. Lines
connecting genes with positive correlations are drawn as shades of blue, and negative as
shades of red. Gene nodes are color-coded according to their level with respect to the central
node.
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Matches for GO search term(s) "transcription”: mouse development cohort

Official Gene Symbol Entrez Gene ID GO Terms
App 11820 GO:00a5R4e
Fzd1 143812 GO:eptE4M

QOIG2C)TRD GO:I0003TR2 GOIRORITR4 CO:CARI708 GOI0006360
Gata4 14441 GO: 0008155 GO: 0000357 GO:0016858) GO:0030520 QO:004318)
GO:Q04500) GO:0045041 GO:0045944

——— - 6010003700 GO:0003T08 GO:0006350 CO:0008358 COI001856)

a0 GO:0010528 GO:0045841 GO:0045944

Tef21 21412 G0:0003700 GO: 0006350 GO:0006355 GO:0029528 GO: 0045440

— — Q010003700 GO:000888T GO:0006350 000004355 0O 10000387
[-T-3-1-T§ 5 LT

Enriched GO terms: mouse development cohort

Bonferroni
raw .
GO Term GO ID corrected Symbols (Entrez IDs)
p-value
p-value
* regulation of epidermal growth e £ . =
factor receptor activity ao:eppTITE 6.76E-06 1.23E-D3 App {11820, ApipZ (11004)
* mating behavior GO: 0007617 1.13E-05 2. 06E-03 App (¥1020), Aplp2 (19004)
* suckling behavior GO ee01RMT 2.36E-05 4 30E-03 App {11820), Aplp2 (11084)
* cellular copper ion o 2
T . . . 1 11004
Wcstamtpihs GO 0008ATS 3 15E-05 5.73E-03 App {11820), Apip2 (11884)
* farabrain development GO:8030900 4 9BE-05 9.06E-03 AR {91020}, Apin2(V1604}. Twan)
(65940)
Gatad (14481), GataB (144495
Serpinht (12408), Ets1 (23471},
Scarf2 (224024), Tci21 (29413),
* pretein binding GO:0005515 8.32E-05 1.51E-02 Fzd1 {14362}, App (11820), Aplp2

Fig. 7. Screen capture of StarNet Gene Ontology analysis. The first table shows genes
retrieved by StarNet as part of the correlation network, where the gene is annotated with a
Gene Ontology (GO) term that contains the word “transcription.” This default behavior
alerts the user to potential directionality of regulatory influences, where such genes are
typically transcription factors, and thus may have some regultory influence over genes that
they are highly correlated with. The second table shows part of the GO enrichment list,
which provides tentative annotation for network function as a whole. For example, the GO
term protein binding is one of the significantly enriched terms for the Gata4 correlation
network.

During the process of defining the topology of the network, two types of supporting
analyses of this network are also performed. Enrichment of GO terms, which allows
tentative annotation of the biological function of this network, is evaluated using the
hypergeometric test (Figure 7). Orthologous genes that are on both array platforms (data
cohorts) are identified for cross-cohorts analysis, then when the user clicks the ‘HeatSeeker’
button on the StarNet result page, HeatSeeker will draw false color maps arranged with
complete-linkage hierarchical clustering of correlation distance between genes in the super-
network for each cohort (Figure 8).
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Re-mapping of the other cohort

Fig. 8. Screen capture of HeatSeeker results for the cross-species analysis between mouse
and human for the Development data cohort of each species. The network was seeded with
Gata4 as the query gene for StarNet analysis and visualization. Heatseeker makes an
unbiased comparison between correlation networks by combining the gene lists of both
networks and only displaying data for genes where orthologs exist for each organism, and
the gene is surveyed on both array platforms. The third column of false color maps shows
the differences in correlations between the two data sets. Each of the two rows of false color
maps gives an alternative clustering of the data.

3.2 Visualization of biomolecular interactions with cognoscente

Cognoscente is a querying and visualization tool for drawing biomolecular interaction
networks from documented interaction knowledge, and currently holds over 300,000 unique
interactions. Cognoscente supports any organism supported by NCBI's Entrez Gene
catalog. We built Cognoscente as a MySQL database with a web-based front end. An
example query with Gata4 returns all first order interactions across all known orthologs
(Figure 9). Cognoscente addresses several specific visualization tasks for understanding and
appropriatly interpreting interaction data. One of the visualization tasks that Cognoscente
addresses is the sorting of interaction knowledge by species. Nodes in networks created by
Cognoscente are partitioned according to the species corresponding to an ortholog for a
given gene, and these partitions are color-coded by organism. Each partition is actually a
hyper-node that may represent the gene, transcript, and protein corresponding to the gene
symbol. These different forms are distinguished by the type of edge drawn to the node
partition, which explicitly indicates protein-protein, protein-DNA, and other types of
interactions (see the EDGE KEY in Figure 9). Cognoscente supports multiple simultaneous
queries (Figure 10), multiple groups of simulataneous queries (up to three, where each
group has a different color-coded box around nodes), and zeroth, first, and second order
networks. Figures 9 and 10 show first order networks, where all direct interactions are
identified. Zeroth order interactions are just those interactions between members of a query
group, which may be useful for analyzing gene lists generated by identifying differentially
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expressed genes from a microarray experiment, or from gene clustering analysis. A second
order network shows all direct interactions with query genes and all interactions with the
first order interactants. Second order networks are often very large.

As more biomedical knowledge is acquired from experimentation, the inclusion of prior
knowledge in the process of network inference plays an increasingly crucial role. Using
correlation networks from StarNet and documented interaction networks from
Cognoscente, we plan to utilize known interaction networks to trim and refine predicted
network influences that arise from the correlation network, and thus provide an algorithm
for defining provisional developmental and regulatory pathways by inference.

3.3 General network visualization with cytoscape

Cytoscape is a powerful, general-purposed, open-source network visualization tool that
offers assistance in analyzing the networks it builds (Shannon et al., 2003; Maere et al., 2005).
It was initially developed in 2001 by a small group of researchers and software engineers at
the Institute for Systems Biology and has since grown into a worldwide community project.
The Cytoscape Core handles basic features like network layout and mapping of data
attributes to visual display properties. It is also designed to allow users to create plugin
modules that undertake customized network analysis. Here we show an example network
of yeast proteins from the galactose pathway (http:/ /www.Cytoscape.org) (Figure 11).

Smarcad | CG11672
I

| |
GATAB
\ Smarchl | HEE .ush _SRF TAXA KEY
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| |
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Homo sapiens
Gallus gallus

zfp Mus musculus
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DNA
____-——Ltj-' ! GROUP KEY
N Sy
o~y
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J aﬁ tj.-j ! http:fyvanburenlab tamhsc.edu/cgnoscente. htmi
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Fig. 9. Literature-based network for known biomolecular interactions, seeded by Gata4 and
built with Cognoscente. The Gata4 gene, mRNA, and protein are all considered in this
query, and different types of interactions are displayed with different types of edges.
Interaction lookups are automatically performed across all known orthologs of Gata4, and
the species corresponding to each documented is indicated by the node color.
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Fig. 10. Cognoscente has several useful capabilities, including support for multiple
simultaneous queries. Here some well known transcription factors involved in cardiac
development were queried as a group (red boxes) to examine documented interactions
between these genes and gene products, as well all other first-order interactions with the
query set.

Further analysis of this visualized network may be performed with a myriad of available
plugins that provide numerous options for analytical functionality. As discussed regarding
StarNet analysis, tests for GO term enrichment are also available in Cytoscape. One popular
plugin, BINGO (Maere et al., 2005), can be used to map functional themes of a set of
elements in a network on the GO hierarchy (Figure 12). Networks built by Cytoscape may
be partitioned into several sub-networks based on the clustering of the network elements
using known functional or expressional data.

www.intechopen.com



Data Retrieval and Visualization for Setting Research Priorities in Biomedical Research 223

GSY2 pp CHK1
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Fig. 11. A Cytoscape example. A known tabular network (an excerpt is shown on the left)
was loaded into Cytoscape. Next, the topological network was generated by the software
automatically (shown right). Cytoscape offers more than 20 layout algorithms, including
standard layout algorithms such as hierarchical, edge-weighted, and spring-embedded
methods. Here we used was the spring-embedded layout.

Cytoscape offers very diverse and flexible tools for network visualization and analysis. In
comparison, StarNet has much more specific functionality. Except for a sample network of
yeast galactose metabolism, Cytoscape doesn’t offer precomputed networks. Cytoscape
instead relies on the user to provide a network. So, while StarNet offers a mechanism for
specifying and creating networks from precomputed correlation data, Cytoscape offers an
open, flexible environment for drawing and analyzing networks created outside of
Cytoscape.

4. Conclusion & discussion

Computational network analysis is increasingly used to set biomedical research priorities. In
particular, functional networks of genes may incorporate literally millions of experimental
observations into probabilistic networks that identify genes likely to have interactive
relationships in cells. Let’s look at an example to illustrate the feasibility of this strategy.
The biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes
and is known to require >170 genes for the assembly, modification, and trafficking of
ribosome components through multiple cellular compartments. Li and colleauges employed
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Fig. 12. The upper two panels shows the generation of the sub-network from the network of
galatose pathway seeded by Gal4. In the lower two panels, the plugin BiINGO is used to
assess GO term enrichment and build a hierarchical GO network. The lower right panel is
an enlarged excerpt of the left panel (red box). The BINGO network is visualized with a
range of colors expressing the overrepresentation significance of the GO category
represented by a node (darker nodes are more overrepresented).

network-guided genetics to set their research priorities (Li et al., 2009). They constructed
computational predictor of ribosome biogenesis genes based on functional genomics and
proteomics analysis, including mRNA-expression data across different conditions, protein-
protein interaction datasets derived from literature, high-throughput yeast two-hybrid
assays, affinity purification coupled with mass spectrometry, genetic interaction data, and in
silico interaction datasets, along with analysis of comparative genomics datasets, covering
95% of yeast proteome (Figure 13). Next they calculated the naive Bayesian probability that
each yeast gene belongs to the ribosome biogenesis pathway based on gene connectivity
information in the established gene networks. From the top-scoring genes, 212 candidates
were manually selected based on expert knowledge for experimental validation (Table 3).
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Fig. 13. Predicted ribosome biogenesis genes are labeled as red nodes. Green nodes are
known ribosome biogenesis genes, and yellow nodes are genes that are not related to
ribosome biogenesis. Edge color indicates how an association was established: co-expression
(light blue), affinity purification (red), yeast two-hybrid assay (green), genetic interaction
(yellow), co-citation (gray), and literature curation (black). This open-access figure was
reproduced from Li et al., 2009.

After obtaining the 212 candidates by computational analysis, they employed different
experimental methods to trim this gene group by experimental validation.

Finally, they computationally predicted and experimentally validated at least 15 previously
unreported ribosome biogenesis genes (TIF4631, SUN66, YDL063C, JIL5, TOP1, SGD1,
BCP1, YOR287C, BUD22, YIL091C, YORO006C/TSR3, YOL022C/TSR4, SAC3, NEWI,
FUN12) which can be found in Table 3. Most of these genes have human orthologs and thus
represent evolutionarily conserved components of this essential process in cells.

This is an excellent example of the integration between computational network retrieval and
experimental validation to set research priorites and efficiently determine gene functions. A
current goal for our group is to leverage the tools we have built to automate the prediction
of functional networks, and to impute directionality of regulatory influences in these
networks. Correlation doesn’t imply causality, although it suggests a close relationship.
Thus, the networks built by StarNet do not indicate that a given gene in the graph has a
direct influence on any other. Moreover, edges in a StarNet network do not even imply a
direct association between a given gene pair. High ranking correlates, however, can be
judged to have a higher probability of a direct interaction than low-ranking correlates, so
ranking the correlation of expression from numerous experimental samples remains a
simple yet powerful predictive tool. Recent work has emphasized the utility of correlation as
a measurement of gene co-expression relationships. For example, Reiss and colleagues
(Reiss et al., 2006) discussed co-expression, noting that correlative relationships changed
depending on the milieu and the similar phenomenon has also been identified by other
groups. This idea provides a basis for comparing different data sets to assess differential
wiring, as we have shown above with HeatSeeker.

Our current aim is to leverage StarNet data together with prior knowledge contained in
Cognoscente as the basis for inferring complete transcriptional regulatory networks using
Bayesian inference or other machine learning approaches. Although a high magnitude
correlation does not imply a direct regulatory relationship, we may suspect that genes with
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highly correlated (or highly anti-correlated) expression have a higher probability of having a
regulatory relationship than genes with lower magnitude correlations, and that ranking the
magnitude of correlations will uncover gene pairs with the highest likelihood of having a
regulatory relationship. Assuming that for a given gene x, that high ranking correlates have
a higher probability of having a direct association than low-ranking correlates, we can begin
to infer a network of the most likely direct associations. For example, where x and y are any
two genes with a high correlation, potential intermediates between x and y might be
identified by finding genes that have a higher magnitude correlation with x and y than x
and y have with each other. Thus, for the expression profile of a given gene, a high-ranking
correlation coefficient with another gene in our database may be interpreted as an assertion
that the association has a relatively high likelihood of being proximal, given the available
data.

Number of Polysome Pre-rRNA Ribosome
Human Links to Network Mutant Profile Co- Processing Export
ORF Gene® Ortholog® Seed Genes Evidence® Growth Defect sedimentation® Defect Defect
YGR162W  TIF4631 EIF4G1, EIF4G, 22 MS, CX, LC Slow 60S Across gradient 35S, 275, 75, 20S  60S
EIF4G3
YOR308C  SNU66 SART1 8 Ms, CC, LC Slow at 20°C  60S 405 355, 275, 55 No
YDLO63C — — 5 MS, CC, YH, CX Slow 605 Free 355, 275 No
YDR412W  RRP17 INOL12 14 CX, MS, YH Essential 605 Free 35S, 79 60S
YPR169W  JIP5 7AAC69625 19 CX, MS Essential 605 Free, 60S 355, 275 No
YOL006C  TOP1 TOP1 7 CC, MS, LC, CX Slow 60S Across gradient 35S, 275 No
YNL132W  KRE33 [10]  NAT10 77 MS, CX, LC Essential 408 — 355 408
YDR496C  PUF6 [21] KIAA0020 94 CX, MS, LC Slow at 20°C  60S 60S 3585, 275,75 60S
YLR336C  SGDI NOM1 31 CX, MS Essential 405 408, 60S, 80S 355 408
YLR397C  AFG2 [52] SPATAS 7 CX, MS, CC Essential 60S — 355, 75 60S
YDR361C  BCP1 BCCIP 19 X Essential 605 Free, 60S 355 605
YJLO10C ~ NOP9 [40]  Ci4orf21 56 CX, LC Essential 40S 40S, Polysome 355 408
YOR287C — Cé6orf153 40 CX, MS Essential 40S — 355 No
YDR339C  FCF1 [41] CN111_HUMAN 13 X Essential 405 -_ 355 405
YMRO14W BUD22 = 37 CX, MS Slow 405 80/905S, Polysome 355 405
YCR047C  BUD23 [68] WBSCR22 7 MS, CX Slow 405 405 35S, 208 408
YLRO5S1C  FCF2 [41] DNTTIP2 13 X Essential 405 —_ 355 —
YGR145W  ENP2 NOL10 91 CX, MS, LC, RS Essential 405 —_ 355 408
YDR299W  BFR2 AATF 7 CX, MS, LC Essential 405 405, 80/90S 355 408
YILo91C — DEF 12 CX, MS Essential 40S 405 355 No
YOL022C  TSR4 7PDCD2L 30 (@4 Essential 405 Free 205 No
YOR006C TSR3 Cléorf42 2 X Slow at 20°C 405 Free 208 No
and 30°C
YGRO81C ~ SLX9 [43] - 14 MS, CX, GT Slow at 30°C  40S 405 205 408
YDR159W  SAC3 MCM3AP 1 LE Slow 405 40S, 80/90S 355 No
YPL226W  NEW1 ?ABCF1 8 CX, MS Slow at 20°C 405 Across gradient 35S No
and 30°C

YJRO74W  MOGI RANGRF 3 CC, GT, MS, LC, YH Slow Minor Free 355, 275, 205 No
YALO35W  FUN12 EIF5B 40 MS, GN, CX Slow 405 Polysome 20S No
YPR178W  PRP4 PRPF4 11 MS, LC, CC, YH Essential Minor Free, 40S 358 No
YDR378C  LSM6 [44] LSMé6 7 MS, LC, CC, YH, TS Slow Minor _ 355, 208 50% cells

60S
YNLT147W  LSM7 [44] LSM7 7 MS, LC, CC, YH, TS Slow Minor Polysome 35S, 20S 50% cells

60S

Table 3. Some of the 212 top-scoring candidate genes for a functional role in ribosome
biogenesis. This open-access table is reproduced from Li et al., 2009.
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StarNet’s usefulness for inference of regulatory influences is mainly limited to the domain
of transcriptional regulation where the abundance of the transcript of a transcription factor
is closely related to the activity of the transcription factor protein. This will be true
sometimes, as indicated by a high-magnitude correlation of coexpression between a
transcription factor and its target. In such cases the predictive power of StarNet should be
good. As there are many other forms of regulation, StarNet will not capture all regulatory
influences via co-expression correlations. For example, the activity of the transcription factor
NF-kB requires the activity of IkB kinase (IKK) to phosphorylate IkB, which activates NF-kB
by disassociation of IkB from NF-kB. This means that we should not expect a high-
magnitude correlation between the NF-kB expression and the expression of its targets
(Brasier, 2006; Gilmore, 1999; Gilmore, 2006; Perkins, 2007). Thus, incorporating proteomics
data and and other types of data will be important for the inferring a complete regulatory
network. One important computational approach is to discover transcription factor binding
site (TFBS) by clustering genes based on their expression profiles, then search for conserved
motifs in the DNA sequence upstream of these tightly clustered genes, which are then
inferred to be the TFBS (Bortoluzzi et al., 2005; Pavesi et al., 2004; Roth et al., 1998).
Directionality of regultory influences could be provisionally annotated using this strategy.
The most important ingredient in the process of inferring transcriptional regulatory
programs and setting research priorities is the judgment of experts. That judgment is greatly
enhanced by the development of effective data retrieval and visualization tools. We believe
that the best tools will augment the expert’s ability to make inferences and judgments,
rather than attempt to replace that expert judgement. What this implies is that all
predictions that are made by software should be easy to interpret, easy to trace back to the
orginal data, and that the overall methodology employed in making a prediction is
transparent to the expert. These principles will foster synergistic progress in biomedical
research via improved communication and understanding between experimental biologists
and computational biologists.
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