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1. Introduction   

Herbicides are widely used for of broad-leaved weeds and other vegetation. They are 
relatively inexpensive and very potent even at low concentrations. The majority of 
herbicides are directly applied to soil or sprayed over crop fields and as consequence of 
large production and high stability, they are released directly into environment. For that, 
herbicides can enter as contaminants into streams, rivers or lakes directly from drainage of 
agricultural areas. The need for herbicide monitoring in natural water is essential for 
achieving good water quality objectives, because in most countries groundwater is the major 
source of drinking water. Moreover, the monitoring of herbicides in soil and crops is 
important in order to control their impact on the environment. 
Recent studies have focused more on herbicide degradation/transformation products (from 
hydrolysis, oxidation, biodegradation or photolysis) because they can be present at greater 
levels in the environment than the parent herbicide and can sometimes be as toxic or even 
more toxic. New compounds have also come on the market (such as glyphosate, 
organophosphorus herbicides) and studies are being conducted to understand their fate and 
transport in the environment (Richardson, 2009). 
Thus, it is important to develop a reliable and sensitive method for the simultaneous 
determination of such compounds in different kinds of samples. High-performance liquid 
chromatography with mass spectrometry or array diode detection are good options for 
herbicides monitoring (Cheng et al., 2010; Maloschik et al., 2010). Tandem mass 
spectrometry is usually used to confirm identification of selected herbicides. While LC-
MS/MS methods are now predominantly used for pesticides and their degradation 
products, GC-MS methods are still occasionally used. For example, GC-MS was used by 
Hildebrandt et al. (2007) to measure 30 priority pesticides and their transformation products 
in agricultural soils and an underlying aquifer in the Ebro River Basin in Spain. The 
sensitivity of detection, however, is still not high enough in many cases for direct 
determination of herbicides at the level required by different regulations. Therefore, a 
preconcentration procedure for the analytes and clean-up steps must be applied for complex 
samples. 
Solid-phase extraction (SPE) is the most popular sample preparation technique of 
environmental, food and biological samples and it already replaced the classic liquid-liquid 
extraction as the reduction or complete elimination of solvent consumption in analytical 
procedures, which is very important according to the rules of green chemistry (Camel, 2003; 
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Pyrzynska, 2003; Fontales et al., 2007). The main goal for application of SPE is to achieve 
isolation, preconcentration and clean-up of the sample in a single step. This can be achieved 
by an appropriate selection of the type of sorbent or their combination. For this reason the 
properties of the analytes, nature of matrix, the required trace-level concentration and the 
type of chromatography involved later in the separation step should be taken into 
consideration. The strategy of sample pretreatment in SPE-HPLC system is also guided by 
the method of final detection after chromatographic separation. Application of a simple 
detection mode, e.g. diode array UV, requires more selective isolation and enrichment. 
When the more specific quantification is used, such as fluorescence, mass spectrometry or 
electrochemical methods, application of SPE sample pretreatment can improve the limit of 
detection. 
The extraction process depends on the type of sorbent used and retention is due to 
reversible hydrophobic, polar and ionic interactions between the analyte and the sorptive 
material. Sorption can be non-specific, in that case weak dispersive interactions such as van 
der Waals forces will dominates. However, sorbents utilizing specific interactions resulting 
from analyte polarity, ionic nature or the presence of specific functional groups are 
preferred. The classical sorbents in SPE are silica-based (Spivakov et. al., 2006), 
carbonaceous materials (Kyriakopolous & Doulia, 2006; Pyrzynska, 2008) or polymeric, 
primarily styrene-divinylbenzene copolymers (Fontanals et al., 2004; Kyriakopolous & 
Doulia, 2006). The novel sorbents with improved selectivity towards the particular groups 
of compounds or even individual compounds includes immunosorbents (Haginaka, 2005) 
and molecularly imprinted polymers (MIP) (Dias et al., 2009; Lasákova & Jandera, 2009). 
Carbon nanotubes, a new form of carbon-based sorbents, are also promising materials in 
SPE of herbicides (Pyrzynska, 2008). 
The objective of this chapter is to present the recent advances in the area of novel materials 
as solid phase extractors for herbicide analysis. The papers published over the last five years 
are discussed in more detail. The emphasis is also given to the application of several SPE 
systems for automated preparation of environmental, food and biological samples. 

2. Classic sorbents 

Silica chemically bonded with various groups has been the most common material for SPE. 
This sorbent can be classified as reversed-phase sorbent with octadecyl (C18), octacyl (C8), 
ethyl (C2) and phenyl or as normal-phase sorbent with cyanopropyl, aminopropyl and diol 
functional groups. Their interaction mechanisms are mainly based on hydrophobic 
interaction (van der Waals forces), thus these SPE packing provide high recoveries for 
nonpolar analytes. Nevertheless, silica-based sorbents are unstable at extremes pH (2 > pH > 
8), and they have relatively low capacity and low recovery for basic analytes. Several types 
of modifications were used to immobilize different compounds on the surface of classical 
silica-base sorbents to increase their selectivity (Parida et al., 2006; Kailasam et al., 2009). 
New materials based on poly(methyltetradecylsiloxane) and poly(methyloctylsiloxane) 
thermally immobilized onto the silica support have been tested for extraction of some 
herbicides (Vigna et al., 2006; Faria et al., 2007). Liu (2008) had used silica gel coated with 
gold nanoparticles self-assembled with alkanethiols for the extraction of steroidal 
compounds. 
The bonded-silica sorbent may be packed in different formats: filled microcolumns, 
cartridges or discs. A variety of bonded-silica phases are commercially available in the 
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cartridge format. Extraction could be also performed with membrane disks containing C18-
bonded silica (8 μm particles) on polytetrafluoroethylene or glass fiber supports (Spivakov 
et. al., 2006; Li et al., 2006). Disc provides shorter sample processing time on account of their 
larger cross-sectional area and decreased pressure drop, allowing higher sample flow rates. 
This is important for environmental samples, where larger sample volumes are usually 
employed to achieve adequate detection limits. 
The polymeric sorbents based on styrene-divinylbenzene exhibit higher capacity and better 
chemical stability over the whole pH range in comparison with bonded silica. Due to the 

specific π-π interactions they are relatively selective for analytes with aromatic rings. The 
use of highly crosslinked polymeric sorbents with their specific surface up to 800 m2/g or 
hypercrosslinked polymeric sorbents (over 1000 m2/g) could improve the analytes retention 

as more π-π sites in the aromatic rings will then be accessible to interact with the analytes 
(Ahn et.al., 2006).  

3. Hydrophilic and mixed-mode polymeric sorbents 

The hydrophobic nature of classical sorbents leads to poor retention of polar compounds. To 

overcome these problems, the research in new SPE materials has been recently focused on 

the development of hydrophilic and mixed-mode polymeric materials. Such sorbents 

combine high specific surface area and polar interaction between sorbent and analyte due to 

introduction of the polar moiety to the polymer structure. 

3.1 Hydrophilic polymeric sorbents 

The hydrophilic polymeric sorbents are obtained by chemical modification of the existing 

hydrophobic materials or by copolymerisation of monomers that contain suitable functional 

groups. The polar substituents reduce the interfacial tension between the polymer surface 

and aqueous sample improving the wetting characteristics and increase contact between the 

analyte and polymeric sorbent. Strata-X (styrene skeleton modified with a pyrrolidone 

group) and Oasis HLB (macroporous poly(N-vinylpyrrolidone-divinylbenzene) copolymer) 

are the most common hydrophilic sorbent used in the herbicides extraction (Stoob et. al., 

2005; D'Archivio et. al., 2007, Polati et al., 2006; Mazzella et al., 2008; Yu et al., 2009). Most of 

the studies investigate the performance of Oasis HLB in off-line SPE using different 

cartridge size available (from 30 to 500 mg). Other studies employ the direct coupling of on-

line SPE to HPLC with column switching technique (Xu et al., 2007) or 96-well plate 

(Morihisa et al., 2008) to obtain high sample throughput. Abselut Nexus, the methacrylate 

and divinylbenzene copolymer has been recently applied in clean-up of complex samples, 

such as biological matrices with the subsequent extraction of analytes (Rodriguez-Gonzalo 

et. al., 2009).  

Biesaga et al. (2005) compared the recoveries of chlorophenoxy acidic herbicides using 

various SPE cartridges (C18, Strata-X, Oasis HLB, SAX and phenyl-silica). The better 

performance of Strata-X, Oasis and phenyl-silica sorbents in comparison with silica gel C18 

can be attributed to their aromatic structure, which can interact with aromatic analytes via π- 

π interactions (Fig. 1). Additionally, Oasis HLB cartridges are water-wettable, and thus there 

is no need to ensure that it remains wet before loading the aqueous sample. The recovery of 

dicamba, the least hydrophobic compound evaluated, was much lower; only its sorption on 

Strata-X reached 74%. 
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Fig. 1. Recoveries of chlorophenoxy acids extracted from 10 mL of deionized water spiked at 

the 5 μg/L level using various SPE cartridges. (Adopted from Biesaga et al., 2005). 

3.2 Mixed-mode polymeric sorbents 

Mixed-mode polymeric sorbents combine the polymeric skeleton with ion-exchange groups, 

thus these hybrid materials rely upon two types of interactions mechanism for their 

performance: reversed-phase and ion-exchange (Fontanals et al., 2010). Careful selection of 

the polymeric skeleton (which enhances the reversed-phase interactions) and the ionic 

groups (which tune the ion-exchange interactions) could give the combination of two highly 

desirable properties in solid phase extraction (i.e. retentivity and selectivity) in one single 

material. The benefit of the ion-exchange capacity is that either analytes, the matrix 

components or even the ionization state of the sorbent (in the case of weak-exchange resins) 

can be switched during the different steps in SPE procedure. It allows the interference 

elimination in the washing step and eluting the analytes more selectively, just by suitable 

pH combination in each step. 

Mixed-mode sorbents are classified as cationic or anionic, and as strong or weak ion 

exchange, depending on the ionic group attached to the resin. Each of these groups is 

designed to extract selectively analytes with certain chemical properties (i.e. strong/weak 

acidic or basic). However, the selectivity of the extraction process depends on choosing not 

only a suitable sorbent but also a suitable SPE protocol (Fontanals et al., 2010). 

Oasis MCX and Oasis MAX have the same as Oasis HLB skeleton (polyvinyl pyrrolidone-

divinylbenzene) modified chemically with sulfonic acid and quaternary amine groups, 

respectively. These mixed-mode sorbents are mainly applied for extraction of analytes 

(charged or not) from complex biological and environmental matrices (Rosales-Conrado et 

al., 2005; Sorensen et al., 2008; Rodriguez-Gonzalo et al., 2009).  
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Lavén et al. (2009) proposed a novel solid phase extraction method whereby 15 basic, 
neutral and acidic compounds from wastewater were simultaneously extracted and 
subsequently separated into different fractions. This was achieved using mixed-mode 
cation- and anion-exchange SPE (Oasis MCX and Oasis MAX) in series. For less complex 
samples, e.g. the active-sludge-treatment effluent water, Oasis MCX used alone may be an 
alternative method. Although sewage treatment plant influent waters containing high loads 
of organic compounds, the clean-up step using only Oasis MCX was insufficient, leading to 
unreliable quantitation. Utilising the ability to separate compounds by mixed-mode SPE 
according to basic and acidic functionalities should be also very useful in the 
characterisation of unknown water contaminants. 

4. Molecularly imprinted polymers 

Molecularly imprinted polymers (MIPs) are highly crosslinked polymers with specific 
binding sites for a particular analyte. The print molecule – called the template – is 
chemically coupled with one or several functional monomers and then spatially fixed in a 
solid polymer by the polymerisation reaction. After template removal by extraction, 
polymers with imprints, which are complementary to the template in terms of size, shape 
and functionality are obtained. These polymers are able to rebind selectively the template 
molecule or its structural analogues. The right selection of functional monomers is 
important in molecular imprinting because the interactions with functional groups affect the 
affinity of MIPs (Lasákova & Jandera, 2009). Molecular modelling can be used to predict 
which functional monomers are capable to form effective polymers as some monomers have 
a natural affinity to some herbicides (Breton et al., 2007).  
Two principally different approaches to molecular imprinting may be distinguished. In non-
covalent (or self-assembly) approach the imprint molecule complexes the monomers by non-
covalent or metal ion coordination interactions. The covalent imprinting employs reversible 
covalent bonds and usually involves a prior chemical synthesis step to link the monomers to 
the template. The first approach is more flexible in the range of templates that can be used 
but covalent imprinting yields better defined and more homogeneous binding sites. 
Moreover, the former is practically much easier, since complex formation occurs between 
template and monomers in a solution. Figure 2 shows this entire process schematically and 
more details on the preparation of imprints can be found elsewhere (Diaz-Garcia & Lamo, 
2005; Qiao et al., 2006; Dias et al., 2009). It should be stressed that some monomers have 
natural affinity to some herbicides (Breton et al., 2007). The retention on blanks seems to be a 
good reflection of the relative affinity of monomers to the herbicides, and this interaction 
must be naturally strong enough to allow the binding enhancement by a MIP. Proper 
selection of reagents, reaction medium and conditions should take into consideration the 
complexity of selective sites formation in the polymer structure to obtain a material capable 
of not only highly selective recognition of target analytes but also having good kinetic 
parameters (Kloskowski et al., 2009). Kopohpaei et al. (2008) proposed a chemometric 
approach for the optimization of the main factors affecting the material structure and the 
molecular recognition properties of the MIPs.  
Tamayo et al. (2005) found that the use of 2-(trifluoromethyl) acrylic acid as functional 
monomer leads to the synthesis of polymers with higher capacities and affinity constants for 
phenylurea herbicides in comparison with metacrylic acid when isoproturon was used as 
template. Thus, the simultaneous extraction of several herbicides was possible since each 
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compound was able to interact with specific binding sites in the presence of related 
compounds. However, both linuron and metabromuron were clearly displaced by the other 
analytes in the competition experiments and were able to interact only with a very small 
number of binding sites. 
 

 

Fig. 2. Schematic representation of molecular imprinting principle. 

Most of the reported studies concern the development of MIPs for one target analyte only, 

but basically similar compounds that are present in samples, can also be recognized and 

extracted (Chapuis et al., 2003). Herrero-Hernandez et al. (2007) demonstrated the 

applicability of an imprinted polymer obtained using bisphenol-A as template for the 

determination of several xenobiotic compounds in honey samples. It was found that MIP 

was able to extract selectivity phenols and several phenoxyacids, while no-specific 

recognition of other compounds such as atrazine, chlotoluron, carbaryl and diuron 

herbicides was also observed. 

MIPs can be obtained in the format of particles, coatings, monolayers of selective 

compounds bound to the surface of support, monolithic packings or fibers (Oxelbark et al. 

2007). A fast and straightforward method for preparation and binding study of solid phase 

microextraction (SPME) fiber on the basis of atrazine- and ametryn-imprinted polymers has 

been proposed (Djozan & Ebrahimi, 2008; Djozan et al., 2009). The fabricated fibers were 

thermally and chemically stable and flexible enough to be placed in home-made SPME 

syringe and to be inserted directly into GC injection port.  

Porous self-supported MIP membranes with developed inner surface have been proposed 

for atrazine enrichment (Sergeyeva et al.; 2007). It was shown that the MIP particles 

demonstrated significantly less pronounced imprinting effect and lower adsorption 

capabilities as compared to the MIP membranes of the same composition. MIPs could be 

also incorporated into the acceptor phase of a microporous membrane liquid-liquid 

extraction system for preconcentration and clean-ups step before chromatographic analysis 

(Mhaka et al., 2009; Hu et al., 2009).  

Recent applications of MIP-SPE technique for herbicide analysis are presented in Table 1. 

Assembly 

Template Monomers 

Extraction 

Polimerization 
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Template 
Monomer/cross 
linker/solvent 

Analytes Sample References 

2,4,5-trichloro 
phenoxyacetic 
acid 

4-vinyl pyridine/ 
EGDMA/ methanol 
-water (3+1, v/v) 

Chlorinated 
phenoxyacids 

River water 
Baggiani  
et al., 2004 

Metsulfuron 
methyl 

4- or 2-vinyl 
pyridine/EGDMA/ 
acetonitrile 

Sufonylurea 
herbicides 

Tap water 
Bastide 
 et al., 2005 

Linuron or 
isoproturon 

MAA or TFMAA/ 
EDMA/toluene  

Phenylurea 
herbicides 

Corn sample 
extracts 

Tamayo  
et al., 2005 

Propazine 
MAA/EGDMA/ 
CH2Cl2 

Triazines 
Soil, vegetable 
extracts 

Cacho et al., 
2006 

Cyanazine 
MAA/EGDMA/ 
toluene 

Cyanazine, 
atrazine 

Waters 
Breton  
et al., 2006 

Atrazine or 
ametryn 

MAA or TFMAA  
or 4-vinyl pyridine 
/EGDMA/toluene 

Chlorotriazine  
and methyl 
thiotriazine 
herbicides 

River water 
Sambe 
 et al., 2007 

Atrazine 
MAA/EGDMA/ 
toluene 

Atrazine 
Ground 
waters 

Prasad  
et al., 2007 

Phenoxyacetic 
acid 

4-vinyl pyridine 
/methanol+water 
(1+1, v/v) 

Phenoxyacetic 
herbicides 

Waters 
Zhang  
et al., 2007 

Atrazine 
MAA/ TEDMA/ 
DMF 

Triazine 
herbicides 

Waters 
Sergeyeva  
et al., 2007 

Ametryn 
MAA/EGDMA/ 
acetonitrile 

Ametryn Standards 
Koohpaei  
et al., 2008 

Atrazine 
MAA/ EGDMA/ 
acetonitrile 

Triazine 
herbicides 

Waters, rice, 
onion 

Djozan  
et al., 2008 

Bisphenol-A 
4-vinyl pyridine 
/EGDMA/toluene 

Phenoxyacetic 
herbicides 

Honey 
Herrero-
Hernández 
et al., 2009 

Ametryn 
MAA/ EGDMA/ 
acetonitrile 

Triazine 
herbicides 

Drinking 
waters  

Koohpaei  
et al., 2009 

Atrazine 
MAA/ EGDMA/ 
acetonitrile 

Triazine 
herbicides 

Food samples 
Mhaka et al., 
2009 

MAA - methacrylic acid; EGDMA – ethylene glycol dimethacrylate; TFMAA – 2-(trifluoromethyl) acrylic acid; 
DVB – divinylbenzene; CH2Cl2 – dichlooromethane; TEDMA – tri(ethylene glycol) dimethacrylate; DMF – 
dimethylformamide 

Table 1.  Recent applications of MIP-SPE technique for herbicide analysis 

The analytical procedure based on molecularly imprinted SPE was developed for the 
determination of several triazine herbicides in soil and vegetable samples (Cacho et al., 
2006). These samples has proven to be difficult to clean with a non-covalent imprinted 
polymer, making necessary the inclusion of an additional clean-up step to remove polar 
matrix components that prevented the final accurate quantification of target analytes.  
Figure 3 shows the chromatograms obtained with and without SPE procedure of soil (Fig. 
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3A) and potato (Fig. 3B) sample extracts spiked with 50 ng/g and 20 ng/g of triazine 
herbicides, respectively. As can be observed,  the direct determination of triazines without 
clean-up was not possible due to interferences appearing in the chromatograms whereas it 
could be easily determined after cleaning sample extract using MIPs. The detection limits for 
the analysis ranged from 0.4 to 2.4 ng/g depending upon the herbicide, low enough to allow 
the environmental monitoring of triazines at concentration level below the established 
maximum residue limits by current legislation. 
 

 

 

Fig. 3. Chromatograms obtained without (a) and with (b) SPE-MIP of soil (A) and potato (B) 
samples extracts spiked with triazine herbicides (50 and 20 ng/g, respectively). Peaks: 1-
desisopropylatrazine; 2–desethylatrazine; 3–simazine; 4–atrazine; 5–propazine. Adopted 
from Cacho et al. (2006). 

5. Carbon nanotubes 

Carbon nanotubes (CNTs) represent the novel carbon-based nanomaterials with unique 
properties such as high surface areas, large aspect ratios, remarkably high mechanical 
strength as well as electrical and thermal conductivities. They can be described as a graphite 
sheet rolled up into a nanoscale-tube. Two structural forms of CNTs exist: single-walled 
(SWCNTs) and multi-walled (MWCNTs) nanotubes. CNT lengths can be as short as a few 

A)

B)
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hundred nanometers or as long as several microns. SWCNT have diameters between 1 and 
10 nm and are normally capped at the ends. In contrast, MWCNT diameters are much larger 
(ranging from 5 nm to a few hundred nanometers) because their structure consists of many 
concentric cylinders held together by van der Waals forces (Wepasnik et al., 2010). 
The characteristic structures and electronic properties of carbon nanotubes allow them to 

interact strongly with organic molecules, via non-covalent forces, such as hydrogen bonding, 

π- π stacking, electrostatic forces, van der Waals forces and hydrophobic interactions. These 

interactions as well as hollow and layered nanosized structures make them a good 

candidate for application as a sorbent. The surface, made up of carbon atoms hexagonal 

arrays in graphene sheets, interacts particularly strongly with the benzene rings of aromatic 

compounds.  

Oxidation of CNTs with nitric acid is an effective method to remove the amorphous carbon, 

carbon black and carbon particles introduces by their preparation process (Yang et al., 2006). It 

is known that oxidation of carbon surface can offer not only more hydrophilic surface 

structure, but also a larger number of oxygen-containing functional groups, which increase the 

ion-exchange capability of carbon material. Gas phase oxidation of activated carbon increases 

mainly the concentration of hydroxyl and carbonyl surface groups, while oxidation in the 

liquid phase increases particularly the content of carboxylic acids (Dastgheib  & Rockstraw, 

2002). The amount of carboxyl and lactone groups on the CNTs treated with nitric acid was 

higher in comparison to the process conducted using H2O2 and KMnO4 (An & Zeng, 2003). 

Datsyuk et al. (2008) found that the nitric acid (65%) treated carbon nanotubes under reflux 

conditions for 48h suffered very high degree of degradation such as nanotube shortening and 

additional effect generation in the graphitic network. Functional groups can change the 

wettability of CNTs surfaces and consequently make them more hydrophilic and suitable for 

sorption of relatively low molecular weight and polar compounds. On the other hand, 

functional groups may increase diffusional resistance and reduce the accessibility and affinity 

of CNTs surfaces for organic compounds (Cho et al., 2008).  

Recent applications of carbon nanotubes for removal and enrichment of herbicides in 
different types of samples are presented in Table 2. Earlier reports were discussed in the 
review papers (Pang & Xing, 2008; Pyrzynska, 2008).  
The comparison of carbon nanotubes, activated carbon and C18 silica in terms of analytical 
performance, application to environmental water, cartridge re-use, adsorption capacity and 
cost of adsorbent has been made for propoxur, antrazine and methidation herbicides (El-
Skeikh et al., 2008). The adsorption capacity of CNTs was almost three times higher than 
that of activated carbon and C18, while activated carbon was superior over the other 
sorbents due to its low cost. 
A comparative study suggested that carbon nanotubes had a higher extraction efficiency 
than Oasis HLB for the extraction of methamidophos and acephate, particularly for seawater 
samples (Li et al., 2009). Figure 4 presents the chromatograms of six organophosphorus 
pesticides in the spiked seawater sample extracted using CNTs and Oasis HLB sorbent. For 
other tested polar organophosphorus pesticides (dichlorvos, omethoate, monocrotophos 
and dimethoate) improvement was not significant, thus CNTs could supplement Oasis HLB 
for these compounds extraction. 
Zhou et al. (2007) compared the trapping efficiency of CNTs and C18 packed cartridge using 

sulfonylurea herbicides as the model compounds. When the matrices of the samples were 

very simple, such as tap water and reservoir water, the enrichment performance between  
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Analytes Sample Eluent 
Recovery 

% 
Reference 

Sulfonylurea herbicides Waters 
Acetonitrile 
 

80 - 105 
Zhou et al., 

2007 

Atrazine and its 
metabolites 

Water, soil Ethyl acetate 72-109 
Min et al., 

2008 
 

Organophosphorous 
herbicides  

Fruit juices 
 

Dichloromethane
 

73 –103 
 

Ravelo-Perez 
et al., 2008 

Various herbicides 
Natural 
waters 

Acetonitrile 
 

81 – 108 
 

El-Sheikh et 
al., 2008 

Pirimicarb, pyrifenox, 
penconazol, cyprodynil, 
carbendazim,  

Mineral water 
 

Dichloromethane 
with formic acid 
(5% v/v) 

53 – 94 
 

Awensio-
Ramos et al., 

2008 

Chloroacetanilide 
herbicides 

Tap, river 
water 

Ethyl acetate 
 

77 –104 
 

Dong et al., 
2009 

Triazine herbicides  Water 
Acetonitrile/ 
methanol  
(50%, v/v) 

84-104 
Al-Degs et al., 

2009 

Sulfonylurea herbicides
Environmental 
waters 

Acetonitrile +  
1% acetic acid 
 

79 - 102 
Niu et al., 

2009 

Organophosphorus 
herbicides 

Seawater 
 

Acetone or 
methanol 

79 - 102 
 

Li et al., 
2009 

Table 2. Recent applications of carbon nanotubes for removal and enrichment of herbicides 

 

 

Fig. 2. Chromatograms of organophosphorus pesticides (1.0 μg/L) in the spiked seawater 
extracted with CNTs and Oasis HLB. Peaks identification: 1-dichlorvos, 2-methamidophos, 
3-acephate, 4-omethoate, 5-monocrotophos, 6-dimethoate. Adapted from Li et al. (2009). 
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these two adsorbents had no significant difference. However, carbon nanotubes become 
much more suitable to extract herbicides from complex matrices (seawater and well-water). 
Carbon nanotubes could be also used in a format of disc. Incorporating sorbents of small 
particle size, the disc format possesses a larger surface area than the cartridge, resulting in 
good mass transfer and fast flow rates (Niu et al., 2009).  To enhance the sorption capacity of 
the disks, double or even triple disks were used together. A comparison study showed that 
the double-disk system (comprising two stacked disks with 60 mg of CNTs) exhibited 
extraction capabilities that were comparable to those of a commercial C18 disk with 500 mg 
sorbent for nonpolar or moderately polar compounds. The triple layered CNTs disk system 
showed good extraction efficiency when the sample volume was up to 3 000 mL (Niu et al., 
2008). 
Carbon nanotubes with high porosity and large adsorption area seems to be a good 

candidate for solid phase microextraction coating. Rastkari et al. (2009) proposed a novel 

coating by attaching CNTs onto a stainless steel wire through organic binder. The results 

showed that the CNTs fiber exhibited higher sensitivity and longer life span (over 150 times) 

than the commercial carboxen/polydimethylsiloxane coating. 

6. On-line preconcentration 

Solid phase extraction could be performed on-line by direct connection to the 

chromatographic system, therefore fully automated technique could be utilised. 

Hyphenated on-line SPE-HPLC systems are designed to improve not only sensitivity and 

selectivity of determination but also reduced sample manipulation and time, better intra- 

and inter-day reproducibility, higher sample throughputs as well better precision due to 

lower human participation, but typically requires the use of program controlled switch 

valves and column reconfiguration (Segura et al., 2007; Viglino et al., 2008).  The extraction 

sorbents include mainly disposable cartridges, restricted access media,, large-size particle 

and monolithic materials (Xu et al., 2007).  

The valve setup for on-line SPE is presented in Fig. 3. The column-switching valve is used to 

direct the flow from the extraction column either to waste or to the HPLC analytical column. 

At the beginning of each run, the SPE column is conditioned. In the load position, sample is 

directly loaded in the loop and then preconcentrated, while matrix components are removed 

during the washing step. The valve is then switched, so that appropriate solution can elute 

the analytes from the extraction column onto the analytical column, when they are 

separated pior detection. After elution, the valve is switched back to its original position to 

wash and re-equilibrate the extraction column.  

To improve the detection limit of column-switching system, the analytes should be 

preconcentrated from larger sample volume. Nevertheless, this would only be achieved if 

the analytes do not break through the SPE column.  Garcia-Ac et al. (2009) estimated the 

breakthrough volumes of three herbicides (atrazine, cyanazine, simazine) and two of their 

transformation products (deethylatrazine and deisopropylatrazine) for several on-line SPE 

columns made of different sorbent materials. It was found that Strata-X was the best 

candidate for the preconcentration of large volume samples and all studied polymeric 

phases showed higher breaktrough volume than silica-based phases. The preconentration of 

10 mL sample lowered the limit of detection by a factor of 5 for atrazine, deethylatrazine 

and simazine, while for deisopropylatrazine the improvement factor was > 10. 
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Fig. 3. Schematic diagram of valves configuration for on-line SPE-HPLC system. 

The extraction column is treated as a permanent component of the flow network, being used 
repeatedly for the sample-loading and elution sequences, and being replaced or repacked 
only after long-term operation. The repeated use of sorbents may progressively affect their 
retention capabilities due to contamination or deactivation. Also, if the retained species are 
not totally eluted from the sorbent medium, this leads to carry-over effects between 
consecutive runs. An alternative to overcome these drawbacks relies on a surface-renewal 
scheme, the so-called SI-bead injection, where the contents of the SPE column are 
withdrawn on-line and replaced for each analytical run (Miró & Hansen, 2006). This 
approach was used for determination of chlorotriazine herbicides and primary 
monodealkylated metabolites in untreated complex environmental samples (e.g, ground 
waters from domestic rural wells and soil extracts). An automatic tandem-column 
multimodal-bead injection approach combining two types of sorbent beads (water-
compatible MIP and reversed-phase mixed-mode Oasis HLB) was developed prior to on-
line LC separation (Boonjob et al., 2010). The limit of detection for analysis of spiked water 
at the 0.5 µg/L level was in the range of 0.02 - 0.04 µg/L and overall procedure 
reproducibility within 1.4 – 5.5% RSD. 

7. Quality control   

Together with the fast development of analytical methodologies, the great importance is 
now attached to the quality of the measurement data. Many important decisions are based 
on measurements, thus good-quality analytical results are essential. The key property of 
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reliable results is their metrological traceability to stated references with a well established 
evaluation of the measurement uncertainty (Quevauville, 2004). In practice, method 
validation is done by evaluating series of method-performance characteristics, such as 
linearity, operating range, recovery, limit of detection and quantification, precision, 
selectivity and calibration. The relevant information in the fields of analytical method 
validation and quality assurances have been published (Taverniers et al., 2004; Gonzalez et 
al., 2004).  
Matrix Reference Materials (MRM) are essential tools for the analytical protocols validation. 
The feasibility study of a MRM for the analysis of triazines and phenylurea herbicides in 
water was carried out (Deplagne et al., 2006). Different types of candidates MRM were 
prepared: solutions of pesticides diluted in acetonitrile and stored in sealed vials or stored at 
the dry state after the solvent evaporation to dryness, pesticides stored on two different 
types of polymeric sorbents (Oasis HLB and ENVI-Chrom P) after the percolation of 
drinking or river water spiked with herbicides. The stability of compounds stored at various 
temperatures was studied over a period of approximately one year. During the storage, 
some samples of each different MRM candidate were monthly analyzed by HPLC. 
Regarding the choice of materials for storage, it was found that a careful control of the 
temperature of evaporation to dryness is not necessary and similar results were obtained for 
recovery of herbicides for both used sorbents All herbicides, except simazine, stored as a dry 
residue at room temperature exhibited a decrease in concentration of more than 20%. The 
stability seemed to be better when vials were stored at 0.5 oC and  at -18 oC neither 
degradation nor loss of herbicides was observed. This study showed satisfactory long term 
stability (more than one year) at low temperature for herbicides stored in acetonitrile in vials 
and for herbicides concentrated on SPE cartridge obtained after passing through a water 
sample containing these analytes.  
To evaluate behavior of these materials containing herbicides, a collaborative study 
including 15 laboratories has been organized (Mrabet et al., 2006). Observed reproducibility 
on candidate materials (after the removal of extreme results) was 16.1% for the vials with 
pesticides in acetonitrile (at around 0.125 mg/L) directly analyzed, 29.2% for a water sample 
spiked with the pesticides (at around 0.5 µg/L) analyzed after preconcentration on the 
cartridge and 26.7% for the cartridges previously percolated with the water containing the 
pesticides (250 mL at around 0.5 µg/L for each pesticide) analyzed after elution. 

8. Conclusion 

Several hundred herbicides of different chemical structure are used world-wide in 
agriculture. Due to their persistence, polar nature and water solubility, they are dispersed in 
the environment and their residues and transformation products are present in several 
environmental matrices. With increasing public concerns for agrochemicals and their 
potential movement in the ecosystem, many countries have severely restricted the 
maximum acceptable concentration of herbicides in drinking water and in vegetable foods. 
Therefore, the availability of sensitive, selective, precise and rapid analysis methods is 
essential. Herbicide residue analysis generally requires several steps such as extraction from 
the sample of interest, removal of interfering co-extractives, analytes enrichment and 
quantification of their content. 
Solid-phase extraction is the top sample-extraction technique for liquid samples, since it can 
efficiently extract different types of analytes from their matrices and enrich them. Among 
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other advantages, SPE is versatile because a variety of sorbents is available, and the 
extraction can be tuned depending on how these sorbents interact with the analytes. In 
recent years, research into new kind of sorbents has focused on improving their capacity 
and selectivity. Mixed-mode polymeric sorbents, molecularly imprinted polymers and 
carbon nanotubes are among the new kind of sorbents, which could be useful in enrichment 
and clean-up purposes in herbicide analysis. MIPs are more selective than mixed-mode 
sorbents; however, mixed-mode sorbents have greater capacity than MIPs. Carbon 
nanotubes have a strong adsorption affinity for a wide variety of organic compounds, 
including pesticides, and are also characterized by their high sorption surface. The use of 
carbon-encapsulated magnetic nanoparticles avoids the time-consuming column passing 
and filtration operation and shows great analytical potential in preconcentration of large 
volumes of real water samples (Zhao et al., 2008). Application of carbon nanostructures  
have been facilitated by the improvement in their production as the cost has been a main 
factor in limiting commercialization. However, it is widely believed that if production 
volumes increase, cost would decrease markedly, thereby significantly increasing the 
utilization of the excellent properties of nanostructured carbon. Recently, new solvent-free 
process for producing CNTs from used polymers via thermal dissociation in the closed 
reactor under the inert or air atmosphere has been proposed (Pol & Thiyagarajan, 2010).  
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