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Laboratory of Biothermodynamics and Drug Design, Institute of Biotechnology 
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1. Introduction  

Heat shock protein 90 (Hsp90) is one of conserved heat shock proteins that protect, prevent 
aggregation, stabilize, activate, or otherwise regulate client proteins, is a component of the 
cellular chaperone machinery [Taipale et al., 2010, Taldone et al., 2009, Wandinger et al., 
2008]. There are a number of recent developments in the understanding of the interesting 
and complex mechanism of Hsp90 action [Neckers et al., 2009a, Neckers et al., 2009b, Mayer 
et al., 2009, Walerych et al., 2009]. Hsp90 is over-expressed in cancer cells and Hsp90 
inhibitors have shown selectivity for cancer cells. Therefore, small-molecule inhibitors are 
being developed as anticancer therapeutics [van Montfort and Workman, 2009, Sharp et al., 
2007, Sgobba and Rastelli, 2009, Fukuyo et al., 2009]. 
Two groups of Hsp90 inhibitors have been designed based on naturally occuring inhibitors 
geldanamycin and radicicol. Geldanamycin has been modified to 17-AAG, while various 
resorcinol-bearing compounds were designed based on radicicol. Here we describe the 
thermodynamics of their binding to Hsp90 by isothermal titration calorimetry (ITC) and 
thermal shift assay (TSA). These assays yield not only the potency, i.e. the Gibbs free energy 
of binding, but also the enthalpy of binding, the entropy of binding, and the heat capacity of 
binding. This detailed thermodynamic description and the comparison between 
homologous compound structures, coupled with structural information of the Hsp90-
inhibitor complex, provides insight into the structure-activity relationships (SAR) of the 
compounds. The SAR helps in the process of rational drug design [Freire, 2009]. 

2. The structure of Hsp90 and the comparison of human and yeast isoforms  

There are several Hsp90 homologs in human, yeast, and bacteria. Human Hsp90 exists in 
two highly homologous isoforms - Ǐ and ǐ. Alpha isoform is prevalent. There are no major 
known functional differences between the isoforms. Hsp90 homolog in yeast is named 
Hsc82 and also shares significant homology with human isoforms. 
Figure 1 shows the structure of Hsp90 and Hsc82. The protein in solution exists in 
equilibrium between dimer and monomer. Furthermore, the protein is quite flexible and 
exists in equilibrium between at least three major conformations [Graf et al., 2009].  
The full length protein consists of three major domains – the N-terminal domain (1-216 a.a.), 
the M-domain (262-524), and the C-terminal domain (525-709). There is also a charged linker 
(216-262) that did not crystallize and its structure is unknown [Ali et al., 2006]. Inhibitors 
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such as radicicol and geldanamycin bind to the ATP-binding pocket of Hsp90 and are thus 
competitive non-covalent inhibitors. 
 

 

 

Fig. 1. The structure of Hsp90. Top left. The superimposition of the N-termini of human 
Hsp90N (orange) and Hsc82N (blue) with transparent surfaces show that the fold is 
essentially identical. Radicicol is shown bound to yeast Hsc82N (PDB ID: 1bgq) as 
spacefilled green model. Top right. Rotation of the ‘lid’ part of the protein (94-139 a.a., 108-
139 a.a. in human Hsp90). Bottom left. The structure of Hsc82 full length dimer (2cg9). One 
monomer is shown in dark blue-red and another in light blue-pink. Blue shows the position 
of the N-terminal domains. Bottom right. The structure of Hsc82 full length monomer 
showing the positions of three domains and the unstructured charged linker 
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Radicicol interactions with human and yeast Hsp90 isoforms are shown in Figure 2. 
Crystallographic experimental structure exists only for the yeast isoform. Therefore, 
radicicol binding to human isoforms was modelled computationally into the active site.  
 

 

Fig. 2. Interactions of radicicol (grey substance in the middle at the top of the picture) with 
selected Hsp90 amino acids. Hsp90 amino acids are shown in orange (3eko) superimposed 
on yeast Hsc82 amino acids (colored by atom, 1bgq), and Hsp90ǐ amino acids are shown in 
pink. Three important water molecules participating in hydrogen bond formation between 
the protein and radicicol are shown as spheres 

There are very few amino acid differences between yeast and human isoforms that may 

have an impact on the binding thermodynamics. They are shown in the figure and listed 

below: 

Hsp90Ǐ Ser52 Ile91 Val92 Ala141 His154 

Hsp90ǐ Ala47 Leu86 Val87 Ala136 His149 

Hsc82 Ala38 Ile77 Arg78 Leu127 Ser140 

All other amino acids in the vicinity of radicicol are identical in all three isoforms. Therefore, 

the difference in the binding thermodynamics should be due to the above mentioned amino 

acids. Furthermore, charged amino acids Arg78 and His154 point to the solvent on the 
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protein surface different from radicicol binding site. Therefore, the difference is most likely 

due to the remaining three amino acids. 

3. Thermodynamics of binding by isothermal titration calorimetry and 
thermal shift assay 

Protein – ligand binding equilibrium is described by the Gibbs free energy of binding ( bGΔ ). 

More negative bGΔ  indicates a stronger binding reaction. The Gibbs free energy is sufficient 

to describe the equilibrium. However, several thermodynamic parameters that contribute to 

the bGΔ  can be correlated with structural features of the protein – ligand complex easier 

than the bGΔ  itself. The most important parameters are the enthalpy ( bHΔ ) and entropy 

( bSΔ ) of binding: 

 b b bG H T SΔ = Δ − Δ  (1) 

Both the enthalpy and entropy are the fist temperature derivatives (T-derivatives) of the 

Gibbs free energy: 

 b
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The second T-derivative of the bGΔ  (the bHΔ  T-derivative) is the heat capacity of binding 

( b PCΔ ). Subscript P indicates constant pressure. 
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 (4) 

There are other thermodynamic parameters that are pressure derivatives (P-derivatives) of 

bGΔ . The first P-derivative is the volume of binding ( bVΔ ). The second P-derivatives are 

the compressibility and expansion of binding. These parameters may be measured by 

varying the pressure of the protein – ligand system. However, they are rarely used and are 

beyond the scope of this chapter. Here we will concentrate on the most used, however, 

selected thermodynamic parameters, namely, bGΔ , bHΔ , bSΔ , and b PCΔ .  
The Gibbs free energy of ligand binding may be measured by a large variety of methods, 

well reviewed for carbonic anhydrase inhibitor binding in [Krishnamurthy et al., 2008]. Here 

we will concentrate on the application of (ITC) and the (TSA). Both methods have been 

described previously in detail, especially ITC [Freyer and Lewis, 2008, Landbury, 2004, 
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Velazquez-Campoy et al., 2004]. However, TSA is rather unconventional and underused 

despite its great advantages and usefulness [Zubriene et al., 2009, Cimmperman et al., 2008, 

Matulis et al., 2005].  

ITC directly measures the heat evolved or absorbed during the binding reaction. At constant 

pressure, the heat is equal to the enthalpy ( bHΔ ) of binding. This method is the most robust 

and accurate way of measuring the bHΔ . However, until the isothermal titration 

calorimeters became commercially available in early 90s, the bHΔ  was usually estimated 

from the bGΔ  T-dependence using the van’t Hoff relationship (3). If all contributing 

reactions are clearly dissected, such approach should yield the same results as titration 

calorimetry. However, in practice, there are many unexplained inconsistencies and only ITC 

provides reliable bHΔ . 
However, the ITC has a number of disadvantages. Most importantly, the binding constant 

should be in a rather narrow range to satisfy the requirement that coefficient c is between 

about 5 and 500. The c is: 

 t bc nM K=  (5) 

Where n is the binding stoichiometry, Mt is the protein molar concentration, and Kb is the 

binding constant defined for the reaction of M L ML+ q as: 

 
[ ]
[ ][ ]b

ML
K

L M
=  (6) 

 ln bG RT KΔ = −  (7) 

In practice, ITC is useful for Kbs in the range of 105 to 109 M-1. Such Kb can be usually 

measured by varying protein concentration. If ITC experiment is planned well, it can 

provide bGΔ , bHΔ , and bSΔ  in an hour. Doing the same experiment at several 

temperatures will yield an indirect measurement of the heat capacity b PCΔ .  
Another disadvantage of ITC is that it requires rather large amount of protein (usually more 

than 0.1 mg) and ligand. The protein must be well purified and soluble at micromolar 

concentrations. 

 These disadvantages can be quite easily approached using the TSA. This method is based 

on the observation that specifically binding ligands stabilize (sometimes destabilize) the 

protein. Protein solution is being heated at a constant rate in the absence or presence of a 

ligand and the unfolding pattern is measured by various methods such as absorbance, 

circular dichroism, or, most often, by fluorescence. Various fluorescent components could be 

followed, such as intrinsic tryptophan fluorescence or an extrinsic solvatochromic probe. 

Most convenient is 1,8-anilino naphthalene sulfonate (ANS). Figure 3 shows ANS 

fluorescence dependence on temperature upon Hsp90 unfolding. The rise in fluorescence 

near 50 ºC is due to Hsp90 unfolding and the exposure of hydrophobic patches of the 

protein interior. ANS binds to such patches and its fluorescence increases. 
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Fig. 3. Thermal shift assay protein melting curves. The midpoint of denaturation (Tm) is 
shifted to higher temperature upon ligand addition 

Note that ANS primarily binds to cationic groups on the protein surface (first to arginine 

residues) [Matulis and Lovrien, 1998]. However, most such bound ANS does not fluoresce 

and thus we can observe the unfolding pattern of the protein. Addition of ligand stabilized 

the protein and shifted the curve and the midpoint of the unfolding transition (Tm) by about 

5 degrees. 

Protein unfolding fluorescence curves are described by the equation: 

 U N N U
N U

1 1
u uG G

RT RT

y y y y
y y y

e e
Δ Δ
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− −
= + = +

+ +
 (8) 

Protein melting temperatures can be determined by fitting the protein melting curves 
(Figure 3) according to: 
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where y(T) is the calculated fluorescence as a function of temperature; , mF Ty is the 

fluorescence of the probe bound to folded native protein before the transition at Tm; , mU Ty  

is the fluorescence of the probe bound to the unfolded protein after the unfolding 

transition at Tm; mF  is the slope of the fluorescence dependence on temperature when the 

probe is bound to the native protein; mU is the slope of the fluorescence dependence on 

temperature when the probe is bound to the unfolded protein; 
mU THΔ  is the enthalpy of 

protein unfolding at Tm; 
mU TSΔ  is the entropy of protein unfolding at Tm; U pCΔ  is the heat 

capacity of protein unfolding and is assumed to be temperature-independent over the 

temperature range studied; R is the universal gas constant; and T is the absolute 

temperature (Kelvin). 
Ligand dosing curves (as in Figures 9 and 10) are described by the equation (10): 
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Lt  is the total concentration of added ligand, , mU TK   is the protein unfolding equilibrium 

constant at Tm; Pt is the total protein concentration; , mb TK  is the ligand binding constant at 

Tm; 
rU THΔ  is the enthalpy of protein unfolding at Tr; Tr is the protein melting temperature 

when no ligand is added;  
rU TSΔ  is the entropy of protein unfolding at Tr; U pCΔ  is the heat 

capacity of protein unfolding and is assumed to be temperature-independent over the 

temperature range studied;  
0b THΔ  is the enthalpy of ligand binding at T0; T0 is the 

temperature at which the binding process is studied (usually 37 °C);   is the entropy of 

ligand binding at T0; and b pCΔ   is the heat capacity of ligand binding and is assumed to be 

temperature-independent over the temperature range studied. 
The binding constant at the physiological temperature T0 is determined using: 

 
( )0 00 0

0

/

,
b T b TH T S RT

b TK e
− Δ − Δ

=  (11) 

TSA can be performed in the RT-PCR machine and requires only several micrograms of 
protein. Furthermore, there is no upper limit of the Kb to be determined. The only limit is the 
temperature of water boiling. Therefore, such extremely tight reactions as radicicol binding 
to Hsp90 can be studied by TSA. There is also no lower limit for the Kb. Therefore, 
millimolar and picomolar ligands can be easily measured. However, TSA does not 

determine bHΔ , bSΔ , and b PCΔ . Therefore, both TSA and ITC should be used to determine 

the thermodynamics of Hsp90 – ligand binding. 

4. Thermodynamics of Hsp90 ligand binding  

Figure 4 shows the structures of Hsp90 ligands used in this study. 
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Fig. 4. Chemical structures of compounds discussed in this manuscript 
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Fig. 5. A. Isothermal titration calorimetry data for radicicol binding to Hsp90N. Upper 
graph – raw ITC data, lower graph – integrated ITC data with the curve fit to the standard 
single binding site model. The cell contained 4 µM protein, while the syringe contained 40 
μM radicicol in the same buffer - 50 mM sodium phosphate, pH 7.5, 0.5% DMSO, 100 mM 
NaCl, at 25 °C. B. Radicicol binding ITC curve at the same conditions as in panel A except 
pH 8.5. C. 17-AAG binding to Hsp90N. D. ICPD47 compound binding to Hsp90N 
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Fig. 6. The observed enthalpies as a function of the buffer deprotonation enthalpy at 25 °C 
temperature in various buffers: t – phosphate, ” – Hepes, ▲ - Tris. The data points are the 
experimentally-observed enthalpies, and the trendlines are linear fits. Their slopes are equal 
to the binding-linked protonation events. Intersection with y axis is buffer-independent 
binding enthalpy 
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Fig. 7.  Intrinsic binding enthalpies obtained after accounting for the linked protonation 
event as a function of temperature for radicicol binding to Hsp90N (̈) and Hsp90F (�). 
The slopes are linear fits to the experimental data and are equal to the intrinsic heat 
capacities of radicicol binding 
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Fig. 8. The binding of AZ3 to Hsp90N at pH 7.0 as determined by the thermal shift assay. 
Upper panel shows experimental fluorescence curves. The lower panel shows the same 
curves recalculated as probabilities to observe the protein in the denatured state 

Figure 5 shows several typical ITC binding curves of the Hsp90 – ligand system. The curve 

in panel A is too steep, meaning that radicicol binding is too tight to be accurately 

determined by ITC. TSA data will be needed to determine the Kb and bGΔ  of interaction. 

However the bHΔ  is determined to high precision.  

The bHΔ  determined in buffers with different enthalpy of protonation ( aHΔ ) yielded 

different bHΔ  (Figure 6). Therefore, the binding reaction is linked with protein or ligand 

protonation or deprotonation upon binding. In other words, ligand binding shifts the pKa of 

ionisable groups as previous explained [Baker and Murphy, 1996]. 
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Due the linked protonation, it is important to dissect protonation thermodynamics from 
binding thermodynamics in order to determine the intrinsic thermodynamics of binding. 
The enthalpy of, for example, Tris buffer protonation is so large (about -44 kJ/mol) that it 
would hide any binding enthalpies.  Therefore, a series of experiments in various buffers are 
necessary (Figure 6). 
When protonation-linkage effects are accounted for [Zubriene et al., 2010] and the intrinsic 
enthalpy of binding is determined, such experiments should be repeated at all temperatures 
of interest. Figure 7 shows intrinsic enthalpies determined at 13, 25, and 37 °C for radicicol-
Hsp90 system. The full length protein bound radicicol with slightly less exothermic 
enthalpy. The difference was equal to ~ 4 kJ/mol (Table 1). This difference is within the 
standard error of the measurements. The error was greater for the full length protein 
because the available protein amount and concentration was lower. 
ITC was useful to provide the enthalpy of binding. However, as seen in radicicol binding 
ITC curves in Figure 5, the binding is too tight and would require the displacement assay as 
described previously [Velazquez-Campoy and Freire, 2006]. Our experience shows that the 
TSA is much easier and yields more precise results than the displacement ITC assay 
[Zubriene et al., 2009]. 
Therefore, the binding of all ligands listed in Figure 4, was measured by the TSA. Figure 8 
shows typical raw protein melting curves observed at various added ligand concentration. 
AZ3 bound with relatively low, millimolar affinity. Therefore, relatively large concentration 
of ligand had to be added in order to observe the Tm shift. 
It should be noted here that the shift continues way beyond saturation of protein with 
ligand. This is due to the dominant entropy of mixing. If the stabilization occurred due to 
some kind of bond formation, then we would not observe continued stabilization past the 
saturation point. This is observed when an inhibitor binds covalently and irreversibly to the 
protein. 
Figures 9 and 10 show the dosing curves for the ligands listed in Figure 4. Radicicol, the 
most potent binder, shifts the temperature by nearly 15 °C. 17-AAG is the average binder 
and shifts the temperature by about 10 °C. Some ligands, such as AZ1, barely shift the 
temperature even at 1 mM concentration. 

 
 

Protein 

 
Kd, 
nM 

 

bHΔ intr,

kJ×mol-1

 

bGΔ intr,

kJ×mol-1

 

bT SΔ intr,

kJ×mol-1

 

bSΔ intr, 

J×mol-1×K-1

 

bCΔ p, 

J×mol-1×K-1 

Hsp90ǏN 0.04 -70.7 -59.4 -11.4 -38 -620 

Hsp90ǏF 0.04 -66.8 -59.4 -7.5 -25 -860 

Hsp90ǐN 0.15 -60.6 -56.1 -4.6 -15 -760 

Hsc82F 0.25 -46.7 -54.8 8.1 27.1 -620 

Uncertainties ±1.6-fold ±4 ±2.6 ±4.7 ±16 ±140 

Table 1. Intrinsic thermodynamic parameters of radicicol binding to human ant yeast 
isoforms of Hsp90 
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Fig. 9. The dependence of the melting temperature of Hsp90N on the concentration of 
various inhibitors (ligand dosing curves) [Ugele et al., 2009]. The observed Kds (µM) by TSA 
were: Radicicol – 0.00083, AZ3 – 5000, ent-35 – 0.27, and 35 – 0.4 
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Fig. 10. The dependence of the melting temperature of Hsp90 N on the concentration of 
inhibitors 17-AAG and ICPD47. The observed Kds (µM) by TSA were: 17-AAG – 0.3 and 
ICPD47 – 0.002 
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Fig. 11. Denaturation profiles of Hsp90N in the presence of various radicicol concentrations 
[Zubriene et al., 2009] 

Figure 11 shows an interesting phenomenon observed in TSA when the concentration of 
ligand is lower than protein. When the concentration of ligand is insufficient to saturate all 
protein binding sites, the denaturation transition splits into two transitions – the first 
transition is due to free protein and the second is due to the liganded protein. Relative 
magnitudes of both transitions are proportional to the concentrations of free and liganded 
protein concentrations. This phenomenon has been also observed by DSC with weakly-
binding ligands at relatively high protein concentrations [Sharke and Ross, 1988]. 
TSA enabled determination of sub-nanomolar binding potency of naturally occuring 
radicicol and strongly or weakly-binding synthetic compounds where ITC does not work. 
However, no dissection of proton linkage was done for ligands where ITC was not feasible. 
Therefore, only observed Kds are obtained for such ligands without other thermodynamic 
information. After dissecting the proton linkage by ITC, it was shown that radicicol binds 
about 4 times more strongly to recombinant human Hsp90 alpha than to Hsp90 beta isoform. 
This reduction in affinity is caused primarily by less favorable enthalpic rather than entropic 
contributions. About 90% of the binding energy comes from the favorable enthalpic 
contribution and small opposing entropic contribution at physiological temperature (Table 1). 
Detailed proton linkage and temperature analysis had to be performed to dissect buffer and 
protein linked reactions from ligand binding intrinsic reaction. However, even after this 
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detailed analysis, it is not possible to determine whether conformational change in the protein 
could contribute significantly to these intrinsic thermodynamic parameters. It is quite likely 
that some contribution comes from the rotation of the lid as shown in Figure 1. The intrinsic 
enthalpy of radicicol binding to Hsp90 is one of the largest enthalpies observed for any protein 
– small ligand binding. Note, that most of the Gibbs free energy of radicicol binding comes 
from the favourable enthalpic contribution. The entropy contribution is relatively small. 

5. Conclusions 

Radicicol and other resorcinol-bearing compound binding to Hsp90 is interesting in many 
respects regarding drug design. First, the binding reaction can be very tight (i.e., it has a 
very favorable Gibbs free energy). Radicicol stabilizes Hsp90 by 15-20°C. Second, the 
binding reaction has a very favorable enthalpy of binding, one of the largest for any protein 
– small ligand system. Third, there are few direct contacts between Hsp90 and radicicol that 
could account for such a large binding energy. Fourth, water molecules play an essential 
role in the recognition and binding. And fifth, the negative heat capacity of binding usually 
reflects a dominant hydrophobic origin of binding. However, hydrogen bonds are 
apparently essential for radicicol binding to Hsp90. 
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