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1. Introduction 

Tsunami are long water waves generated by sudden disturbances of the sea floor or sea 
water surface, which is usually caused by earthquakes, landslides or volcanic eruptions. 
Once triggered the tsunami can propagate over long distances, carrying destruction even on 
far coasts, hours after the impulsive generating event. The tragic consequences of the 
tsunami occurred the 26th December 2004 in the Indian Ocean, involved the scientific 
community to develop models able to reproduce the tsunami generation and their 
evolution, with the aim of building Tsunami Early Warning Systems. 
A single model is not able to treat adequately the generation, propagation and inundation 
phase of tsunami scenarios, because it can not be at the same time accurate and 
computational efficient. The tsunami generation most of the times requires the solution of 
the full three dimensional equations of the hydrodynamics (Grilli et al., 2002; Liu et al., 
2005), in order to accurately reproduce the complex sea floor motion and therefore the 
consequent wave field.  
A mathematical problem which solves the three dimensional equations is especially needed 
when tsunami are generated by landslides or small submarine earthquakes. An other 
important feature which has to be taken into account when modelling the tsunami 
generation, are the nonlinear terms, which allow the reproduction of waves with a wave 
height of the same order of the water depth. The nonlinear equations have to be solved 
when the generating seismic event occurs close to the coast in shallow water, which 
represents the most dangerous threat for people and structures.  
When the tsunami propagates far from the generating source it can reach high celerity, of 
the order of thousands of m/s. Tsunamis in deep water are long waves (wave length of the 
order of hundreds kilometres) with wave height of the order of one meter; therefore, if 
compared to the water depth (thousands of metres), can be considered small amplitude 
water waves. The tsunami propagation phase can therefore be accurately modelled using 
linear equations. When the wave propagation is to be studied over large geographical areas 
it appears natural to apply simplified equations in order to reduce the computational costs. 
These are the depth-integrated equations which reduce the full three-dimensional problem 
to a two-dimensional one, making the resulting model applicable over oceanic length scales. 
The most widely equations used are the long wave equations, named also Nonlinear 
Shallow Water Equations (NSWE). One weak point of the NSWE is that they are not able to 
reproduce properly the celerity at which each component of the wave field propagates. 
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According to those models one single celerity (c =√gh) governs all the components. However 
it has been demonstrated (Kulikov et al., 2005) that even tsunamis generated by large 
earthquakes are wave packets whose propagation can be relevantly influenced by the 
frequency dispersion. In the last years it has therefore become well accepted that the 
Boussinesq Type Equations (Peregrine, 1967; Lynett & Liu, 2005) are the most suitable tool 
for the computation of tsunamis. As far as the tsunami approaches the coastal areas the 
wave height increases and the nonlinear terms become again not negligible. In this phase 
tsunami can properly be reproduced using the shallow water approximation. 
In this work we present a possible approach for the simulation of tsunami over large 
geographical areas. The model makes use of linear equations, because it considers the wave 
propagation in deep water, where the wave amplitude is much smaller than the water 
depth. The full frequency dispersion of the waves is reproduced, which in our opinion plays 
an important rule in the tsunami propagation. A further point of interest is that, although 
developed to be used in the far field, the model seems to provide reasonable results also in 
the near field, and is able to reproduce the earthquake/landslide generation of the tsunamis. 
We believe the model to be useful for practical purposes because the computational 
procedure makes it suitable to support in real time a tsunami early warning system.  
As it will be explained the model can be used to run a database of different tsunami scenario 
and then to elaborate in real time the tsunami waveform at some target points, by means of 
water level and seismic measurements while tsunami is occurring.  
The model is based on the solution of the mild slope equation (MSE for short). The MSE has 
been originally developed by Berkhoff (1972) and it solves the wave field propagation at the 
undisturbed water free surface, by assuming a vertical structure of the wave motion as 
similar as that of the linear first order Stokes waves. The MSE in its original form is an 
elliptic equation which reproduces steady state situations for purely harmonic waves. 
Mathematically an elliptic equation defines a problem which is in general properly posed 
only if boundary conditions are specified, and it needs to be simultaneously solved over the 
whole computational domain. Copeland (1985) and Madsen & Larsen (1987) developed a 
pair of first-order equations, which constitutes a time dependent hyperbolic system, which 
is used to achieve the steady-state wave field induced by periodic waves. Kubo et al. (1992) 
and Kirby et al. (1992) studied the applicability of the time-dependent equations to random 
waves. However they concluded that only very narrow frequency wave spectra are properly 
reproduced by the hyperbolic versions of the MSE, since the equations coefficients are 
calculated using the frequency of the carrier wave. None of the above mentioned models 
seems able of dealing with broad spectrum wave field, such as that resulting for tsunamis. 
The novel approach followed here is inspired to the method used by Kirby et al. (1992), who 
separated the whole wave spectrum into several narrow bands and for each of these solved 
the time-dependent MSE. The proposed model solves the MSE in the frequency domain for 
all the wave frequencies, then it superimposes all the monochromatic solutions to obtain the 
broad banded spectrum wave field. 
Although the model is originally derived for the wave propagation in the far field we also 
introduce a source term in the equations, which takes into account of the seafloor variation 
in time. We obtain the Mild Slope Equation with a generation term that describes the effect 
of the bottom movements on the surface waves. In order to incorporate the effects of the sea-
floor movements into depth integrated equation, it is often assumed that the bottom 
movements instantaneously transfer to the free water surface, which is treated as identical to 
the vertical component of the sea-floor deformation (Kajiura, 1970). This is especially valid 
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when the extension of the sea-floor rupture is very large in comparison to the water depth. 
However when the tsunami source is smaller, or of the same order of magnitude of the 
water depth (this is mostly the case of submerged landslide), the problem becomes more 
complicated. Tinti et al. (2006) proposed a filter function which attenuates the effects of the 
sea bottom movement in the water surface as the ratio between the water depth and the 
bottom movement extension becomes large. Starting from their work a slightly different 
filter function, applied to the MSE has been obtained (equation’s derivation in the following 
section).  
The chapter is structured as follows: section 2 describes the model equations; section 3 
presents two set of experiments (physical and numerical) used to validate the model and it 
shows the application results on simulating landslide generated tsunami; section 4 describes 
the model abilities to work in a Tsunami Early Warning System and it shows an example of 
application to the South Tyrrhenian Sea (Italy, Mediterranean Sea). Finally in section 5 the 
conclusions are given. Part of the research presented in this chapter has been described in 
Cecioni & Bellotti (2010a, 2010b) and in Bellotti et al. (2008) 

2. The proposed model 

2.1 Model equation 
The proposed model solves one elliptic MSE for each frequency of the wave spectrum, and 
then it applies the Inverse Fourier Transform to all the solutions in the frequency domain in 
order to recover the wave field time series. This procedure guarantees accurate reproduction 
of the frequency dispersion, since potentially all the components of the wave field are 
modelled using an appropriate elliptic equation. 
In the following the MSE is derived, following the procedure of Svendsen (2005), which 
achieves the formulation of the time-depended hyperbolic MSE. In the present equation's 
derivation, it is included a generation term by considering a time variation of the water 
depth function, in order to reproduce a bottom movement due to submarine earthquake or 
landslide. We start from the linear (small amplitude) water wave equations for an 
incompressible irrotational fluid on an uneven bottom 

 2 0h zzφ φ∇ + = ;    -h(x,y,t)< z < 0 (1) 

 1
0z tt

g
φ φ+ = ;                     z =  0 (2) 

 0z t h hh hφ φ+ + ∇ ⋅∇ = ;          z = -h(x,y,t) (3) 

where φ(x,y,z,t) is the velocity potential in the fluid, h(x,y,t) is the water depth and g is the 

gravity acceleration, while h∇ is the differential operator which means the divergence in the 

horizontal coordinates (x,y). All these variables are real and scalar. Eq. (1) is the Laplace 

equation, Eq. (2) includes the linearized dynamic and kinematic boundary conditions at the 

free water surface, while Eq. (3) is the bottom boundary condition which reproduces the 

seafloor movements allowing h to vary in time. The solution of the given problem is 

assumed to be of the form 

 ( , , , ) ( , , ) ( )x y z t x y t f zφ ϕ=  (4) 
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where ϕ(x,y,t) is the velocity potential at the undisturbed free water surface z = 0, which can 
be complex and it includes the effects of reflected waves; f(z) is a function that describes how 
the kinematic field varies along the water depth and can be chosen as that resulting from the 
linear wave theory valid for harmonic waves propagating in constant depth, which however 
still holds locally for uneven bottom, i.e. 

 
cosh[ ( )]

( )
cosh( )

k h z
f z

kh

+
=  (5) 

where k is the wave number, defined as 2π/L with L the wave length. In the cases of not 
constant depth, h and k vary with the horizontal coordinates, therefore f = f (x,y,z). However 

if the mild slope assumption, 1hh

kh

∇
<< , is here introduced the variation of the function f 

with the horizontal coordinates can be neglected if compared with the vertical ones. 
From the assumption (4) it comes that 

 2 2cosh[ ( )]

cosh( )
zz

k h z
k k

kh
φ ϕ φ+

= =  (6) 

therefore the Laplace equation (1) can be written as 

 2 2 0h kφ φ∇ + =  (7) 

The following considerations are made: 

 ( ) 1f z = ;        z = 0 (8) 

 
2

tanh( )zf k kh
g

ω
= = ;        z = 0 (9) 

 0zf = ;         z = -h (10) 

In order to depth integrate the field equation (1), here it is made use of the Gauss's Theorem, 

which states for one dimensional domain 

 ( ) [ ]2 2
1 2 2 1 1 2 2 1

b
b

a
a

dxΦ ∇ Φ − Φ ∇ Φ = Φ ∇Φ − Φ ∇Φ∫  (11) 

where Φ1 and Φ2 are arbitrary differentiable scalar functions. For the present purpose Eq. 

(11) is used with x = z, Φ1 = f(z) and Φ2 = φ(x,y,z,t), therefore 

 
0 22

2 2
0 hh

f f f
f dz f f

z z z zz z

φ φ φφ φ φ
−−

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤ ⎡ ⎤− = − − −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ∂ ∂ ∂ ∂∂ ∂ ⎣ ⎦ ⎣ ⎦⎝ ⎠
∫  (12) 

Substituting the Laplace Eq. (1) in the first term at the left hand side (LHS), and the 

boundary conditions at z = 0 and z = -h (Eqs. 2 and 3) and using Eqs. (9) and (10) in the right 

hand side (RHS) terms, then, after changing the sign, Eq. (12) becomes 
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 ( ) [ ] [ ]
0 2

2 2 1
h tt t h hh h

h

f k f dz fh f h
g g

ωφ φ ϕ ϕ φ
− −

−

∇ + = + − − ∇ ⋅∇∫  (13) 

the LHS terms can be seen as the integration over the depth of the field equation. 
Considering that 

 ( )h h h hf f fφ ϕ ϕ ϕ∇ = ∇ = ∇ + ∇  (14) 

and 

 2 2 22h h h h hf f fφ ϕ ϕ ϕ∇ = ∇ + ∇ ⋅∇ + ∇  (15) 

using the expression (14) for the last term of the RHS and expression (15) for the first term of 
the LHS, Eq. (13) becomes 

 

( )

( ) ( )

0
2 2 2 2 2

2

2

1 1

cosh( )

h h h h

h

tt t h h h h

f f f f f k f dz

h f h f f
g kh

ϕ ϕ ϕ ϕ

ϕ ω ϕ ϕ ϕ

−

−

∇ + ∇ ⋅ ∇ + ∇ + =

⎡ ⎤= + − − ∇ ⋅ ∇ + ∇⎣ ⎦

∫
 (16) 

Now incorporating the first two LHS terms of Eq. (16) it follows 

 

( )

[ ] ( )

0 0
2 2 2 2

0
2 21 1

cosh( )

h h h h
h

h h

h h h tt th
h

f dz hf k f dz

f fdz h f f h
g kh

ϕ ϕ ϕ

ϕ ϕ ϕ ω ϕ

−
− −

−
−

⎡ ⎤∇ ∇ + ∇ ⋅∇ + =⎣ ⎦

= ∇ − ∇ ⋅ ∇ + + −

∫ ∫

∫
 (17) 

Applying the Leibniz's rule for the first two LHS terms and knowing that 

 
0

2 g

h

cc
f dz

g−

=∫  (18) 

where c and cg are respectively the phase and the group velocities, by multiplying Eq. (17) 
for g it results 

 
( )

[ ]{ }
2 2

0 2

cosh( )
h g h g tt t

h h h hh

g
cc k cc h

kh

g f fdz h f f

ϕ ϕ ϕ ω ϕ

ϕ
−−

∇ ⋅ ∇ + − − + =

− ∇ + ∇ ⋅ ∇∫
 (19) 

Rigorously the identity of Eq. (18) is obtained for a single frequency of the wave spectrum, 
consequently Eq. (19) is valid for monochromatic waves, or can be seen as representative of 
narrow banded spectra sea state around a carrying frequency. 

The RHS terms of Eq. (19) can be shown to be O(( h∇ h)2, 2
hh∇ ). Therefore, given the mild-

slope assumption, h∇ h << kh, it can be argued that the RHS terms << LHS terms. Similarly, 
2
hh∇  << h∇ h, which is a natural additional assumption because 2

hh∇  = O ( h∇ h) can only 
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occur over short distances without changing O ( h∇ h). This means that the RHS terms are << 

of all the others terms, we therefore get 

 ( ) ( )2 2

cosh( )
tt h g h g t

g
cc k cc h

kh
ϕ κ ω ϕ− ∇ ⋅ ∇ + − = −  (20) 

which is the hyperbolic version of the MSE in terms of fluid velocity potential and is 
usually referred to as the ‘time-dependent mild-slope equation’, allowing the simulation in 
the time-domain of the wave propagation. The so formulated MSE (20) solves the fluid 
velocity potential time series for a specified single wave frequency, which unambiguously 

determines the equation parameters, c, cg, ω and k. The RHS term represents a source term, 
which takes into accounts the effects on the wave field of the bottom movement.  

In terms of the free surface elevation η the MSE becomes (using the dynamic boundary 
condition at the free surface) 

 ( ) ( )2 2 1

cosh( )
tt h g h g ttcc k cc h

kh
η η ω η− + ∇ ⋅ ∇ − − = −  (21) 

Note that if the phase and group velocities are evaluated in the shallow water limit as c = cg 
= √gh, then Eq. (21) reduces to the governing equation for forced long waves, with a filter 
function applied to the source term in order to attenuate its effect as bigger becomes kh. 
(Cecioni & Bellotti 2010b) 

 ( ) 1

cosh( )
tt h h ttgh h

kh
η η− + ∇ ⋅ ∇ = −  (22) 

The elliptic version of the MSE can be obtained by taking the Fourier Transform of Eq. (21), 
then it comes 

 ( ) 2 1
( )

cosh( )
h g h g ttcc N k cc N fft h

kh
∇ ⋅ ∇ + = −  (23) 

Where N(x,y,ω) is the Fourier Transform of η(x,y,t), as fft(htt) is the Fourier Transform of htt.  
It can be noted that without allowing the bottom movement, i.e.: bottom boundary 
condition (3) without the term ht, the resulting equation would have been 

 ( ) 2 0h g h gcc N k cc N∇ ⋅ ∇ + =  (24) 

which is properly the MSE as derived by Berkhoff (1972).  
The RHS of Eq. (23) represents the source term of generating waves due to the bottom 
movement. It can be noted that this source term is formed by the water depth time variation 
and by a function which depends on the wave frequency, through the wave number. This 
function, 1/cosh(kh), works as a low-pass frequency filter function between the movements of 
the bottom and those of the water free surface. In the proposed model, where the MSE is 
solved in the frequency domain, the inclusion of this frequency-depended source term 

appears natural. Once Eq. (23) is solved, one for each frequency ω, with the appropriate 
boundary conditions, the result in the time domain can be achieved by taking the Inverse 

Fourier Transform of N(x,y,ω) to obtain η(x,y,t). For details see Bellotti et al. (2008). 
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2.2 Boundary conditions 
The solution of a elliptic equation requires the setting of all the boundaries of the numerical 
domain. The boundary conditions can allow the waves to be reflected on the boundary 
(reflection condition) or to freely exit the domain (radiation condition). The fully-reflection 
boundary condition can be expressed by imposing the fluid velocity in the direction 
orthogonal to the boundary to be zero. In the frequency domain the reflection condition at a 
boundary is expressed as follows 

 0nN =  (25) 

where n is the vector normal to the boundary. 
The radiation boundary condition can be obtained by using a mathematical formulation that 
allows the waves propagating toward the open boundaries to freely exit the computational 
domain. This condition can be easily formulated for progressive outgoing waves  

 
( )

0
cos

t n
n

cη η
θ

+ =  (26) 

where θn is the angle the wave direction forms with the outgoing normal to the considered 
boundary. The Fourier Transform of equation (26) provides the radiation condition in the 
frequency domain 

 ( )cos 0n nN ik Nθ+ =  (27) 

Please note that the equation (27) is nonlinear in the sense that θn is not known a priori and 
depends on the solution itself. Iterative techniques can therefore be applied or a reasonable 
estimate of this parameter can be used to solve the indeterminacy. 
The wave generation in the numerical domain can be modeled with two different 

approaches: by means of a source term included in the field equation, as derived previously 

(Eq. 23), or by means of a wave-maker boundary condition. A wave-maker boundary 

condition can be seen as a wave paddle used in physical models (although here evanescent 

modes are not reproduced) and can be applied when the wave generation mechanism 

occurs close to a boundary of the numerical domain. The wave-maker boundary condition is 

conveniently formulated in terms of the velocity potential at z = 0 as follows 

 I
n uφ = ,       0z =  (28) 

where uI is the velocity at z = 0 of the desired wave field orthogonal to the wave-maker 

boundary. In order to obtain a mathematical expression involving η and consequently N we 
make use of the dynamic boundary condition at the free surface which, if transformed in the 
frequency domain, results as follows  

 ,i gNωΦ = −  (29) 

providing the usual relationship between Φ and N: 

 
g

N
iω

Φ = −  (30) 
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which allows rewriting of the wave-maker condition as 

 ,I
n

i
N U

g

ω
= −  (31) 

being UI the Fourier Transform of the desired time series of velocity at z = 0. It is worth to 
remind that the proposed wave-maker condition is used to specify the fluid velocity at z = 0, 
and that the velocity field for -h < z < 0 is assumed to vary as the function f.  

3. Validation against laboratory and numerical data 

Here it is described the model validation, carried out by comparing the model results with 
those obtained from numerical and physical experiments, chosen as reference solution. The 
presented tests aim at reproducing tsunami generated by landslides. When a landslide 
occurs under the water in general it produces a sea floor perturbation which generates a 
complex three dimensional water flow in the proximity of the landslide itself. These 
perturbations are transferred to the water free surface depending on the water depth: if the 
landslide occurs in shallow water conditions, i.e. the landslide extension is larger compared 
to the water depth, then it can be assumed that at the water free surface occurs the same 
displacement of the sea bottom; this is not true when the landslide occurs in deep water 
conditions. In this case the column of water above the acts as a filter attenuating the bottom 
movement effects at the free surface.  
The tests here presented will focus only on the reproduction of waves generated by 
landslides which propagate in deep water conditions.  
In the following we present two sets of validation experiments: first the inclusion of the 
source term into the MSE (23) is analyzed trough numerical experiments (see also Cecioni & 
Bellotti 2010a), which compare the proposed model solutions with the results of a three 
dimensional numerical solver, taken as reference. Then the results of a physical experiment 
are used to further validate the proposed model (see Cecioni & Bellotti 2010b). The physical 
model reproduces the landslide generated waves using a realistic model of the landslide, 
and a wave tank large enough to study the wave propagation in the far field.  These 
experiments reproduce the particular case of a landslide falling at the flank of a conical 
island and they allow the analysis of the generated wave field close to the island and in the 
far propagation field.  

3.1 Tsunami waves generation - numerical experiments (Cecioni & Bellotti 2010a) 
Here a numerical experiment which reproduces tsunami generated by submerged landslide 
is described. The experiment has been carried out in order to validate the correct inclusion 
of the source term into the MSE, and to investigate on the ability of the proposed model, 
based on a depth integrated equation, to simulate the wave generation due to a sea bottom 
movement. The results of the proposed model are compared with those of a three 
dimensional one, which, as long as the linearized boundary conditions can be considered to 
be an acceptable approximation, can be regarded as the reference (i.e. the true) solutions. 
The three dimensional model solves the Laplace equation within the boundary conditions. It 
uses the same numerical scheme of the depth integrated model, thus the equations are 
solved in the frequency domain and are formulated as follows 

 2 0h zz∇ Φ + Φ =  (32) 
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2

0z
g

ω
Φ − Φ =  (33) 

 ( )n tfft hΦ =  (34) 

 cos( ) 0n nik θΦ + Φ =  (35) 

where Φ(x,y,ω) is the Fourier transform of φ(x,y,t). Eq. (32) is the Laplace equation, Eq. (33) is 
the free surface dynamic and kinematic boundary condition, Eq. (34) represents the moving 
bottom boundary condition and Eq. (35) is the radiation condition. 
We have performed many computations, varying the water depth, the landslide length and 
kinematic. Here however, for the sake of brevity we limit to show results of one experiment, 
which can be considered representative of most of our simulations. In the sketch of Fig. 1 the 
numerical domain is represented, which is 10 m long and with a 1:3 slope; the landslide is a 
semi-ellipse, 4.21 m long and 0.1 m thick. The landslide suddenly starts to move after 10 s 
with a velocity of 1 m/s for 2 s and a total displacement of 2 m. 
 

 

Fig. 1. Sketch of the computational domain  

Numerical simulations were run with both the depth integrated model and the three 

dimensional one. The depth integrated model is applied in a one-dimensional domain, 
representative of the free water surface. At the left boundary (x=0 m) a reflecting boundary 
condition (Eq. 25) is imposed, by using a very small water depth (0.0001 m). At the right 

boundary, the water depth is equal to 3.3001 m and the waves are allowed to exit the 
domain, by applying the radiation condition (Eq. 27). The numerical simulations reproduce 

a time series of 100 s, using a Δt of 0.1 s. This results in a total of 1000 time steps, that in the 
frequency domain corresponds to the same number of angular frequencies, in the range 

between 2π·10-2 and 2π·10. In the practice the MSE (23) is solved just for the frequencies 

2π·10-2 ≤ ω ≤ 2π·2, where there is a significant content of wave energy. The higher frequency 
component reproduced has, for the considered water depth, a wave length of 4 m, thus the 

maximum distance between the computational nodes is 0.04 m, since a resolution of 10 
nodes per wave length is required. 
The three dimensional model is solved in a two dimensional domain which covers the fluid 
field represented in the sketch of Fig. 1. The imposed boundary conditions are: a fully 
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reflecting condition at the left boundary (x=0), where a small water depth is imposed as for 
the depth integrated model; a radiation condition along the right boundary (x=10 m); then at 
the free surface the Eq. (33) is applied, which combines the dynamic and kinematic 
conditions, while at the bottom boundary the wave generation condition (Eq. 34) is 
imposed. The same component of the wave spectrum of the depth integrated model are 
solved. The finite element grid is composed of triangular elements, with the maximum 
distances between the nodes of 0.04 m, as for the depth integrated model.  
Fig. 2 shows the results of the numerical simulations in terms of surface elevation obtained 
with the depth integrated model (continuous black line) and the three dimensional one 
(dashed red line). The left and the right panels refer to the results at point A and B, where 
the water depth is about 1.6 m and 3.3 m respectively. The results of the two models appear 
to be in very good agreement both in the generation (left panel) and in the propagation 
areas (right panel). 
 

 

Fig. 2. Comparison of the free surface elevation obtained from the depth integrated model 
(continuous black line) and that obtained from the three dimensional model (dashed red line). 
The presented results are relative to the points A (left panel) and B (right panel) of Fig. 1. 

These considerations can be supported by the analysis in the frequency domain. In Fig. 3 the 
left and right panels refer again to results picked up at the point A and B respectively. The 
thick black line represents the reference amplitude spectrum achieved with the three 
dimensional model, and the thin black line that obtained without using any filter in the 
depth integrated model, i.e.: the source term of the MSE is equal to the Fourier transform of 
the second derivative in time of the water depth function. The red line shows the amplitude 
spectrum obtained applying the MSE with the source term filtered by the wave frequency 
filter 1/cosh(kh), Eq. (23).  
 

 

Fig. 3. Absolute values of the Fourier transform coefficients of the water surface elevations, 
computed with the three dimensional model (thick black line) and with the depth integrated 
model, without any filter function (thin black line), and computed with the proposed depth 
integrated model (red line). 
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It can be noted that from a physical point of view, the filter function has the effect of a low 
pass filter between the movements of the bottom and those of the free water surface. 
Translating the bottom deformation directly to the free surface introduces a large amount of 
spurious energy in the high frequency range, leading to unrealistic/wrong results.  

3.2 Conical island experiments (Cecioni & Bellotti 2010b) 
The results of physical experiments have been used in order to further validate the tsunami 
generation in the numerical model. The physical model was built in a large wave tank at the 
Research and Experimentation Laboratory for Coastal Defence (LIC) of the Technical 
University of Bari, Italy, in cooperation with the Environmental and Maritime Hydraulics 
Laboratory Umberto Messina (LIAM) of the University of L’Aquila, Italy. The laboratory 
experiments (Di Risio et al., 2009) simulate a landslide body falling on the flank of a conical 
island, built in order to approximately reproduce in scale 1:1000, the Stromboli island, south 
Tyrrhenian Sea, Italy (Tinti et al., 2006). The physical model consists in a wave tank, 30.00 m 
wide, 50.00 m long and 3.00 m deep; at the centre of the tank is placed a conical island, built 
using PVC sheets (thickness 0.01 m) and sustained by a steel frame, with a radius of 4.47 m 
at the tank bottom level. The slope of the flanks of the island is 1:3 (I vertical, 3 horizontal, 
see the picture on the right of Fig. 4). Experiments have been carried out varying the water 
depth, and consequently the shoreline curvature radius, and by varying the initial distance 
of the landslide from the undisturbed shoreline. The landslide model is a rigid body, with 
the shape of an half of the ellipsoid described by the equation x2/a2 + y2/b2 + z2/c2 = 1, where a 
= 0.2 m, b = 0.4 m and c = 0.05 m, for a total volume V = 0.0084 m3. The landslide is 
constrained to slide down the inclined surface by means of rails. Traditional resistive gauges 
were employed to register the instantaneous vertical displacement of the free surface. All 
the signals have been acquired simultaneously at a frequency of 1000 Hz. The relative 
positions of all the gauges can be found in Fig. 4. 
 

  

Fig. 4. Left: Layout of the sea-level gauges positions in the 3D tests at LIC. Right: Picture of 
the physical model. 

The numerical computations have been carried out on a two-dimensional domain, sketched 
in Fig. 5. The numerical simulation here presented reproduces just one experimental case, 
defined by the off-shore constant water depth of 0.80 m, and the shoreline radius of 2.07 m, 
and characterized by an aerial landslide which falls from a distance of ζ = 0.30 m from the 
undisturbed shoreline. In order to save computational costs, not all the wave tank was 
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numerically reproduced: the domain is circular around the island up to 8.00 m from the 
island centre; only half of the circular domain is reproduced given the symmetry of the 
problem (Fig. 5). At the internal circular border (the undisturbed shoreline) the reflection 
condition (25) is imposed. Along the external circular boundary the waves are allowed to 
freely exit the computational domain (Eq. 27). The landslide falls down in the direction of 
the right-bottom border, in Fig. 5. At that boundary the fully reflection condition  is imposed 
in order to take into account the symmetric half of the domain which is not simulated. 
 

 

Fig. 5. Numerical domain of the depth integrated model. The numbers 2.07, 4.47 and 8.00 
express the radii in meters of respectively the undisturbed shoreline, the island base at the 
tank bottom, and the external circular boundary. 

The water depth function h(x,y,t), which takes into account the sea floor motion, due to the 
landslide, is calculated by knowing the landslide shape and movement. The second 
derivative in time of the function, htt(x,y,t), is carried out using a numerical approximation 
and its Fourier transform is applied, in order to insert it into the field Eq. (23). The numerical 
simulation has been carried out using triangular linear elements, whose maximum size is 
0.05 m. Fig. 6 and 7 show the comparison between the laboratory measurement of the water 
surface elevation (red dashed lines) and the numerical simulations (solid black lines) at the 
gauges located as shown in Fig. 4.  
As it can be seen from the figures, the model gives reliable results; this is evident especially 
for the gauges located in the off-shore area (refer to Fig. 4 for gauges position). The 
comparison shows that the model is not able to exactly reproduce the water level 
oscillations close to the shoreline, see the numerical results at gauges S12 and S11. This 
behaviour can be explained because the linearity of the equation allows the reproduction of 
small amplitude landslide (or bottom movement), while in the entering phase the landslide 
is thick as the water depth. Moreover the numerical model equations are valid for 
submerged landslides, and no reproduction of the piston-like effect is made, which, which 
as seen in the laboratory experiment induces a deformation of the shoreline and it is 
responsible of the generation of waves propagating along the coast. Another point to be 
considered is that the numerical model does not reproduce any dissipation at the interface 
between water waves and the island. 
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Fig. 6. Comparison of the free surface elevations (measures are in mm) at six gauges as 
measured in the physical model (red dashed line) and as obtained from the numerical 
model (black solid line).  

 

 

Fig. 7. Comparison of the free surface elevations (measures are in mm) at the other four 
gauges as measured in the physical model (red dashed line) and as obtained from the 
numerical model (black solid line).  

4. Use of the model in a Tsunami early warning system 

After the tragic event of December 2004, when an earthquake generated a tsunami that 
devastated the region of the Indian Ocean and killed about 250,000 people, the scientific 
community has been involved in the development of Tsunami Early Warning Systems 
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(TEWS for short). These systems should be triggered by seismic events, which are constantly 
monitored by worldwide efficient seismic networks. Once the occurrence of a submarine 
earthquake (or other tsunami sources, as landslides or volcanic eruptions) has been 
detected, rough estimates of the location of the epicentre and of the magnitude of the event 
are available after a short time. At that point a TEWS should decide if, given the properties 
of the earthquake, a tsunami alarm is to be spread. If positive, it should also be able to limit 
the alert to those people living at the coasts that are likely to be attacked by the waves.  
It is also important that TEWS should be based on measurements of tsunami itself, in order 
to confirm or not that the earthquake has generated dangerous waves. It is therefore clear 
that, besides the earthquake and the water level measurements, a preliminary analysis is to 
be carried out in order to calculate the inundation level that any possible tsunami source is 
expected to induce along the surrounding coasts.  
Many numerical models and different approaches can be used for performing the above 
mentioned analysis in order to build the database. Wei et al. (2003) proposed a model which 
solves the linear long wave equations. They have proposed an inverse method, which, 
thanks to the linearity of the equations, is able to infer seismic source parameters and 
tsunami wave form given the model simulations and water level data.  
The presented model can be applied with the same scope to prepare a tsunami generation-
propagation database, which results suitable in real time to forecast tsunami waveforms. 
The idea behind TEWS application, is to run preliminary computations without knowing 
the exact tsunami source, but assuming its location and here imposing a unitary wave 

generation term. The results of such preliminary computation are referred to as N'(x,y,ω). A 
second phase is applied in real time and it consists on estimating, by means of an inversion 
technique, the true solution. In view of the linearity of the problem the true solution in the 

frequency domain N(x,y,ω) can be obtained by multiplying N' for the Fourier Transform of 

the unknown source term, indicated as S(ω) 

 N (x,y,ω) = S(ω) N' (x,y,ω). (36) 

The model makes use of the sea level data (ηp) at one observation point P, in order to 

estimate the source term S(ω), by inverting Eq. (36) as follows  

 S(ω) = NP(ω)/ N'P(ω) (37) 

where NP is the Fourier Transform of ηP and N'P is the result of the unit source term 
computations at the same point P. If the records at more than one point are available, two 
alternative uses can be made of the data. On one hand it can be assumed that the source 
term is identical for all the generation areas/boundaries, and an optimization procedure can 
be used to find the value that best fits the data. On the other hand it can be assumed that 
each generation area/boundary has its own value of the source term and it is possible to 
write a linear system to be solved for these unknown source terms. Alternatively an over-
determined system (the number of records available is greater than the number of source 
terms to be found) can be solved by means of an optimization procedure. 
Here it is described a model application to Stromboli and the South Tyrrhenian sea. 
Stromboli is a volcano island in the deepwater Aeolian archipelago, Italy (Fig. 8). The NW 
flank of the island (named ‘Sciara del fuoco’) is unstable and frequently landslides occur at 
the coast, often related with volcanic activity. Some of these are able to generate tsunami 
waves which represent a real hazard for the surrounding islands and continental coast, as it 
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occurred on 30th of December 2002 (Tinti et al., 2005). Here we do not aim at exactly 
reproduce one specific tsunami event, but we build a numerical scenario just to show how 
the model can be applied in TEWS. Therefore, without having a tsunami water level 
registration at hand, we have assumed to measure a tsunami event characterized by a N-
wave with period of 1 min and height of 30 m in deep water in front of Stromboli. This wave 
form is chosen after careful evaluation of the conclusions of Tinti et al. (2006), who analyzed 
the December 2002 tsunami event .  
Fig. 8 shows the computational domain used, which encloses the islands of Stromboli, 
Panarea and Basiluzzo. A wave-maker condition, as that expressed by equation (31), is 
imposed at the boundary of the Stromboli island along the coast of the ‘Sciara del fuoco’. For 
the preliminary computation at this boundary a unit value is assigned at the free surface 
fluid velocity UI. The boundaries of the islands are modeled as impermeable and fully-
reflecting using Eq. (25), while in the circular outer boundary a fully-absorbing condition is 
imposed to allow the outgoing waves radiation (27). The results of the preliminary 
computation are saved at four points of interest: point 1 is just at the wave- maker 
boundary; point 2 is South-West of the generation area, in proximity of the Ginostra village, 
along the coast; point 3 is about at the South corner of the island, in proximity of Punta 
Lena; finally the results in proximity of Basiluzzo, 14 km away from the island are presented 
at point 4.  
 

 

Fig. 8. Computational domain of the Stromboli-Panarea tsunami simulations. 

Once the preliminary computation is carried out, we suppose that a landslide falls at ‘Sciara 
del Fuoco’ and it produces a tsunami which induces at point 1 a sea level elevation exactly 
as the N-wave. Thanks to the linearity of the model equations it is possible to apply Eq. (37) 
at the point 1 and therefore estimate the source term which has produced the N-wave at 
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point 1. In Fig. 9 we can see the results in term of sea level elevation at the four points. It can 
be noted that as the distance from the ‘Sciara del Fuoco’ source grows, the height of the first 
positive wave reduces, and it appears other waves following. It can be noted at the other 
points 3 and 4, that the first incoming wave is not the highest. In particular at the point 4, in 
front of Basiluzzo Island (the most distant point from the generation area considered here) 
the first wave arrives for both models after about 240 s, which is consistent with the shallow 
water wave celerity in a constant water depth equal to the mean water depth between 
Stromboli and Basiluzzo (about 600 m).  

 

Fig. 9. Numerical results of the Stromboli-Panarea tsunami computation. Time series of the 
water free surface elevation as measured at point 1 and as forecasted at the other points by 
the model. 

In Fig. 10 it is shown how the model works even with truncated input time series, in order 

to show which is the tsunami prediction at the target point (point 4) as the tsunami is being 

measured at the observation point (point 1). Several computations have been performed, 

assuming that the input time series is available up to a given time (tknown):  

ηinput (t) = η1 (t) , t ≤ tknown 

ηinput (t) = 0, t > tknown 

The results depend therefore on the value of tknown, as longer is the duration of the tsunami 
registration available at point 1, as better is the tsunami prediction at point 4. However it is 
clear that is unrealistic, given the limited time available for spreading the warning, to wait 
until the tsunamis has been completely measured. Few sample results are reported in Fig. 
10, where the time series at the point 4 (named Panarea) are presented for tknown = 484, 496, 
512 and 556 s.  
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Fig. 10. Example of application of the model using truncated input time series. In each 
subplot the upper panel refers to the mareogram at point 1 of Fig. 8 (Stromboli) and the 
lower panel refers to point 4 of Fig. 8 (Panarea). The red line represents the truncated input 
data registered at Stromboli and predicted at Panarea, while the black lines refer to the 
whole mareogram registration. 

On the upper panel of each subplot the input time series (η at point 1, in front of Stromboli) 

is represented using a thick red line, while on the lower panels it is shown the predicted η at 

point 4, in front of Panarea island. It is interesting to note that the use of a truncated input 

time series introduces very high frequency components, that are revealed by spurious short 

waves in the results. For tknown = 496 s the crest of the first (highest) wave is used in the input 

time series and the prediction at Panarea appears to be already comparable to the final one. 

For tknown = 512 s, 3/4 of the first wave in front of Stromboli is used with very good results at 

Panarea. Then the results tend to those that would be obtained using the whole time series. 

The most important parameter predicted by the model is certainly the maximum elevation 

at the point 4 (Panarea), referred to as ηmax. As the tknown increases the prediction tends to 

the final one, as shown in the Fig. 11. The vertical line in the figure represents the time at 

which the crest of the first wave is measured at point 1 (around t = 500 s). The horizontal 

line indicates the final value of ηmax. It is interesting to note that due to spurious high 

frequency components, induced by the truncation of the input time series, for some values 

of the tknown, ηmax may be larger than the final one. However it can be concluded that the 
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model is able of dynamically provide estimates of the desired parameter without suffering 

of instabilities. It is certainly desirable to carry out further research in the future in order to 

better understand if this good behavior of the model can be considered to apply under more 

general conditions. 

 

Fig. 11. Example of application of the model using truncated input time series; maximum 
surface elevation in front of Panarea island (point 4 of Fig. 8) as the time series at Stromboli 
(point 1) becomes available. 

5. Conclusion 

In this chapter we have presented a numerical model able to reproduce small amplitude 

transient waves. The model is based on linear equations, therefore it can properly reproduce 

waves generated and propagating in deep water. The wave generation is reproduced by 

forcing the mild slope equation, in order to include the effect at the free water surface due to 

sea floor movements. The comparison with the results obtained from a completely three 

dimensional laboratory experiments have proven the ability of the model to simulate wave 

generation and propagation. 

An important feature of the presented model is that it considers the full frequency 
dispersion of waves, and in this sense in similar to the Boussinesq equations, when applied 
to small-amplitude waves. It has been demonstrated that tsunamis, although considered 

long wave, propagate with a celerity which is strongly influenced by the frequency. The 
ability of predicting with good accuracy the celerity is of the utmost importance when 
estimating the arrival time of the tsunamis. However the frequency dispersion has also a 
further very important effect on the transient waves: it induces a decrease of the wave 

height, especially for the first waves of a wave packet. This behaviour appears very clear in 
the TEWS application at Stromboli presented in this chapter, where the comparison of the 
results of the present model with those obtained using the linear shallow water equations 
has allowed to highlight this effect. It has resulted that only due to this, the wave height 

predicted by the LSWE can overestimate the actual height, for the experiments presented 
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here also of a factor of 2. On the one hand it could be stated that the wave conditions 
predicted by the SWE are more severe than the real ones, so that safety is guaranteed. 
However, on the other hand, predicting tsunamis much more severe than the true ones in 

the context of a tsunami early warning system may lead to false alarms, which induce 
people not to trust the system, with possible catastrophic consequences. 
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