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1. Introduction 

Extended Irreversible Thermodynamics (EIT) [1,2] has proved to be a useful tool to analyze 

the non-equilibrium behaviour of complex materials close to the linear regime. The 

axiomatic formulation of the EIT ([1], p.54) furnishes a formal structure that can be used as 

the basis of the study of different type of systems, i.e., dielectric/magnetic[3-5] and in 

particular viscoelastic materials [6-8]. Basically EIT extends the scope of the Classical 

Irreversible Thermodynamics (CIT) as developed by Prigogine, Onsager and more recently 

by De Groot and Mazur [9] among others. The basic idea is to formulate a generalized 

entropy function that depends not only on the conserved classical variables, but also on the 

dissipative fluxes. This implies abandoning the local equilibrium hypothesis. In the 

particular case of viscoelastic materials, the dissipative flux is the viscous component of the 

stress tensor. 

It is important to note that owing to the memory exhibited by viscoelastic materials the 

mechanical and dielectric response of these substances to mechanical and electric 

perturbation fields applied at time t not only depends on the actual fields at t but also on the 

history of the materials in the range tϑ−∞ < ≤ . In fact the phenomenological theory of 

mechanical relaxations is nearly the counterpart of dielectric relaxations [10] in such a way 

that in the general case both phenomena can be considered coupled processes. To account 

for the interactions between mechanical and dielectric compliance in the continuum it is 

convenient to describe adequately such a coupling in terms of the polarization vector and 

the stress tensor. However, since the symmetric part of the stress tensor only accounts for 

the translational hydrodynamic and taking into account that polarization arises from 

rotation of dipoles, in what follows that part will not be considered because does not 

contribute to the dielectric relaxation. It will be also assumed that the relative velocity of the 

medium with respect to dipoles rotation is negligible. In this way only the antisymmetric 

part of the stress tensor produces an effective polarization under an electric field. This is the 

specific way to locally relate the dipole rotation with the mechanical friction. 

2. Balance equations 

The linear momentum equation in local form can be written 

 div ρ ρ+ =σ b u$$  (1)  
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where b is the volume force and u is the displacement; bold symbols are used for tensors of 
order ≥ 1.  
The flux or current equation for polarization charges can be written as 

 0,
d d

div
dt dt

ρ
+ = =

P
J J  (2) 

where P is the polarization vector.  
In local form the more convenient expression for the energy balance, excluding radiation 
and other thermal effects is  

 grad uρ⋅ + =E P Q v$ $  (3) 

where E is the electric field, u is the internal energy per unit of mass, ρ is the mass density 

and Q is the sum of the mechanical stress tensor σ  and the Maxwell stress tensor T. 

In absence of magnetic fields or induced magnetization the Maxwell stress tensor is 
expressed by the following equation 

 2
0

1

2
E= −T DE Iε  (4) 

where D is the dielectric displacement, 0
ε the vacuum permittivity and I represents the unit 

tensor.  
The tensor Q can be decomposed in the corresponding symmetric and antisymmetric parts 
as follows 

 ( ) ( )1 1
,

2 2
= + = −s T a TQ Q Q Q Q Q  (5) 

where super index T indicates transposition operation.  
The gradient of velocity tensor can be decomposed in a similar way, i.e.,  

 grad = = +v L D W  (6) 

On account that the inner product of a symmetric tensor by an antisymmetric tensor is nil, 
the following expression holds 

 = +s aQL Q D Q W  (7) 

However, owing to the fact that the symmetric part of the total stress tensor is not coupled 
with dipoles rotation and W is associated to the angular rotation vector 

 
1

2
= ∇×ω v  (8) 

the two vectors ω and W are related in the usual way, i.e.,  

 ( ) ( ), , , ,

1 1 1

2 2 2
pqi i pqi ijk k j pj qk pk qj k j q p p q qpv v v v Wε ω ε ε δ δ δ δ= = − = − =  (9) 
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where the index notation was used, comma indicates derivation and ijkε is the alternating 

tensor. As a consequence, one can write 

 =a aQ W Q εω  (10) 

Then eq. (3) can be rewritten in the following way 

 adu

dt
ρ = +EP Q εω$  (11) 

The conservation of the angular moment has to be considered, i.e., 

 aI =ω εQ$  (12) 

where I is the mean inertia moment of the rotating dipoles. 
In general, the entropy production per unit of time is the sum of the entropy flux from the 
exterior plus the internally generated entropy. Accordingly, one can write 

 
S s

ds
div

dt
ρ σ= − +J  (13) 

where Js is the entropy flux and sσ the entropy production per unit of volume and time. 

3. Entropy equation 

According to the usual methodology of the EIT, it will assumed that there exists a regular 
enough function, called generalized entropy defined over a set of variables  

 ˆ( , , , )puη η ρ= J Q  (14) 

This function is such that the corresponding generalized Gibbs equation can be written as 

 1 2

a
p a

dd du d d

dt T dt T dt dt dt

ρη ρ φρ α α= + + +
J Q

J Q  (15) 

where Pρ is the polarization density andφ is the electrical potential. In principle φ and the 
coefficients iα  should be functions of the conserved variables, , pu ρ , but here for simplicity 
will be considered constant quantities.  
Then, the following equation will be assumed for the extended entropy flux, 

 1 2
a

η μ μ′= +J J JQ  (16) 

where iμ  is subject to the same restrictions as iα . 
By using eqs. (14) and (15) the entropy production is given by 

 

1 2 1 1 2 2 ( )
p a a a a

d
div

dt
ddu d

div grad div grad
T dt T dt dt

η η
ησ ρ

ρρ φ α α μ μ μ μ

= + =

′ ′= + + + + + + +

J

J
J Q J J J Q Q J

 (17) 

According to eqs. (1), (2) and (11) and after grouping terms, eq. (17) becomes 
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 1 2 2 2

0

1 1
( )a a a adiv grad

T T T
ησ α μ α μ

χ
⎛ ⎞ ⎛ ⎞′ ′= + − + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

E
P P P Q Q εω Q Jε

$$ $$  (18) 

Notice that in the development of eq. (18) the following expressions were used 

 1

0

, grad
T

φμ φ
χε

= = −
P

 (19)   

where χ  is the dielectric susceptibility. Eq. (18) has the form of a linear combination of 

products of two forces (terms between brackets) by the corresponding fluxes, P$ and aQ . 

According to the methodology of CIT the forces can be expressed as linear functions of 
current fluxes and their spatial and temporal derivatives (entire or fractional) in order to 
account for the polarization inhomogeneity. In this way,  

 

1 2

0

1 2 3 3

2 2

4 5 6

1

( )

1
( )

( )

a

a

a a

a a

a

a a

div
T T

d d d d
div grad div grad div

dt dt dt dt

grad
T

d d
grad grad

dt dt

α β α β

α β α β

α β

α β

α μ
χ

ξ ξ ξ ξ

α μ

ξ ξ ξ

′+ − + =

⎛ ⎞⎛ ⎞ ⎛ ⎞
′= + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

′+ + =

⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

E
P P Q

P P P P
P Q

εω Q P

P P
Q P

ε
$$

$ $
 (20) 

where fractional derivatives have been introduced. By grouping terms eq. (20) can be 
rewritten as 

 

1 2

0

1 2 3

2 2

4 5 6

1

( )

1
( )

( )

a

a

a

a a

a

a a

div
T T

d d d d
div grad div grad

dt dt dt dt

grad
T

d d
grad grad

dt dt

α β α β

α β α β

α β

α β

α μ
χ

ξ ξ ξ

α μ

ξ ξ ξ

+ − + =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

′+ + =

⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

E
P P Q

P P P P
P

εω Q P

P P
Q P

ε
$$

$ $
 (21) 

where 2 2 3μ μ ξ′ ′= − . 

Eq. (21b) contains the angular velocityω which can be eliminated in favour of aQ  by using 

(12). According to eq. (12) and premultiplying by the alternating tensor ε , one obtains 

 
a

I
=
εεQεω$  (22) 

According to eq. (9), and taking into account the antisymmetric character of aQ , the 

following relationship holds 
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 ( ) 2a a a a a
pqi ijk hl ih jl il hj hl ij ji ijQ Q Q Q Qε ε δ δ δ δ= − = − =  (23) 

and eq. (22) can be written as 

 
2 a

I
=
Qεω$  (24) 

In principle eq. (21) and (24) should provide the solution to our problem. However, in order 
to interpret the results, it is more convenient to consider some particular cases. To start with 

let we assume 1α = ; after omission of the fractional derivatives of order β , eq. (21) can be 

written as 

 
1 2 1 2 3

0

2 3 4 5

1
( ) ( )

1
( ) ( )

a a a

a a a a

div div grad div grad
T T

grad grad
T

α μ ξ ξ ξ
χ

α μ ξ ξ

+ − + = + +

+ + = +

E
P P Q P P P

εω Q P Q P

ε
$$ $ $

$ $
 (25) 

where 3 2 6μ μ μ′= −  . 

From eq. (24) and after taking derivatives, eq. (25b) becomes 

 2 3 4 5

2
( ) ( )a a a a agrad grad

IT
α μ ξ ξ+ + = +Q Q P Q P$$ $$$ $  (26) 

The second term of the right hand side of eq. (25a) can be written as 

 ( )1
( )

2
adiv grad graddiv= Δ −P P P  (27) 

For a unidirectional propagation wave with vector wave ( ,0,0)k=k under an electrical field 

transversal to the propagation, i.e., 2 3(0, , )E E=E , the components for the dielectric 

susceptibility ijχ tensor are 

 110, 0, ; 0ij i jk k i jχ χ= = ∀ ≠ =  (28) 

Notice that the constitutive relationship between polarization and electric field is given by 

 0i ij jP Eχ=ε  (29) 

Accordingly, eq. (27) can be written as  

 ( ) ( )( )21

2
a ak⋅ = − ⋅k kP P k k P  (30) 

This expression in conjunction with ( ) 0i j i igraddiv k k P= =P , leads eq. (27) to 

 
1

( )
2

adiv grad = ΔP P  (31) 

Elimination of aQ between eq. (25b) and (26), and considering eq. (21), the following 

expression is obtained after multiplying by 2
0 2ITχ με , 
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( ) 2
1 0 4 2 1 4 0 1 0 0 2 1 1 4

2
1 2 0 2 0 0 3 5 2 2 4

2 2
0 1 2 2 3 3 4 2 3 0

0 4 2

2 ( 2 ) ( )

1 1
(2 ) (2 )

2 2
1 1

( ) ( )
2 2

(2 ) 0

T I T I IT IT

IT T T IT IT

T I IT

IT IT

ξ χ ξ α ξ ξ χ α χ χ α ξ α ξ

α α χ ξ χ χ ξ ξ μ ξ ξ

χ α ξ μ μ ξ ξ α ξ χ

χ ξ α

+ − + − − + + −

− + Δ + Δ − − +

+ Δ + − + Δ −

− − + =

P P P P

P P P

P P

E E E

ε ε ε ε

ε ε ε

ε ε

ε

$ $$ $$$

$$$$ $

$$ $$$

$ $$

 (32) 

If electromechanical coupling is absent, i.e., 2 0μ = one obtains 

 1 1 2 3

0

1
( ) ( )a adiv grad div grad

T T
α ξ ξ ξ

χ
+ − = + +

E
P P P P Pε
$$ $ $  (33) 

Rearrangement of eq. (33) in conjunction with eq. (31) leads to 

 1 0 1 2

1 1

2 2
D Dτ λ χ+ + = + Δ + ΔP P P E P Pε$ $$ $  (34) 

where 

 0 1 1 1 0 1 0 2 2 0 3ε , ε , ε , εT T D T D Tτ χ ξ λ α χ χ ξ χ ξ= = − = − = −  (35) 

Equation (34) is a telegrapher type equation for the polarization propagation. The velocity of 
the propagation c is given by 

 2 1

12

D
c

λ
=  (36) 

If 1 2 0D D= = , eq. (34), becomes a Debye type equation with inertial effects, i.e., the so-called 

Rocard equation is obtained. Finally, if 
1

0λ = , the classical Debye equation is recovered.  

4. Complex dielectric permittivity 

In this section, the linear response to alternating electrical fields will be considered. For this 

purpose the Laplace transform will be used. By substituting eq. (24) in the temporal 

derivative of eq. (21b) one obtains  

 
1 1

2 2 4 5 6

2
( ) ( )

aa
a a a a d d

grad grad grad
IT dt dt

α β

α βα μ ξ ξ ξ
+ +⎛ ⎞

+ + = + + +⎜ ⎟
⎝ ⎠

Q P P
Q P Q P$$ $$$ $  (37) 

 

In order to simplify the calculations and without losing significant generality, it will be 

assumed 6 0ξ = . In an analogous way, taking 3 0ξ = , eqs. (33) and (37) can be written as 

 
1 2 1 2

0

2 2 4 5

1
( )

ε
2

( ) ( )

a a

a a a a a

d d
div div grad

T T dt dt

grad grad
IT

α β

α βα μ ξ ξ
χ

α μ ξ ξ

⎛ ⎞
+ − + = + +⎜ ⎟

⎝ ⎠

+ + = +

E P P
P P Q P

Q Q P Q P

$$

$$ $$$ $
 (38) 
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The two first derivatives of eq. (38a) and the divergence of (38b) are used to eliminate aQ . 

Then the Laplace transform of the resulting expression, in conjunction with eqs. (28) and 
(31), lead to 

 ( )

1

2
2 2 5 2

1 2

1
4 3

1 (1 )
* 1 ( )

22 (1 )
D

k s s
s s s

s s
IT

α β μ ξ λχ χ λ τ ξ
ξ ξ λ

−
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+

= + + + − +⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (39) 

where 

 1 3 2
1 0 1 2 3

1 5 4

, , ,D T
α μ ατ ξ χ λ λ λ
ξ ξ ξ

= = − = − = −ε  (40) 

Taking 0χ χ χ∞= − , adding the instantaneous component of the polarization χ∞ , and  

using, s iω= , eq. (39) becomes 

 

( )

0

2
2 2 5 2

1 2

1
4 3

*

1 (1 )
1 (( ) ( ) )

22 (1 )
D

k i i
i i

i i
IT

α β

χ χχ χ

μ ξ ω λ ωλ ω τ ω ω ξ
ξ ξ ω λ ω

∞
∞

−
= +

⎛ ⎞
⎜ ⎟+

− + + − +⎜ ⎟
⎜ ⎟+ −
⎝ ⎠

 (41) 

Taking into account that  

 0 01, 1, 1rχ χ χ∗
∞ ∞∗ = − = − = −ε ε ε  (42)  

Eq. (41) can be expressed in terms of the permittivity by  

 

( )

0

2
2 2 5 2

1 2

1
4 3

*

1 (1 )
1 (( ) ( ) )

22 (1 )
D

k i i
i i

i i
IT

α β

ε εε ε

μ ξ ω λ ωλ ω τ ω ω ξ
ξ ξ ω λ ω

∞
∞

−
= +

⎛ ⎞
⎜ ⎟+

− + + − +⎜ ⎟
⎜ ⎟+ −
⎝ ⎠

 (43) 

 

Equation (43) is the equation for the asymmetric absorption and dispersion of a 

viscodielectric material in a heterogeneous medium, with inertial viscoelastic coupling 

effects. The heterogeneity of the medium is taken into account through the wave vector k 

and the viscoelastic coupling is accounted for by means of the coefficient
2

μ . The asymmetry 

is present through the different behaviour at low and high frequencies of both sides of the 

corresponding transition peak. This asymmetry has been introduced in the model by means 

of the degrees α  and β of the fractional derivatives. Dielectric and mechanical inertial 

effects are expressed through 
1
λ and I, respectively.  

It should be noted that in the present formulation it is compulsory to take into account 

inertial effects because if 0I =  in eq. (43), the viscoelastic-dielectric coupling disappears. To 

avoid this problem it should be necessary to introduce in eq. (24) a term corresponding to 
the spin transport.  
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It is noteworthy that, strictly speaking, the molecule “sees” the local field, i.e., the field 
screened by the dipolar cloud surrounding the molecule. However in the preceding analysis 
the distinction between the applied and local field has not been considered, thus making 
equivalent macroscopic and microscopic responses. This a common practice in the analysis 
of the dielectric relaxation. 
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