
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

DAQL-Enabled Autonomous Vehicle Navigation
in Dynamically Changing Environment

Chi Kit Ngai and Nelson H. C. Yung
The University of Hong Kong, Hong Kong,

China

1. Introduction

Many autonomous tasks can be considered as having to satisfy multiple goals
simultaneously. In particular, Autonomous Vehicle (AV) navigation can be considered as a
task having to satisfy at least two goals in an environment. The first goal is to plan a path for
an agent to move from an origin to a destination that takes the shortest number of
navigation steps. If the environment is static and the destination is stationary, then this
shortest path is constant and can be planned in advance if the environment is known a
priori, or estimated as the agent explores the environment if it is initially unknown. If the
environment or the destination is dynamically changing, then the shortest path is no longer
constant. This problem may still be considered as a path planning issue if the environment
at each sampled time is known. However, the problem is more appropriately dealt with by
incorporating a second goal that aims to avoid collisions between the agent and its
neighboring obstacles while executing an overall shortest path strategy towards the
destination. The collision avoidance (CA) problem has been well studied in the context of
static known or unknown environments (Latombe, 1991; Ge & Cui, 2000; Oriolo et al., 1998;
Ye et al., 2003). In the case of dynamic environments (DE) (Stentz, 1994; Stentz, 1995; Yang &
Meng, 2003; Minguez & Minguez, 2004; Minguez, 2005), the focus at present is on dynamic
environment (DE) that is slowly changing with fairly low obstacle density.
In theory, if the agent samples the environment fast enough, any environment would appear
as a static environment and the navigation problem can be solved using existing solutions
for static environments. In practice, this condition is difficult to achieve particularly when
obstacles are moving at speeds higher than the agent or sampling rate is low. To deal with
this situation, an obvious approach is to explicitly consider obstacle motions. Fiorini &
Shiller (Fiorini & Shiller, 1998) proposed the concept of Velocity Obstacles that enables
obstacle motions between two time steps to be considered in their formulation. Like other
similar algorithms (Mucientes e al., 2001; Yamamoto et al., 2001; Feng et al., 2004; Qu et al.,
2004), they assumed that objects move in a constant velocity. Shiller et al. (Shiller et al., 2001;
Large et al., 2002) further proposed the non-linear velocity obstacle concept which assumes
that obstacles can have variable speed. Moreover, they described the obstacles’ trajectories
using circular approximation. Although it may not always capture the correct movement of
obstacles, it is an attempt to predict obstacle motions between two time steps. Similarly,
Zhu’s hidden Markov model (Zhu, 1991) and Miura’s probabilistic model (Miura et al.,
1999) also attempted the same. The idea of considering obstacles motion within two time
steps explicitly proves to be vital in enhancing the agent’s CA ability in reality. Motivated by

www.intechopen.com

 Advances in Reinforcement Learning

386

this idea, we propose in this chapter a new approach, which incorporates two major features
that are not found in solutions for static environments: (1) actions performed by obstacles
are taken into account when the agent determines its own action; and (2) reinforcement
learning is adopted by the agent to handle destination seeking (DS) and obstacle actions.
Reinforcement Learning (RL) (Sutton & Barto, 1998) aims to find an appropriate mapping from
situations to actions in which a certain reward is maximized. It can be defined as a class of
problem solving approaches in which the learner (agent) learns through a series of trial-and-
error searches and delayed rewards (Sutton & Barto, 1998; Kaelbling, 1993; Kaelbling et al.,
1996; Sutton, 1992). The purpose is to maximize not just the immediate reward, but also the
cumulative reward in the long run, such that the agent can learn to approximate an optimal
behavioral strategy by continuously interacting with the environment. This allows the agent to
work in a previously unknown environment by learning about it gradually. In fact, RL has
been applied in various CA related problems (Er & Deng, 2005; Huang et al., 2005; Yoon &
Sim, 2005) in static environments. For RL to work in a DE containing multiple agents, the
consideration of actions of other agents/obstacles in the environment becomes necessary
(Littman, 2001). For example, Team Q-learning (QL) (Littman, 2001; Boutilier, 1996) considered
the actions of all the agents in a team and focused on the fully cooperative game in which all
agents try to maximize a single reward function together. For agents that do not share the
same reward function, Claus and Boutilier (Claus & Boutilier, 1998) proposed the used of JAL.
Their results showed that by taking into account the actions of another agent, JAL performs
somewhat better than the traditional QL. However, JAL depends crucially on the strategy
adopted by the other agents and it assumes that other agents maintain the same strategy
throughout the game. While this assumption may not be valid, Hu and Wellman proposed
Nash Q-learning (Hu & Wellman, 2004) which focuses on a general sum game that the agents
are not necessarily working cooperatively. Nash equilibrium is used for the agent to adopt a
strategy which is the best response to the other’s strategy. This approach requires the agent to
learn others Q-value by assuming that the agent can observe other’s rewards.
In this chapter, we propose an improved QL method called Double Action Q-Learning
(DAQL) (Ngai & Yung, 2005a; Ngai & Yung, 2005b) that similarly considers the agent’s own
action and other agents’ actions simultaneously. Instead of assuming that the rewards of other
agents can be observed, we use a probabilistic approach to predict their actions, so that they
may work cooperatively, competitively or independently. Based on this, we further develop it
into a solution for the two goal navigation problem in a dynamically changing environment,
and generalize it for solving multiple goal problems. The solution uses DAQL when it is
required to consider the responses of other moving agents/obstacles. If agent action would not
cause the destination to move, then QL (Watkins & Dayan, 1992) would suffice for DS. Given
two actions from two goals, a proportional goal fusion function is employed to maintain a
balance in the final action decision. Extensive simulations of the proposed method in
environments with single constant speed obstacle to multiple obstacles at variable speed and
directions indicate that the proposed method is able to (1) deal with single obstacle at any
speed and directions; (2) deal with two obstacles approaching from different directions; (3)
cope with large sensor noise; (4) navigate in high obstacle density and high relative velocity
environments. Detailed comparison with the Artificial Potential Field method (Ratering &
Gini, 1995) reveals that the proposed method improves path time and the number of collision-
free episodes by 20.6% and 23.6% on average, and 27.8% and 115.6% at best, respectively.
The rest of this chapter is organized as follows: Section 2 introduces the concept of the
proposed DAQL-enabled reinforcement learning framework. Section 3 describes the
implementation method of the proposed framework in solving the autonomous vehicle

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

387

navigation problem. Section 4 presents the simulation procedures and results with
comparisons with related method. Finally, conclusions are given in Section 5.

2. DAQL-enabled multiple goal reinforcement learning

2.1 General overview
Autonomous navigation is inherently a multiple goal problem involving destination
seeking, collision avoidance, lane/wall following and others. Fig. 1 depicts the concept of
multiple goal Reinforcement Learning with totally G goals. A multiple-goal scenario can be
generalized such that both conventional QL and DAQL can be used for learning depending
on the nature of the environment. The individual Q-values are eventually fused to produce
a final action. For instance, limit the vehicle navigation problem to two goals: DS and CA. If
obstacles and destination are non-stationary, then both goals can be dealt with by DAQL,
whereas if they are all stationary, then QL suffice. Here, this general concept is illustrated by
assuming that the destination is stationary and the obstacles are mobile. As such, QL is used
for DS and DAQL is used for CA.

Fig. 1. Concept of multiple goal reinforcement learning.

2.2 Reinforcement learning framework

An effective tool for mapping states (that describe the environment) to actions (that are
taken by an agent) and carrying out appropriate optimization (based on a value function) is
the Markov Decision Process (MDP) model. It is a model for sequential decision making
under uncertainty. In an MDP, the transition probability and the reward function are
determined by the current state and the action selected by the agent only (Puterman, 1994).
It can be explained by considering a specific time instant of an agent and its environment as
depicted in Fig. 2. At each time step t, the agent observes the state st∈S, where S is the set of
possible states, then chooses an action at∈A(st), where A(st) is the set of actions available in st,

www.intechopen.com

 Advances in Reinforcement Learning

388

based on st and an exploration policy (e.g. greedy policy). The action causes the
environment to change to a new state (st+1) according to a transition probability,

' 1Pr{ '| , }a
ss t t tP s s s s a a+= = = = . At the end of a sampling time T, the environment returns a

reward or penalty to the agent according to a reward function,

' 1 1{ | , , '}a
ss t t t tR E r a a s s s s+ += = = = . The agent then faces a similar situation in the next time

instant.

Fig. 2. State diagram of the MDP model given that st=s, st+1=s’, and at=a.

In RL, the value function is introduced to estimate the value for the agent to be in a given
state. It is the expected infinite discounted sum of reward that the agent will gain as follows
(Sutton & Barto, 1998):

 { } 1
0

() | |k
t t t k t

k

V s E R s s E r s sπ
π π γ

∞

+ +
=

⎧ ⎫⎪ ⎪= = = =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ (1)

where Eπ{} is the expected value when policy π is adopted and Rt is the discounted sum of
future rewards; Ǆ is the discounting factor and rt+k+1 is the reward (or penalty) received at time
(t+k+1). Policy π is a mapping from each state-action pair to the probability π(s,a) of taking
action a when in state s. To solve the RL task, an optimal policy should be determined that
would result in an at with the highest expected discounted reward from s to the end of the
episode. The optimal value function corresponding to the optimal policy is then achieved by
maximizing the value function that represents the expected infinite discounted sum of reward:

 ()*
' '

()
'

() max (')a a
ss ss

a A s
s

V s P R V sπγ
∈

= +∑ (2)

The corresponding action-value function is given as:

 { } 1
0

(,) | , | ,k
t t t t k t t

k

Q s a E R s s a a E r s s a aπ
π π γ

∞

+ +
=

⎧ ⎫⎪ ⎪= = = = = =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ (3)

and the optimal action-value function is given as:

 { }* * *
1 1 ' '

' '
'

(,) max (, ')| , max (', ')a a
t t t t ss ss

a a
s

Q s a E r Q s a s s a a P R Q s aγ γ+ +
⎡ ⎤= + = = = +⎢ ⎥⎣ ⎦∑ (4)

2.3 Q-learning

Q-Learning (Watkins & Dayan, 1992) is one of the efficient methods for solving the RL
problem through the action-value function in Eqt. (4). In QL, the agent chooses at according
to policy π and the Q-values corresponding to state st. After performing action at in state st
and making the transition to state st+1, it receives an immediate reward (or penalty) rt+1. It
then updates the Q-values for at in st using the Q-values of the new state, st+1, and the
reward rt+1 as given by the update rule:

s s’'
a

ssP ,
'

a
ssR T

a

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

389

1

1 1 1(,) (,) max (,) (,)
t

t t t t t t t t t
a

Q s a Q s a r Q s a Q s aα γ
+

+ + +
⎡ ⎤← + + −⎢ ⎥⎣ ⎦

 (5)

QL has been proven to converge to optimal action-value with probability one if each action
is executed in each state an infinite number of times (Kaelbling et al., 1996; Watkins &
Dayan, 1992), and works reasonably well in single agent environment, where the agent is
the only object that is able to evoke a state transition.

2.4 Double action Q-learning

In general, it is fair to assume that a DE consists of static obstacles (e.g. walls) and dynamic
agents/obstacles. In this case, the assumption that state transition is solely caused by an
agent is not exactly appropriate (Littman, 2001; Boutilier, 1995; Claus & Boutilier, 1998). In
other words, state transition in a DE may be caused by the action taken by the agent,

a1t∈A1(st), and a collective action taken by the other agents/obstacles, a2t∈A2(st), where A1(st)
and A2(st) are the set of actions available in st for the agent and the obstacle in the
environment respectively. Fig. 3 depicts a new MDP that reflects this relationship, whereas
a2t describes the action performed by an obstacle. The net state transition at each time step is
the result of all the action pairs taken together.

s s’

1
a , 2

a

1 2

,
a a

SS
P , 1 2

'
a a

ss
R

T

Fig. 3. State diagram of the new MDP model given that st=t, st+1=s’, a1t=a1, and a2t=a2.

The seven parameters of the new MDP are: T, st, st+1, a1t, a2t,
1 2

'
a a

ssP and
1 2

'
a a
ssR , where

1 2 1 1 2 2
1' Pr{ '| , , }a a

t t t tssP s s s s a a a a+= = = = = is the transition probability from s to s’, when the
agent takes action a1 and the environment takes action a2; and

1 2 1 1 2 2
1 1' { | , , , '}a a

t t t t tssR E r a a a a s s s s+ += = = = = is the reward received as a result.
In this new model, state changes when either (or both) the agent or the environment has
taken its action. To reflect the fact that state transition is now determined by a1 and a2, the
new value function is formulated below:

{ }
1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1

1 1 2, , ,
0 0

1 1 2 2
2 1' ' ,

' 0

1 1

() | | |

(,) (,) | '

(,)

k k
t t t t k t t t k t

k k

a a a a k
t k tss ss

s ka a

a

V s E R s s E r s s E r r s s

s a s a P R E r s s

s a

π π
π π π π π π

π π

γ γ γ

π π γ γ

π

∞ ∞

+ + + + +
= =

∞

+ + +
=

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = = = = + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎡ ⎤⎧ ⎫⎪ ⎪= + =⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

=

∑ ∑

∑ ∑ ∑ ∑

∑
1 2 1 2 1 2

2

2 2
' '

'

(,) (')a a a a
ss ss

sa

s a P R V sπ ππ γ⎡ ⎤+⎢ ⎥⎣ ⎦∑ ∑

 (6)

where 1 2,
{}Eπ π represents the expected value when policy π1 is adopted by the agent and

policy π2 is adopted by the environment. Similarly, there exists an optimal value function
when an optimal policy pair π1 and π2 is applied. Although there may be more than one pair,
we called all the optimal pairs π1* and π2*. They have the optimal value function V*(s)
defined as:

www.intechopen.com

 Advances in Reinforcement Learning

390

{ }1* 2*
1 2

1 2

1* 2*
1 2

1* 2*
1 2

1 2

* 1 1 2 2
,

(), ()

1 1 2 2
1,

0

1 1 2 2
1 2,

0

*
1 1

() max | , ,

max | , ,

max | , ,

max (

t t t t t
a A s a A s

k
t k t t t

a a k

k
t t k t t t

a a k

t t
a a

V s E R s s a a a a

E r s s a a a a

E r r s s a a a a

E r V s

π π

π π

π π

γ

γ γ

γ

∈ ∈

∞

+ +
=

∞

+ + +
=

+ +

= = = =

⎧ ⎫⎪ ⎪= = = =⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= + = = =⎨ ⎬
⎪ ⎪⎩ ⎭

= +

∑

∑

{ }
1 2 1 2

1 2

1 1 2 2

*
' '

'

)| , ,

max (')

t t t

a a a a
ss ss

a a s

s s a a a a

P R V sγ

= = =

⎡ ⎤= +⎢ ⎥⎣ ⎦∑

 (7)

The corresponding optimal action-value function is given as:

1 2

1 2 1 2

1 2

* 1 2 * 1 2 1 1 2 2
1 1

', '

, , * 1 2
' '

', ''

(, ,) max (, ', ')| , ,

max (', ', ')

t t t t t
a a

a a a a
ss ss

a as

Q s a a E r Q s a a s s a a a a

P R Q s a a

γ

γ

+ +
⎧ ⎫

= + = = =⎨ ⎬
⎩ ⎭

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

 (8)

Using the same technique as QL, the function Q*(st,a1t,a2t) can be updated continuously that
fulfils the purpose of RL. The QL type update rule for the new MDP model is given below:

1 2

1 1

1 2 1 2 * 1 2 1 2
1 1 1

,
(, ,) (, ,) max (, ,) (, ,)

t t

t t t t t t t t t t t t
a a

Q s a a Q s a a r Q s a a Q s a aα γ
+ +

+ + +

⎡ ⎤
← + + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (9)

Although a2t is involved in calculating Eqt. (7), (8) & (9), it is inherently uncontrollable by
the agent and therefore maximizing a2t in (7) and a2t+1 in (8) & (9) is meaningless. Instead, an
approximation to the optimal action-value function by using the observed a2t+1 is found and
maximizing Eqt. (8) by a1t+1 subsequently. As such, the new update rule for DAQL is:

1

1

1 2 1 2 1 2 1 2
1 1 1 1(, ,) (, ,) max (, ,) (, ,)

t

t t t t t t t t t t t t t
a

Q s a a Q s a a r Q s a a Q s a aα γ
+

+ + + +

⎡ ⎤
← + + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (10)

where st, a1t are known in t, a2t , st+1, and rt+1 are known in t+1, and a2t+1 can only be known in
t+2. Therefore, the learning is delayed by two time steps when compared with conventional
QL, but with a2t and a2t+1 appropriately included.
When comparing Eqt. (5) with (10), the difference between DAQL and QL is that action a2t
has been explicitly specified in the update rule. The optimal value function as a result of
maximizing a1t only, while a2t is considered explicitly but unknown is given below:

{ }

{ }

1* 2 1* 2
1 1

1* 2 2
1 1

1 2

1
2

* 1 1 1 1
1

0

1 1 * 1 1
1 2 1 1

0

2 2
' '

'

'() max | , max | ,

max | , max '()| ,

max (,)

k
t t t t k t t

a a k

k
t t k t t t t t t

a ak

a a
ss ss

a sa

V s E R s s a a E r s s a a

E r r s s a a E r V s s s a a

s a P R

π π π π

π π π

γ

γ γ γ

π

∞

+ +
=

∞

+ + + + +
=

⎧ ⎫⎪ ⎪= = = = = =⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪= + = = = + = =⎨ ⎬
⎪ ⎪⎩ ⎭

=

∑

∑

∑ ∑
1 2 * '(')a a V sγ⎡ ⎤+⎢ ⎥⎣ ⎦

 (11)

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

391

The corresponding optimal action-value function is:

2
1

1 2 1 2

1
2

* 1 2 * 1 2 1 1 2 2
1 1

'

2 2 * 1 2
' '

'' '

'(, ,) max (, ', ')| , ,

(', ') max '(', ', ')

t t t t t
a

a a a a
ss ss

as a

Q s a a E r Q s a a s s a a a a

s a P R Q s a a

π γ

π γ

+ +
⎧ ⎫

= + = = =⎨ ⎬
⎩ ⎭

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑∑

 (12)

It can be seen that Eqt. (4) is a special case of Eqt. (12). The DAQL formulation learns the
expected Q-values by maximizing the future Q-values with a1t over actual a2t+1 through time
iterations. Therefore, if the current state is known and a2t can be predicted, a1t can be selected
by using proper exploration policy (e.g. greedy policy):

1
t

1 1 2

a
arg max((, ,))t t t ta Q s a a= (13)

To predict obstacles’ action, an AR model is applied, which allows the calculation of the
expected Q-value. In case that other obstacles’ actions are not predictable, such as when they
move randomly, we assumed that a2t has equal probability in taking any of the |A2(s)|
actions.

2.5 Goal fusion

The purpose of goal fusion (GF) is to derive a single final action from the actions of different
goals. Available methods for the coordination of goals include simple summation or switch
of action value function (Uchibe et al., 1996), mixtures of local experts by supervised
learning (Jacobs et al., 1991), and multiple model based reinforcement learning (Doya et al.,
2002). Here, we adopt a modified summation method to coordinate multiple goals. A GF
function based on this is formulated as follow:

1 1 1

1

1 1 1
21 1 2

1 1 1
1 2

() () ()
()

() () ()

t t G t
final t

G

a a a
G

Q a Q a Q a
Q a

Q a Q a Q a

β
β

β

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑

…
#

 (14)

Where ǃ1+ǃ2+…+ǃG=1, G is the number of goals to be achieved and Q1(a1t),…,QG(a1t) are the
Q-values of the G goals respectively. The importance of the goals with respect to the whole
task is represented by the value of ǃ. A more important goal is represented by a larger ǃ
while a less important goal is represented by a smaller ǃ.

3. Autonomous navigation through moving obstacles

3.1 Geometrical relations between agent and environment

The control variables of the agent and the ith obstacle at time t are depicted in Fig.4. It is
assumed that there are N moving obstacles in the environment and that obstacle distances
can be sensed by distance sensors on the agent, which have a minimum and maximum
detectable distance of ds,min (10cm) and ds,max (500cm) respectively. Further assume that only
M obstacles in the environment can be detected, where M≤N. The location of the ith obstacle

is denoted by distance di∈Do where Do=[ds,min, ds,max]⊂ℜ and angle θi∈Θ where Θ=[0,2π]⊂ℜ.

www.intechopen.com

 Advances in Reinforcement Learning

392

We assume that the agent is ddest∈ℜ+ away from the destination and is at an angle φ∈Θ. The

four parameters: di, θi, ddest, and φ are quantized into states. The state set for the relative

location of the destination is ldest∈Ldest where (){ }, | and dest dest dest dest qL d d Dϕ ϕ= ∈ ∈Θ� �� � ,

Ddest={i|i=0,1,…,11} and Θq={j|j=0,1,…,15}. The state set for obstacle location is si∈Si where

(){ }, | and i i i i q i qS d d Dθ θ= ∈ ∈Θ� �� � , Dq={k|k=0,1,…,9} and Θq ={j|j=0,1,…,15}. Quantization is

achieved as follows and depicted in Fig. 5 for φ and θi:

Destination
ddest

x

ψ

av : Velocity of agent

θa: Heading angle of agent
ddest : Distance between agent and destination
ψ : Angle between agent and destination

id : Distance between agent and the ith obstacle

iq : Angle of di w. r. t. the horizontal axis.

iov ,
: Velocity of the ith obstacle

io,q : Heading angle the ith obstacle

io,d : Relative heading angle of the ith obstacle w. r. t. di.id

av

θa

iq

io,q
io,d iov ,

y

ith obstacle

Agent

Fig. 4. Control variables of agent and the ith obstacle.

Fig. 5. Quantization of φ and iθ into φ� and iθ� respectively.

/ 5 for 10

/10 1 for 10 100

11 for 100

dest dest

dest dest dest

dest

d d

d d d

d

⎧ <⎢ ⎥⎣ ⎦
⎪= + ≤ <⎢ ⎥⎨⎣ ⎦
⎪ ≥⎩

� (15)

⎪⎩

⎪
⎨
⎧

<≤

<≤⎥⎦
⎥

⎢⎣
⎢ +

=
πφπ

πφ
π
πφ

φ
216/31for 0

16/310for
8/

16/
~ (16)

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

393

 / 5i id d= ⎢ ⎥⎣ ⎦� (17)

/16
for 0 31 /16

/8

0 for 31 /16 2

i
i

i

i

θ π
θ π

θ π
π θ π

⎧⎢ ⎥+
≤ <⎪⎢ ⎥= ⎨⎣ ⎦

⎪ ≤ <⎩

� (18)

There are altogether 192 states for Ldest and 160 states for Si. The output actions are given by
a∈A where A={(|va|,θa)||va|∈Va and θa∈Θ}, Va={m×vmax/5|m=0,1,...,15},
Θa={nπ/8|n=0,1,…,15}, and vmax is the maximum agent speed. For av

K
=0, the agent is at rest

despite of θa, resulting in only 81 actions. For DAQL, we assume that obstacles have speed
vo∈ℜ+ and heading angle θo∈Θ. They are quantized to a2i∈Ao where

(){ }, | and o o o o q o qA v v Vθ θ= ∈ ∈Θ� �� � , Vq={l|l=0,1,...,10}, and Θq ={j|j=0,1,…,15}. Quantization
is achieved as follows:

5 for 0 105

100 for 105
o o

o
o

v v
v

v

⎧ + ≤ <⎢ ⎥⎪⎣ ⎦= ⎨
≥⎪⎩

� (19)

/8
o

o

θ
θ

π
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

� (20)

where there are altogether 161 actions for each obstacle as observed by the agent. The
concept of factored MDP (Boutilier et al., 2000; Guestrin et al. 2001) can be applied if
necessary to reduce the number of states required.

3.2 Destination seeking
For convenience, destination is assumed stationary here, otherwise actions performed by the
moving destination may be considered as in the case of obstacles, which the same DAQL
formulation applies.

Fig. 6. Change in ddest from t-1 to t.

The purpose of using reinforcement learning in destination seeking is for the agent to learn the
limitation of the underlying vehicle mechanics such as limited acceleration and deceleration.
The crux of the QL formulation for DS is that the agent is punished if its trajectory towards the
destination contains more steps than necessary. With reference to Fig. 6, let us define
Δddest=ddest,t-1-ddest,t, where ddest,t-1 is the distance between the agent and destination at t-1, ddest,t is
the distance at t; and the agent travels at va from t-1 to t. If the agent performs a shortest path
maneuver, then |va|T=Δddest, otherwise |va|T>Δddest and the worst case is when the agent has
moved away from the destination, i.e., Δddest=-|va|T. Let us define dextra as:

 extra a destd v T d= − Δ (21)

ddest,t-1

ddest,t
av Destination

www.intechopen.com

 Advances in Reinforcement Learning

394

where 0≤dextra≤2|va|T. The normalized reward function of the agent is thus defined as:

 , ,max() /()DS t dest extra ar d d v T= Δ − (22)

where -3≤rDS,t≤1. In Eqt. (22), dextra is a penalty to the agent in order to ensure that it follows
the shortest path to travel to the destination. The reward function is further shifted to
1≤rDS,t≤0 by rDS,t←(rDS,t -1)/4, so that the Q-values calculated are in line with those from CA.
By using the QL update rule, the agent can learn to use the most appropriate action in the
current state to reach the destination using the most direct path, as depicted in Fig. 7.

Fig. 7. QL for destination seeking.

3.3 Collision avoidance
Given multiple mobile obstacles in the environment, DAQL is most applicable here. The
reward function adopted by DAQL represents punishment (-1) to the agent when collision
occurs:

 , ,

0 if no collision occured

1 if collision occuredCA i tr
⎧

= ⎨−⎩
 (23)

When rCA,i,t is available, the agent uses the DAQL update rule to learn CA, as depicted in Fig. 8.
Given obstacles’ actions in two time steps (t-2 & t-1), the agent updates its Q-values
(qi(si,t,a1t,a2i,t)) at t. If there are M obstacles that are detectable by the agent, the DAQL update
rule is applied M times and the results are combined based the parallel learning concept
introduced by Laurent & Piat (Laurent & Piat, 2001; Laurent & Piat, 2002). Their proposal of
taking the sum of all the Q-values from all the obstacles is used, as oppose to taking the
maximum Q-value over all the obstacles, as given in the following:

 1 1 2
, ,() (, ,)CA t i i t t i t

i

Q a q s a a=∑ (24)

where QCA(a1t) is the overall Q-value set for the entire obstacle population when the agent
takes a1t; qi(si,t,a1t,a2i,t) is the Q-value set due to the ith obstacle; si,t is the state of the ith obstacle
observed by the agent at time t; and a2i,t is the action performed by the ith obstacle at t. Since
all M obstacles share a single set of Q-values, the Q-values are updated M times in one time
step. As a2t is not known at t, it has to be predicted, which can be treated independently

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

395

from RL, i.e. the agent predicts from the environment’s historical information, or it can be
based on concepts (rules learn from examples) and instances (pools of examples). To
incorporate the predicted a2t, Eqt. (24) is modified as follows:

2
,2

,

1 1 2
, ,() (, ,)

i t

i t

i t i i t t i ta
a

q a p q s a a=∑ (25)

 1 1() ()CA t i t
i

Q a q a=∑ (26)

where 2
,i ta

p is the probability that the environment takes action a2i,t. The expected value of
the overall Q-value is obtained by summing the product of the Q-value of each obstacle
when they take action a2i,t with their probability of occurrence. The combined Q-value for
the entire DE, QCA(a1t), is the summation of Q-values of each obstacle.

Fig. 8. DAQL for single obstacle.

3.4 Prediction
To predict a2i,t , a linear prediction technique based on the autoregressive (AR) model is
adopted. We assume that the accelerations of obstacles are slowly changing in the time interval
T between two time steps. A 1st order AR model (Kehtarnavaz & Li, 1988; Ye, 1999) is used to
model the acceleration ai(t):

,() (1) ()i i t ia t B a t e t= − + (27)

where e(t) is the prediction error and Bi,t is a time-dependent coefficient and is estimated
adaptively according to the new distance measurements. The acceleration is thus
approximated by a combination of velocity and position representations:

2

2

1
() [() (1)]

1
 {[() (1)] [(1) (2)]}

1
 [() 2 (1) (2)]

i i i

i i i i

i i i

a t v t v t
T

r t r t r t r t
T

r t r t r t
T

= − −

= − − − − − −

= − − + −

 (28)

www.intechopen.com

 Advances in Reinforcement Learning

396

where vi(t) and ri(t) are the velocity and position of the ith obstacle at time step t,

respectively. Substituting Eqt. (28) into (27) gives a 3rd order AR model:

 , , ,() (2) (1) (2 1) (2) (3) ()i i t i i t i i t ir t B r t B r t B r t e t− + − + + − − − = (29)

Therefore, the next position of the ith obstacle at time t+1 can be predicted by the following

equation if the coefficient Bi,t is known:

 2
,

ˆˆ (1) () () ()i i k i t kr t r t v t T B a t T+ = + + (30)

where ,
ˆ

i tB is time-dependent and is updated by the adaptive algorithm in (Shensa, 1981).

The coefficient ,
ˆ

i tB can thus be determined by the following equations:

 1
, , ,

ˆ
i t i t i tB R−= Δ (31)

 , , 1 () (1)T
i t i t k ka t a tλ −Δ = Δ + − (32)

 , , 1 (1) (1)T
i t i t k kR R a t a tλ −= + − − (33)

where 0<ǌ≤1 is a weighting factor close to 1. Since ak(t), Δk,t, Rk,t and ǌ are all known, ,
ˆ

i tB

can be predicted and thus ˆ (1)ir t + can be predicted, from which the action performed by the

ith obstacle at t can be predicted and the probability 2
,i ta

p can be determined. A probability

of 1 is given to the predicted action and 0 is given to all other actions.

3.5 Fusion of DS and CA

Given two sets of Q values from DS and CA, they are combined by using ǃ - a parameter

that varies between 0 and 1, to balance the influence of the two goals, as given in Eqt. (34),

where QCA(a1t)) and QDS(a1t) are normalized.

1 1

1 1
1

1 1

() ()
() (1)

() ()

CA t DS t
final t

CA DS

a a

Q a Q a
Q a

Q a Q a
β β= − +
∑ ∑

 (34)

For ǃ closer to 1, Qfinal(a1t) is biased towards DS, giving the agent better DS performance but

poorer CA performance. Conversely, for ǃ closer to 0, Qfinal(a1t) is biased towards CA, giving

the agent poorer DS performance but better CA performance. The final decision of the agent

is made by using the ε-greedy policy as shown in Eqt. (35). Fig. 9 and Fig. 10 depict the

functional diagram and pseudo code of the proposed method respectively for multiple

obstacles.

 1
t

1

1 a
arg max () with probability 1-

random with probability
t

final tQ a
a

ε

ε

⎧⎪= ⎨
⎪⎩

 (35)

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

397

Fig. 9. Functional diagram of the proposed method.

Fig. 10. Pseudo code of the proposed method.

Initialize qi(s,a1,a2) arbitrarily

Repeat (for each episode)

 Initialize a1, a2, r, ldest, si, and si’

 Repeat (for each step of episode):

 Get 2 'ia
p by predicting the action a2

i’ that will be performed by the ith obstacle

 Calculate 2

2

1 1 2
'

'

(') (, ', ')
i

i

i i i ia
a

q a p q s a a=∑

 Calculate
1 1(') (')CA i

i

Q a q a=∑

 Determine
1(')DSQ a

 Calculate

1 1

1 1
1

1 1

(') (')
(') (1)

() ()

CA DS
final

CA DS

a a

Q a Q a
Q a

Q a Q a
β β= − +
∑ ∑

 Choose a1’ from s using policy derived from
1(')finalQ a

 Take action a1’ using ε-greedy exploration policy

 Observe the new state ldest’, si’’, r’ and a2
i’

 Determine the action a2
i that have been performed by the ith obstacle

1

1 2 1 2 1 2 1 2
,

'
(, ,) (, ,) max (', ', ') (, ,)i i i i i i CA i i i i i

a
q s a a q s a a r q s a a q s a aα γ

⎡ ⎤
← + + −⎢ ⎥

⎢ ⎥⎣ ⎦

'

(,) (,) max (', ') (,)DS dest DS dest DS DS dest DS dest
a

Q l a Q l a r Q l a Q l aα γ⎡ ⎤← + + −⎢ ⎥⎣ ⎦

 ldest ← ldest’, si ← si’, si’ ← si’’, a
1 ← a1’, a2 ← a2’, rCA,i ← rCA,i’

 until ldest’ is terminal

www.intechopen.com

 Advances in Reinforcement Learning

398

4. Simulations and results

4.1 Simulation conditions

In this simulation, length has unit of cm and time has unit of second. The agent and
obstacles are assumed to be circular with diameter of 100 cm, and the environment is

2500×2500 (cm2), as depicted in Fig. 11. The numbers in the figure represent the location of
the agents and targets in every 10 s. The maximum speed of the agent (va,max) is assumed to
be 50 cm/s, with a maximum acceleration and deceleration of 20 cm/s-2. The agent is
required to start from rest, and decelerate to 0 cm/s when it reaches the destination.
To acquire environmental information, a sensor simulator has been implemented to
measure distances between agent and obstacles. The sensor simulator can produce either
accurate or erratic distance measurements of up to 500 cm, at T interval (typically 1s) to
simulate practical sensor limitations. The other parameters are set as follows: α for both DS
and CA learning is set to 0.6 for faster update of Q-values; Ǆ is set to 0.9 for CA and 0.1 for
DS; ǃ of 0.1 is set to have strong bias towards CA, in the expense of longer path; ε is set 0.5
for DS and 0.1 for CA.

Fig. 11. Simulation environment.

4.2 Factors affecting navigation performance

The factors that affect an agent’s performance in a DE are: relative velocity, relative heading

angle; separation; and obstacle density. They define the bounds within which the agent can

navigate without collision from an origin to a destination. The relative velocity of obstacle as

observed by the agent can be defined as: , , ,max ,maxr i o i av v v= −K K K
, where , ,maxo iv

K
 and ,maxav

K
 are

velocity vectors of the ith obstacle (Oi) and agent (A) respectively. In essence, ,r iv
K

 represents

the rate of change in separation between A and Oi. Given , heading angle of Oi w.r.t. the line

joining the centres of Oi and A, and δa, heading angle of A as depicted in Fig.12, relative

heading angle is defined as ψ=π-(δa+δo,i). It should be noted that ψ equals π when A and Oi

are moving towards each other, -π when A and Oi are moving away from each other, and 0

when both are moving in the same direction. Let di be the separation between A and Oi. It

determines the priority A would adopt when considering Oi among other obstacles. If ds,max

is the maximum sensor measurement range of A, and if ds,max<di then Oi simple does not

exist from A’s point of view. Obstacle density can be defined as D=Nπro2/(Aenv-πra2), where N

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

399

is the number of obstacle in the environment and Aenv is the area of the closed environment.

We also assume that the obstacles are identical and have a radius of ro, and A has a radius of

ra. Given Aenv=25002, ro=ra=50, D=0.00125N.

Fig. 12. Heading angles of Oi and A.

4.3 Training for destination seeking
First, the agent was trained by randomly generated origin and destination (O-D) pairs in the
environment without obstacles, where each training episode consisted of the agent
successfully travelled from O to D. Second, 100 episodes were used to train the agent to obtain
a set of Q-values and another 100 episodes of different O-D pairs were used to evaluate the
path length versus the shortest path based on the trained Q-values without learning and
exploration. Step 2 was repeated 100 times to get an average performance over 10,000
episodes. Fig.13 depicts the mean % difference between the actual and the shortest paths.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Training Episodes

P
er

ce
n

ta
g

e
D

if
fe

re
n

ce
 i

n
 P

a
th

 L
en

g
th

Fig. 13. Percentage difference in path length.

It can be seen that given sufficient training, the agent achieves a path difference of 3-4%. This is
so because of the discrete actions the agent adopted in the simulation. In Fig.13, the data are
curve fitted with a 6th order polynomial (solid line), from which a cost function is applied to

A

Oi

aδ

io ,δ

max,av
K

 : Velocity of A

max,,iov
K

 : Velocity of Oi

aδ : Heading angle of A

io,δ : Heading angle of Oi

ψ ˍ Angle of Intersection

max,av
K

max,,iov
K

ψ

www.intechopen.com

 Advances in Reinforcement Learning

400

determine the optimal number of training required. The cost function is defined as
C=f(x)×ln(E) and plotted in Fig. 14, where f(x) is the polynomial function for the mean %
difference and E is the number of episodes. From Fig. 14, minimum cost is achieved when the
number of training episodes is around 1500. The Q-values for DS that correspond to this are
used in all subsequent simulations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N um ber of Training Episodes

C
o

st

1500

Fig. 14. Cost function.

4.4 Training for collision avoidance

For different environmental factors, we trained the agent with Q-values for CA set to zeros
initially for 10000 episodes in each case. After training, simulation results are obtained by
allowing the agent to maneuver in an environment with the same set of environmental
factors without learning and exploration. When obstacles are present, the agent travels
between a fixed OD pair. The agent learnt from the rewards or punishments when it
interacted with the obstacle. When the agent reached the destination, an episode was
terminated and the agent and obstacle were returned to their origins for the next episode.
Furthermore, to illustrate the behavior of the agent in a more complex environment which
involves multiple sets of different environmental factors at the same time, environments
with randomly moving obstacles are constructed. Q-values for CA are set to zeros initially
and the agent is trained for 10000 episodes in each test case. After training, simulation
results are obtained by allowing the agent to maneuver in the same environment without
learning ability and exploration. In each training episode, the agent was required to travel to
a fixed destination from a fixed origin through the crowd of randomly moving obstacles
which were randomly placed in the environment, and the termination condition was the
same as before.

4.5 Obstacles at constant velocity

This simulation investigates how the agent reacts to one or more obstacles at constant
velocity with an initial separation of larger than 500 cm. The AR model in Section 3.4 was

used for obstacle action prediction. For one obstacle, two vo values and two ψ were
considered: 50 cm/s and 100 cm/s; and π and ¾π. The simulation was repeated for vo=50

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

401

cm/s when two obstacles were present at different heading angles. It was also repeated for a
group of obstacles having the same heading angle. These cases are tabulated in Tables 1 to 3.

Case ψ (rad) vo (cm/s) ,r iv
K

 (cm/s)

A π 50 100

B π 100 150

C 3 / 4π 50 92.39

D 3 / 4π 100 139.90

Table 1. Summary of simulation parameters with ONE obstacle.

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃
˧im˸ ʻsʼ

V
˸l

o
˶i

ty
 ʻ

˶m
˂s

ʼ

(b) Velocity profile (Case A)

(a) Path (Case A)

-ˌ˃

-ˇˈ

˃

ˇˈ

ˌ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃

˧im˸ ʻsʼ

H
˸a

˷
in

g
 A

n
g
l˸

ʻ˷
˸g

ʼ

(c) Heading angle profile (Case A)

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃
˧im˸ ʻsʼ

V
˸l

o˶
ity

 ʻ
˶m

˂s
ʼ

(e) Velocity profile (Case B)

(d) Path (Case B)

-ˌ˃

-ˇˈ

˃

ˇˈ

ˌ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃

˧im˸ ʻsʼ

H
˸a

˷i
ng

 A
n
gl

˸

ʻ˷
˸g

ʼ

(f) Heading angle profile (Case B)

Fig. 15. Simulation results of Cases A and B.

1. Cases A and B: The obstacle moved directly towards the agent at different velocities

respectively, as depicted in Fig. 15. For Case A, the obstacle moved at the same speed as the

agent. The agent maintained at a maximum speed until the obstacle was within range. It

responded appropriately as seen from its Velocity and Heading angle profiles. The agent

responded with a gradual change in heading angle to avoid collision. It remained at the

changed course for a while before converging to the destination. For Case B, as the obstacle

www.intechopen.com

 Advances in Reinforcement Learning

402

moved faster than the agent, the agent responded earlier with a larger change in velocity. As

the CA event ended faster, the agent in Case B reached the destination earlier.

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃
˧im˸ ʻsʼ

V
˸l

o
˶i

ty
 ʻ

u
n
it˂

sʼ

(b) Velocity profile (Case C)

(a) Path (Case C)

-ˌ˃

-ˇˈ

˃

ˇˈ

ˌ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃

˧im˸ ʻsʼ

H
˸a

˷
in

g
 A

ng
l˸

ʻ˷
˸g

ʼ

(c) Heading angle profile (Case C)

˃

˅˃

ˇ˃

ˉ˃

˃ ˈ ˄˃ ˄ˈ ˅˃ ˅ˈ ˆ˃ ˆˈ ˇ˃ ˇˈ
˧im˸ ʻsʼ

˦p
˸˸

˷
ʻ˶

m
˂s

ʼ

(e) Velocity profile (Case D)

(d) Path (Case D)

-ˌ˃

-ˇˈ

˃

ˇˈ

ˌ˃

˃ ˈ ˄˃ ˄ˈ ˅˃ ˅ˈ ˆ˃ ˆˈ ˇ˃ ˇˈ

˧im˸ ʻsʼ

H
˸a

˷
in

g
 A

ng
l˸

ʻ˷
˸g

ʼ

(f) Heading angle profile (Case D)

Fig. 16. Simulation results of cases C and D.

2. Cases C and D: The obstacle crossed path with the agent at an angle of ¾π, as depicted in
Fig. 16. For Case C, when obstacle speed is the same as the agent, the agent moved to the
right slightly to let the obstacle pass. For Case D, the agent responded earlier and also
decided to let the obstacle passed first. As the obstacle moved faster in this case, the velocity
and heading angle changes of the agent were larger.

Case ψ (rad) vo (cm/s) ,r iv
K

 (cm/s)

Obstacle 1 3 / 4π 50 92.39
E

Obstacle 2 3 / 4π 50 92.39

Obstacle 1 /2π 50 70.71
F

Obstacle 2 /2π 50 70.71

Table 2. Summary of simulation parameters with TWO obstacles.

3. Cases E and F: To deal with two obstacles simultaneously. The obstacles moved at speed
vo=50 cm/s in both cases, but at different heading angles. Case E, as depicted in Fig. 17(a-c),

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

403

consists of two obstacles moved at an intersecting angle of ¾π with respect to the agent. As
can be seen from its V and H profiles, there are two responses: one at t=23s when Obstacle 1
approached the agent first, and one at t=29s when Obstacle 2 followed. The speed changes
in both responses were minor, while the agent stepped backward in the first instance to
avoid collision. For Case F, two obstacles moved perpendicularly to the agent as depicted in
Fig. 17(d-f). There were two distinct responses (at t=9s and 22s), both of which required
slowing down and change in heading angle to let the obstacle pass first.

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃
˧im˸ ʻsʼ

˦
p˸

˸˷
 ʻ

˶m
˂s

ʼ

(b) Velocity profile (Case E)

(a) Path (Case E)

-˄ˆˈ
-ˌ˃

-ˇˈ

˃
ˇˈ

ˌ˃

˄ˆˈ

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃

˧im˸ ʻsʼ

H
˸a

˷
in

g
 A

n
g
l˸

ʻ˷
˸g

ʼ

(c) Heading angle profile (Case E)

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃
˧im˸ ʻsʼ

V
˸l

o
˶i

ty
 ʻ

˶m
˂s

ʼ

(e) Velocity profile (Case F)

(d) Path (Case F)

-ˌ˃

-ˇˈ

˃

ˇˈ

ˌ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃

˧im˸ ʻsʼ

H
˸a

˷
in

g
 A

n
gl

˸

ʻ˷
˸g

ʼ

(f) Heading angle profile (Case F)

Fig. 17. Simulation results of cases E and F.

Case ψ (rad) vo (cm/s) ,i rv
K

 (cm/s)

G π 50 100

H 3 / 4π 50 92.39

Table 3. Summary of simulation parameters with a GROUP of obstacles.

4. Cases G and H: To deal with a larger number of obstacles in the DE. In Case G, seven
obstacles moved in a cluster towards the agent at vo=50 cm/s. From the path diagram as
depicted in Fig. 18(b), as the obstacles were well apart, the agent found no difficulty in
navigating through them, as shown in its V and H profiles. For Case H, the cluster of seven

www.intechopen.com

 Advances in Reinforcement Learning

404

obstacles moved at an angle of ¾π with respect to the agent. Again, the agent navigated
through the cluster appropriately, without collision.

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃ ˊ˃
˧im˸ ʻsʼ

V
˸l

o˶
it
y

ʻ˶
m

˂s
ʼ

(c) Velocity profile (Case G)

(a) Original Positions
(Case G)

(b) Path (Case G) -˄ˆˈ

-ˌ˃

-ˇˈ

˃

ˇˈ

ˌ˃

˄ˆˈ

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃ ˊ

˧im˸ ʻsʼ

H
˸a

˷i
ng

 A
ng

l˸

ʻ˷
˸g

ʼ
(d) Heading angle profile (Case G)

˃

˅˃

ˇ˃

ˉ˃

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃ ˊ˃
˧im˸ ʻsʼ

V
˸l

o˶
it
y

ʻ˶
m

˂s
ʼ

(g) Velocity profile (Case H)

(e) Original Positions
(Case H)

(f) Path (Case H) -˄ˆˈ

-ˌ˃

-ˇˈ
˃

ˇˈ

ˌ˃
˄ˆˈ

˃ ˄˃ ˅˃ ˆ˃ ˇ˃ ˈ˃ ˉ˃ ˊ˃

˧im˸ ʻsʼ

H
˸a

˷i
ng

 A
n
gl

˸

ʻ˷
˸g

ʼ

(h) Heading angle profile (Case H)

Fig. 18. Simulation results of cases G and H.

4.6 Obstacles at variable velocity

The objective of this simulation is to study agent behavior in handling a simple randomly

changing environment. In Cases I and J, a single obstacle moved at varying velocity directly

towards the agent (ψ=π). The obstacle’s velocity ranges are 0-50 cm/s and 0-100 cm/s

respectively, in step of 10 cm/s. The agent was evaluated over 1,000 episodes in the same

environment in each case. A summary of the two cases is given in Table 4.

Case ψ .rad) vo (cm/s) ,r iv
K

.(cm/s) Number of collision-
free Episodes

Mean Path Time (s)

I 0-50 50-100 976 62.97

J 0-100 50-150 957 59.32

Table 4. Simulation parameters with ONE obstacle at random speed.

The results show that for Case I, the proportion of collision-free episodes is 97.6% and a

mean path time of 62.97s. A collision-free episode is one that the agent travels to the

destination without causing any collision. When compared with the shortest path time (50s),

the agent used an extra of 12.97s more. For Case J, the obstacles moved faster in a wider

range. As a result, the number of collision-free episodes was reduced to 95.7%, but the mean

path time was also reduced to 59.32s. This can be explained as because of the faster moving

obstacles, the agent experienced more collisions, but managed less convoluted paths.

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

405

4.7 Inaccurate sensor measurement
In this simulation, we investigate how the proposed method tolerates inaccuracy in sensor
measurements. As in Cases A & B at three different speeds (vo=10, 50 or 100 cm/s), the output
of the sensor simulator was deliberately corrupted by a Gaussian noise function that has a
mean (Ǎ) of Ǎ=di and standard deviation (σ) of n×μ where n=0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 (Ye
et al., 2003). For each set of n and vo, Q-values for CA are set to zeros initially and the agent
was trained for 10,000 episodes. After training, and the agent was evaluated in the same
environment for 1,000 times with different n and vo. Table 5 depicts the simulation summary.

vo = 10 cm/s

(,r iv
K

= 60 cm/s)

vo = 50 cm/s

(,r iv
K

= 100 cm/s)

vo = 100 cm/s

(,r iv
K

= 150 cm/s)
n

Collision-free
Episodes

Mean Path
Time (s)

Collision-free
Episodes

Mean Path
Time (s)

Collision-free
Episodes

Mean Path
Time (s)

0 1000 57 1000 57.00 1000 53.00

0.1 1000 56.79 1000 54.43 1000 54.71

0.2 999 55.40 987 56.05 957 59.89

0.3 979 62.37 996 58.45 987 61.49

0.4 997 65.55 979 58.33 725 80.45

0.5 991 57.52 989 59.04 816 71.31

0.6 995 61.93 954 65.58 576 92.01

Table 5. Robustness to sensor noise.

From Table 5, for n<0.2, none of the obstacle speed would cause collision. For n≥0.2,
collision began to appear. At low speed, the number of collisions can be kept small with a
worst case of 2.1%. For ov

K
=50 cm/s, the number of collision-free episodes was reduced to

95.4% at n=0.6. For ov
K

=100 cm/s, it went down to 57.6%, or almost half of the episodes
have collisions. This is logical as slow obstacles are easier to avoid compared with fast
obstacles, and inaccurate sensor measurements make it harder to avoid collision.
For mean path time, it generally increases when n increases, although minima appear at
n=0.2 for low speed, n=0.1 for medium speed and n=0 for high speed. As in Case A, the
mean path time is longer when obstacle speed is low because of more convoluted paths. As
n increases, the agent learnt to respond earlier to such inaccuracy and resulted in shorter
paths. However, for larger n, the agent travels extra steps in order to cope with the large
sensor error, which resulted in even longer path. The same applies when obstacle speed is
relatively higher, except that the minima appear when n is smaller because the agent
responded earlier in this case.

4.8 Randomly moving obstacles and performance comparison
The purpose of this simulation is to evaluate the proposed method in an environment with
up to 50 moving obstacles, and compare it against another navigation method that is
designed to work in such a complex environment. Obviously, those that work on static
environment (Pimenta et al., 2006; Belkhouche et al. 2006; Jing et al. 2006), those that
consider relatively simple cases with very low obstacle density (Soo et al. 2005; Kunwar &
Benhabib, 2006), or those that assume perfect communication among agents, e.g. robot
soccering (Bruce & Veloso, 2006), are unsuitable. A suitable candidate is the artificial
potential field method proposed by Ratering & Gini (R&G) (Ratering & Gini, 1995), which
was simulated in a relatively complex environment with high density of multiple moving

www.intechopen.com

 Advances in Reinforcement Learning

406

obstacles. To enable the comparison, obstacles size was reduced to 20 cm in diameter, and
the obstacles were placed and moved randomly in speed and direction, as in (Ratering &
Gini, 1995). The origin and destination of the agent were located at the lower left hand
corner and upper right corner of the environment, respectively. Since the obstacles moved
randomly, the prediction was not used in the proposed method. Different obstacle density D
and obstacle velocity vo were studied, and results are tabulated in Table 6. Each result
shown in the table was derived from 100 episodes after training. The R&G method used
static potential filed and dynamic potential fields to handle static and moving obstacles
respectively, and their results are also depicted in Table VI.

Obstacle
speed vo
(cm/s)

No. of
obstacles

Obstacle
Density D

,r iv
K

(cm/s)

Average
path time (s)

St. dev.
path time

No. of
collision-

free
episodes

Average
no. of

collisions

St. dev.
No. of

collisions

10 10 0.0005 40-60
68.25

(79.07)
16.16

(13.40)
99 (99) 0.01 (0.02) 0.1 (0.20)

10 20 0.001 40-60 80.1 (93.92)
50.27

(20.93)
100 (95) 0 (0.06) 0 (0.28)

10 30 0.0015 40-60
92.71

(110.19)
59.19

(27.35)
97 (98) 0.11 (0.02)

0.83
(0.14)

10 40 0.002 40-60
99.24

(126.23)
53.56

(34.25)
95 (92) 0.07 (0.09)

0.33
(0.32)

10 50 0.0025 40-60
111.55

(135.06)
58.39

(41.06)
94 (82) 0.15 (0.25)

0.63
(0.61)

30 10 0.0005 20-80
68.58

(80.75)
7.84

(11.98)
99 (99) 0.01 (0.01) 0.1 (0.10)

30 20 0.001 20-80
75.03

(96.17)
14.27

(23.43)
99 (95) 0.01 (0.05) 0.1 (0.22)

30 30 0.0015 20-80
80.12

(110.95)
16.29

(28.18)
96 (89) 0.07 (0.18)

0.43
(0.59)

30 40 0.002 20-80
89.58

(116.94)
28.13

(28.91)
94 (80) 0.08 (0.46)

0.34
(1.11)

30 50 0.0025 20-80
91.93

(125.46)
21.07

(32.30)
92 (72) 0.14 (0.59)

0.62
(1.18)

50 10 0.0005 0-100
69.62

(85.10)
8.60

(18.56)
91 (92) 0.25 (0.46)

1.53
(2.41)

50 20 0.001 0-100
74.39

(97.56)
10.68

(19.37)
88 (75) 0.2 (0.74)

0.64
(1.56)

50 30 0.0015 0-100
84.19

(111.48)
15.47

(23.09)
85 (63) 0.17 (1.44)

0.43
(3.16)

50 40 0.002 0-100
93.67

(123.48)
24.95

(29.11)
77 (37) 0.43 (2.66)

0.98
(3.60)

50 50 0.0025 0-100
101.31

(127.72)
29.13

(29.49)
69 (32) 0.68 (3.22)

1.64
(3.61)

Table 6. Cases of randomly moving obstacles in a fixed area. (Numbers in brackets show the
results of R&G Method (Ratering & Gini, 1995))

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

407

In general, for the same ,r iv
K

, the no. of collision-free episodes decreases as D increases for
the proposed method. Obviously, more obstacles in a fixed area increase the chance of
collision. This is also true when ,r iv

K
 increases. In the extreme, only 69% of episodes are

collision-free when ,r iv
K

=0-100 cm/s and D=0.0025 (max). When compared with the R&G
method, when D is very low, differences in no. of collision-free episodes between the two
methods are insignificant. However, when D is larger (>10 obstacles), the proposed method
performed consistently better. This is also the case when ,r iv

K
 increases. On average, the

improvement on the no. of collision-free episodes is 23.63%, whereas the best is slightly over
115% for the largest D.
For average path time, it increases as D increases. This is to be expected as there are more
obstacles and more CA actions that resulted in longer path time. On the other hand, for small

,r iv
K

 and large D, clustering of obstacles becomes a real possibility that can block the agent’s
path. This is confirmed by the large standard deviation of path time when compared with
other larger ,r iv

K
. Although the R&G method employed the adjustable hill extent method to

deal with this issue, their average path times are in fact longer. When ,r iv
K

 is large, obstacle
clustering is reduced, but their speed makes it necessary to make more convoluted path to
avoid them, therefore the resultant path time is longer, with smaller standard deviation.
Again, there is a minimum in average path time at medium ,r iv

K
 depending on D. When

compared with R&G method, an average improvement of 20.6% is achieved.

5. Conclusion

In this chapter we have presented a multiple goal reinforcement learning framework and
illustrated on a two-goal problem in autonomous vehicle navigation. In general, DAQL can be
applied in any goals that environmental response is available, whereas QL would suffice if
environmental response is not available or can be ignored. A proportional goal fusion function
was used to maintain balance between the two goals in this case. Extensive simulations have
been carried out to evaluate its performance under different obstacle behaivors and sensing
accuracy. The results showed that the proposed method is characterized by its ability to (1)
deal with single obstacles at any speed and from any directions; (2) deal with two obstacles
approaching from different directions; (3) cope with large sensor noise; (4) navigate in high
obstacle density and high relative velocity environment. Detailed comparison of the proposed
method with the R&G method reveals that improvements by the proposed method in path
time and the number of collision-free episodes are substantial.

6. Acknowledgement

The authors would like to thank the anonymous referees for their thorough review of the
paper and many constructive comments. The work described in this paper was partially
supported by a grant from the Research Grants Council of the Hong Kong Special
Administration Region, China (Project No.HKU7194/06E), and was partially supported by a
postgraduate studentship from the University of Hong Kong.

7. References

Belkhouche F., Belkhouche B., Rastgoufard P. (2006). Line of sight robot navigation toward a
moving goal, IEEE Transactions on Systems, Man and Cybernetics, Part B, 36, 255-267

www.intechopen.com

 Advances in Reinforcement Learning

408

Boutilier C. (1996). Planning, learning and coordination in multi-agent decision processes,
Sixth conference on Theoretical Aspects of Rationality and Knowledge (TARK `96), pp.
195-201, The Netherlands

Boutilier C., Dearden R., Goldszmidt M. (2000).Stochastic dynamic programming with
factored representations. Artificial Intelligence, 121, 49-107

Bruce J.R., Veloso M.M. (2006). Safe multirobot navigation within dynamics constraints,
Proceedings of the IEEE Special Issue on Multi-Robot Systems, 94, 1398-1411

Claus C., Boutilier C. (1998). The Dynamics of Reinforcement Learning in Cooperative
Multiagent Systems, Fifteenth National Conference on Artificial Intelligence, pp. 746-
752

Doya K., Samejima K., Katagiri K., Kawato M. (2002). Multiple model-based reinforcement
learning. Neural Computation, 14, 1347-1369

Er M.J., Deng C. (2005). Obstacle avoidance of a mobile robot using hybrid learning
approach. IEEE Transactions on Industrial Electronics, 52, 898-905

Feng Z., Dalong T., Zhenwei W. (2004). Multiple obstacles avoidance for mobile robot in
unstructured environments, Proceedings of the 2004 IEEE International Conference on
Robotics, Automation and Mechatronics, vol.141, pp. 141-146, Singapore

Fiorini P., Shiller Z. (1998). Motion planning in dynamic environments using velocity
obstacles. International Journal of Robotics Research, 17, 760-772

Ge S.S., Cui Y.J. (2000). New potential functions for mobile robot path planning. IEEE
Transactions on Robotics and Automation, 16, 615-620

Guestrin C., Koller D., Parr R. (2001). Multiagent Planning with Factored MDPs, Proceedings
of the 14th Neural Information Processing Systems (NIPS-14), pp. 1523-1530

Kaelbling L.P. (1993). Learning in embedded systems, MIT Press, Cambridge, Mass.
Kaelbling L.P., Littman M.L., Moore A.W. (1996). Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 4, 237-285
Hu J.L., Wellman M.P. (2004). Nash Q-learning for general-sum stochastic games. Journal of

Machine Learning Research, 4, 1039-1069
Huang B.Q., Cao G.Y., Guo M (2005). Reinforcement Learning Neural Network to the

Problem of Autonomous Mobile Robot Obstacle Avoidance, Proceedings of the
Fourth IEEE International Conference on Machine Learning & Cybernetics, pp. 85-89,
Guangzhou

Jacobs R.A., Jordan M.I., Nowlan S.J., Hinton G.E. (1991). Adaptive Mixtures of Local
Experts. Neural Computation, 3, 79-87

Jing R., McIsaac K.A., Patel R.V. (2006). Modified Newton's method applied to potential
field-based navigation for mobile robots. IEEE Transactions on Robotics, 22, 384-391

Kehtarnavaz N., Li S. (1988). A collision-free navigation scheme in the presence of moving
obstacles, Proceedings of IEEE International Conference on Computer Vision and Pattern
Recognition, pp. 808-813

Kunwar F., Benhabib B. (200).Rendezvous-Guidance Trajectory Planning for Robotic
Dynamic Obstacle Avoidance and Interception. IEEE Transactions on Systems, Man
and Cybernetics, Part B, 36, 1432-1441

Large F., Sekhavat S., Shiller Z., Laugier C. (2002). Towards real-time global motion
planning in a dynamic environment using the NLVO concept, Proceedings of the
2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol.601, pp.
607-612, Lausanne, Switzerland

www.intechopen.com

DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment

409

Latombe J.-C. (1991). Robot motion planning, Kluwer Academic Publishers, Boston
Laurent G., Piat E. (2001).Parallel Q-learning for a block-pushing problem, Proceedings of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol.281, pp. 286-291, USA
Laurent G.J., Piat E. (2002). Learning mixed behaviours with parallel Q-learning, Proceedings

of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol.1001, pp. 1002-1007, Lausanne, Switzerland

Littman M.L. (2001). Value-function reinforcement learning in Markov games. Cognitive
Systems Research, 2, 55-66

Minguez J., Montano L. (2004). Nearness diagram (ND) navigation: Collision avoidance in
troublesome scenarios. IEEE Transactions on Robotics and Automation, 20, 45-59

Minguez J. (2005). The obstacle-restriction method for robot obstacle avoidance in difficult
environments, Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2284-2290

Miura J., Uozumi H., Shirai Y. (1999). Mobile robot motion planning considering the motion
uncertainty of moving obstacles, Proceedings of the 1999 IEEE International Conference
on Systems, Man, and Cybernetics, vol.694, pp. 692-697, Tokyo, Japan

Mucientes M., Iglesias R., Regueiro C.V., Bugarin A., Carinena P., Barro S. (2001). Fuzzy
temporal rules for mobile robot guidance in dynamic environments. IEEE
Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 31, 391-
398

Ngai D.C.K., Yung N.H.C. (2005a). Double action Q-learning for obstacle avoidance in a
dynamically changing environment, Proceedings of the 2005 IEEE Intelligent Vehicles
Symposium, pp. 211-216, Las Vegas, USA

Ngai D.C.K., Yung N.H.C. (2005b). Performance evaluation of double action Q-learning in
moving obstacle avoidance problem, Proceedings of the 2005 IEEE International
Conference on Systems, Man, and Cybernetics, vol. 861, pp. 865-870, Hawaii, USA

Oriolo G., Ulivi G., Vendittelli M. (1998). Real-time map building and navigation for
autonomous robots in unknown environments. IEEE Transactions on Systems Man
and Cybernetics Part B-Cybernetics, 28, 316-333

Pimenta L.C.A., Fonseca A.R., Pereira G.A.S., Mesquita R.C., Silva E.J., Caminhas W.M.,
Campos M.F.M. (2006). Robot navigation based on electrostatic field computation,
IEEE Transactions on Magnetics, 42, 1459-1462

Puterman M.L. (1994). Markov decision processes : discrete stochastic dynamic programming. John
Wiley & Sons, New York

Ratering S., Gini M. (1995). Robot Navigation in a Known Environment with Unknown
Moving Obstacles. Autonomous Robots, 1, 149-165

Qu Z.H., Wang J., Plaisted C.E. (2004). A new analytical solution to mobile robot trajectory
generation in the presence of moving obstacles. IEEE Transactions on Robotics and
Automation, 20, 978-993

Shensa M. (1981). Recursive least squares lattice algorithms--A geometrical approach. IEEE
Transactions on Automatic Control, 26, 695-702

Shiller Z., Large F., Sekhavat S. (2001). Motion planning in dynamic environments: obstacles
moving along arbitrary trajectories, Proceedings of the 2001 IEEE International
Conference on Robotics and Automation, vol.3714, pp. 3716-3721, Seoul

Soo J. E., Seul J., Hsia T.C. (2005). Collision avoidance of a mobile robot for moving obstacles
based on impedance force control algorithm, Proceedings of the IEEE/RSJ

www.intechopen.com

 Advances in Reinforcement Learning

410

International Conference on Intelligent Robots and Systems 2005 (IROS 2005), pp. 382-
387

Stentz A. (1994). Optimal and efficient path planning for partially-known environments,
Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol.
3314, pp. 3310-3317, 1994

Stentz A. (1995). The focused D* algorithm for real-time replanning, Proceedings of the 14th
International Joint Conference on Artificial Intelligence, IJCAI ’95, Montreal, Canada,
August 1995

Sutton R.S. (1992). Reinforcement learning, Kluwer Academic Publishers, Boston
Sutton R.S., Barto A.G. (1998). Reinforcement learning : an introduction, MIT Press, Cambridge,

Mass.
Uchibe E., Asada M., Hosoda K. (1996). Behavior coordination for a mobile robot using

modular reinforcement learning, Proceedings of the 1996 IEEE/RSJ International
Conference on Intelligent Robots and Systems '96, vol.1323, pp. 1329-1336

Watkins C.J.C.H., Dayan P. (1992). Q-Learning. Machine Learning, 8, 279-292
Yamamoto M., Shimada M., Mohri A. (2001). Online navigation of mobile robot under the

existence of dynamically moving multiple obstacles, Proceedings of the 4th IEEE Int.
Symposium on Assembly & Task Planning, pp. 13-18, Soft Research Park, Japan

Yang S.X., Meng M.Q.H. (2003). Real-time collision-free motion planning of a mobile robot
using a neural dynamics-based approach. IEEE Transactions on Neural Networks, 14,
1541-1552

Ye C. (1999). Behavior-Based Fuzzy Navigation of Mobile Vehicle in Unknown and Dynamically
Changing Environment. Pd.D. Thesis, Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong Kong

Ye C., Yung N.H.C., Wang D.W. (2003). A fuzzy controller with supervised learning assisted
reinforcement learning algorithm for obstacle avoidance. IEEE Transactions on
Systems Man and Cybernetics Part B-Cybernetics, 33, 17-27

Yoon H.U., Sim K.B. (2005). Hexagon-Based Q-Learning for Object Search with Multiple
Robots, Proceedings of Advances in Natural Computation: First International Conference,
ICNC 2005, pp. 55-66, Changsha, China

Zhu Q.M. (1991). Hidden Markov Model for Dynamic Obstacle Avoidance of Mobile Robot
Navigation. IEEE Transactions on Robotics and Automation, 7, 390-397

www.intechopen.com

Advances in Reinforcement Learning

Edited by Prof. Abdelhamid Mellouk

ISBN 978-953-307-369-9

Hard cover, 470 pages

Publisher InTech

Published online 14, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings

together many different aspects of the current research on several fields associated to RL which has been

growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24

Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of

chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of

RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation,

Medicine and Industrial Logistic.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Chi Kit Ngai and Nelson H. C. Yung (2011). DAQL-Enabled Autonomous Vehicle Navigation in Dynamically

Changing Environment, Advances in Reinforcement Learning, Prof. Abdelhamid Mellouk (Ed.), ISBN: 978-953-

307-369-9, InTech, Available from: http://www.intechopen.com/books/advances-in-reinforcement-

learning/daql-enabled-autonomous-vehicle-navigation-in-dynamically-changing-environment

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

