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1. Introduction 

The term ‘homing’ refers to the ability of an agent – either animal or robot - to find a known 

goal location. It is often used in the context of animal behaviour, for example when a bird or 

mammal returns ‘home’ after foraging for food, or when a bee returns to its hive. Visual 

homing, as the expression suggests, is the act of finding a home location using vision. 

Generally it is performed by comparing the image currently in view with ‘snapshot’ images 

of the home stored in the memory of the agent. A movement decision is then taken to try 

and match the current and snapshot images (Nehmzow 2000).  

A skill that plays a critical role in achieving robot autonomy is the ability to learn to operate 

in previously unknown environments (Arkin 1998; Murphy 2000; Nehmzow 2000). 

Furthermore, learning to home in unknown environments is a particularly desirable 

capability. If the process was automated and straightforward to apply, it could be used to 

enable a robot to reach any location in any environment, and potentially replace many 

existing computationally intensive homing and navigation algorithms. Numerous models 

have been proposed in the literature to allow mobile robots to navigate and home in a wide 

range of environments. Some focus on learning (Kaelbling, Littman et al. 1998; Nehmzow 

2000; Asadpour and Siegwart 2004; Szenher 2005; Vardy and Moller 2005), whilst others 

focus on the successful application of a model or algorithm for a specific environment and 

ignore the learning problem (Simmons and Koenig 1995; Thrun 2000.; Tomatis, Nourbakhsh 

et al. 2001).  

Robotic often borrow conceptual mechanisms from animal homing and navigation 

strategies described in neuroscience or cognition literature (Anderson 1977; Cartwright and 

Collett 1987). Algorithms based on the snapshot model use various strategies for finding 

features within images and establishing correspondence between them in order to 

determine home direction (Cartwright and Collett 1987; Weber, Venkatesh et al. 1999; Vardy 

and Moller 2005). Block matching, for example, takes a block of pixels from the current view 

image and searches for the best matching block in stored images within a fixed search radius 

(Vardy and Oppacher 2005). 

www.intechopen.com



Advances in Reinforcement Learning 

 

226 

Most robot homing models proposed in the literature have the limitations of either 

depending upon landmarks (Argyros, Bekris et al. 2001; Weber, Wermter et al. 2004; Muse, 

Weber et al. 2006), which makes them environment-specific, or requiring pre-processing 

stages, in order for them to learn or perform the task (Szenher 2005; Vardy 2006). These 

assumptions restrict the employability of such models in a useful and practical way. 

Moreover, new findings in cognition suggest that humans are able to home in the absence of 

feature-based landmark information (Gillner, Weiß et al. 2008). This biological evidence 

suggests that in principle at least the limitations described are unnecessarily imposed on 

existing models. 

This chapter describes a new visual homing model that does not require either landmarks or 

pre-processing stages. To eliminate the landmarks requirement, and similarly to what 

(Ulrich and Nourbakhsh 2000) have devised to do localization, a new measure that 

quantifies the overall similarity between a current view and a stored snapshot is used to aid 

the homing model. To eliminate the pre-processing requirement it was necessary to employ 

a general learning process capable of capturing the specific characteristics of any 

environment, without the need to customise the model architecture. Reinforcement learning 

(RL) provides such a capability, and tackling visual homing based on RL coupled with 

radial basis features and whole image measure forms the first novelty of the work.  

RL has been used previously in robot navigation and control, including several models 

inspired by biological findings (Weber, Wermter et al. 2004; Sheynikhovich, Chavarriaga et 

al. 2005). However some of those models lack the generality and/or practicality, and some 

are restricted to their environment; the model proposed by (Weber, Wermter et al. 2004; 

Muse, Weber et al. 2006; Weber, Muse et al. 2006), for example, depends on object 

recognition of a landmark in the environment to achieve the task.  Therefore, the aim of the 

work described in this chapter was to exploit the capability of RL as much as possible by 

general model design, as well as by using a whole image measure. RL advocates a general 

learning approach that avoids human intervention of supervised learning and, unlike 

unsupervised learning, has a specific problem-related target that should be met. 

Furthermore, since RL deals with reward and punishment it has strong ties with biological 

systems, making it suitable for the homing problem. Whilst environment-dynamics or map-

building may be necessary for more complex or interactive forms of navigation or 

localization, visual homing based on model-free learning can offer an adaptive form of local 

homing. In addition, although the immediate execution of model-based navigation can be 

successful (Thrun, Liu et al. 2004; Thrun, Burgard et al. 2005), RL techniques have the 

advantage of being model-free i.e. no knowledge needed about the environment. The agent 

learns the task by learning the best policy that allows it to collect the largest sum of rewards 

from its environment according to the environment dynamics. 

The second novelty of this work is related to enhancing the performance of the an existing 

RL method. Reinforcement learning with function approximation has been shown in some 

cases to learn slowly (Bhatnagar, Sutton et al. 2007). Bootstrapping methods like temporal 

difference (TD) (Sutton 1988) although was proved to be faster than other RL methods, such 

as residual gradient established by Baird (Baird 1995), it can still be slow ((Schoknecht and 

Merke 2003). Slowness in TD methods can occur due to different reasons. The frequent 

cause is when the state space is big, high-dimensional or continuous. In this case, it is hard 

to maintain the value of each state in a tabular form. Even when the state space is 
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approximated in some way, using artificial neural networks (ANN) for example, the 

learning process can become slow because it is still difficult to generalize in such huge 

spaces. In order for TD to converge when used for prediction, all states should be visited 

frequently enough. For large state spaces this means that convergence may involve many 

steps and will become slow. 

Numerical techniques have been used with RL methods to speed up its performance. For 

example, (Ziv and Shimkin 2005) used a multi-grid framework which is originated in 

numerical analysis to enhance the iterative solution of linear equations. Whilst, others 

attempted to speed up RL methods performance in multi-agent scenario, (Zhang, Abdallah 

et al. 2008), by using a supervised approach combined with RL to enhance the model 

performance. TD can be speed up by using it with other gradient types. In (Bhatnagar, 

Sutton et al. 2007), for example, TD along with the natural gradient has been used to boost 

learning. 

(Falas and Stafylopatis 2001; Falas and Stafylopatis 2002) have used conjugate gradient with 

TD. Their early experiments confirmed that using such a combination can enhance the 

performance of TD. Nevertheless, no formal theoretical study has been conducted which 

disclose the intrinsic properties of such a combination.  The present work is an attempt to fill 

this gap. It uncover an interseting property of combining TD method with the conjugate 

gradient which simplifies the implementation of the conjugate TD. 

The chapter is structured as follows. Firstly an overview of TD and function approximation 

is presented, followed by the deduction of the TD-conj learning and its novel equivalency 

property. Then a detail describtion of the novel visual homing model and its components is 

presneted. The results of extensive simulations and experimental comparisons are shown, 

followed by conclusions and recommendations for further work. 

2. TD and function approximation 

When function approximation techniques are used to learn a parametric estimate of the 

value function ( )V sπ , ( )t tV s  should be expressed in terms of some parameters tθ
f

. The 

mean squared error performance function can be used to drive the learning process: 

 
2

( ) ( ) ( ) ( )t t t
s S

F MSE pr s V s V sπθ
∈

⎡ ⎤= = −⎣ ⎦∑
f

 (1) 

pr is a probability distribution weighting the errors 2( )tEr s  of each state, and expresses the 

fact that better estimates should be obtained for more frequent states where: 

 
22( ) ( ) ( )t tEr s V s V sπ⎡ ⎤= −⎣ ⎦  (2) 

The function tF  needs to be minimized in order to find a global optimal solution *θ
f

that best 
approximates the value function.  For on-policy learning if the sample trajectories are being 
drawn according to pr through real or simulated experience, then the update rule can be 
written as: 

 1

1

2
t t t tdθ θ α+ = +

ff f
 (3) 
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td
f

 is a vector that drives the search for *θ
f

in the direction that minimizes the error function 
2( )tEr s , and 0 1tα< ≤  is a step size. Normally going opposite to the gradient of a function 

leads the way to its local minimum. The gradient tg
f

 of the error 2( )tEr s  can be written as: 

 2( ) 2 ( ) ( ) ( )
t t

t t t t t t t tg Er s V s V s V sπ
θ θ

⎡ ⎤= ∇ = − ⋅∇⎣ ⎦
f ff  (4) 

Therefore, when td
f

 is directed opposite to tg
f

, i.e. t td g= −
f f

 , we get the gradient descent 
update rule: 

 
1 ( ) ( ) ( )

t
t t t t t t t tV s V s V sπ

θθ θ α+ ⎡ ⎤= + − ⋅∇⎣ ⎦
f

f f
 (5) 

It should be noted that this rule allows us to obtain an estimate of the value function 
through simulated or real experience in a supervised learning (SL) fashion. However, even 

for such samples the value function Vπ  can be hard to be known in a priori. If the target 

value function Vπ  of policy π  is not available, and instead some other approximation of it 

is, then an approximated form of rule (5) can be realized. For example, replacing 

1

1

i
t t i

i

R rγ
∞

−
+

=

= ∑  by Vπ  for an infinite horizon case produces the Monte Carlo update 

[ ]1 ( ) ( )
t

t t t t t t t tR V s V sθθ θ α+ = + − ⋅∇ f
f f

. By its definition tR  is an unbiased estimate for ( )tV sπ , 

hence this rule is guaranteed to converge to a local minima. However, this rule requires 
waiting until the end of the task to obtain the quantity Rt to perform the update. This 
demand can be highly restrictive for the practical application of such rule. On other hand, if 

the n-step return ( ) 1

1

( )
n

n i n
t t i t t n

i

R r V sγ γ−
+ +

=
= +∑  is used to approximate ( )tV sπ , then from (5) 

we obtain the rule ( )
1 ( ) ( )

t

n
t t t t t t t tR V s V sθθ θ α+ ⎡ ⎤= + − ⋅∇⎣ ⎦

f
f f

 which is less restrictive and of more 

practical interest than rule (5) since it requires only to wait n steps to obtain ( )n
tR . Likewise, 

any averaged mixture of ( )n
tR  (such as (1) (3)1 1

2 2t tR R+ ) can be used, as long as the 

coefficients sum up to 1. An important example of such averages is the sum 

( )1

1

(1 ) nn
t t

n

R Rλ λ λ
∞

−

=
= − ∑  which also can be used to get the update rule: 

 
1 ( ) ( )

t
t t t t t t t tR V s V sλ

θθ θ α+ ⎡ ⎤= + − ⋅∇⎣ ⎦
f

f f
 (6) 

 

Unfortunately, however, ( )n
tR  (and any of its averages including tRλ ) is a biased 

approximation of ( )tV sπ  for the very reason that makes it practical (which is not waiting 

until the end of the task to obtain ( )tV sπ ). Hence rule (6) does not necessary converge to a 

local optimum solution *θ
f

 of the error function tF . The resultant update rule (6) is in fact 

the forward view of the TD(λ) method where no guarantee of reaching *θ
f

 immediately 

follows. Instead, under some conditions, and when linear function approximation are used, 

then the former rule is guaranteed to converge to a solution θ∞

f
 that satisfies (Tsitsiklis and 

Van Roy 1997) *
1 1

2 2
1

( ) ( )
1

MSE MSE
γλ

θ θ
γ

∞

−
≤

−

f f
. 

The theoretical forward view of the TD updates involves the quantity tRλ  which is, in 
practice, still hard to be available because it needs to look many steps ahead in the future. 
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Therefore, it can be replaced by the mechanistic backward view involving eligibility traces. 
It can be proved that both updates are equivalent for the off-line learning case (Sutton and 
Barto 1998) even when λ varies from one step to the other as long as [0,1]λ ∈ . The update 
rules of TD with eligibility traces, denoted as TD(λ) are: 

 1t t t t teθ θ α δ+ = + ⋅
f f f

 (7) 

 1 ( )
t

t t t te e V sθγλ −= + ∇ f
f f

 (8) 

 1 1( ) ( )t t t t t tr V s V sδ γ+ += + −  (9) 

It can be realized that the forward and backward rules become identical for TD(0). In 

addition, the gradient can be approximated as: 

 2 ( )
t

t t t tg V sθδ= ⋅ ∇ f
f

 (10) 

If linear neural network is used to approximate ( )t tV s , then it can be written as 

( ) T T
t t t t t tV s ϕ θ θ ϕ= =

f ff f
. In this case, we obtain the update rule: 

 1t t te eγλ φ−= +
ff f

 (11) 

It should be noted that all of the former rules starting from (4) depend on the gradient 

decent update. When the quantity ( )tV sπ  was replaced by some approximation the rules 

became impure gradient decent rule. Nevertheless, such rules can still be called gradient 

decent update rules since they are derived according to it. Rules that uses its own 

approximation of ( )tV sπ  are called bootstrapping rules. In particular, TD(0) update is a 

bootstrapping method since it uses the term 1 1( )t t tr V sγ+ ++  which involves its own 

approximation of the value of the next state to approximate ( )tV sπ . In addition, the gradient 

tg
f

 can be approximated in different ways. For example, if we approximate ( )tV sπ  by 

1 1( )t t tr V sγ+ ++  first then calculate the gradient we get the residual gradient temporal 

difference, which in turn can be combined with TD update in a weight averaged fashion to 

get the residual TD (Baird 1995). 

3. TD and conjugate gradient function approximation 

3.1 Conjugate gradient extension of TD 

We turn our attention now for an extension of TD(λ) learning using function approximation. 

We will direct the search for the optimal points of the error function 2( )tEr s  along the 

conjugate direction instead of the gradient direction. By doing so an increase in the 

performance is expected. In fact, more precisely a decrease of the number of steps to reach 

optimality is expected. This is especially true for cases where the number of distinctive 

eigenvalues of the matrix H (matrix of second derivatives of the performance function) is 

less than n the number of parameters θ
f

. To direct the search along the conjugate gradient 

direction, p
f

 should be constructed as follows: 

 1t t t tp g pβ −= − +
f f f

 (12) 
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0p
f

 is initiated to the gradient of the error (Hagan, Demuth et al. 1996; Nocedal and Wright 

2006); 0 0p g= −
f f

. Rule (12) ensures that all tp t∀
f

 are orthogonal to 1 1t t tg g g− −Δ = −
f f f

. This can 

be realized by choosing the scalar tβ  to satisfy the orthogonality condition: 

 1
1 1 1 1

1 1

0 0 ( ) 0
T

T T t t
t t t t t t t t t T

t t

g g
g p g p g g p

g p
β β −

− − − −
− −

Δ
Δ ⋅ = ⇒ Δ = ⇒Δ − + = ⇒ =

Δ

f ff f f f f f f
f f  (13) 

 

In fact, the scalar βt can be chosen in different ways that should produce equivalent results 
for the quadratic error functions (Hagan, Demuth et al. 1996), the most common choices are: 

 ( ) 1

1 1

T
HS t t

t T
t t

g g

g p
β −

− −

Δ
=

Δ

f f
f f  (14) 

 ( )

1 1

T
FR t t

t T
t t

g g

g g
β

− −

=
f f
f f  (15) 

 ( ) 1

1 1

T
PR t t

t T
t t

g g

g g
β −

− −

Δ
=
f f
f f  (16) 

due to Hestenes and Steifel, Fletcher and Reeves, and Polak and Ribiere respectively. 
From equation (4) the conjugate gradient rule (12) can be rewritten as follows: 

 12 ( ) ( ) ( )
t

t t t t t t t tp V s V s V s pπ
θ β −⎡ ⎤= − ⋅∇ +⎣ ⎦
ff f

 (17) 

By substituting in (3) we obtain the pure conjugate gradient general update rule: 

 1 1

1
2 ( ) ( ) ( )

2 t
t t t t t t t t t tV s V s V s pπ

θθ θ α β+ −
⎡ ⎤⎡ ⎤= + − ∇ +⎣ ⎦⎣ ⎦

f
f f f

 (18) 

3.2 Forward view of conjugate gradient TD  

Similar to TD(λ) update rule (6), we can approximate the quantity ( )tV sπ  by tRλ , which  

does not guarantee convergence, because it is not unbiased (for λ < 1), nevertheless it is 

more practical. Hence, we get the theoretical forward view of TD-conj(λ); the TD(λ) 

conjugate gradient update rules: 

 12 ( ) ( )
t

t t t t t t t tp R V s V s pλ
θ β −⎡ ⎤= − ⋅ ∇ +⎣ ⎦
ff f

 (19) 

 1 1

1
( ) ( )

2t
t t t t t t t t t tR V s V s pλ

θθ θ α β+ −
⎡ ⎤⎡ ⎤= + − ∇ +⎢ ⎥⎣ ⎦⎣ ⎦

f
f f f

 (20) 

If  the estimate 1 1( )t t tr V sγ+ ++ is used to estimate ( )tV sπ  (as in TD(0)), then we can obtain 

the TD-conj(0) update rules; where rules (19) and (20) are estimated as: 

 12 ( )
t

t t t t t tp V s pθδ β −= ⋅ ∇ +ff f
 (21) 
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 1 1

1
( )

2t
t t t t t t t tV s pθθ θ α δ β+ −

⎡ ⎤= + ∇ +⎢ ⎥⎣ ⎦
f

f f f
 (22) 

 

It should be noted again that those rules are not pure conjugate gradient but nevertheless 

we call them as such since they are derived according to the conjugate gradient rules. 

3.3 Equivalency of TD(λ t≠0) and TD-conj(λ=0) 
Theorem 1: 

TD-conj(0) is equivalent to a special class of TD( tλ ) that is denoted as TD( ( )conj
tλ ), under the 

condition: ( ) 10 1;conj t t
t

t

t
β δλ
γ δ

−≤ = ≤ ∀ , regardless of the approximation used. The equivalency 

is denoted as TD-conj(0) ≡ TD( ( )conj
tλ ) and the bound condition is called the equivalency 

condition. 
Proof: 

We will proof that TD-conj(0) is equivalent to a backward view of a certain class of TD( tλ ), 

denoted as TD( ( )conj
tλ ). Hence, by the virtue of the equivalency of the backward and forward 

views of all TD(λt) for the off-line case, the theorem follows. For the on-line case the 

equivalency is restricted to the backward view of TD( ( )conj
tλ ). 

The update rule (22) can be rewritten in the following form: 
 

 1 1( )
2t

t
t t t t t t t

t

V s pθ
βθ θ α δ
δ+ −

⎡ ⎤
= + ∇ +⎢ ⎥

⎣ ⎦
f

f f f
 (23) 

 

where it is assumed that 0tδ ≠  because otherwise it means that we reached an equilibrium 

point for ( )t tV s , meaning the rule has converged and there is no need to apply any learning 

rule any more. Now we introduce the conjugate eligibility traces vector ( )conj
te
f

 that is defined 

as follows: 

 ( ) 1

2
conj

t t
t

e p
δ

=
f f

 (24) 

By substituting (21) in (24) we have that 

 ( )
1( )

2t

conj t
t t t t

t

e V s pθ
β
δ −= ∇ +ff f

 (25) 

From (25) we proceed in two directions. First, by substituting (25) in (23) we obtain an 

update rule identical to rule (11): 

 ( )
1

conj
t t t t teθ θ α δ+ = +
f f f

 (26) 

Second, from (24) we have that:  

 ( )
1 1 12 conj

t t tp eδ− − −=
f f

 (27) 
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Hence, by substituting (27) in (25) we obtain: 

 ( )( ) 1
1( )

t

conjconj t
t t t t t

t

e V s eθ
δ β
δ

−
−= ∇ +ff f

 (28) 

By conveniently defining: 

 ( ) 1conj t
t t

t

δγλ β
δ

−=  (29) 

we acquire an update rule for the conjugate eligibility traces ( )conj
te
f

that is similar to rule (8): 

 ( )( ) ( )
1 ( )

t

conjconj conj
t t t tte e V sθγλ −= + ∇ f
f f

 (30) 

 

Rules (26) and (30) are almost identical to rules (8) and (9) except that λ is variable in (29). 

Hence, they show that TD-conj(0) method can be equivalent to a backward update of TD(λ) 

method with a variable λ. In addition, rule (29) establishes a canonical way of varying λ; 

where we have: 

 ( ) 1conj t t
t

t

β δλ
γ δ

−=  (31) 

The only restriction we have is that there is no immediate guarantee that ( ) [0,1]conj
tλ ∈ . 

Hence, the condition for full equivalency is that ( )conj
tλ satisfies: 

 ( ) 10 1conj t t
t

t

β δλ
γ δ

−≤ = ≤  (32) 

According to (31) and by substituting (14), (15) and (16) we obtain the following different 

ways of calculating ( )conj
tλ : 

 

 
( )

( )
1 1 11( )1

( )
1 1 1 11

( ) ( ) ( )

( ) ( )

t t t

t t

T

t t t t t t t tconj
t T

conj
t t t t t t t

V s V s V s

V s V s e

θ θ θ

θ θ

δ δ
λ

γ δ δ

− − −−

− − − −−

⋅∇ − ⋅ ∇ ∇
=

⋅∇ − ⋅∇

f f f

f f f  (33) 

 

2

( )2
2

1 1 11

( )

( )

t

t

t t t tconj
t

t t t

V s

V s

θ

θ

δ
λ

γδ − − −−

∇
=

∇

f

f
 (34) 

 
( )1 1 11( )3

2

1 1 11

( ) ( ) ( )

( )

t t t

t

T

t t t t t t t tconj
t

t t t

V s V s V s

V s

θ θ θ

θ

δ δ
λ

γδ

− − −−

− − −−

⋅∇ − ⋅∇ ∇
=

∇

f f f

f
 (35) 

which proves our theorem □. 

There are few things to be realized from Theorem 1: 
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( )conj
tλ  should be viewed as a more general form of λ which can magnify or shrink the trace 

according to how much it has confidence in its estimation. TD with variable λ has not been 

studied before (Sutton and Barto 1998), and ( )conj
tλ  gives for the first time a canonical way to 

vary λ depending on conjugate gradient directions.   

From (31) it can be realized that both tδ  and 1tδ −  are involved in the calculations of the 

eligibility traces. This means that the division cancels the direct effect of an error δ  and 

leaves the relative rate-of-changes between consequent steps of this error to play the big role 

in changing ( )conj
tλ  according to (31).  

Since [0,1]γ ∈  and ( )conj
tλ  should satisfy that ( ) [0,1]conj

tλ ∈ , so as the term ( )conj
tγλ  should 

satisfy ( )0 1conj
tγλ≤ ≤ . Therefore, condition (32) can be made more succinct: 

 10 1t
t

t

δβ γ
δ

−≤ ≤ ≤  (36) 

The initial eligibility trace is: 

 ( )
0 0 0 00

0 0

1 1
2 ( )

2 2 t

conje p V sθδ
δ δ

= = ∇ f
f f ( )

0 00 ( )
t

conje V sθ⇒ = ∇ f
f

 (37) 

 

From an application point of view, it suffices for ( )conj
tλ  value to be forced to this condition 

whenever its value goes beyond 1 or less than 0:  

 0)0(,1)1( )()()()( ←⇒<←⇒> conj

t

conj

t

conj

t

conj

t ifif λλλλ  (38) 

If ( )t tV s is approximated by a linear approximation ( ) T
t t t tV s θ ϕ=

f f
 then:  ( )

t
t t tV sθ ϕ∇ =f f

, in this 

case we have from (30) that: 

 ( )( ) ( )
1

conjconj conj
t t t te eγλ φ−= +

ff f
 (39) 

 

λ can be defined by substituting ( )
t

t t tV sθ φ∇ =f
f

 in (33), (34) and (35) respectively as follows: 

( )
( )

( )2

1 11 1( ) ( ) ( )1 2 3
2 2

1 11 1 1 11

, ,

T T

t t t t tt t t t t t tconj conj conj
t t tT

t tt t t t tt t e

δ φ δ φ φ δ φ δ φ δ φ φ
λ λ λ

δ φ δ φδ φ δ φ

− −− −

− −− − − −−

− −
= = =

−

f f f f f f f

f ff f f  (40) 

Any method that depends on TD updates such as Sarsa or Q-learning can take advantage of 
these new findings and use the new update rules of TD-conj(0). 
This concludes our study of the properties of TD-conj(0) method and we move next to the 
model. 

4. The visual homing Sarsa-conj(0) model 

For visual homing it is assumed that the image at each time step represents the current state, 
and the state space S is the set of all images, or views, that can be taken for any location 
(with specific orientation) in the environment. This complex state space has two problems. 
Firstly, each state is of high dimensionality, i.e. it is represented by a large number of pixels. 
Secondly, the state space is huge, and a policy cannot be learned directly for each state. 
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Instead, a feature representation of the states is used to reduce the high-dimensionality of 
the state space and to gain the advantages of coding that allows a parameterized 
representation to be used for the value function (Stone, Sutton et al. 2005). In turn, 
parameterization permits learning a general value function representation that can easily 
accommodate for new unvisited states by generalization. Eventually, this helps to solve the 
second problem of having to deal with a huge state space. 
The feature representation can reduce the high-dimensionality problem simply by reducing 
the number of components needed to represent the views. Hence, reducing dimensionality 
is normally carried out at the cost of less distinctiveness for states belonging to a huge space. 
Therefore, the features representation of the state space, when successful, strikes a good 
balance between distinctiveness of states and reduced dimensionality. This assumption is of 
importance towards the realization of any RL model with a high-dimensional states 
problem. 
 

4.1 State representation and home information 

One representation that maintains an acceptable level of distinctiveness and reduces the 
high-dimensionality of images is the histogram. A histogram of an image is a vector of 
components, each of which contains the number of pixels that belong to a certain range of 
intensity values. The significance of histograms is that they map a large two-dimensional 
matrix to a smaller one-dimensional vector. This effectively encodes the input state space 
into a coarser feature space. Therefore, if the RGB (Red, Green, and Blue) representation of 
colour is used for an image the histogram of each colour channel is a vector of components, 
each of which is the number of pixels that lie in the component's interval. The interval each 
component represents is called the bin, and according to a pre-specified bin size of the range 
of the pixel values, a pre-specified number of bins will be obtained.  
A histogram does not preserve the distinctiveness of the image, i.e. two different images can 
have the same histogram, especially when low granularity bin intervals are chosen. 
Nevertheless, histograms have been found to be widely acceptable and useful in image 
processing and image retrieval applications (Rubner and et al. 2000). Other representations 
are possible, such as the one given by the Earth Mover's Distance (Rubner and et al. 2000). 
However, such mapping is not necessary for the problem here since the model will be 
dealing with a unified image dimension throughout its working life, because its images are 
captured by the same robot camera. 
The feature representation approach does not give a direct indication of the distance to the 
goal location. Although the assumption that the goal location is always in the robot's field of 
view will not be made, by comparing the current view with the goal view(s) the properties 
of distinctiveness, distance and orientation can be embodied to an extent in the RL model. 
Since the home location can be approached from different directions, the way it is 
represented should accommodate for those directions. Therefore, a home (or goal) location 

is defined by m snapshots called the stored views. A few snapshots (normally 3m ≥ ) of the 

home location are taken at the start of the learning stage, each from the same fixed distance 
but from a different angle. These snapshots define the home location and are the only 
information required to allow the agent to learn to reach its home location starting from any 
arbitrary position in the environment (including those from which it cannot see the home, 
i.e. the agent should be able to reach a hidden goal location). Fig. 1 shows a sample of a 
three-view representation of a goal location taken in a simulated environment. 
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Fig. 1. Sample of a three-view representation taken from three different angles for a goal 

location with their associated histograms in a simulated environment. 

4.2 Features vectors and radial basis representation 

A histogram of each channel of the current view is taken and compared with those of the 

stored views through a radial basis function (RBF) component. This provides the features 

space : nSΦ → ℜ  representation (41) which is used with the Sarsa-conj algorithm, described 

later: 

 ( ) ( ) ( )( )2

2

( ) ( , )
( , ) exp

ˆ2 i

i t i
i t

h s c h v c j
s c jφ

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (41) 

 

Index t stands for the time step j for the jth stored view, and c is the index of the channel, 

where the RGB representation of images is used. Accordingly, ( , )v c j  is the channel c image 

of the jth stored view, ( )( , )ih v c j  is histogram bin i of image ( , )v c j , and ( )( )i th s c  is 

histogram bin i of channel c of the current (t) view. The number of bins will have an effect 

on the structure and richness of this representation and hence on the model. It should be 

noted that the radial basis feature extraction used here differs from the radial basis feature 

extraction used in (Tsitsiklis and Van Roy 1996). The difference is in the extraction process 

and not in the form. In their feature extraction, certain points is are normally chosen from 

the input space nℜ  to construct a linear combination of radial basis functions. Those points 

in that representation are replaced in this work by the bins themselves. 
Further, the variance of each bin will be substituted by a global average of the variances of 

those bins. 
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 2 2

1

ˆ (1 1) ( )i

T

i
t

T h tσ Δ
=

= − ∑  (42) 

 ( ) ( )( )22( ) ( ) ( , )i i t ih t h s c h v c jΔ = −  (43) 

 

where T is the total number of time steps. To normalize the feature representation the scaled 

histogram bins ( )( ) /i th s c H  are used, assuming that n is the number of features we have: 
 

 ( ) ( )( , ) ( )
n n

i i ti i
h v c j h s c H= =∑ ∑  (44) 

 

where it can be realized that H  is a constant and is equal to the number of all pixels taken 

for a view. Hence, the final form of the feature calculation is: 
 

 ( ) ( ) ( )( )2

2 2

( ) ( , )
( , ) exp

ˆ2

i t i
i t

h s c h v c j
s c j

H
φ

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (45) 

 

It should be noted that this feature representation has the advantage of being in the interval 

[0 1], which will be beneficial for the reasons discussed in the next section. 

The feature vector of the current view (state) is a union of all of the features for each channel 

and each stored view, as follows: 
 

 ( )
3

1
1 1 1

( ) ( , ) ( , , , , )
m B

t i t i n
j c i

s s c jϕ φ φ φ
= = =

Φ = =⊕⊕⊕ … …  (46) 

 

where m is the number of stored views for the goal location, 3 channels are used, and B is 

the number of bins to be considered. Since an RGB image with values in the range of [0 255] 

for each pixel will be used, the dimension of the feature space is given by: 
 

 
256

( ( ) 1)n C B m C round m
b

= × × = × + ×  (47) 

 

where b is the bin’s size and 3C =  is the number of channels. Different bin sizes give 

different dimensions, which in turn give different numbers of parametersθ
f

that will be used 

to approximate the value function.  

4.3 NRB similarity measure and the termination condition 

To measure the similarity between two images, the sum of all the Normalized Radial Basis 

(NRB) features defined above can be taken and then divided by the feature dimension. The 

resultant quantity is scaled to 1 and it expresses the overall belief that the two images are 

identical:  
 

 ( )
1

( )
n

t tii
NRB s s nφ

=
= ∑

f
 (48) 
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For simplicity the notation ( )tNRB s  and tNRB  will be used interchangeably. Other 

measures can be used (Rubner and et al. 2000). In previous work the Jeffery divergence 

measure was used (Altahhan Burn, et al. 2008). However the above simpler measure was 

adopted because it is computationally more efficient for the proposed model since it only 

requires an extra sum and a division operations. JDM has its own logarithmic calculation 

which cost additional computations. 
Another benefit of NRB is that it is scaled to 1 – a uniform measure can be interpreted more 

intuitively.  On the other hand, it is impractical to scale Jeffery Divergence Measure because 

although the maximum is known to be 0 there is no direct indication of the minimum. Fig. 2 

demonstrates the behaviour of NRB; the robot was placed in front of a goal location and the 

view was stored. The robot then has been let to rotate in its place form -90° (left) to 

+90° (right); in each time step the current view has been taken and compared with the stored 

view and their NRB value was plotted. As expected the normal distribution shape of those 

NRB values provide evidence for its suitability. 

 

 steps 

NRB 

values  

 
 

(a)          (b) 

Fig. 2. (a): Current view of agent camera. (b) The plotted values of the normalized radial 

bases similarity measure of a sample π rotation.  

An episode describes the collective steps of an agent starting from any location and 

navigating in the environment until it reaches the home location. The agent is assumed to 

finish an episode and be at the home location (final state) if its similarity measure indicates 

with high certainty upperψ  that its current view is similar to one of the stored views. This 

specifies the episode termination condition of the model. 
 

( )t upperIf NRB s ψ≥ ⇒  Terminate Episode 

 

Similarly, the agent is assumed to be in the neighbourhood of the home location with the 

desired orientation ( )t lowerIf NRB s ψ≥  where upper lowerψ ψ≥ . This situation is called home-at-

perspective and the interval [ , ]upper lowerψ ψ  is called the home-at-perspective confidence 

interval. 
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4.4 The action space 

In order to avoid the complexity of dealing with a set of actions each with infinite resolution 

speed values (which in effect turns into an infinite number of actions), the two differential 

wheel speeds of the agent are assumed to be set to particular values, so that a set of three 

actions with fixed values is obtained. The set of actions is A = [Left_Forward, Right_Forward, 

Go_Forward]. The acceleration of continuous action space cannot be obtained using this 

limited set of actions. Nevertheless, by using actions with a small differential speed ( i.e. 

small thrust rotation angle) the model can still get the effect of continuous rotation by 

repeating the same action as needed. This is done at the cost of more action steps.  

A different set of actions than the limited one used here could be used to enhance the 

performance. For example, another three actions [Left_Forward, Right_Forward, Go_Forward] 

with double the speed could be added, although more training would be a normal 

requirement in this case. One can also add a layer to generalize towards other actions by 

enforcing a Gaussian activation around the selected action and fade it for other actions, as in 

(Lazaric, Restelli et al. 2007). In this work, however, the action set was kept to a minimum to 

concentrate on the effect of other components of the model. 

4.5 The reward function 

The reward function r depends on which similarity or dissimilarity function was used, and 
it consists of three parts: 

 1cost+NRB t tr NRB NRB−= Δ +  (49) 

 

The main part is the cost, which is set to -1 for each step taken by the robot without reaching 
the home location. The other two parts are to augment the reward signal to provide better 
performance. They are: 
Approaching the goal reward. This is the maximum increase in similarity between the 
current step and the previous step. This signal is called the differential similarity signal and 
it is defined as:  

 ( )1 1t t tNRB NRB NRB− −Δ = −  (50) 

 

The Position signal, which is simply expressed by the current similarity NRBt. Thus, as the 
current location differs less from the home location, this reward will increase. Hence, the 
reward can be rewritten in the following form: 
 

 

 1cost+2NRB t tr NRB NRB −= −  (51) 
 

The two additional reward components above will be considered only if the similarity of t 

and t-1 steps are both beyond the threshold lowerψ  to ensure that home-at-perspective is 

satisfied in both steps. This threshold is empirically determined, and is introduced merely to 

enhance the performance. 

4.6 Variable eligibility traces and update rule for TD(λt

(conj)
) 

An eligibility trace constitutes a mechanism for temporal credit assignment. It indicates that 
the memory parameters associated with the action are eligible for undergoing learning 
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changes (Sutton and Barto 1998). For visual homing, the eligibility trace for the current 
action a is constructed from the feature vectors encountered so far. More specifically, it is the 
discounted sum of the feature vectors of the images that the robot has seen previously when 
the very same action a had been taken. The eligibility trace for other actions which have not 
been taken while in the current state is simply its previous trace but discounted, i.e. those 
actions are now less accredited, as demonstrated in the following equation. 
 

 
⎩
⎨
⎧ =+

←
−

−

otherwisea

aaifsa
a

t

ttt

t
)(

)()(
)(

1

1

e

φe
e f

ff
f

γλ
γλ

 (52) 

 

λ is the discount rate for eligibility traces te
f

 and γ  is the rewards discount rate . The 

eligibility trace components do not comply with the unit interval i.e. each component can be 

more than 1. The reward function also does not comply with the unit interval. The update 

rule that uses the eligibility trace and the episodically changed learning rate epα  is as 

follows: 

 ( ) ( ) ( )t t ep t t ta a aα δ← + ⋅ ⋅θ θ e
f f f

 (53) 

As it was shown above and in (Altahhan 2008) the conjugate gradient TD-conj(0) method is 

translated through an equivalency theorem into a TD(λ) method with variable λ denoted as 

TD( ( )conj
tλ ) with the condition that ( )0 1conj

tλ≤ ≤ . Therefore, to employ conjugate gradient 

TD, equation (52) can be applied to obtain the eligibility traces for TD-conj. The only 

difference is that λ is varying according to one of the following possible forms: 
 

( )
( )

( )2

1 11 1( ) ( ) ( )1 2 3
2 2( )

1 11 1 1 11

, ,  or

T T

t t t t tt t t t t t tconj conj conj
t t tT conj

t tt t t t tt t e

δ φ δ φ φ δ φ δ φ δ φ φ
λ λ λ

γδ φ γδ φγ δ φ δ φ

− −− −

− −− − − −−

− −
= = =

−

f f f f f f f

f ff f f  (54) 

 

TD-conj(0) (and any algorithm that depends on it such as Sarsa-conj(0) (Altahhan 2008) is a 
family of algorithms, not because its λ is changed automatically from one step to the other, 
but because λ can be varied using different types of formulae. Some of those formulae are 
outlined in (25) for linear function approximation. 

In addition, those values of ( )conj
tλ  that do not satisfy ( )0 1conj

tλ≤ ≤ , can be forced according 

to the following:  
 

  
0)0(,1)1( )()()()( ←⇒<←⇒> conj

t

conj

t

conj

t

conj

t ifif λλλλ
 

The eligibility traces can be written as: 

 
( ) ( )

1( )

( ) ( )
1

( ) ( )
( )

( )

conj conj
t t t tconj

t conj conj
t t

a s if a a
a

a otherwise

γλ

γλ

−

−

+ =
←

⎧⎪
⎨
⎪⎩

e φ
e

e

f f
f

f  (55) 

For episodic tasks ┛ can be set to 1 (absence). Finally the update rule is identical to (52), 
where the conjugate eligibility trace is used instead of the fixed λ eligibility trace: 

 ( )
( ) ( ) ( )

conj
t t ep t t ta a aα δ← + ⋅ ⋅θ θ e

f f f  (56) 
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4.7 The policy used to generate actions 

A combination of the ε-greedy policy and Gibbs soft-max (Sutton and Barto 1998) policy is 

used to pick up an action and to strike a balance between exploration and exploitation. 

 ( , ( )) ( , ( )) Pr( , ( ))Gibbs i t i t i ta s Gibbs a s a sεπ ϕ ϕ ϕ+ = +
if if if

 (57) 

Using ε-greedy probability allows exploration to be increased as needed by initially setting ε 
to a high value then decreasing it through episodes. 

 

( ) ( )1 arg max

Pr( , ( ))

T
t i

t

ifa S a
A

a S

otherwise
A

εε φ θ
φ

ε

⎧ ⎡ ⎤− + = ⋅⎪ ⎢ ⎥⎣ ⎦⎪= ⎨
⎪
⎪⎩

f f
f

 (58) 

The Gibbs soft-max probability given by equation (59) enforces the chances of picking the 

action with the highest value when the differences between the values of it and the 

remaining actions are large, i.e. it helps in increasing the chances of picking the action with 

the highest action-value function when the robot is sure that this value is the right one.  

 

( )

( )
1

exp ( )
( , ( ))

exp ( )

T
t i

i t A
T
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φ

=

⋅
=

⋅
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f
f

f

 

(59) 

4.8 The learning method 

The last model component to be discussed is the learning algorithm. The basis of the model 

learning algorithm is the Sarsa(λ) control algorithm with linear function approximation 

(Sutton and Barto 1998). However, this algorithm was adapted to use the TD-conj(0) instead 

of the TD(λ) update rules. Hence, it was denoted as Sarsa-conj(0). From a theoretical point of 

view, TD-conj(0)– and any algorithm depending on its update such as Sarsa-conj(0) – uses 

the conjugate gradient direction in conjunction with TD(0) update. While, from an algorithm 

implementation point of view, according to the equivalency theorem, TD-conj(0) and Sarsa-

conj(0) have the same skeleton of TD(λ) and Sarsa(λ) (Sutton and Barto 1998) with the 

difference that TD-conj(0) and Sarsa-conj(0) use the variable eligibility traces ( )conj
tλ  

(Altahhan 2008). The benefit of using TD-conj(0) update is to optimize the learning process 

(in terms of speed and performance) by optimizing the depth of the credit assignment 

process according to the conjugate directions, purely through automatically varying λ in 

each time step instead of assigning a fixed value to λ manually for the duration of the 

learning process. 
Sarsa is an on-policy bootstrapping algorithm that has the properties of (a) being suitable for 

control, (b) providing function approximation capabilities to deal with huge state space, and 

(c) applying on-line learning. These three properties are considered ideal for the visual robot 

homing (VRH) problem. The ultimate goal for VRH is to control the robot to achieve the 

homing task, the state space is huge because of the visual input, and on-line learning was 

chosen because of its higher practicality and usability in real world situations than off-line 

learning. 
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Fig. 3. Dynamic-policy Sarsa-conj(0) control, with RBF features extraction, linear action-value 

function approximation and Policy Improvement. The approximate Q is implicitly a function 

of θ
f

. ( )conj
tλ  can be assigned to any of the three forms calculated in the preceding step. 

The action-value function was used to express the policy, i.e. this model uses a critic to 

induce the policy. Actor-critic algorithms could be used, which have the advantage of 

simplicity, but the disadvantage of high variance in the TD error (Konda and Tsitsiklis 

2000). This can cause both high fluctuation in the values of the TD error and divergence. 

This limitation was addressed in this model by carefully designing a suitable scheme to 

balance exploration and exploitation according to a combination of Gibbs distribution and ε-
greedy policy. The Gibbs exponential distribution has some important properties which 

helped in realizing the convergence. According to (Peters, Vijayakumar et al. 2005) it helps 

the TD error to lie in accordance with the natural gradient.  
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In that sense this model is a hybrid model. Like any action-value model it uses the action-
value function to induce the policy, but not in a fixed way. It also changes the policy 
preferences (in each step or episode) towards a more greedy policy like any actor-critic 
model. So it combines with and varies between action-value and actor-critic models. It is felt 
that this hybrid structure has its own advantages and disadvantages, and the convergence 
properties of such algorithms need to be studied further in the future. 
TD-conj(0) learns on-line through interaction with software modules that feed it with the robot 
visual sensors (whether from simulation or from a real robot). The algorithm coded as a 
controller returns the chosen action to be taken by the robot, and updates its policy through 
updating its set of parameters used to approximate the action-value function Q. Three linear 
networks are used to approximate the action-value function for the three actions.  

Aia
ia

n

ia

i

ia
i ,..1),,,,()( )()()(

1)( == θθθ ……
f
θ

 

The current image was passed through an RBF layer, which provides the feature vector 
),,,,()( 1 nits φφφ ……f

=φ . The robot was left to run through several episodes. After each 
episode the learning rate was decreased, and the policy was improved further through 
general policy improvement theorem (GPI).  The overall algorithm is shown in Fig. 3.  
The learning rate was the same used by (Boyan 1999) 

 episoden

n
ep +

+
⋅=

0

0
0

1αα
 

(60) 

This rate starts with the same value as 0α  then is reduced exponentially from episode to 
episode until the final episode. n0 is a constant that specifies how quickly epα is reduced. It 
should be noted that the policy is changing during the learning phase. The learning 
algorithm evaluates the same policy that it generates the samples from, i.e. it is an on-policy 
algorithm. It uses the same assumption of the general policy improvement principle to 
anticipate that even when the policy is being changed (improved towards a more greedy 
policy) the process should lead to convergence to optimal policy. It moves all the way from 
being arbitrarily stochastic to becoming only ε-greedy stochastic. 

5. Experimental results 

The model was applied using a simulated Khepera (Floreano and Mondada 1998) robot in 
Webots™ (Michel 2004) simulation software. The real Khepera is a miniature robot, 70 mm 
in diameter and 30 mm in height, and is provided with 8 infra-red sensors for reactive 
behaviour, as well as a colour camera extension. 
A (1.15 m x 1 m) simulated environment has been used as a test bed for the model. The task 
is to learn to navigate from any location in the environment to a home location (without 
using any specific object or landmark). For training, the robot always starts from the same 
location, where it cannot see the home location, and the end state is the target location. After 
learning the robot can be placed in any part of the environment and should be able to find 
the home location. 
Fig. 4 shows the environment used. The home is assumed to be in front of the television set. 
A cone and ball of different colours are included to enrich and add more texture to the home 
location. It should be re-emphasized that no object recognition techniques were used, only 
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the whole image measure. This allows the model to be applied to any environment with no 
constraints and with minimal prior information about the home. The controller was 
developed using a combination of C++ code and Matlab Engine code.  
 

 

Target locations Khepera robot in its starting location 

 

Fig. 4. A snapshot of the realistic simulated environment. 

The robot starts by taking three (m=3) snapshots for the goal location. It then undergoes a 
specific number (EP) of episodes that are collectively called a run-set or simply a run. In 
each episode the robot starts from a specific location and is left to navigate until it reaches 
the home location. The robot starts with a random policy, and should finish a run set with 
an optimised learned policy.  

5.1 Practical settings of the model parameters 
Table 1 summarises the various constants and parameters used in the Sarsa-conj(0) algorithm 
and their values/initial values and updates. Each run lasts for 500 episodes (EP=500), and the 
findings are averaged over 10 runs to insure validity of the results. The feature space 

parameters were chosen to be b=3, m=3. Hence, n = 3×(round(256/3)+1)×3 = 774. This middle 
value for b, which gives a medium feature size (and hence medium learning parameters 
dimension), together with the relatively small number of stored views (m=3), were chosen 
mainly to demonstrate and compare the different algorithms on average model settings. 
However, different setting could have been chosen. 

The initial learning rate was set to ( ) ( ) ( ) ( ) 6
0 1 1 1 500 1 1000 2 10EP n −= × ≈ × = ×α  in 

accordance with the features size and the number of episodes. This is to divide the learning 
between all features and all episodes to allow for good generalization and stochastic 
variations. The learning rate was decreased further from one episode to another, equation 
(59), to facilitate learning and to prevent divergence of the policy parameters θ

f
 (Tsitsiklis 
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and Van Roy 1997) (especially due to the fact that the policy itself is changing). Although 
factor ( )conj

tλ  in TD-conj(0) is a counterpart of fixed λ in conventional TD(λ), in contrast with 
λ it varies from one step to another to achieve better results. The discount constant was set 
to 1γ = , i.e. the rewards sum does not need to be discounted through time because it is 
bounded,  given that the task ends after reaching the final state at time T. 
 

Symbol Value Description 

EP 500 Number of episodes in each run 

α0 
6

0 2 10 (1 ) (1 )EP n−= × ≈ ×α  Initial learning rate 

αep ( ) ( )( )0 0 01ep n EP n EP ep= × + × +α α  Episode learning rate 

n0 75%EP Start episode for decreasing αep 

0ε  0.5 Initial exploration rate 

epε  ( ) ( )( )0 0 01ep n EP n EP ep= × + × +ε ε  Episodic exploration rate 

n0ε 50%EP Start episode for decreasing εep 

γ 1 The reward discount factor 

m 3 Number of snapshots of the home 

b 3 Features histograms bin size 

Table 1. The model different parameters, their values and their description. 

,upper lowerψ ψ  are determined empirically and were set to 0.96 and 0.94 respectively when 
using the NRB measure and b=m=3. These setting simply indicate that to terminate the 
episode the agent should be ≥ 96% sure (using the NRB similarity measure) that its current 
view corresponds with one (or more) of the stored views in order to assume that it has 
reached the home location. Furthermore, they indicate that the agent should be ≥ 94% sure 
that its current view is similar to the stored views to assume that it is in the home-at-
perspective region. 

5.2 Convergence results 

Fig. 5. shows the learning plots for the TD-conj(0) ≡ TD( conj
tλ ) where the 1 conj

tλ  was used. 
Convergence is evident by the exponential shape of all of the plots. In particular the 
cumulative rewards converged to an acceptable value. The steps plot resonates with the 
rewards plot, i.e. the agent attains gradually good performance in terms of cumulative 
rewards and steps-per-episode. The cumulative changes made to the policy parameters 
have also a regular exponential shape, which suggests the minimization of required learning 
from one episode to another. It should be noted that although the learning rate is decreased 
through episodes, if the model were not converging then more learning could have occurred 
in later episodes, which would have deformed the shape of the changes in the policy 
parameters plot.  
λ can take any value in the [0 , 1] interval. It has been shown by (Sutton and Barto 1998) that 
the best performance for TD(λ) is expected to be when λ has a high value close to 1, such as 
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0.8 or 0.9 depending on the problem. λ=1 is not a good candidate as it approximates Monte 
Carlo methods and has noticeably inferior performance than smaller values (Sutton and 
Barto 1998). It should also be noted that the whole point of the suggested TD-conj(0) method 
is to optimize and automate the selection of λ in each step to allow TD to perform better and 
avoid trying different values for λ. 
 

 

Fig. 5. TD(1λt(conj)) algorithm’s performance (a) The cumulative rewards. (b) The number of 
steps. (c): The cumulative changes of the learning parameters. 

Fig. 6. shows that the learning rate decreased per episode. The exploration factor rate was 
decreased using a similar method. The overall actual exploration versus exploitation 
percentage is shown in Fig. 6(c). The Temporal error for a sample episode is shown in Fig. 
6(d). Fig. 6(e) shows the trace decay factor 1λt(conj) for the same sample episode. It can be seen 
that for 1λt(conj) , most of the values are above 0.5. As has been stated in the Equivalency 
Theorem, there is no guarantee that λt(conj) satisfies the condition 0 ≤ λt(conj) ≤ 1. Nevertheless, 
for most of the values this form of λt(conj) does satisfy this condition. For those values that did 
not, it is sufficient to apply the following rule on them: 

 0)0(,1)1(
)()()()( ←⇒<←⇒> conj

t

conj

t

conj

t

conj

t ifif λλλλ  
(61) 

It should be noted that better performance could have been achieved by the following rule: 

 0)0(,1)1(
)()()()( ←⇒<−←⇒> conj

t

conj

t

conj

t

conj

t ifif λλξλλ  (62) 

However, using this rule would mean that the results shown for TD(λt(conj)) might have been  
affected by the higher performance expected for TD update when λt(conj) is close (but not equal) 
 

a 

b 

c 
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Fig. 6. TD(1λt(conj)) algorithm internal variables (a): The learning rate. (b): the exploration 
factor rate. (c): the overall exploration versus exploitation. (d)): the temporal error for a 

sample episode. (e): the trace decay factor λt(conj) 

to 1. This is because for one single update at some time step t TD(λ) and TD(λt(conj)) are 
identical for the same λt(conj) value. It is the collective variation from one TD(λ) update to 
another at each time step that makes TD(λt(conj)) different from TD(λ). Therefore, better 
performance could have been achieved by following rule (62). Hence the performance of 
TD(λt(conj)) could be questionable and shaken when this rule is used. Few values did not satisfy 
the Equivalency Theorem condition - the percentage was 0.0058% for TD(1λt(conj)). To show the 
path taken by the robot in each episode, the Global Positioning System (GPS) was used to 
register the robot positions (but not to aid the homing process in any way). Fig. 7. shows the 
evident improvements that took place during the different learning stages. 

5.3 Action space and setting exploitation versus exploration 
Since action space is finite, and to avoid fluctuation and overshoot in the robot behaviour, 
low wheel speeds were adopted for these actions. This in turn required setting the 
exploration to a relatively high rate (almost 50%) during the early episodes. It was then 
dropped gradually through episodes, in order to make sure that most of the potential paths 
were sufficiently visited. Setting exploration high also helps to decrease the number of 
episodes needed before reaching an acceptable performance. This explains the exponential 
appearance of the different learning curves. 

The features variance also played a role in the exploration/exploitation rates. This was 
because 2

0σ̂  was initialized in the first episode with ( )2 imσ , the variance of the goal 

a

b

c

d 

e 

 

www.intechopen.com



A Robot Visual Homing Model that Traverses Conjugate  
Gradient TD to a Variable λ TD and Uses Radial Basis Features 

 

247 

location snapshots, then it was updated in subsequent episodes until it was stable. This 
encourages the agent to explore the environment more in the first episode than any other, 
which results in big differences between the first and the rest of the episodes. Therefore, it 
should be noted that all of the episodic figures have been plotted excluding the first episode, 
to prevent the graphs from being unnecessarily mis-scaled. 
 

b

a

c

d

 

Fig. 7. TD(1λt(conj)) algorithm performance for the homing problem (a, b, c): GPS plots for 
early, middle and last episodes, they show the trajectory improvement that took place during 
learning. (d): the timing plot of the 10 run sets (trials). 

6. TD(λt
(conj)

)  and TD(λ) comparisons study 

6.1 Rewards comparison 

Fig. 8. shows the fitted curves for the rewards plots of the different TD(λ) and TD(λt(conj)) 
algorithms. It summarizes the experiments conducted on the model and its various 
algorithms in terms of the gained rewards. The model uses Sarsa(λ), and Sarsa(λt(conj)), 
algorithms with a dynamic-policy. It should be recalled that the only difference between the 
two algorithms is that one uses TD(λ) update and the other uses TD(λt(conj)) update. 
Therefore, the comparisons highlight the differences between TD(λ) and TD(λt(conj)) updates, 
and the collective study highlights the dynamic-policy algorithm behaviour. 
Several interesting points can be realized in this figure: The three TD(λt(conj)) algorithms 
climb quicker and earlier (50-150 episodes) than the five TD(λ) algorithms then: TD(1λt(conj)) 
and TD(2λt(conj)) keeps a steady performance to finally dominate the rest of the algorithms. 
While, although the fastest (during the first 150 episodes), TD(3λt(conj)) deteriorates after that. 
TD(λ) algorithms performances varied but they were slower and in general performed 
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Fig. 8. Overall comparisons of different TD(λ) methods for λ = 0, 0.4, 0.8 and TD(λt(conj)) for 
1λt(conj), 2λt(conj) and 3λt(conj) using the fitted returns curves for 10 runs each with 500 episodes. 

worse than TD(λt(conj)) algorithms: TD(0.4) climbed quickly and its performances declined 
slightly at the late episodes (after 350 episodes). TD(0) did the same but was slower. 
TD(0.95, 0.8) climbed slowly but kept a steady improvement until they came exactly under 
TD(1λt(conj)) and TD(2λt(conj)). TD(0.9) performed slightly better than TD(λt(conj)) at a middle 
stage (150-350), then it declined after that. TD(0.9) was similar to TD(3λt(conj)) although it was 
slower at the rise and the fall. 
Therefore, for the fastest but short term performance TD(3λt(conj)) is a good candidate. For a 
slower and good performance on the middle run TD(0.9) might still be a good choice. For a 
slower and long term performance TD(0.8) and TD(0.95) is a good choice.  
For both the fastest and best overall performance in the long term TD(1λt(conj)) and TD(2λt(conj)) 
are the best choices. Nevertheless, those findings are guidelines and even for the tackled 
problem they do not tell the whole story. As will be shown in the following section, other 
performance measure can further give a better picture about those algorithms. 

6.2 Comparisons beyond the rewards 
Fig. 9. summarizes different comparisons between the different algorithms using averages 
of different performance measures for the same run sets mentioned in the previous section.  

6.2.1 The figure structure 
The set of algorithms that uses TD(λ) updates is shown in blue dots (connected), while the 
set of the new proposed TD(λt(conj)) is shown in red squares (not connected). Each measure 
has been demonstrated in an independent plot. The horizontal axes were chosen to be the λ 
value for TD(λ), while for TD(λt(conj)) there is no specific value for λ as it is varying from one 
step to another (therefore disconnected). However, for the purpose of comparing TD(1λt(conj)), 
TD(2λt(conj)) and TD(3λt(conj)) algorithms, their measures were chosen to be correlate with 
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TD(0.8), TD(0.9) and TD(0.95) respectively. The arrow to the left of each plot refers to the 
direction of good performance. The figure is divided horizontally into two collections; one 
that is concerned with the during-learning measures and contains six plots distributed along 
two rows and three columns. The other collection is concerned with the after-learning 
measures and contains three plots that are distributed over one row. 
The first row of the during-learning collection contains measures that are RL related such as 
the rewards and the parameters changes. The second row of the first collection is associated 
with the problem under consideration, i.e. the homing task. For testing purposes, the 
optimal route of the homing task can be designated in the studied environment. The 
difference between the current and the desired positions can be used to calculate the root 
mean squared error (RMS) of each time step, which are then summed to form the RMS for 
each episode, and those in turn can be summed to form the run set RMS. Two different 
performance measures were proposed using the GPS; their results are included in the 
second row of the figure. The first depends on the angular difference between the current 
and the desired orientations and is called the angular RMS. The second depends on the 
difference between the current and the desired movement vectors, and is called vectorial 
RMS. All of these measures was taken during learning (performing 500 episodes) hence the 
name. All of the during-learning measures in this figure were averaged over 10 run sets 
each with 500 episodes. 
The second collection are measures that have been taken after the agent finished the 500 
(learning episodes) ×10 (run sets); where it was left to go through 100 episodes without any 
learning. In those episodes the two policy components (Gibbs and ε-greedy) were restricted 
to an ε-greedy component only and the policy parameters used are the averaged parameters 
of all of the previous 10 run sets (performed during-learning). The Gibbs component was 
added initially to allow the agent to explore the second best guess more often than the third 
guess (action). Nevertheless, keeping this component after learning would increase the 
arbitrariness and exploration of the policy which is not desired anymore therefore it was 
removed. 
The three measures in the after-learning collection are related to the number of steps needed 
to complete the task. The steps average measures the average number of steps needed by the 
agent to complete the task. Another two scales measures the rate of successes of achieving 
the task within a pre-specified number of steps (175 and 185 steps1). 

6.2.2 The algorithms assessment 
To assess the performance of the algorithms TD(λ) algorithms will be analyzed first then the 
focus is switched to TD(λt(conj)). Apparently, when the blue dots are examined in the first 
row, it can be seen that (a and b) appears to have a theme for TD(λ); the number of steps and 
the accumulated rewards both have a soft peak. The best TD(λ) algorithm is TD(0.9). This 
suggests that the peak of TD(λ) for the particular studied homing task is near that value. 
During-learning TD(0.9) could collect the most rewards in the least number of steps, 
however it caused more changes than the rest (except for TD(0.95)). 
When the red squares are examined in the first row of plots it can be seen that TD(1λt(conj)) 
and TD(2λt(conj)) performed best in terms of the gained rewards (as was already pointed out 
in the previous subsection). What is more, they incurred less changes than any other 
algorithm which is an important advantage over other algorithms. 

                                                 
1 These two numbers were around the least number of steps that could be realized by the agent without 

highly restricting its path, they were empirically specified 
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Fig. 9. Overall comparisons of different TD(λ) methods for λ = 0, 0.4, 0.8, 0.9, 0.95 and 
TD(λt(conj)) for 1λt(conj), 2λt(conj) and 3λt(conj). The arrows refer to the direction of better 
performance. 
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6.2.3 Calculations efficiency and depth of the blame 
There are some interesting points to note when examining the changes in the policy 
parameters. Mean Δθ appears to have a theme for TD(λ); the changes to θ increase with λ. 
When the Mean Δθ is compared for the best two algorithms (during learning) TD(1λt(conj)) 
and TD(λ=0.9), it can be seen that TD(1λt(conj)) caused less changes to the learning parameters 
but still outperformed TD(λ=0.9). TD(1λt(conj)) avoids the unnecessary changes for the policy 
parameters and hence avoids fluctuations of performance during learning. It only 
performed the necessary changes. On the other hand TD(λ=0.9) always ‘blames’ the 
previous states trace equally for all steps (because λ is fixed) and maximally (because λ=0.9 
has a high value). TD(1λt(conj)) gets the right balance between deep and shallow blame (credit) 
assignment by varying the deepness of the trace of states to be blamed and incurs changes 
according to the conjugate gradient of the TD error. 

6.2.4 Time efficiency  
The execution time Mean(Time) provides even more information than Mean Δθ. Both 
TD(1λt(conj)) and TD(λ=0.9) have almost identical execution times, although  the execution 
time for TD(1λt(conj)) was initially anticipated to be more than any TD(λ) because of the extra 
time for calculating λt(conj). This means that with no extra time cost or overhead TD(1λt(conj)) 
achieved the best performance, which are considered to be important results. 
TD(2λt(conj)) performed next best, after TD(1λt(conj)), according to the Mean(RT) and Mean(T) 
performance measures, but not in terms of policy parameters changes or execution time; for 
those, TD(λ=0.9) still performed better. This means that this form of 2λt(conj) achieved better 
performance than λ=0.9, but at the cost of extra changes to the policy parameters, and 
incurred extra time overhead for doing so. 

6.2.5 ε-Greedy divergence 
ε-greedy divergence is a divergence that occurs after learning when the agent changes from 
the decreasing ε-greedy-Gibbs policy to a fixed ε-greedy policy. It has occurred sometimes 
especially when the agent had to switch from the reinforcement learning behaviour to the 
reactive behaviour near the walls and obstacles. For example the TD(λ=0.9) and TD(2λt(conj)) 
diverged in this way. Also using the walls more is the likely cause that made the RMS(w) of 
TD(0.95) to beat the RMS(w) of TD(0.4). 

7. Summary and conclusion 

So Who Wins? In summary, TD(1λt(conj)) outperformed all of the described algorithms during 
learning, while TD(3λt(conj)) outperformed all of the described algorithms after learning. 
TD(1λt(conj)) and TD(2λt(conj)) suite more a gradual learning process while TD(3λt(conj)) suits 
quick and more aggressive learning process. TD(1λt(conj)) might still be preferred over the 
other updates because it preformed collectively best in all of the proposed measures (during 
and after learning). This demonstrates that using the historically oldest form of conjugate 
factor ┚ to calculate 1λt(conj), proposed by Hestenes and Steifel, has performed the best of the 
three proposed TD(λt(conj)) algorithms. The likely reason is that this form of λt(conj) uses the 
preceding eligibility trace in its denominator, equation (40), not only the current and 
previous gradients.  
The TD-conj methods has the important advantage over TD(λ) of automatically setting the 
learning variable λt(conj) equivalent to λ in TD(λ), without the need to manually try different λ 
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values. This is the most important contribution of this new method which has been verified 
by the experimental comparisons. TD-conj gives a canonical way of automatically setting λ 
to the value which yields the best overall performance. 
Conclusions and future work 
A new robust learning model for visual robot homing (VRH) has been developed, which 
reduces the amount of required a priori knowledge and the constraints associated with the 
robot’s operating environment. This was achieved by employing a reinforcement learning 
method for control and appropriate linear neural networks, in combination with a reward 
signal and termination condition based on a whole image measure. 
The proposed model is an attempt to address the lack of models for homing that are fully 
adaptive to any environment in which a robot operates. It does not require human 
intervention in the learning process, nor does it assume that those environments should be 
artificially adapted for the sake of the robot. This study shows that visual homing based on 
RL and whole image techniques can offer generality and automated learning properties. 
There are various aspects of novelty, but the two main ones are concerned with the learning 
method and the model. The new TD-conj method is used in an existing RL control 
algorithm, namely Sarsa. The algorithm is applied in a novel RL model designed for visual 
robot homing.  
The use of a whole image measure as a means of termination and to augment the reward 
signal coming from the environment is one element of novelty. The simple NRB is a newly 
established measure shown to be effective. This conforms with the latest findings in 
cognition which asserts that landmarks are not necessary for homing (Gillner, Weiß et al. 
2008). The home location is defined through m snapshots. This, together with the use of a 
whole image measure, allows for robust task execution with minimal required knowledge 
about the target location and its environment. 
Furthermore, it was realized that there is a need to boost RL algorithms that use function 
approximation.  A new family of RL methods, TD-conj(λ), has been established (Altahhan 
2008) by using the conjugate gradient direction instead of the gradient direction in the 
conventional TD(λ) with function approximation. Since TD-conj(0) is proved to be 
equivalent to TD(λ) where λ is variable and is denoted as λt(conj)(Altahhan 2008), this family 
is used in the proposed model as the learning algorithm. 
Some of the advantages of the novel method and model can be summarized in the following 
points. Simplicity of learning: the robot can learn to perform its visual homing (sub-
navigation) task in a simple way, without a long process of map building. Only limited 
storage of information is required in the form of m stored views. No pre- or manual 
processing is required. No a priori knowledge about the environment is needed in the form 
of landmarks. An important advantage of the proposed model over MDP model-based 
approaches is that abduction of the robot is solved directly, i.e. the robot can find its way 
and recover after it has been displaced from its current position and put in a totally different 
position. Other models that use algorithms such as the particle filter (Thrun, Burgard et al. 
2005) can recover from this problem but not as quickly as the proposed model. This is 
because the current view, alone, gives enough information for the trained neural network to 
decide immediately on which action to take, while multimode filters (such as the particle 
filter, or an unscented Kalman filter) may take two or more steps to know where the agent 
is, and then to take a suitable action depending on its location.  
In future research, a number of enhancements are planned to the model. Although setting 
up a suitable exploration/exploitation was automated in the model and required only the 
specification of ε0 and n0ε prior to execution, finding the best balance between these 
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parameters will be a topic for future research. Finally, reducing the number of the learning 
parameters is another issue that is being investigated. 
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