
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

20

Adaptive Critic Designs-Based Autonomous
Unmanned Vehicles Navigation:

Application to Robotic Farm Vehicles

Daniel Patiño1 and Santiago Tosetti
Instituto de Automática, Advanced Intelligent Systems Laboratory,

Universidad Nacional de San Juan
Av. Lib. San Martín 1109 (O), 5400 San Juan, Argentina.

Argentina

1. Introduction

Unmanned vehicles like Unmanned Aerial Vehicles (UAV) and Unmanned Ground
Vehicles (UGV) are mechanical devices capable of moving in some environment with a
certain degree of autonomy. These vehicles use IMU (Inertial Measurement Unit), high
precision GPS RTK (Global Positioning Systems, Real-Time Kinematics), encoders, compass,
and tilt sensors, to position them self and follow waypoints. A picture of a vehicle with these
characteristics is shown in Figure 1. Its use is becoming more frequent for both intensive and
extensive agriculture, in the precision agriculture context. For example, in USA or Argentina
with millions of arable hectares is essential to have autonomous farm machines for handling
and managing growth, quality, and yield of the crops.

Fig. 1. Prototype of a UGV equipped with a number of sensors. This prototype belongs to
the Instituto the Automática of the Universidad Nacional de San Juan.

1 dpatino@inaut.unsj.edu.ar

www.intechopen.com

 Advances in Reinforcement Learning

372

The environment where these vehicles are used can be classified as:

• Structured or partially structured when it is well known and the motion can be planned
in advance. In general, this is the case of navigation and guide of mobile robots.

• Not structured, when there are uncertainties which imply some on-line planning of the
motion, this is the case of navigation and guide of robotic aerial vehicles.

In general, the objective of controlling the autonomous vehicles implies solving the
problems of sensing, path planning and kinematic and dynamic control. Autonomy of a
vehicle is related to determine its own position and velocity without external aids.
Autonomy is very important to certain military vehicles and to civil vehicles operating in
areas of inadequate radio-navigation coverage. Regarding the trajectory planning, there are
many approaches (Aicardi et al., 1995). Many works have been published on the control of
autonomous vehicles, mainly in the UGV or mobile robots. Some of them propose stable
control algorithms which are based on Lyapunov theory (Singh & Fuller, 2001). Others have
focused on optimization planning and control (Kuwata et al., 2005) and (Patiño et al., 2008).
In this paper we propose the use of ACDs to design autonomously an optimal path

planning and control strategy for robotic unmanned vehicles, in particular for a mobile

robot, following a previous work (Liu & Patiño, 1999a), and (Liu & Patiño, 1999b).

We consider a mobile robot with two actuated wheels and the autonomous control system is
designed for kinematic and dynamic model. The kinematic mobile robot model for the so-
called kinematic wheels under the nonholonomic constrain of pure rolling and nonslipping, is
given by,

 q S(q)v(t)=� , (1)

Where 3q(t),q(t)∈ℜ� are defined as

 T Tq [x,y ,] , q [x,y ,]θ θ= = �� � � , (2)

x(t),y(t), and 3(t)θ ∈ℜ denote the linear position, and orientation respectively of the center

of mass of the mobile vehicle; x(t),y(t),� � denote the Cartesian components of the linear

velocity of the vehicle; (t),θ� denotes the angular velocity of the mobile robot; the matrix
3 2S(q) ,×∈ℜ is defined as,

0

0

0 1

cos()

S(q) sin()

θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, (3)

and the velocity vector 2v(t) ,∈ℜ is defined as

 T
lv [v ,w]= , (4)

with lv ∈ℜ denoting the constant straight line velocity, and w(t)∈ℜ is the angular velocity

of the mobile robot.
Considering the dynamics of the car-driving device which contains a dc motor, a dc
amplifier, and a gear transmission system,

2 R

Ka
w w

s bs a
= ⋅

+ +
, (5)

www.intechopen.com

Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:
Application to Robotic Farm Vehicles

373

where Rw ∈ℜ , is the reference angular velocity, and K,a,b +∈ℜ are the car-driving device

parameters.

The state of the mobile vehicle is given by (cf. Figure 1) the coordinates of the robot (x,y) ,

the orientation of the vehicle, θ , and the actual turning rate of the robot, θ� . The control

signal is the desired turning rate of the mobile vehicle, Rw .

1.2 Control problem formulation
As was previously defined, the reference trajectory is generated via a reference vehicle
which moves according to the following dynamic trajectory,

 R Rq S(q)v(t)=� , (6)

Where S()⋅ was defined in (3), 3T
R R R Rq [x ,y ,]θ= ∈ℜ is the desired time-varying position

and orientation trajectory, and 2T
R l lv [v ,w]= ∈ℜ is the reference time-varying velocity.

With regard to (5), it is assumed that the signal Rv (t) is constructed to produce the desired

motion, and that Rv (t) , Rv (t)� , Rq (t) , and Rq (t)� are bounded for all time.
In general the vehicle motion control can be classified in: i) Positioning without prescribing
orientation: in this case a final destination point is specified; ii) Positioning with prescribed
orientation: in this case a destination point has to be achieved with a desired orientation;
and iii) Path following: here, the path is defined through a sequence of waypoints.

In the first experiment, the control objective is limited to the first case, that is, given a

reference point located at the workspace, R R(x ,y) , and considering the vehicle dynamical

model, it is desired to obtain autonomously a sequence of optimal control actions (values of the

turning rate) such that the vehicle achieves the target point as fast as possible (cf. Figure 2),

and with minimum energy consumption. Since the mobile robot´s speed, lv , is taken as

constant, minimum-time control is equivalent to shortest-path control.
The design of the control system will be based on adaptive critic designs, in particular HDP
(Werbos, 1992) and (Bellman, 1957). Next Section shows the background material needed for
the present work.

θ

x

y

Reference Trajectory

X

)(tcp

Y

ry

rx

rθ
)(tq

r

Fig. 1. The state of the unmanned ground vehicle.

www.intechopen.com

 Advances in Reinforcement Learning

374

X

Y

53.5

9

GATE

Fig. 2. The gate for the unmanned ground vehicle to go through.

2. Background in adaptive critic designs

2.1 Introduction to dynamic programming

Suppose that it is given a discrete-time nonlinear (time-varying) system,

 1x(k) F[x(k),u(k),k]+ = , (7)

where, nx∈ℜ represents the (complete) state vector of the system and mu∈ℜ denotes the

control action. Suppose that it is desired to minimize for (7) a performance index (or cost),

 k i

k i

J[x(i),i] U[x(k),u(k),k],γ
∞

−

=

=∑ (8)

where U is called the utility function or local cost function, and γ is the discount factor

with 0 1γ≤ ≤ . Note that J is dependent on the initial time i and the state x(i) , and it is

referred to as the cost-to-go of the state x(i) . The objective is to choose the control sequence

1u(k),k i ,i ,= + … so that the J function (the cost) in (8) is minimized. The cost in this case

accumulates indefinitely; these kinds of problems are referred to as infinite horizon problems

in Dynamic Programming. On the other hand, in finite horizon problems, the cost will

accumulate over a finite number of steps. Dynamic programming is based on Bellman’s

principle of optimality, (Lewis & Syrnos, 1995), (Prokhorov & Wunsch, 1997), and establishes

that an optimal (control) policy has the property that no matter what previous decisions (i.e.,

controls) have been, the remaining decisions must constitute an optimal policy with regard

to the state resulting from those previous decisions.

Suppose that we have computed the optimal cost 1 1*J [x(k),k]+ + , from time 1k + to the

terminal time for possible states 1x(k)+ , and that we have also found the optimal control

sequences from time 1k + on. The optimal cost results when the optimal control sequence

1 2* *u (k),u (k),...+ + , is applied to the system with initial state 1x(k)+ . Note that the

www.intechopen.com

Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:
Application to Robotic Farm Vehicles

375

optimal control sequence depends on 1x(k)+ . If we apply an arbitrary control u(k) at time

k and then use the known optimal control sequence from 1(k)+ on, the resulting cost will

be

 1 1*J[x(k),k] U[x(k),u(k),k] J [x(k),k]γ= + + + ,

where, x(k) is the state at time k and is determined by (2). According to Bellman, the

optimal cost from time k on is equal to

()1 1

*

u(k)

*

u(k)

J [x(k),k] min J[x(k),k]

min U[x(k),u(k),k] J [x(k),k] .γ

= =

= + + +
 (9)

The optimal control *u (k) at time k is the u(k) that achieves the minimum. Equation (9) is

the principle of optimality for discrete-time systems. Its importance lies in the fact that it
allows us to optimize over only one control vector at a time by working backward in time.
Dynamic programming is a very useful tool in solving optimization and optimal control
problems. In particular, it can easily be applied to nonlinear systems with constraints on the
control and state variables, and arbitrary performance indexes.

2.2 Adaptive critic designs

In the computations in (9), whenever one knows the function J and the model F in (7), it is

a simple problem in function minimization to pick the actions *u (k) which minimize J .

However, due to the backward numerical process required, it is too computationally

expensive to determine the exact J function for most real problems, even when the scales of

the problems are considered to be small. Therefore, approximation methods are demanding

in practice when performing dynamic programming (Werbos, 1992), (Bellman, 1957),

(Balakrishnan & Biega, 1995).
Instead of solving for the value of J function for every possible state, one can use a function
approximation structure such as a neural network to approximate the J function. There are
three basic methods proposed in the literature for approximating the dynamic programming.
They are collectively called Adaptive Critic Designs, which include Heuristic Dynamic
Programming (HDP), Dual Heuristic Programming (DHP), and Globalized Dual Heuristic
Programming (GDIHP) (Bellman, 1957), (Werbos, 1990), (Balakrishnan & Biega, 1995).
A typical adaptive critic design consists of three modules —Critic, Model, and Action. The
present work considers the case where each module is a neural network; the designs in this
case are referred to as neural network--based adaptive critic designs. The following
introduces the HDP. In HDP (Werbos, 1990), (Werbos, 1992), (Lewis & Syrnos, 1995),
(Balakrishnan & Biega, 1995, the critic network output estimates J function in equation (7).
This is done by minimizing the following error measure over time,

 2
1 1

1
1

2k k

E E (k) [J(k) U(k) J(k)]γ= = − − +∑ ∑ (10)

where, CJ(k) J[x(k),t ,W]= and CW represents the parameters of the critic network. The

function U is chosen as a utility function which indicates the performance of the overall

www.intechopen.com

 Advances in Reinforcement Learning

376

system (see examples in (Balakrishnan & Biega, 1995), (Werbos, 1990)). It is usually a

function of x(k) , u(k) , and k , i.e., U(k) [x(k),u(k),k]= . When 1 0E (k) = for all k , (10)

implies that

1

1 2 l k

l k

J(k) U(k) J(k)

U(k) [U(k) J(k)] U(k)

γ

γ γ γ
∞

−

=

= + + =

= + + + + = =∑…
 (11)

which is exactly the same as in dynamic programming [cf. (8)]. In Eq. (11), it is assumed that

J(k) < ∞ which can usually be guaranteed by choosing the discount factor γ such that

0 1γ< < . The training samples for the critic network are obtained over a trajectory starting

from 00x() x= at 0k = .The trajectory can be either over a fixed number of time steps [e.g.,

300 consecutive points] or from 0k = until the final state is reached. The training process

will be repeated until no more weight update is needed.
The weight update, during the pth training iteration, is given by

1 1
1

1 1

(p) (p)
C ,i C ,i (p)

C ,i

(p)
C ,i (p)

C ,i

E (k)
W W

W

J(k)
W [J(k) U(k) J(k)]

W

η

η γ

+ ∂
= − =

∂

∂
= − − − +

∂

 (12)

where, 1 0η > is the learning rate and C ,iW , the ith component of CW . Note that the

gradient method is used in (12) and that the pth corresponds to certain time instant k [hence

the use 1E (k) in (12)]. The weight update can also be performed in batch mode, e.g., after

the completion of each trajectory. The model network in an adaptive critic design predicts

1x(k)+ given x(k) and u(k) ; it is needed for the computation of

11 1 1 (p)
CJ(k) J[x(k),k ,W]−+ = + +

in (12) for the weight update. The model network learns the mapping given in equation (7);

it is trained previously off-line (Werbos, 1992), (Bellman, 1957), (Balakrishnan & Biega,

1995), or trained in parallel with the critic and action networks. Here, 1J(k)+ is calculated

using 1(p)
CW − and its dependence on (p)

CW is not considered, according to (Liu & Patiño,

1999a). After the critic network’s training is finished, the action network’s training starts

with the objective of minimizing 1J(k)+ . The action network generates an action signal

Au(k) [x(k),k ,W]= ; its training follows a similar procedure to the one for the critic

network’s training. The training process will be repeated until no more weight update is

needed while keeping the critic network’s weights fixed. During the pth training iteration,

the weight update is given by

1
1

1
1 1

1

11

1

(p) (p)
A,i A,i (p)

A,i

n m
j(p) k

A,i (p)
j kj k A,i

J(k)
W W

W

x (k)J(k) u (k)
W

x (k) u (k) W

α

α

+

= =

∂ +
= − =

∂

∂ +∂ + ∂
= − ⋅

∂ + ∂ ∂
∑ ∑

 (13)

www.intechopen.com

Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:
Application to Robotic Farm Vehicles

377

where, 1 0α > . Again, the model network is required for the computation of i kx (k) u (k)∂ ∂

in the above weight update. It can be seen in (13) that information is propagated backward

through the critic network to the model network and then to the action network, as if three

networks formed one large feedforward network. After action network‘s training cycle is

completed, one may check its performance, then stop or continue the training procedure

entering the critic network’s training cycle again, if the performance is not acceptable yet.

It is emphasized that in the methods described above, the knowledge of desired target

values for the function J and the action signal u(k) is not required in the neural net-work

training. In conventional applications of neural networks for function approximation, the

knowledge of the desired target values of the function to be approximated is required. It

should also be emphasized that the nature of the present methodology is to iteratively build

a link between present actions and future consequences via an estimate of the utility

function J.

3. Main results

A simulation study has been carried out using the mobile vehicle model presented in

Section I. The set of parameters for this vehicle model used are the following: 0 45K .= ,

102 6a .= , 9 21b .= , 0 2vl . m / s= . The three networks (critic, action, and model) are all

implemented using multilayer feedforward neural networks. Each neural network has six

inputs, R R(x ,y ,x,y , ,w)θ , where Rx and Ry denote the desired target gate. The critic

network output J , the action network output Rw , and the model network is trained

according to equation (1) and (5). The training samples for the critic network are obtained

over trajectories starting from 0 0 5x() .= at 0k = , initial position of the vehicle, and a

reference point located at position 8 3 5(m, . m) .

The discount factor is chosen as 0 8.γ = , and the utility function is chosen as

()2 2 21

2
RU(k) q x (k) y (k) rw (k)⎡ ⎤= + +⎣ ⎦

� �

where, Rx x x= −� and Ry y y= −� are position errors with respect to the target point (x,y) ,

and 0q > and 0r > are positive weight constants. As described previously, the training

takes place in two stage: the training of model network, and then the training of critic

network and action network. The objective for the training of the critic network is to match

J(k) with 1U(k) J(k)γ+ + . The objective for the training of the action network la minimize

1J(k)+ . The procedures for the training of critic and action networks are similar, and they

are repeated iteratively. Figure 3 shows the result for the mobile vehicle when reaching the

reference point, after 10 trials (learning cycles), and Figure 4 passing through one gate from

two different initial conditions. Figure 5 shows the result for the mobile vehicle through two

gates.
A second simulation study was performed using the kinematic model of both the robot and

the reference trajectory virtual robot. In his case the mathematical model of the systems are

defined as in Equations (1), (2) and (3) under the non-holonomic restriction

www.intechopen.com

 Advances in Reinforcement Learning

378

 1 y(t)
(t) tan

x(t)
θ −=

�
�

. (14)

In this case both the linear and angular velocities are variable, and the mobile robot follows
a reference trajectory given by the equations

r r r

r r r

r r

x v cos

y v sin

θ
θ

θ ω

=
=

=

�
�
�

. (15)

Once the reference trajectory is stated, the tracking error can be defined as (Kanayama et al.
1990)

Fig. 3. Result for passing through the gate.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
 (

d
m

)

X (dm)

Fig. 4. Result for passing through one gate from two different initial conditions.

www.intechopen.com

Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:
Application to Robotic Farm Vehicles

379

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Y

 (
d
m

)

X (dm)

Fig. 5. Result for passing through two gates.

0

0

0 0 1

e r

e r

e r

x cos sin x x

y sin cos y y

θ θ
θ θ

θ θ θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (16)

and combining equations (1), (14) and (15), the tracking error model is

e e r r e

e e r e

e r

x y v v cos

y x v sin

ω θ
ω θ

θ ω ω

= − +
= − +

= −

�
�
�

. (17)

Figure 6 shows all the variables presented in the previous equations.

θe

xe
ye

θ

x

y

Reference Trajectory

X

)(tcp

Y

ry

rx

rθ
)(tq

r

Fig. 6. Representation of the robot and virtual robot state variables.

www.intechopen.com

 Advances in Reinforcement Learning

380

For the sake of simplicity, a new set of coordinates is chosen, defined as

0

0
1

1 0
2

e
r

e
r

e

x
u

x y ,
u v v cosx

x x

θ
ω ω

⎡ ⎤ ⎡ ⎤
−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

. (18)

Finally, equation (16) can be written as

0 0

1 1 2 0

2 0 1 1

r r

r

x u

x (u)x v sinx

x (u)x u

ω
ω

=
= − +
= − − +

�
�
�

. (19)

With this change of coordinates the tracking problem is turned into a regulation one.

In this experiment the control action is given by

0

0
1

1
2

x
u

K x
u

x

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

. (20)

Figure 7 shows the overall block diagram of the control system.

Robot

Error Model

Reference

Trajectory

K
Kanayama

Transfor.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(

)(

t

ty

tx

θ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(

)(

t

ty

tx

r

r

r

θ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(

)(

)(

t

ty

tx

e

e

e

θ

)(tJ

)1(+tJ

)(tU

)(1 tE
Critic Network

eX

J

∂
∂

eu

J

∂
∂

K

J

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
ω
ν

−

−

−
+

J

J

∂
∂

∑

∑

+

Adaptive Critic Structure

Fig. 7. Block diagram of the control system.

The virtual robot describes a circular trajectory given by the equations:

1

2 2

r c

r c

r
r

r

r r r

r r

x x Rsin(ct)

y y Rcos(ct)

y
tan ct

x

v x y cR

c

θ

ω θ

−

= +
= −

= =

= + =

= =

�
�

�
�

www.intechopen.com

Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:
Application to Robotic Farm Vehicles

381

Where 0 0c c(x ,y) (,)= is the center of the trajectory, 0 5R .= is the radius, 0 2c .= and t is the

time.
The utility function given for this experiment is

()1

2
T TU(k) x (k)Qx(k) u (k)Ru(k)⎡ ⎤= +⎣ ⎦

,

with

0 1 0 0

0 0 1 0

0 0 0 1

.

Q .

.

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and
0 1 0

0 0 1

.
R

.

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

The experience begins with a K matrix stable but not adjusted, given the results shown in
Figures 8 and 9.
After 11 iterations of the training algorithm, the control system guides the robot to track the
reference trajectory, as can be seen in Figures 10 and 11.

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1

0

1

2

X

Y

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

samples

E
rr

o
r

Reference

Robot

x
0

x
1

x
2

Fig. 8 Reference trajectory and initial performance of the robot.

www.intechopen.com

 Advances in Reinforcement Learning

382

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25

0.3

0.35

L
in

e
a
r

V
e
lo

c
it
y
l
ν

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

samples

A
n
g
u
la

r
V

e
lo

c
it
y
 ω

Reference

Robot

Reference

Robot

Fig. 9. Linear and angular velocity for the first trial.

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1

0

1

2

X

Y

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

samples

E
rr

o
r

Reference

Robot

x
0

x
1

x
3

Fig. 10. Performance of the control system after 11 training iterations.

www.intechopen.com

Adaptive Critic Designs-Based Autonomous Unmanned Vehicles Navigation:
Application to Robotic Farm Vehicles

383

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25

L
in

e
a
r

V
e
lo

c
it
y
 ν

0 100 200 300 400 500 600
-0.4

-0.2

0

0.2

0.4

samples

A
n
g
u
la

r
V

e
lo

c
it
y
 ω

Reference

Robot

Reference

Robot

Fig. 11. Linear and angular velocity after 11 training iterations.

4. Conclusions

A solution to the problem of generating autonomously optimal control action sequence for a

mobile robot control based on Adaptive Critic Designs approach has been presented. The

proposed controller based on adaptive critic designs learns to guide the robot to a final point

autonomously. It has been shown that using this technique we can obtain near optimal

control actions which requires no external training data and gives an optimal control law for

the entire range of operation. This work is extensible to UAV, assuming that is flying at a

constant altitude, so the mission will be restricted to a planar motion around of a target

point, and the kinematic equation of motion is similar to a UGV, see (Patiño et al., 20008).

Future directions of research will be oriented to reach a final point with orientation with

application to UAV. In addition, the problem of obstacle avoidance will be addressed. It will

be also researched with other structures as DHP and GDHP, to use different local cost

functions, and to consolidate formally a systematic design principle. From a theoretical

point of view the efforts will be placed on the robustness issues of optimal control systems

using adaptive critic designs.

5. Acknowledgements

This work was supported by Universidad Nacional de San Juan, and Agency for Scientific

and Technological Promotion (ANPCyT), Argentina, under grant PICT/04 Nº 21592, and

PICT/05 Start-up Nº 35398.

www.intechopen.com

 Advances in Reinforcement Learning

384

6. References

Aicardi M., Casalino G., Bicchi A., and Balestrino A. (1995). Closed Loop Steering of
Unicycle-Like Vehicles via Lyapunov Techniques. IEEE Robotics and Automation
Magazine, Vol. 2, No. 1, pp. 27-35.

Balakrishnan S. N., and Biega V. (1995). Adaptive critic based neural networks for control
(low order systems applications). Proceedings 1995 American Control Conference, 335-
339, Seattle, WA, 1995.

Bellman R. E., . (1957). Dynamic ProgrammingPrinceton University Press, Princeton, NJ.
Kanayama, Yukata, Yoshihiko Kimura, Fumio Miyazaki and Tetsuo Noguchi (1990). A

stable tracking control method for an autonomous mobile robot. Proceedings IEEE
International Conference on Robotics and Automation 1, 384-389.

Kuwata Y., Schouwenaars T, Richards A., and How J. (2005). Robust Constrained Receding
Horizon Control for Trajectory Planning. AIAA Guidance, Navigation, and Control
Conference, San Francisco, California, August.

Lewis F. and Syrnos V. L. (1995). Optimal Control. John Wiley, New York, NY, 1995.
Liu D. and Patiño H. D. (1999a). Adaptive Critic Designs for Self-Learning Ship Steering

Control. Proceedings of the 1999 IEEE, International Symposium on Intelligent
Control/Intelligent Systems and Semiotics, Cambridge, MA September, pp. 15-17.

Liu D, and Patiño H. D. (1999b) A Self-Learning Ship Steering Controller Based on Adaptive
Critic Designs. 14th World Congress of IFAC, Beijing, P.R. China, pp. 367-372.

Patiño H. D., Tosetti S., and Martinez M. (2008). A New Kinematics-Based Tracking Control
for UAV using a Reference Virtual Aerial Robot Approach, 2º Conferencia/Workshop
de Vehículos/Sistemas No-Tripulados (UVS) de América Latina, Ciudad de Panamá,
Panamá, Aug. 2008, pp. 5-7.

Prokhorov D. V., and Wunsch D. (1997). Adaptive Critic Designs, IEEE Tranactions on Neural
Networks, Vol. 8, No. 5, Sep. 1997, pp. 997-1007.

Singh L. and Fuller J. (2001).Trajectory generation for a UAV in Urban Terrain, using
nonlinear MPC, Proceedings of American Control Conference, Arlington, VA, 2001, pp.
2301-08.

Werbos P. (1990a). Consistency of HDP applied to a simple reinforcement learning problem.
Neural Networks, 3, 1990, pp. 179-189.

Werbos P. (1990b). A menu of designs for reinforcement learning over time. Neural Networks
for Control (W.T. Miller III, R.S. Sutton, and P.J. Werbos, Eds.). Chapter 3. The MIT
Press, Cambridge, MA, 1990.

Werbos P. (1992a). Neurocontrol and supervised learning: An overview and evaluation. In:
Handbook of Intelligent Control. Neural, Fuzzy, and Adaptive Approaches (D.A. White
aud D.A. Sofge, Eds.). Chapter 3, Van Nostrand Reinhold, New York, NY, 1992.

Werbos P. (1992b).Approximate dynamic programming for real-time control and neural
modeling. Handbook of Intelligent Control Neural, Fuzzy, and Adaptive Approaches
(D.A. White and D.A. Sofge, Eds.). Chapter 13. Van Nostrand Reinhold, New York,
NY, 1992.

www.intechopen.com

Advances in Reinforcement Learning

Edited by Prof. Abdelhamid Mellouk

ISBN 978-953-307-369-9

Hard cover, 470 pages

Publisher InTech

Published online 14, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings

together many different aspects of the current research on several fields associated to RL which has been

growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24

Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of

chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of

RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation,

Medicine and Industrial Logistic.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Daniel Patino and Santiago Tosetti (2011). Adaptive Critic Designs-Based Autonomous Unmanned Vehicles

Navigation: Application to Robotic Farm Vehicles, Advances in Reinforcement Learning, Prof. Abdelhamid

Mellouk (Ed.), ISBN: 978-953-307-369-9, InTech, Available from: http://www.intechopen.com/books/advances-

in-reinforcement-learning/adaptive-critic-designs-based-autonomous-unmanned-vehicles-navigation-

application-to-robotic-farm-ve

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

