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Spain 

1. Introduction     

ISAAA has estimated that genetically modified (GM) crops, mainly soybean, maize, cotton 

and canola, are cultivated worldwide in an area that has increased from 1.7 million hectares 

in 1996 to 134 million hectares in 2009, of which more than 80% have an herbicide-tolerant 

trait (ISAAA 2010). This work reviews the agricultural and environmental concerns about 

the likelihood for gene flow from GM wheat (Triticum aestivum L.). Wheat is the world’s 

most important crop species, grown on over 210 million hectares. There are no GM wheat 

varieties commercially available but transgenic wheat varieties are being successfully 

developed and field-tested. That makes wheat in the pipeline of genetically engineered 

crops to be cultivated. Although wheat is predominantly a self-pollinating crop, pollen from 

one plant can travel via wind to other receptive plant, being outcrossing between wheat 

cultivars possible at variable rates. Coexistence problems in wheat could thus arise if no 

measures are taken before releasing and marketing any transgenic cultivar, as has occurred 

with other GM crops such as oilseed rape or maize, where measures were implemented 

after commercial transgenic introduction. Besides this, wild Aegilops species like Ae. 

geniculata Roth., Ae. cylindrica Host., Ae. biuncialis Vis. or Ae. triuncialis L. can form natural 

interspecific hybrids with wheat where they grow in sympatry. These natural hybrids are 

highly sterile, although seeds may occasionally be found. Data presented aim to contribute 

to the determination of the extent of this phenomena. These data are necessary to manage 

the possible impact of transgenic wheat hybrids before the transgenic crop can be grown 

under field conditions. Herbicide-tolerant wheat parental varieties can be used to obtain 

resistant progeny detectable by herbicide selection, providing a high approach to the 

potential occurrence of intra and interspecific pollen mediated gene flow. 

2. Herbicide resistance as a marker for gene flow 

In spite of the knowledge of GM herbicide tolerant wheat cultivars, whose use is limited by 
availability and regulatory constraints, in the experiments presented in this book chapter we 
have used non GM wheat cultivars possessing homozygous dominant genes for herbicide 
response. Chlorotoluron and difenzoquat tolerant wheat cultivars were used to obtain 
hybrid-resistant progenies detectable by herbicide selection.  
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The herbicide chlorotoluron is a commercially available selective phenylurea that is widely 
used for broad-leaf and annual grass weed control in winter cereals. The genetic control of 
tolerance to chlorotoluron in bread wheat is determined by a major single dominant gene, 
Su1, located on the short arm of chromosome 6B (Krugman et al., 1997). This herbicide is 
selective in winter wheat crops although there are wheat cultivars susceptible to 
chlorotoluron (Sixto et al., 1995; Bozorgipour & Snape, 1997). Wheat wild relatives as 
Aegilops spp. are also susceptible to it. In the presence of herbicide selection pressure, 
herbicide resistance allows for the detection of hybrids between resistant wheat cultivars 
and susceptible ones and between Aegilops spp. and resistant wheats. In our studies, we 
have used chlorotoluron tolerant wheat cultivars as Castan or Deganit. 
The herbicide difenzoquat is a mitosis inhibitor used for the post-emergence control of wild 
Avena spp. in winter cereals. Aegilops species are susceptible to this herbicide. Chinese 
Spring (CS) is a wheat cultivar possessing herbicide resistance alleles endowing resistance 
that can be used to obtain hybrid resistant progeny. The genetic control of tolerance to 
difenzoquat in bread wheat is determined by a major single gene (Busch et al., 1989).  
During our work we have conducted two types of assays which have enabled us to identify 
resistant hybrids: growing plants with herbicides in hydroponic assays and herbicide 
spraying assays. 

3. Pollen dispersal in wheat 

Wheat pollen dispersal is not a new issue in agriculture. The varietal purity of the seed has 
always played a fundamental role in the development, yield and final quality of crops. It has 
long been known that pollen contamination not only takes place in cross-pollinated crops, it 
is also possible in self-pollinating crops when different varieties of the same crop are 
cultivated and sufficient separation distance is not maintained (Sanchez-Monge, 1955). 
One of the most effective methods for preventing pollen contamination between crossable 
genotypes is the use of isolation distances. The isolation distance required will depend on 
flower characteristics, compatibility with neighboring crops, pollen quantity and viability, 
mode of pollen dissemination and environmental conditions, which are of the upmost 
importance. Not all genotypes show the same ability in crosses. Wheat cultivars could show 
differences in the factors included in their reproductive biology; the flowering period of a 
wheat plant takes around 8 days. During these days each flower is open from 8 to 60 
minutes. Wheat produces a low number of pollen grains (10,000 per anther) only the 5 to 7% 
of the pollen drops on the stigma, the great majority is dispersed by wind (de Vries, 1971). 
The period of pollen viability is low, never above three hours (D’Souza, 1970). Pollen 
viability declines, with time and exposure to environmental stresses. From a hybridization 
rate of 86% obtained with fresh pollen maintained at 15º C (at RH 65 ± 5%), hybridization 
was only 12% after one hour at 25ºC , while no seeds were found at 30ºC. At 15ºC seed set 
declined 14 % and 23% at 20ºC (Loureiro et al., 2007). Receptivity of stigma and flower 
opening were also environmental and genetically dependent (de Vries, 1971). Under our 
circumstances, in a year with favourable conditions (77% RH and 20 ± 2ºC), a maximum 
seed set of 78% was obtained for Pavon x CS wheat cultivars hand crosses. These values 
were of 39% in a less favorable year.  

4. Outcrossing in wheat. The problem of coexistence 

Wheat is a self-pollinating crop but outcrossing is possible between cultivars at variable 
rates that are related with populations, genotypes and environmental conditions (Jain, 1975). 
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The main studies on pollen dispersal in wheat appear in two stages. In the 1960s and 
beginning of the 1970s managing pollen drift was a major concern within the context of 
commercial production of hybrid wheat, where achieving high levels of genetic purity and 
satisfactory seed set on male sterile plants were essential (Pickett 1993). In recent years, 
pollen dispersal in wheat has again received considerable attention, within the context of the 
legislation applied to cultivars issued from the advances in biotechnology. Transgenic wheat 
varieties are being successfully developed and field-tested, primarily as glyphosate-tolerant 
wheat (Blackshaw & Harker, 2002; Zhou et al., 2003), and there is extensive research on a 
wide range of GM wheat traits (e.g. Fusarium resistance, drought resistance); probably in 
the next few years certified cultivars of transgenic wheat shall be commercially available.  
There is concern that once transgenic wheat is released for commercial production, there 
will be a potential pollen flow from GM wheat to non GM-wheat (van Acker et al., 2003). As 
a consequence the product could not fulfil all the requirements of some international 
markets and farmers could lose the ability of choose between conventional, organic or GM-
based crop productions, in compliance with the relevant EU legislation on labelling and/or 
purity standards. EU regulations framework establishes a 0.9% labelling threshold for the 
adventitious presence of GM material in non-GM products. Thus, problems could appear in 
wheat if no measures are taken prior to the release and commercialisation of any transgenic 
cultivars to establish the basis that allows the coexistence of all type of wheat with the GM 
wheat.  
Outcrossing studies between T. aestivum cultivars have been conducted by different authors 
in the absence of any pollen competition on male sterile receptor plants. In this sense 
emasculate plants provide information on the upper levels of outcrossing under specific 
conditions and help in evaluating safety distances that avoid outcrossing and potential 
pollen-mediated gene-flow. Outcrossing rates in these studies are very different among 
experiments in terms of frequency of hybrid seed set and maximum seed set distance (from 
12 to 73% at distances near to the pollen source, from 0.3 to 9 % at around 10 m distance) 
(Khan et al., 1973; de Vries 1974). In a three-year study we assessed the maximum potential 
outcrossing under field conditions between the wheat cultivars Pavon (receptor) and 
Chinese Spring (3 x 3 m source donor). Bread wheat can also coexist in the field with the 
second major cultivated wheat species, the durum wheat tetraploid Triticum turgidum L. 
(tetraploid, AABB) that is closely related to bread wheat which bulk of production is 
concentrated in the Middle East, North America and the Mediterranean region. For this 
reason durum wheat T. turgidum L. var. durum cultivar Nita was also included in the study. 
Outcrossing was measured by seed set on emasculated recipient plants. Frequencies of seed 
set at 0 m distance were 45% (37-56%) for T. aestivum cultivars and 18% (5-30%) with T. 
turgidum (Loureiro et al., 2007). Under semiarid conditions of this assay, viable pollen was 
found at 14 m from the source, the maximum distance analyzed, with a distance of 8 m at 
which cross-pollination decreases below 1%. There is a strong positive correlation between 
outcrossing and the amount of pollen in air, for this reason hybridisation at distances close 
from the pollen source are similar to maximum hybridisation when emasculated plants 
were used as receptors. However as the distance from the pollen source increases the pollen 
concentration rapidly decline, 90% of the pollen in wheat remains within 6 meters from its 
source (Jensen, 1968; Loureiro, 2005). A mean seed set of 45% at 0 m decrease to 10% at 2 m 
(Figure 1). At 10 m seed set was of 1% in agreement with data of Stopkopf & Rai (1972) ; de 
Vries (1974) and Zhao et al. (2000) and slightly higher than data of Lu et al. (2002). Other 
authors have found a slower decrease on seed set in relation to distance from the pollen 
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source (Johnson et al., 1967; Bitzer & Patterson 1967; Khan et al., 1973). An exponential 
predictive curve (Figure 1) provides the upper level of the magnitude of this event (Loureiro 
et al., 2007). In these circumstances, 5 m would be required to avoid adventitious GM 
presence above the 0.9% marked by the European legislation. This isolation could be higher 
downwind with 7 m required to meet the threshold. 
 

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

Distance (m)

%
 O

u
tc

ro
s
s
in

g  2000

 2001

 2002

General

Downwind

 

Fig. 1. Mean seed set related to distance under no pollen competition in field assay. 

The outcrossing between wheat cultivars have been also assessed natural conditions of 
pollen competition. Experiments were carried out in the year 2005 at “La Canaleja (Instituto 
Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA) and at “El Encín” 
(Instituto Madrileño de Investigación y Desarrollo Rural y Agrario, IMIDRA) experimental 
stations, Madrid, Spain. The layout of the experiment was such that it permitted 
observations on the extent of natural crossing of a wheat pollen donor with different 
recipient cultivars and in different directions and distances. The experimental field design 
consisted in a 50 x 50 m central square plot sown with a T. aestivum chlorotoluron tolerant 
cultivar pollen donor (Castan in “El Encin” and Deganit in “La Canaleja”) at field density 
and chlorotoluron susceptible receptors (Altria and Recital) placed in the four sides of the 
pollen source at distances of 0, 1, 3, 5, 10, 20, 40, 80 and 100 m. In any case the mean of 
outcrossing reached 2% at 0 m distance. This value was always below 5% downwind even 
in close proximity (Loureiro et al., 2005). Outcrossing was detected at the very low level of 
0.07% at 100 m from the source.  
These outcrossing rates are in the range of published frequencies averaging 1%, but that can 
vary between 0 to 6.7% at distances below 1 m (Griffin, 1987; Hucl, 1996; Zhao et al., 2000; 
Hucl & Matus-Cadiz, 2001; Loureiro et al., 2005), although hybrid seed set is also possible at 
greater distances. 

5. Hybridization with wild relatives 

Genes could also be transferred from GM crops to wild relatives through interspecific 
hybridization. Prior to the commercialization of GM crops the research on the natural 
hybridization between crops and related wild species was very limited. Most of the research 
was done with the purpose of breeding and with the aim of transferring desirable traits 
between species, with crops always used as female parent in intergeneric and interspecific 
crosses. But the picture is quite different and numerous crops are known to have wild 
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relatives that can hybridize with them somewhere in the world. Gene flow between 
cultivated species and their weedy and wild relatives has been documented in species such 
as oilseed rape (Brassica napus L.) (Jørgensen & Andersen, 1994), maize (Zea mays L.) 
(Doebley, 1990), sorghum (Sorghum halepense (L.) Pers) (Arriola & Ellstrand, 1996), sunflower 
(Helianthus annuus L.) (Arias & Rieseberg, 1994) and sugarbeet (Beta vulgaris L.) (Bartsch & 
Pohl-Orf, 1996). Hybridization with wild relatives has been a real issue implicated in the 
evolution of some of the most aggressive weeds. In order to prevent the diffusion of a 
character that could provide adaptative advantages, thus making weed and wild species 
more invasive (Darmency, 1994), it is important to understand the potential for gene flow 
and transgene introgression from cultivated wheat into other species, mainly their wild 
relatives.  
Any future market launch and use of genetically modified wheat must be undertaken with 

extreme care, since a number of closely related species, primarily of the genus Aegilops, 

share their habitat with wheat and some natural hybrids between Aegilops spp. and wheat 

have been documented in field borders (van Slageren, 1994). Hybridization of herbicide-

resistant genetically modified wheat with populations of free living relatives could make 

these plants increasingly difficult to control, especially if they are already recognized as 

agricultural weeds and if they acquire resistance to widely used herbicides (Darmency, 

1994). The transfer of herbicide resistance genes from wheat to Aegilops cylindrica Host., a 

noxious weed in the wheat producing areas of the western United States, has been detected 

in the field and created problems for its control (Seefeldt et al., 1998; Wang et al., 2001; 

Gandhi et al., 2006). Other wild Aegilops species like Ae. geniculata Roth., Ae. biuncialis Vis. 

and Ae. triuncialis L. also form natural intergeneric hybrids with bread wheat where they 

grow in sympatry and with overlapping flowering times (van Slageren, 1994; Loureiro et al., 

2006; Zaharieva & Monneveux, 2006), a phenomenon underlining the close genetic links of 

the two genera. Hybrids between Ae. geniculata and Ae. triuncialis and wheat have been 

found in several countries of Europe, mainly in Spain and France, while Ae. biuncialis-wheat 

natural hybrids have been described in Lebanon (van Slageren, 1994). These natural hybrids 

are highly sterile, although seeds may occasionally be found in Ae. geniculata hybrids (van 

Slageren, 1994; Loureiro et al., 2008). 

In order to study the extent of natural hybridization, we collected spikes from one Ae. 

geniculata population that was spread extensively along a wheat field (in close proximity, Fig. 

2A) where one natural hybrid has been previously detected (Fig. 2 B). A total of 3200 seeds 

were collected and grown in the greenhouse. Six hybrid individuals were identified from 3158 

germinated seedlings, so the spontaneous hybridization rate was of 0.19% (Loureiro et al., 

2006). This natural hybridization rate was similar to the 0.24% and 0.39% obtained in the 

assays carried under simulated field conditions explained below (Loureiro et al., 2007). Our 

semiarid field conditions, with frequent high temperatures and low relative humidity during 

the flowering periods, negatively affect to the viability and dispersal of the wheat pollen 

(Waines and Hegde, 2003; Loureiro, 2005). Therefore, rates of crop-wild hybridization may be 

higher under environmental conditions that are more favorable to hybridization. 

An useful herbicide resistance screening test has been conducted to detect the potential 

occurrence of gene flow from T. aestivum to Aegilops using herbicide tolerant wheat cultivars 

as pollen donors. Aegilops spp. seeds are sown at appropriate depths in 1 L plastic pots (10 

cm diameter, 10 seeds per pot) containing soil and sand in a 1:1 (V ⁄ V) mixture. Plants were 

treated at the three leaf stage with a commercially formulated herbicide at the amount of 
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Fig. 2. A) An extensive stand of Ae. geniculata with some Ae. triuncialis in a roadside near 
Zamora, Castilla-León, Spain. B) Spikes of a natural hybrid plant between Ae. geniculata and 
T. aestivum on the edge of wheat field. Hybrids were identified in the field by their 
intermediate spike morphology. 

herbicide recommended in the field. In the case of Chinese Spring used as parental in 
crosses, the spraying was done with difenzoquat (Superaven, 330 g a.i. kg-1, Cyanamid 
Ibérica, S.A.) at 3 kg a.i. ha−1. For Castan and Deganit, plants were sprayed 1 day after 
planting with a commercial formulation of chlorotoluron (Oracle, 500 g a.i. L-1, DuPont 
Ibérica, S.A.) at 2 kg a.i. ha-1.  
The damage produced by the herbicide to the growth of the susceptible plants was apparent 
21 days after treatment. The response to the herbicides was evaluated visually 30 days after 
treatment. Herbicide applications were made using a Research Track Spray Cabinet (Devries 
Manufacturing, Hollandale, MN, USA) equipped with a Teejet 8002-E flat fan nozzle 
calibrated to spray 176 L ha-1 at 130 kPa. After spraying, the pots can be placed in the 
glasshouse or in a growing chamber and watered as required. Temperature was maintained 
at 24 ⁄ 16 ± 2ºC (day ⁄night temperature).  
We can see in the Figure 3A that the herbicide killed the Ae. geniculata plants 30 days after  
treatment, while the Deganit tolerant wheat cultivar and the F1 hybrid plants survived the 
treatments. Figure 3B shows the response to difenzoquat, with the CS tolerant wheat 
cultivar and the hybrids between this cultivar and Ae. biuncialis surviving the herbicide 
treatment while the Ae. biuncialis plants are dead. The results indicated that the bioassay was 
adequate for detecting hybrids. This kind of bioassay will be useful for the identification of 
hybrids in Aegilops wild populations growing near fields sown with wheat carrying a 
dominant trait for resistance to herbicides and in the quantification of the rate of 
hybridization. 
These bioassays using herbicides as markers for hybrid detection were used to evaluate the 
hybridization between cultivated wheat and two Aegilops wild relatives during two seasons 
in simulated field conditions under Central Spain conditions (Loureiro et al., 2007). Ten 1 m 
x 1 m pollinator experimental plots sowed with T. aestivum cv Deganit at field density (400 
seeds m-2) were established per Aegilops spp. for each of two consecutive years of 
experimentation. Two to 3 days before anthesis one pot of Aegilops spp. was placed inside 
each pollinator plot. The wheat flowering period was monitored each year. Spikes from 
Aegilops plants were collected at maturity separately from each individual. Progeny from 
 

Ae. geniculata

Ae. triuncialis

wheat 

www.intechopen.com



Pollen Mediated Gene Flow in GM Crops: 
The Use of Herbicides as Markers for Detection. The Case of Wheat   

 

231 

 

Fig. 3. A) Response to the herbicide chlorotoluron (2 kg a.i. ha−1) 30 days after treatment of 
Triticum aestivum cv Deganit (left), Ae. geniculata (right) and their F1 hybrids. B) Response to 
difenzoquat (3 kg a.i. ha−1) 21 days after treatment of T. aestivum cv Chinese Spring (left), Ae. 
biuncialis (right) and their F1 hybrids. The herbicide application allows the identification of 
the hybrids. 

 

  

Fig. 4. A) Aegilops-Triticum hybrid detection by herbicide screening in the greenhouse. B) 
Herbicide resistant hybrid between Ae. geniculata and T. aestivum cv Castan wheat identified 
by screening with the chlorotoluron applied at 2 kg a.i. ha−1. 

each Ae. geniculata and Ae. biuncialis plant was screened separately to check for resistance to 
chlorotoluron in the greenhouse (Fig. 4A). Percentage of hybridization was estimated as a 
ratio of survivor chlorotoluron-resistant hybrids to the total number of Aegilops seeds 
sprayed. Figure 4B shows a chlorotluron resistant hybrid between Ae. geniculata and Castan. 
The spike morphology of interspecific hybrids, intermediate between wheat and Aegilops, 
was similar to that of those obtained previously by hand-crossing under greenhouse 
conditions and allowed for their identification. The different ploidy levels of T. aestivum (2n 
= 42) and the two Aegilops spp. (2n = 28) also enabled us to confirm the hybrid status of all 
surviving individuals on the basis of their chromosome number in root meristems (2n = 35).  
The estimated hybridization rates using the data from both years were similar in both 

species and averaged 0.34% for Ae. biuncialis and 0.31% for Ae. geniculata. Assuming these 

hybridization rates and that the average seed production per plant is of 58.8 and 80.2 
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seeds/plant for Ae. biuncialis and Ae. geniculata, respectively, in a hypothetical field 

population of 100 plants growing in wheat close proximity in 1 year, the next year we would 

find around 17 Ae. biuncialis x wheat and 24 Ae. geniculata x wheat hybrids that could 

germinate or remain viable in the soil for more than 1 year. This study was carried out  

under experimental conditions where the factors that influenced cross-pollination as 

experimental plot layout or flowering synchrony, were optimized to promote hybridization. 

Thus, the results provided are a better indication of the maximum potential for 

hybridization under field conditions than of actual hybridization in agronomic settings, 

although it can vary within and probably among wild Aegilops populations and wheat 

varieties (Farooq et al., 1989; Hedge & Waines, 2004). 

Hybridization frequency is only a component of the rate of interspecific gene flow; the 
ability of the hybrids to reproduce and survive in nature for the first generations is another 
limiting factor in terms of introgression. Fertile progenies of an Ae. geniculata x wheat hybrid 
were described as early as early as 1838 in the South of France (van Slageren, 1994). After a 
few years of cultivation, seed producing fertile plants that increasingly looked like wheat 
were obtained. The fact that hybrids between wheat and Aegilops spp. can be partially fertile, 
with low male fertilities and some female fertility that allows for backcrosses with the 
parents to occur (Mujeeb-Kazi, 1995), raises the question of whether a wheat gene could be 
transferred when other wheat fields are grown near the hybrid zone. Aegilops x wheat 
hybrids showed some female fertility by backcrossing when placed inside a wheat plot. 
Seeds were found in Ae. biuncialis and Ae. geniculata x Deganit hybrid plants when they were 
placed inside 1 x 1 m wheat plots for backcrossing. Mean fertility rates were of 3.17% for Ae. 
biuncialis hybrids (0-9.26%) and 2.87%(0-8.33%) for Ae. geniculata hybrids, with great 
variability among plants (Loureiro et al., 2007). These backcrossing rates are in the range of 
that obtained by Snyder et al. (2000) for Ae. cylindrica in an experiment with one Ae. 
cylindrica x T. aestivum cv Madsen hybrid plant inside a 1 m2 plot of wheat: they obtained 
average seed sets of 1.8% (1–2.5%) and 6% (3–9.2%) in each year. Morrison et al. (2002) 
found that a 44% of the 754 Ae. cylindrica x wheat hybrids produced BC1 seeds at an average 
rate of 1%, but up to 8% can be achieved for some hybrid plants. Higher BC1 seed set rates of 
near to 30% in some hybrid plants have been found for other wheat cultivars (Loureiro et al., 
2009). Besides, BC1 partial self-fertility can be restored to 37% in the second backcross 
generation using jointed goatgrass as the recurrent parent, indicating that only two 
backcrosses are needed to restore fertility (Wang et al., 2001). 
Dose-response analysis was conducted on F1 and BC1 hybrids between Ae. geniculata (Loureiro 

et al., 2008) and Ae. biuncialis (Loureiro et al., 2009) and wheat. Herbicides (chlorotoluron 

and/or difenzoquat) were applied at 0, 0.5, 0.75, 1, 1.5 and 2X (X = recommended dose). The 

hybrids were extracted with their roots 15 days after treatment, washed with water and roots 

dried with paper to obtain the fresh weight. Three replicates and 3 seeds per replicate were 

used in each treatment. A log-logistic model (Seefeldt et al., 1995) was used to analyze the data 

to predict the trend of herbicide resistance. In this model, the equation  

y = f (x) = C + (D – C) / (1 + (x/LD50) b) 

 was used to fit the data (LD50 = 50% inhibitory dose, b = slope of the curve at LD50, C = 

lower limit and D = upper limit). Figure 5 shows the herbicide dose–response curves based 

on fresh weight 15 days after treatment of Ae. geniculata, F1, BC1 and wheat cultivars with 

the herbicides chlorotoluron and difenzoquat. 
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Fig. 5. Herbicide dose–response curves. Ae. geniculata, F1, BC1 and wheat cultivars with the 
herbicides (A) chlorotoluron and (B) difenzoquat.  

As hybrids could maintain the herbicide resistance from wheat, as is shown by the LD50 

values of the F1s and BC1s, the spread of these plants will be favoured by the use of the 
herbicide. At this point, herbicide resistance could be used as a good marker gene for hybrid 
detection and for the study of the herbicide resistance transference in the subsequent 
generations. 
The hybridization ability, the partial fertility of Aegilops–wheat hybrids, the expression of 
herbicide tolerance from wheat in the cytoplasmic background of Aegilops and the successful 
backcross seed production indicate that hybrids could facilitate the transfer of herbicide 
resistance from cultivated wheat to Aegilops in the hypothesized case of backcrossing with 
Aegilops as male parent. Until now, no case of herbicide-resistance in Ae. geniculata or Ae. 
biuncialis harmful to farmers have been reported, which could be an indication of the real 
low level impact of hybridization. However, there is evidence of past gene-flow and natural, 
sporadic introgression from wheat into related Aegilops species (Weissman et al., 2005). This 
fact could give to the introgressed hybrids and successive generations a selective advantage 
and could increase the weediness of these species under an agronomic scenario of herbicide-
resistant wheat, as is pointed out by Schoenenberger et al. (2006) for Ae. cylindrica. Broader 
research is needed on the fertility and fitness of the hybrids and their progenies when Ae. 
geniculata is the male parent in the backcrosses. This information could let us predict the 
relative advantage of hybridization on the adaptive ability of Aegilops spp. and hybrid 
derivatives and its impact on the environment and agricultural system. 

6. Conclusions 

Gene flow dynamics need to be considered in planning future field experiments with 
transgenic wheat. Agricultural reality shows that the degree of autogamy is high in wheat 
and that, generally, gene flow can be managed, provided that some precautionary measures 
are taken, such as keeping enough spatial isolation from other non GM wheat fields or from 
Aegilops wild relatives which wheat can hybridize. More research in this field is needed in 
order to establish coexistence measures to avoid unintended presence of GM in non-GM 
wheat, with cross-pollination being studied case by case and region by region. The fertility 
and fitness of the hybrids and their progenies must be also further evaluated in order to 
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determine the potential introgression of the herbicide resistance genes into the wild species, 
a phenomenon that must be adequately assessed to avoid any potential risk derived of gene 
transfer. 
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