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1. Introduction 

In this chapter, a way to realize intellectualization of robots (called “agents” here) is 
considered. We intend to achieve this by mimicing an intellectual way of human. Human 
learns many kinds of things from incidents driven by own actions and reflects them on the 
subsequent action as own experiences. These experiences are memorized in his/her brain 
and recollected and reused if necessary. In other words, human is not good at doing 
anything at first, but he/she will memory the meaningful things among his/her own 
experiences,  at the same time oblivious of other memories without understood by him/her. 
He/She will accumulate knowledge gotten by experiences, and will make use of them when 
encounters unexperienced things.  
The subject in this chapter is to realize the things mentioned above on agents. To be specific, 
the agent will be equipped with three main functions: “learning” taking out of the 
meaningful things from through experiences with trial and error, “memorization” 
memorizing the above meaningful things, and “the ability of associative recollection and its 
appropriate use” suitable for the situation. Of course, when it doesn’t have such appropriate 
memories, the agent will learn them additively and moreover memorize them as new 
experiences. Repeating these processes, the agent will be more intellectual. In this 
intellectualization, there are a few models related to subject mentioned above, e.g., K-series 
model and their  discrete KA–series model (D. Harter et al., 2005 [1]) and DARWIN X-series 
models (J. L. Krichmar et al., 2005 [2]). K-series and KA-series models have been developped 
by R. Kozuma and his colleagues. Their models are equipped with chaotic neurodynamics, 
which is very important to realize the brain model, hippocampal model and supervised 
learnimg ability. DARWIN X-series models have been developped by Edelman and his 
colleagues since 1981. Their models are also equipped with hippocampal model of spatial, 
episodic, and associative meory model. These two series models intend to realize the brain 
faithfully. 
We have studied about this theme since 2006 [3] ~ [8]. This time our proposed model is not 
necessarily to realize the human brain faithfully, and intends to realize intellectualization of 
the agent functionally. At first we will introduce “reinforcement learning (RL, Sutton et al., 
1998 [9])”, as experienced learning through trial and error, which is a learning algorithm 
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based on calculation of reward and penalty given through mutual action between the agent 
and the environment, and which is commonly executed in living things.  
In the reinforcement learning, memorizing the environment and the agent’s action 
corresponding to it as short term memory (STM), the agent will take out the meaningful 
thing from them, then it will memorize its refined information as long term memory (LTM). 
As a medium of this LTM, we will introduce Chaotic Neural Networks (CNNs, Aihara et al., 
1997 [10][11]) which is generally acknowledged to be an associative memory model of the 
brain. The memory structure takes the form of the adaptive hierarchical memory structure 
so as to deal with the increase of information. The structure consists of CNNs in 
consideration of the adjustment to non-MDP (Markov Decision Process) environment. When 
the agent is placed in a certain environment, the agent will search the appropriate 
experienced information in LTM. In such case of searching, as the mechanism of memory 
search, we introduce self-organizing maps (SOM, T. Kohonen, 2001 [12]) to find the 
appropriate experience. In fact, during the agent’s exploration of the information adapting 
to the environment, the time series environmental information is necessary, so, we use the 
feedback SOM that its output is feedback to input layer to deal with the time series 
information. The whole structure of the our proposed system is shown in Fig. 1. To show the 
example of realization of the agent composed of functions mentioned above and the 
effectiveness of these methods, we carried out the simulation applied to the goal-oriented 
maze problem shown in Figs. 11,14.  
As a result, it was verified that the agent constructed by our proposed idea would work well 
by making use of the experienced information, refer to Fig. 14, in unexperienced large scale 
goal-oriented maze problems and it got the goal in just about shortest steps. See Fig. 14.  

2. Proposed system structure  

The proposed system consists of three parts: memory, learning and discrimination. The 
memory consists of short-term memory (STM) and long-term memory (LTM). Figure 1 
shows these overall structure. 
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Fig. 1. Structure of the proposed RL embedded agent with adaptive hierarchical memory  
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Learning sector: actor-critic system is adopted. It learns the choice of appropriate actions to 
maximize the total predictive rewards obtained over the future considering the environmental 
information s(t) and reward r(t) as  a result of executing action a(t). Memory sector: memory 
setor consists of short-term-momory (STM) and long-term momory (LTM). Here, STM: it 
memorizes the learned path of the information (environmental information and its 
corresponding action) obtained in Learning sector. Unnecessary information is forgotten and 
only useful information is stored. LTM: it memorizes only the enough sophisticated and useful 
experience in STM. Environment discrimination sector: environment discrimination sector 
consists of initial operation part and environment discrimination part. This sector plays the 
role that the agent examines the environment through the agent‘s own behaviors and selects 
the memorized infromation in LTM corresponding to the current environment.  
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Fig. 2. The construction of the actor-critic system 

3. Actor-critic reinforcement learning 

Reinforcement learning (RL, Sutton et al., 1998 [9]), as experienced learning through trial and 
error, which is a learning algorithm based on calculation of reward and penalty given 
through mutual action between the agent and the environment, and which is commonly 
executed in living things. The actor-critic method is one of representative reinforcement 
learning methods. We adopt it because of its flexibility to deal with both continuous and 
discrete state-action space environment. The structure of the actor-critic reinforcement 
learning system is shown in Fig. 2. The actor plays a role of a controller and the critic plays 
role of an  evaluator in control field. Noise plays a part of roles to search the optimal action. 

3.1 Structure and learning of critic 
3.1.1 Structure of critic 
Figure 3 shows the structure of the actor. The function of the critic is calculation of P(t): the 
prediction value of sum of the discounted rewards that will be gotten over the future. Of 
course, if the value of P(t) becomes bigger, the performance of the system becomes better.  
These are shortly explained as follows: 
The sum of the discounted rewards that will be gotten over the future is defined as V(t). 

 ( ) ( )
0

n

l

V t r t lγ
∞

=
≡ ⋅ +∑ , (1) 

where γ (0≤γ<1) is a constant parameter called discount rate. 
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Equation (1) is rewritten as 

 ( ) ( ) ( )1V t r t V tγ= + + . (2)  

Here the prediction value of V(t) is defined as P(t). 
The prediction error ( )r̂ t  is expressed as follows: 

 ( ) ( ) ( ) ( )ˆ ˆ 1tr t r r t P t P tγ= = + + − . (3) 

The parameters of the critic are adjusted to reduce this prediction error ( )r̂ t . In our case the 
prediction value P(t) is calculated as an output of a radial basis function neural network 
(RBFN) such as, 

 ( )
0

( )
J

c c
j j

j

P t y tω
=

=∑ , (4) 

 2 2

1

( ) exp ( ( ) ) /
n

c
ijj i ij

i

y t s t m σ
=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ . (5) 

Here, ( ) : thc
jy t j node’s output of the middle layer of the critic at time t , c

jω : the weight 
of thj output of the middle layer of the critic, ( ) :is t i th state of the environment at time t , 

ijm and ijσ : center and dispersion in the i th input of j th node basis function, respectively, 
J : the number of nodes in the middle layer of the critic, n : the number of the states of the 

system  (see Fig. 3). 

3.1.2 Learning of parameters of critic 

Learning of parameters of the critic is done by using commonly used back propagation 
method which makes prediction error ( )r̂ t  go to zero. Updating rule of parameters are as 
follows: 

 
2ˆ

, ( 1, , )c t
i c c

i

r
i Jω η

ω
∂

Δ = − ⋅ =
∂

A . (6) 

Here cη  is a small positive value of learning coefficient. 

3.2. Structure and learning of actor 
3.2.1 Structure of actor 

Figure 4 shows the structure of the actor. The actor plays the role of controller and outputs the 
control signal, action ( )a t , to the environment. The actor basically also consists of radial basis 
function networks. The thj basis function of the middle layer node of the actor is as follows: 

 2 2

1

( ) exp ( ( ) ) /
n

a
j i ij ij

i

y t s t m σ
=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑  , (7) 

 ( ) ( ) ( )
1

( ) , ( 1, , )
J

a
k kj j

j

a t u t y t n t k Kω
=

= = + =∑ A . (8) 
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Here : tha
jy j node’s output of the middle layer of the actor, ijm and ijσ : center and 

dispersion in thi input of thj node basis function of the actor, respectively, K: the number of 
the actions, ( )n t : additive noise, ku : representative value of thk  action, kjω : connection 
weight from thj node of the middle layer to thk  output node. The action selection method 
to choose the representative ku among all the candidates of actions is described at section 3.3. 

3.2.2 Noise generator 
Noise generator let selection of the output of the actor have diversity by making use of the 
noise. It comes to realize the learning of the trial and error according to the results of 
performance of the system by executing the selected action. Generation of the noise n(t) is as 
follows: 

 ( ) ( )( )min 1,exp(t tn t n noise P t= = ⋅ − , (9) 

where tnoise is uniform random number of [ ]1 , 1− , min ( ⋅ ): minimum of ⋅ . As the ( )P t  
will be bigger (this means that the selected action goes close to the optimal action), the noise 
will be smaller. This leads to the stable learning of the actor. 

3.2.3 Learning of parameters of actor 

Parameters of the actor, ( 1,... , 1, , )a
kj k K j Jω = = A , are adjusted by using the results of 

executing the output of the actor, i.e., the prediction error t̂r  and noise. k is the number of 
the selected and executed actions at the previous time. 

 
( )

ˆ .a k
kj a t t a

kj

u t
n rΔω η

ω
∂

= ⋅ ⋅ ⋅
∂

 (10) 

( 0)aη > is the learning coefficient. Equation (10) means that ˆ( )t tn r− ⋅  is considered as an 

error, a
kjω  is adjusted as opposite to sign of ˆ( )t tn r− ⋅ . In other words, as a result of executing 

( )ku t , e.g., if the sign of the additive noise is positive and the sign of the prediction error is 

positive, positive additive noise is sucess, so the value of a
kjω  should be increased (see Eq. 

(8)), and vice versa. 
 

 

Fig. 3. Structure of the critic 
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Fig. 4. Structure of the actor 

3.3 Action selection method 

The action bu  at time t is selected stochastically using Gibbs distribution Eq. (11). 

 ( )( ) ( )( )
( )( )

1

exp
|

exp

b
b K

k
k

u t T
P u t

u t T
=

=

∑
s . (11) 

Here, ( )( )|bP a ts : selection probability of b th action bu , T : a positive constant called 
temperature constant. 

4. Hierarchical memory system 

4.1 Associative Chaotic Neural Network (ACNN) 
Chaotic Neural Network (CNN) has been developped by Aihara et al., 1997 [10][11] ), which  

is generally acknowledged to be an associative memory model of the brain. CNN is 

constructed with chaotic neuron models that have refractory and continuous output value. 

Its useful usage is as an associative memory network named ACNN. The followings are the 

dynamics of ACNN. 

 
( 1) ( ( 1) ( 1))i i ix t f v t z t+ = + + +

, (12) 

 ( 1) ( ) ( )i r i i iv t k v t x t aα+ = ⋅ − ⋅ + , (13) 

 
1

( 1) ( ) ( )
L

i f i ij j
j

z t k z t x tω
=

+ = ⋅ +∑ , (14) 

 
1

1
( )

U
p p

ij i j
p

x x
U

ω
=

= ⋅∑ . (15) 
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( )ix t : output of the ith neuron at step t, ( )iv t : internal state with respect to refractory of the 
ith neuron at step t, ( )iz t : internal state of the ith neuron with respect to mutual operation at 
step t, ( )f ⋅ : sigmoid function, ijω : connection weight from jth neuron to ith neuron, p

ix : ith 
element of pth stored pattern, rk : damping coefficient on refractory, fk : damping 
coefficient on feedback,α : constant parameter, ia : compound parameter with threshold 
and external input of ith neuron, , 1, ,i j L= A , L : the number of neurons in the CNN, U : the 
number of the stored patterns. 

4.2  Network control 
The dynamics of ACNN behaves chaotically or no-chaotically according to the value of the 
damping coefficient on refractory kr. We would like the network to behave chaotically at 
first and to converge to one of the stored patterns when the state of the network becomes 
close to one of the stored patterns. Here, to realize this, we define  network control as the 
control which makes transition of network from chaotic state to non-chaotic one by 
changing of the specified parameter kr and vice versa. The network control algorithm of 
ACNN is shown in Fig. 5. The change of states of ACNN is defined  by ∆x(t), total change of 
internal state x(t) temporally, and when ∆x(t) is less than a predefined threshold value ┠, the 
chaotic retrieval of ACNN is stopped by changing values of the parameter kr  into small one. 
As a result, the network converges to a stored pattern near the current network state.   
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∑
=

−+=∆

n

i

ii txtxx

1

|)()1(|

Internal state of CNN 

Internal state of CNN 

To chaotic state To non-chaotic state 

θθ

 

Fig. 5. Flow of the network control algorithm 
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4.3   Mutual associative type ACNN (MACNN) 
4.3.1 Short-Term Memory (STM) 
We make use of ACNN as a mutual associative memory system, called MACNN, namely, 
auto-associative memory matrix Ws is constructed with environmental inputs s(t) and their 
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corresponding actions a(t) (refer to Fig. 6) . When s(t) is set as a part of the initial states of the 
ACNN, the ACNN retrieves a(t) with s(t) and l(t), using the way of the described operation 
at 4.2. l is a random vector to weaken the correlation between s(t) and a(t). The update 
equation of the memory matrix Ws is described as Eq. (16), here, λs is a forgetting coefficient, 
and ┟s is a learning coefficient. λs is set to small, because that at the initial and middle learning 
stage Ws is not important. In case that these s, l, a are applied to MACNN, i.e., Eqs. (12) to (15), 
s, l, a are corresponding to xi(t)(i=1,..., L) through Eq. (15), its matrix type, Eq. (16). 

 
Tnew old T T T T

S s S SW W a aλ η ⎡ ⎤ ⎡ ⎤= ⋅ + ⎣ ⎦ ⎣ ⎦s l s l . (16) 

STM as one unit consists of plural MACNNs, and one MACNN memorizes information for 
one environmental state and action patterns (see Fig. 7). For example, STM has path 
information from start to goal on only one maze searching problem. 
 

Environment

 

Fig. 7. Adaptive hierarchical memory structure  

4.3.2 Long-Term Memory (LTM) 
LTM consists of plural units. LTM memorizes enough refined information in STM as one 
unit (refer to Fig. 7). For example, when actor-critic learning has accomplished for a certain 
maze problem, information in LTM is updated as follows:  In case that the current maze 
problem has not been experienced, the stored matrix WL is set by Eq. (17) : 

 
L SW W= . (17) 

In case that the current maze has been experienced and present learning is additive learning, 
the stored matrix is updated by Eq. (18); 
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 new old
L L L L SW W Wλ η= ⋅ + . (18) 

Lλ is a forgetting coefficient, and Lη  is a learning coefficient. Lλ is set to large value as same 
as one of Lη  so as not to forget previous stored patterns. 

4.4 Adaptive hierarchical memory structure 
Fig. 7 shows the whole configuration of the adaptive hierarchical memory structure. When 
an environmental state is given to the agent, at first it is sent to LTM for confirming 
whether it already exists in the memory or not. If it is the same as the stored information, 
the recalled action corresponding to it is executed, otherwise, it is used to learn at the actor-
critic system. After learning the pair of the enough refined and trained environmental state 
s and action a in STM is sent to LTM to be stored. If it comes to be different from the stored 
pattern on the way to use, information about it in LTM is used to relearn at the actor-critic 
system in STM. 

5. Discrimination of the environment  

The information that the agent got through its own experienced and momorized is used to 
discriminate whether it is applicable to the current environment, or not. In this section, the 
structure of the environment discrimination and how to discriminate it are explained. The 
discrimination of environment is composed of the initial operation part and the memory 
selection part.   

5.1 Initial operation  
To decide whether the agent has the momory corrresponding to the current environment, 
the agent behaves with next features, 
i. The agent behaves predefined ninit steps randomly without use of its own memory. 
ii. The agent behaves according to two rules: One is that the agent does not return back to 

the paths which the agent passed during this initial operation, the other is that the agent 
does not strike the wall. These rules make the speedy search and collection of the 
information of the agent possible.   

5.2 Discrimination of the environment using feedback SOM 
The agent discriminates the environment by the feedback SOM. The feedback SOM consists 
of three layers: input layer, competition layer and output feedback layer. The sturucture of 
the feedback SOM is shown in Fig. 8. At first the agent investigates the evironment by 
executing the initial operation. In the initial opereation, during the ninit steps, the winner 
occurs every each steps, i.e., the number of ninit comes into winners. Using these data, the 
agent discriminates the environment. Concretely the agent gets these data for all the 
environment the agent faced and memorizes the time series of winners. When the agent is 
placed at the undiscriminated situation, the agent begins the initial operation and gets the 
above data and compares them with memorized data that is refined about specified 
environment through the actor-critic learning. If two data agree, after then the agent 
behaves using the memorized data, especially, action. In the opposite case, the agent begins 
learning about the current environment using the actor-critic system. The algorithm of the 
feedback SOM to get the time series data of the winners for each step of the initial operation 
about the environment is as follows: 
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Fig. 8. The used feedback SOM 

Algorithm of the feedback SOM 

Step 1. Set  random small values to the connenction weights 

( 1, , , 1, , )jiw j M i n M= = +A A . 

Step 2. Give the input signal to the input layer as follows: 

 
1 1

( ) { ( ), ( ); ( 1)}

{ ( ), , ( ), ( ); ( 1), , ( 1)},n M

I t t a t t

s t s t a t h t h t

β
β β

= −
= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −

s h
 (19) 

where ( )I t  : input vector at time t, ( )is t : ith observation data from environment, 
( )jh t : feedaback data from competition at time, β  is a positive constant 

representing the rate of considering the history information, n : the number of 
environmental states, M : the number of outputs of the competition layer. 

Step 3. Calculate the distance jd between the input vector and all the neurons in the 
competitive layer at time t. 

 
1

2

1

( ( ) ) , ( 1, , ).
n M

j i ji
i

d I t w j M
+ +

=
= − =∑ A  (20) 

Step 4. Find the neuron j∗  (called the winner  neuron) which has the smallest distance 

j
d ∗ and calculate iy as follows : 

 
1

* arg min

1,       * .
( )

0,        *

j
j M

j

j d

j j
y t

j j

≤ ≤
=

=⎧
= ⎨ ≠⎩

 (21) 

Step 5. Calculate the output of neurons in the output feedback layer as follows : 

 ( ) (1 ) ( ) ( 1)j j jh t y t h tγ γ= − + − , (22) 

where γ  is a positive constant retaining the past information. 
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Step 6. Update the values of connection weights of the winner neuron and around it as 
follows : 

 

2

( ) ( 1) ( , *){ ( ) ( 1)}

|| *||
( , *) exp( )

j j jw k w k j j I t w k

j j
j j

η

σ

= − + Λ − −

−
Λ = −

, (23) 

Step 7. where wj(k): jth connection weight vector in the competition layer, ┟ is a positive 

learning coefficient, k is repetition number of renewal of the weights, and σ is 

deviation from the center and then σ become smaller according to progress of the 
learning. 

Step 8. Repeat Step 2 to Step 6 until the predefined times is over. 

5.3 Selection of the memorized information corresponding to the current environment 
Figure 9 shows the flow of the memorized environment selection in the case of ninit = 5. In the 
figure, during ninit = 5 steps, the number 1 and number 3 of the memorized  environments 
were selected three times at time t, t-3, t-4 and two times at time t-1, t-2, respectively.  
Threshold set algorithm of the memorized environment selection  

Step 1. After learning of the feedback SOM, give the environment to the feedback SOM 
again to decide the value of threshold. 

Step 2. Repeat the initial operation ( initn=  steps) repeatn  times and get the data of 

init repeatn n×  neurons which won. 
Step 3. Record the number of firing (winning) times of each neuron in the neurons of 

competition layer in init repeatn n×  data. 
Step 4. Repeat from Step 1 to Step 3 until finishing of records of above firing times for all 

environments.  
Step 5. Fix the threshold (threshold_win) to decide whether the winner neuron corresponding 

memorized environment is adopted or not as a winner neuron.  
Selection algorithm of the environment in the memorized environments in LTM 

Step 1. Put the agent on the start point in the environment. 
Step 2. Start the initial operation (ninit steps) and get the information of the observation and 

action at the each 1 step operation. 
Step 3. Decide the winner neuron by the above information for each step. 
Step 4. Calculate each total number of winner neurons  which are corresponding to  each 

memorized environment as follows: 
 

     Comparison the winner neuron in the current environment with the winner neuron  
in the memorized environment. 

, _ )_(

    1;

:

_ :

.
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if win threshold win
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Step 5. Repeat from Step 3 to Step 4 until the agent finishes the initial operation of ninit steps. 
Step 6. Select the maximum count for each memorized environment 
Step 7. Distinguish whether the ith memorized environment with the selected count is able 

to correspond to the current environment by next process: 
 

( _ )

, 8,

, .

_

iif count threshold count

the agent may have the memory corresponding to the current

environment go to Step

else

the agent may not have the memory corresponding to the current

environment go to learning process.

threshold c

≥

:

.  

ount: threshold to distinguish whether the selected

memorized environment is adopted or not
 

 

Step 8. Request the tender of MACNN unit corresponding to the current environment. 
Step 9. Start the recollection by the MACNN unit. 
Step 10. When the behavior by recollection using MACNN failed, that is, the agent goes into 

the wall or goes over the predefined steps before arrival of the goal, Go Step 2. 
Note: In the simulation of the next section, initn , repeatn , _threshold win  and _threshold count  
are set to  5, 30, 10 , 4, respectively 
 

       : winner neuron 

V 
V 

V
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V 

Pointer to the LTM memorizing  information of the 
environments in the case of the memory size = 5 

 

1 2 3 4 5
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data from output 
feedback  layer 

action 
(code) 

states of the 
environment 

 

Fig. 9. Flow of the memorized environment  selection in the case of ninit=5 

6. Simulation 

In this study, our proposed method is applied for the agent to find, memorize, recollect and 
reuse the optimal paths of the plural small and large scale mazes. 

6.1 Simulation condition 
An agent can perceive whether there is aisle or not at the forward, right-forward, left-
forward, right, and left as the state s of the environment (refer to Fig. 10). An agent can 
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move 1 lattice to forward, back, left, and right as action a (see Table 1). Therefore in actor-

critic, a state s of the environment consists of 20 inputs (n = 5 directions ×4 lattice in Fig. 10) 
in Fig. 8. The content of an input is defined as the distance from the agent to wall, and has 
value of 1, 2, 3, and 4. In the case that there is a wall next to the agent, the content of input is 
value 1, and so on. The number of kinds of action a is 4 (= K in Fig. 4). The number of hidden 
nodes of RBFN is equal to 32 (=J) in Fig. 3 and 4. And the number of units l is equal to 21 in 
Fig. 6. When the agent gets the goal, it is given the reward, 1.0. For the case of a collision 
with wall, reward is -1.0, and for each action except for collision is - 0.1. Flow of the whole 
algorithm of the simulation is shown in Table 2. 
 

 up down left right 

code 1000 0100 0010 0001 

Table 1. Action and its code taken by the agent 

 

Flow of  the whole algorithm of the simulation 

Step 1 : Set the maze to the agent. 

Step 2 : Begin the initial operation ( ninit. steps ). 

Step 3 : Distinguish whether the memorized environment selected by the result of the  
              initial opereation is adopted or not. 

In the case of existence of  
the appropriate memorized environment 

In the case of absence of  
the appropriate memorized environment 

Step4 : Start the behavior using the  
selected unit memory in LTM. 

Step 4 : Switch to learn the maze by actor- 
critic method. 

Arrival to the 
goal 

Failure of 
recollecction 

Step 5 : Switch to learn the MACNN and 
the feedback SOM by use of the data of 
learning sector (Step 4). 

Step 5 : End of  
          the process     

Step 5 : Go back to 
 Step 2 

Step 6: Set the label of the winner neuron 
to select the memrized  
environment .  

Step 6 : Go back to Step 1 Step 7 : Go back to Step 1. 

Table 2. Flow of the whole algorithm of the simulation 

 

 
  

 
 

 
 

 
  

  
  

 
 

 
   

 

 
  A  

  

       
             

Fig. 10. Ability of perception and action of the agent 
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6.2 Parameters used in the simulation 
Parameters used in this simulation are shown in Table 3-4. These parameters are decided by 
trial and error. The number of mutual retrieval Systems(MACNNs) is 11 in STM and call 
this layers  1  
unit memory structure (see Fig. 7). LTM has 4 units type memory structure to memorize 4 
mazes (see Figs. 7 and 11). Table 1 shows the number of kinds of actions and their codes 
taken by the agent. 
 

Parameters used in actor-critic 
σ . width coefficient 0.1 

aη .
 learning coefficient 0.7 

cη .
 learning coefficient 0.7 γ

.
 discount rate 0.85 

T . temperature 

coefficient   

0.4 (within 3steps) T . temperature 

coefficient 

0.1 (more than 3 
steps) 

Forgetting and Learning coefficients used in memory sector 

Sλ .
 forgetting coefficient  

for STM 

0.89 
Sη .

 learning coefficient  

for STM 

1.00 

Lλ .
 forgetting coefficient  

for LTM 

1.00 
Lη .

 learning coefficient  

for LTM 

1.00 

Network control parameters of MACNN 

 Chaos /Non-chaos  Chaos /Non-chaos 

α . constant parameter  10.0/1.00 
rk

.
 damping coefficient 

of refractory 

 0.99/0.10 

ε . a steepness parameter 5.0/5.0 
fk

.
 damping coefficient 

of feedback 

 0.30/030 

a . compound parameter 3.0/3.0     -       - - 

Table 3. Parameters used in the simulations 

 

Feedback SOM 

The number of nodes in the 
input layer 

20+4+40 

The number of nodes in the 
competitive layer 

40 

The number of nodes in the 
state layer 

40 

β .: the rate of considering 
the past information 

3.0 

γ
.
: forgetting rate 0.7 

η . learning coefficient 0.5 → 0.0 (linear 
transformation) 

σ :  width coefficient 
0.0 → 1.0  (linear  
transformation ) 

Table 4.  Parameters of the feedback SOM used in the simulations 
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6.3 Simulations and results 
6.3.1 Confirmation of learning and recollection in the case of a simple small scale 
maze 
At first we confirm by a simple small scale maze whether learning and recollection in our 

proposed system work well or not. We gave the agent a maze as shown in Fig. 11(a), and let 

the agent learn and memorize it. In Fig. 11(a), S means the start position of the agent and G 

means the goal position. I means the position where the agent begins the initial operation. 

Its numbered place (cell) means the position where each environment was found in LTM.  

Where, ■ means wall recognized as value 1, □ means aisle recognized as value 0 by the 

agent. The result of the simulation using the maze 1 as a simple small scale maze, the agent 

reached the goal through the shortest path as the real line with arrow shown in Fig. 11(a). 

Let us explain how the maze was solved by the agent concretely as follows: 

The whole algorithm until the agent reaches to the goal in case that maze 1 is given, as 

follows: 

Step 1. Give the maze 1 to the agent which does not learn and memorize anything. 

Step 2. Switch to the learning sector because of no learned and memorized mazes, and the 

agent learns the maze 1 by the actor-critic method. As a result, the memory 

corresponding to the maze 1 is generated as the number 1 of the memory in LTM.  

Step 3. The agent learns the MACNN and the feedback SOM by use of the results of 

learning at Step 2. 

Step 4. The agent executes the initial operation (ninit=5 steps) nrepeat(=30) times and records 

the winner neuron number for the maze 1.  

Step 5. The agent begins on the initial operation again for maze 1. 

Step 6. The agent inputs the data gotten from the initial operation to the discrimination of 

environment sector. As a result of the discrimination, the agent gets the memory 1 

(maze 1).  

Step 7. The agent begins the recollection using the memory 1, i.e. MACNN1. It reaches the 

goal at shortest steps. 

6.3.2  Generation and discrimination of plural simple small scale mazes 
We consider four simple small scale mazes as shown in Fig. 11(a) to (d). At first the agent 

learns and memorizes the maze 1 by the way mentioned above 6.3.1, next we gave the agent 

the maze 2 as shown in Fig. 11(b). For the maze 2, after the agent executed the initial 

operation, the agent judged the memory 1 (maze 1) could not be used since the memory 1 is 

not corresponding to the current maze, it switched to the learning sector and memorized the 

maze 2 as memory 2 in LTM (refer to Table 2). Similarly, maze 3 and 4 are learned and 

memorized as memory 3 and 4 in LTM.  

The winner neuron numbers at the each initial operation step when given the environment 

the same as the memory are shown in Fig. 12. In Fig. 12, it is found that though there are 

only four memories, the winner neuron numbers are overlapping in spite of the difference 

of the environments each other. Next, we check the differences of the Hamming distance 

between above 4 mazes each other. As mentioned at 6.3.1, ■ means wall recognized as value 

1, □ means aisle recognized as value 0 by the agent. There is 15 bits (5 different directions 

times 3 different distances) in the perception range of the agent. The Hamming distance 

between the four mazes is shown in Table 5. From Table 5, it is found that there is no 

overlapping environments. However we encountered an example of the failure of the 
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agent’s taking the goal like following. After learning and memorizing above 4 mazes, we 

gave the agent maze 4 again. The situation of the failure case is shown in Fig. 13. 
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a) Experienced maze 1 memorized in LTM 
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c) Experienced maze 3 memorized in LTM d) Experienced maze 4 memorized in LTM 

Fig. 11. Learned and memorized paths of the agent on the each maze.  

This cause may be considered as follows: When the agent starts from start point S, it can 
select two directions, i.e., up and left, the agent can take move to. When the agent executes 
the initial operation, in other words, when the winner neuron numbers at the each initial 
operation are set first, if the selection rate of the upward step of the agent are biased, the 
upward direction are selected mainly, after memorizing of their data in LTM. However, 
when the agent begins the initial operation and the steps to the left are mainly selected, the 
winner neuron count had become less than the value of the threshold_count (refer to 5.3). 
Though the agent has the memory corresponding to the current maze, the agent judged that 
the agent does’t have the experience of the current maze because of the small value of the 
threshold_count, and as a result, it switched to the learning sector. To solve this problem, the 
number of steps on the initial operation should be increased and the threshold_count  is 
appropriately decided. 
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Fig. 12. The winner neuron numbers at the each initial operation step when given the 
environment the same as the memory 
 

 maze  2 maze  3 maze  4 
maze  1              6            6             6 

maze  2             6             6 

maze  3               2 

a) At step 1 
 maze  2 maze  3 maze  4 

maze  1              8            4             8 

maze  2             6             8 

maze  3               8 

b) At step 2 
 maze  2 maze  3 maze  4 

maze  1               8           10            10 

maze  2              2              6 

maze  3                4 

c) At step 3 
 maze  2 maze  3 maze  4 

maze  1             10             10            10 

maze  2                6              8 

maze  3                6 

d) At step 4 
 maze  2 maze  3 maze  4 

maze  1               8               4               2 

maze  2              10             10 

maze  3                 4 

e) At step 5 

Table 5. Hamming distance of each other of the four mazes on the initial 5 steps 
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Fig. 13. The moving path in the case of failure 

6.3.3 In the case of a large-scale maze 
The large scale maze to be solved by the agent is shown in Fig. 14. This maze is constructed by 
using the four mazes shown in Fig. 11. In this maze, the shortest steps, i.e., optimal steps is 108. 
Before the agent tries to explore this maze, the agent learned and memorized above four 
mazes orderly. In the Figure, × means the position where the agent failed the choice of the 
memorized information in LTM, i.e., the action corresponding to the current environment 
under use of the learned and memorized environment. The number shows the memory 
number the agent selected using the initila operation. In a lot of the agent’s trials to this maze, 
the steps until the agent got the goal is between 110 and 140. Because of the exploring steps at 
the initial operation process, they are more than the shortest steps. As a result, it is said that  it 
may be possible the agent  with our proposed system could reach the goal in any case of 
environments, by additive learning and memorizing for the unknown environment. 

7.  Conclusions 

Living things learn many kinds of things from incidents driven by own actions and reflects 
them on the subsequent action as own experiences. These experiences are memorized in 
their brain and recollected and reused if necessary. They will accumulate knowledge gotten 
by experiences, and will make use of them when encounters unexperienced things.  
The subject in this research was to realize the things mentioned above on an agent. In this 
research, we tried let the agent equip with three main functions: “learning”, i.e., reinforcement 
learning commonly used by living things, “memorization”, and “the ability of associative 
recollection and its appropriate use” suitable for the situation, i.e., chaotic neural network.  
This time we realized a part of subjects of above functions on the agent. However, a lot of  
unsolved problem are still left. One of them is too difficult to decide the various kinds of 
parameters and thresholds approproately.  Another one is to utilize the ability of feedback 
SOM well. SOM has the feature that input patterns similar to each other are placed in the 
SOM retaining the neighboring relationship. This is useful in the case of existing observation 
together with noise because that actually almost all observation data include noises. In such 
cases, making use of this characteristic of feedback SOM, the agent may realize things 
mentioned before.   
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Fig. 14. The path the agent found and memorized in LTM on the large scale goal searching 
problem using the experienced mazes shown in Fig. 11. 
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