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Adaptive Critic Designs-Based Autonomous 
Unmanned Vehicles Navigation:  

Application to Robotic Farm Vehicles 

Daniel Patiño1 and Santiago Tosetti 
Instituto de Automática, Advanced Intelligent Systems Laboratory,  

Universidad Nacional de San Juan 
Av. Lib. San Martín 1109 (O), 5400 San Juan, Argentina. 

Argentina 

1. Introduction     

Unmanned vehicles like Unmanned Aerial Vehicles (UAV) and Unmanned Ground 
Vehicles (UGV) are mechanical devices capable of moving in some environment with a 
certain degree of autonomy. These vehicles use IMU (Inertial Measurement Unit), high 
precision GPS RTK (Global Positioning Systems, Real-Time Kinematics), encoders, compass, 
and tilt sensors, to position them self and follow waypoints. A picture of a vehicle with these 
characteristics is shown in Figure 1. Its use is becoming more frequent for both intensive and 
extensive agriculture, in the precision agriculture context. For example, in USA or Argentina 
with millions of arable hectares is essential to have autonomous farm machines for handling 
and managing growth, quality, and yield of the crops. 
 

 

Fig. 1. Prototype of a UGV equipped with a number of sensors. This prototype belongs to 
the Instituto the Automática of the Universidad Nacional de San Juan. 

                                                 
1 dpatino@inaut.unsj.edu.ar 
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The environment where these vehicles are used can be classified as: 

• Structured or partially structured when it is well known and the motion can be planned 
in advance. In general, this is the case of navigation and guide of mobile robots.  

• Not structured, when there are uncertainties which imply some on-line planning of the 
motion, this is the case of navigation and guide of robotic aerial vehicles.   

In general, the objective of controlling the autonomous vehicles implies solving the 
problems of sensing, path planning and kinematic and dynamic control. Autonomy of a 
vehicle is related to determine its own position and velocity without external aids. 
Autonomy is very important to certain military vehicles and to civil vehicles operating in 
areas of inadequate radio-navigation coverage. Regarding the trajectory planning, there are 
many approaches (Aicardi et al., 1995). Many works have been published on the control of 
autonomous vehicles, mainly in the UGV or mobile robots. Some of them propose stable 
control algorithms which are based on Lyapunov theory (Singh & Fuller, 2001). Others have 
focused on optimization planning and control (Kuwata et al., 2005) and (Patiño et al., 2008). 
In this paper we propose the use of ACDs to design autonomously an optimal path 

planning and control strategy for robotic unmanned vehicles, in particular for a mobile 

robot, following a previous work (Liu & Patiño, 1999a), and (Liu & Patiño, 1999b). 

We consider a mobile robot with two actuated wheels and the autonomous control system is 
designed for kinematic and dynamic model. The kinematic mobile robot model for the so-
called kinematic wheels under the nonholonomic constrain of pure rolling and nonslipping, is 
given by, 

  q S(q)v(t )=� , (1)                  

Where 3q(t ),q(t)∈ℜ�  are defined as 

 T Tq [x,y , ] , q [x,y , ]θ θ= = �� � � , (2) 

x(t),y(t),  and 3(t )θ ∈ℜ  denote the linear position, and orientation respectively of the center 

of mass of the mobile vehicle; x(t),y(t),� �  denote the Cartesian components of the linear 

velocity of the vehicle;  (t ),θ� denotes the angular velocity of the mobile robot; the matrix 
3 2S(q) ,×∈ℜ  is defined as, 

 

0

0

0 1

cos( )

S(q) sin( )

θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, (3) 

and the velocity vector 2v(t) ,∈ℜ  is defined as 

 T
lv [v ,w]= , (4) 

with lv ∈ℜ  denoting the constant straight line velocity, and w(t)∈ℜ  is the angular velocity 

of the mobile robot. 
Considering the dynamics of the car-driving device which contains a dc motor, a dc 
amplifier, and a gear transmission system, 

 
2 R

Ka
w w

s bs a
= ⋅

+ +
, (5) 
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where Rw ∈ℜ , is the reference angular velocity, and K,a,b +∈ℜ   are the car-driving device 

parameters. 

The state of the mobile vehicle is given by (cf. Figure 1) the coordinates of the robot (x,y) , 

the orientation of the vehicle, θ , and the actual turning rate of the robot, θ� . The control 

signal is the desired turning rate of the mobile vehicle, Rw . 

1.2 Control problem formulation 
As was previously defined, the reference trajectory is generated via a reference vehicle 
which moves according to the following dynamic trajectory, 

 R Rq S(q )v(t)=� , (6) 

Where S( )⋅  was defined in (3), 3T
R R R Rq [x ,y , ]θ= ∈ℜ  is the desired time-varying position 

and orientation trajectory, and 2T
R l lv [v ,w ]= ∈ℜ  is the reference time-varying velocity. 

With regard to (5), it is assumed that the signal Rv (t )  is constructed to produce the desired 

motion, and that Rv (t ) , Rv (t )� , Rq (t) ,  and Rq (t)�  are bounded for all time. 
In general the vehicle motion control can be classified in: i) Positioning without prescribing 
orientation: in this case a final destination point is specified; ii) Positioning with prescribed 
orientation: in this case a destination point has to be achieved with a desired orientation; 
and iii) Path following: here, the path is defined through a sequence of waypoints.  

In the first experiment, the control objective is limited to the first case, that is, given a 

reference point located at the workspace, R R(x ,y ) , and considering the vehicle dynamical 

model, it is desired to obtain autonomously a sequence of optimal control actions (values of the 

turning rate) such that the vehicle achieves the target point as fast as possible (cf. Figure 2), 

and with minimum energy consumption. Since the mobile robot´s speed, lv , is taken as 

constant, minimum-time control is equivalent to shortest-path control. 
The design of the control system will be based on adaptive critic designs, in particular HDP 
(Werbos, 1992) and (Bellman, 1957). Next Section shows the background material needed for 
the present work.  

θ

x

y

Reference Trajectory

X

)(tcp

Y

ry

rx

rθ
)(tq

r

 
Fig. 1. The state of the unmanned ground vehicle. 
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X

Y

53.5

9

GATE

 

Fig. 2. The gate for the unmanned ground vehicle to go through. 

2. Background in adaptive critic designs 

2.1 Introduction to dynamic programming 

Suppose that it is given a discrete-time nonlinear (time-varying) system, 

 1x(k ) F[x(k),u(k),k]+ = , (7) 

where, nx∈ℜ  represents the (complete) state vector of the system and mu∈ℜ  denotes the 

control action. Suppose that it is desired to minimize for (7) a performance index (or cost), 

 k i

k i

J[x(i ),i] U[x(k),u(k),k],γ
∞

−

=

=∑  (8) 

where  U  is called the utility function or local cost function,  and γ  is the discount factor 

with 0 1γ≤ ≤ . Note that J  is dependent on the initial time i  and the state x(i) , and it is 

referred to as the cost-to-go of the state x(i) . The objective is to choose the control sequence 

1u( k),k i ,i ,= + …  so that the J  function (the cost) in (8) is minimized. The cost in this case 

accumulates indefinitely; these kinds of problems are referred to as infinite horizon problems 

in Dynamic Programming. On the other hand, in finite horizon problems, the cost will 

accumulate over a finite number of steps. Dynamic programming is based on Bellman’s 

principle of optimality, (Lewis & Syrnos, 1995), (Prokhorov & Wunsch, 1997), and establishes 

that an optimal (control) policy has the property that no matter what previous decisions (i.e., 

controls) have been, the remaining decisions must constitute an optimal policy with regard 

to the state resulting from those previous decisions. 

Suppose that we have computed the optimal cost 1 1*J [x(k ),k ]+ + , from time 1k +  to the 

terminal time for possible states 1x(k )+ , and that we have also found the optimal control 

sequences from time 1k +  on. The optimal cost results when the optimal control sequence 

1 2* *u (k ),u (k ),...+ + , is applied to the system with initial state 1x(k )+ . Note that the 
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optimal control sequence depends on 1x(k )+ . If we apply an arbitrary control u(k) at time 

k  and then use the known optimal control sequence from 1( k )+ on, the resulting cost will 

be 

 1 1*J[x(k),k] U[x(k),u(k),k] J [x( k ),k ]γ= + + + , 

where, x(k)  is the state at time k  and  is determined by (2). According to Bellman, the 

optimal cost from time k  on is equal to 

 
( )1 1

*

u( k )

*

u( k )

J [x(k),k] min J[x(k),k]

min U[x(k),u(k),k] J [x(k ),k ] .γ

= =

= + + +
 (9) 

The optimal control *u (k)  at time k  is the u(k) that achieves the minimum. Equation (9) is 

the principle of optimality for discrete-time systems. Its importance lies in the fact that it 
allows us to optimize over only one control vector at a time by working backward in time. 
Dynamic programming is a very useful tool in solving optimization and optimal control 
problems. In particular, it can easily be applied to nonlinear systems with constraints on the 
control and state variables, and arbitrary performance indexes. 

2.2 Adaptive critic designs 

In the computations in (9), whenever one knows the function J  and the model F in (7), it is 

a simple problem in function minimization to pick the actions *u (k) which minimize J . 

However, due to the backward numerical process required, it is too computationally 

expensive to determine the exact J  function for most real problems, even when the scales of 

the problems are considered to be small. Therefore, approximation methods are demanding 

in practice when performing dynamic programming (Werbos, 1992), (Bellman, 1957), 

(Balakrishnan & Biega, 1995).  
Instead of solving for the value of J function for every possible state, one can use a function 
approximation structure such as a neural network to approximate the J function. There are 
three basic methods proposed in the literature for approximating the dynamic programming. 
They are collectively called Adaptive Critic Designs, which include Heuristic Dynamic 
Programming (HDP), Dual Heuristic Programming (DHP), and Globalized Dual Heuristic 
Programming (GDIHP) (Bellman, 1957), (Werbos, 1990), (Balakrishnan & Biega, 1995). 
A typical adaptive critic design consists of three modules —Critic, Model, and Action. The 
present work considers the case where each module is a neural network; the designs in this 
case are referred to as neural network--based adaptive critic designs. The following 
introduces the HDP. In HDP (Werbos, 1990), (Werbos, 1992), (Lewis & Syrnos, 1995), 
(Balakrishnan & Biega, 1995, the critic network output estimates J function in equation (7). 
This is done by minimizing the following error measure over time, 

 2
1 1

1
1

2k k

E E (k) [ J( k) U(k) J( k )]γ= = − − +∑ ∑  (10) 

where, CJ( k ) J[x(k),t ,W ]=   and CW represents the parameters of the critic network. The 

function U  is chosen as a utility function which indicates the performance of the overall 
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system (see examples in (Balakrishnan & Biega, 1995), (Werbos, 1990)). It is usually a 

function of x(k) , u(k) , and k , i.e., U( k) [x(k),u(k),k]=   . When 1 0E ( k) = for all k , (10) 

implies that 

 

1

1 2 l k

l k

J( k ) U( k) J( k )

U(k) [U(k ) J( k )] U(k)

γ

γ γ γ
∞

−

=

= + + =

= + + + + = =∑…
 (11)                       

which is exactly the same as in dynamic programming [cf. (8)]. In Eq. (11), it is assumed that 

J( k ) < ∞  which can usually be guaranteed by choosing the discount factor γ  such that 

0 1γ< < . The training samples for the critic network are obtained over a trajectory starting 

from 00x( ) x=  at 0k = .The trajectory can be either over a fixed number of time steps [e.g., 

300 consecutive points] or from 0k =  until the final state is reached. The training process 

will be repeated until no more weight update is needed. 
The weight update, during the pth training iteration, is given by 

 

1 1
1

1 1

( p ) ( p)
C ,i C ,i ( p)

C ,i

( p)
C ,i ( p)

C ,i

E ( k)
W W

W

J(k)
W [ J( k) U(k) J( k )]

W

η

η γ

+ ∂
= − =

∂

∂
= − − − +

∂

 (12) 

where, 1 0η >  is the learning rate and C ,iW , the ith component of CW . Note that the 

gradient method is used in (12) and that the pth corresponds to certain time instant k  [hence 

the use 1E ( k)  in (12)]. The weight update can also be performed in batch mode, e.g., after 

the completion of each trajectory. The model network in an adaptive critic design predicts 

1x(k )+  given x(k)  and u(k) ; it is needed for the computation of 

11 1 1 ( p )
CJ( k ) J[x(k ),k ,W ]−+ = + +  

in (12) for the weight update. The model network learns the mapping given in equation (7); 

it is trained previously off-line (Werbos, 1992), (Bellman, 1957), (Balakrishnan & Biega, 

1995), or trained in parallel with the critic and action networks. Here, 1J( k )+ is calculated 

using 1( p )
CW − and its dependence on ( p)

CW   is not considered, according to (Liu & Patiño, 

1999a). After the critic network’s training is finished, the action network’s training starts 

with the objective of minimizing 1J( k )+ . The action network generates an action signal 

Au(k) [x(k),k ,W ]= ; its training follows a similar procedure to the one for the critic 

network’s training. The training process will be repeated until no more weight update is 

needed while keeping the critic network’s weights fixed. During the pth training iteration, 

the weight update is given by 

 

1
1

1
1 1

1

11

1

( p ) ( p)
A,i A,i ( p)

A,i

n m
j( p) k

A,i ( p)
j kj k A,i

J( k )
W W

W

x (k )J( k ) u (k)
W

x (k ) u (k) W

α

α

+

= =

∂ +
= − =

∂

∂ +∂ + ∂
= − ⋅

∂ + ∂ ∂
∑ ∑

 (13) 
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where, 1 0α > . Again, the model network is required for the computation of i kx (k) u (k)∂ ∂  

in the above weight update. It can be seen in (13) that information is propagated backward 

through the critic network to the model network and then to the action network, as if three 

networks formed one large feedforward network. After action network‘s training cycle is 

completed, one may check its performance, then stop or continue the training procedure 

entering the critic network’s training cycle again, if the performance is not acceptable yet. 

It is emphasized that in the methods described above, the knowledge of desired target 

values for the function J and the action signal u(k) is not required in the neural net-work 

training. In conventional applications of neural networks for function approximation, the 

knowledge of the desired target values of the function to be approximated is required. It 

should also be emphasized that the nature of the present methodology is to iteratively build 

a link between present actions and future consequences via an estimate of the utility 

function J. 

3. Main results 

A simulation study has been carried out using the mobile vehicle model presented in 

Section I. The set of parameters for this vehicle model used are the following: 0 45K .= ,  

102 6a .= , 9 21b .= , 0 2vl . m / s= . The three networks (critic, action, and model) are all 

implemented using multilayer feedforward neural networks. Each neural network has six 

inputs, R R(x ,y ,x,y , ,w)θ , where Rx and Ry  denote the desired target gate. The critic 

network output J , the action network output Rw , and the model network is trained 

according to equation (1) and (5). The training samples for the critic network are obtained 

over trajectories starting from 0 0 5x( ) .=  at 0k = , initial position of the vehicle, and a 

reference point located at position 8 3 5( m, . m) . 

The discount factor is chosen as 0 8.γ = , and the utility function is chosen as 

( )2 2 21

2
RU(k) q x (k) y ( k) rw (k)⎡ ⎤= + +⎣ ⎦

� �  

 

where, Rx x x= −� and Ry y y= −�  are position errors with respect to the target point (x,y) , 

and 0q > and 0r > are positive weight constants. As described previously, the training 

takes place in two stage: the training of model network, and then the training of critic 

network and action network. The objective for the training of the critic network is to match 

J( k)  with 1U(k) J( k )γ+ + . The objective for the training of the action network la minimize 

1J( k )+ . The procedures for the training of critic and action networks are similar, and they 

are repeated iteratively. Figure 3 shows the result for the mobile vehicle when reaching the 

reference point, after 10 trials (learning cycles), and Figure 4 passing through one gate from 

two different initial conditions. Figure 5 shows the result for the mobile vehicle through two 

gates. 
A second simulation study was performed using the kinematic model of both the robot and 

the reference trajectory virtual robot. In his case the mathematical model of the systems are 

defined as in Equations (1), (2) and (3) under the non-holonomic restriction  
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 1 y(t )
(t ) tan

x(t)
θ −=

�
�

. (14) 

In this case both the linear and angular velocities are variable, and the mobile robot follows 
a reference trajectory given by the equations 

 
r r r

r r r

r r

x v cos

y v sin

θ
θ

θ ω

=
=

=

�
�
�

. (15) 

Once the reference trajectory is stated, the tracking error can be defined as (Kanayama et al. 
1990) 
 

 

Fig. 3. Result for passing through the gate. 
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Fig. 4. Result for passing through one gate from two different initial conditions. 
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Fig. 5. Result for passing through two gates. 

 

0

0

0 0 1

e r

e r

e r

x cos sin x x

y sin cos y y

θ θ
θ θ

θ θ θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (16) 

and combining equations (1), (14) and (15), the tracking error model is 

 
e e r r e

e e r e

e r

x y v v cos

y x v sin

ω θ
ω θ

θ ω ω

= − +
= − +

= −

�
�
�

. (17) 

Figure 6 shows all the variables presented in the previous equations. 
 

θe

xe
ye

θ

x

y

Reference Trajectory

X

)(tcp

Y

ry

rx

rθ
)(tq

r

 

Fig. 6.  Representation of the robot and virtual robot state variables. 
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For the sake of simplicity, a new set of coordinates is chosen, defined as 

 
0

0
1

1 0
2

e
r

e
r

e

x
u

x y ,
u v v cosx

x x

θ
ω ω

⎡ ⎤ ⎡ ⎤
−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

. (18) 

Finally, equation (16) can be written as  

 
0 0

1 1 2 0

2 0 1 1

r r

r

x u

x ( u )x v sinx

x ( u )x u

ω
ω

=
= − +
= − − +

�
�
�

. (19) 

With this change of coordinates the tracking problem is turned into a regulation one. 

In this experiment the control action is given by 

 
0

0
1

1
2

x
u

K x
u

x

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

. (20) 

Figure 7 shows the overall block diagram of the control system. 
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Fig. 7. Block diagram of the control system. 

The virtual robot describes a circular trajectory given by the equations: 

1

2 2

r c

r c

r
r

r

r r r

r r

x x Rsin(ct)

y y Rcos(ct )

y
tan ct

x

v x y cR

c

θ

ω θ

−

= +
= −

= =

= + =

= =
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Where 0 0c c(x ,y ) ( , )= is the center of the trajectory, 0 5R .= is the radius, 0 2c .=  and t is the 

time. 
The utility function given for this experiment is  

( )1

2
T TU(k) x (k)Qx( k) u (k)Ru(k)⎡ ⎤= +⎣ ⎦

, 

with 

 

0 1 0 0

0 0 1 0

0 0 0 1

.

Q .

.

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and 
0 1 0

0 0 1

.
R

.

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The experience begins with a K matrix stable but not adjusted, given the results shown in 
Figures 8 and 9. 
After 11 iterations of the training algorithm, the control system guides the robot to track the 
reference trajectory, as can be seen in Figures 10 and 11. 
 
 
 
 
 

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1

0

1

2

X

Y

 

 

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

samples

E
rr

o
r

 

 

Reference

Robot

x
0

x
1

x
2

 
 
 
 

Fig. 8 Reference trajectory and initial performance of the robot.  
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Fig. 9. Linear and angular velocity for the first trial. 
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Fig. 10. Performance of the control system after 11 training iterations. 
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Fig. 11. Linear and angular velocity after 11 training iterations. 

4. Conclusions 

A solution to the problem of generating autonomously optimal control action sequence for a 

mobile robot control based on Adaptive Critic Designs approach has been presented. The 

proposed controller based on adaptive critic designs learns to guide the robot to a final point 

autonomously. It has been shown that using this technique we can obtain near optimal 

control actions which requires no external training data and gives an optimal control law for 

the entire range of operation. This work is extensible to UAV, assuming that is flying at a 

constant altitude, so the mission will be restricted to a planar motion around of a target 

point, and the kinematic equation of motion is similar to a UGV, see (Patiño et al., 20008). 

Future directions of research will be oriented to reach a final point with orientation with 

application to UAV. In addition, the problem of obstacle avoidance will be addressed. It will 

be also researched with other structures as DHP and GDHP, to use different local cost 

functions, and to consolidate formally a systematic design principle. From a theoretical 

point of view the efforts will be placed on the robustness issues of optimal control systems 

using adaptive critic designs. 
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