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1. Introduction 

Reinforcement learning (Houk et al., 1995; Sutton & Barto, 1998; Schultz, 2002) has been one 

of the central topics in a broad range of scientific fields for the last two decades. 

Understanding of reinforcement learning  is expected to provide a systematic understanding 

of adaptive behaviors, including simple classical and operant conditioning of animals 

(Waelti et al., 2001; Richmond et al., 2003; Satoh et al., 2003; Graybiel, 2005; Samejima et al., 

2005; Hikosaka et al., 2006) as well as all complex social and economical human behaviors 

that are desinged to maximize benefits (Montague & Berns, 2002); and is also useful in 

machine learning and robotics (Tesauro, 1994). 

Reinforcement learning, whether performed by living organisms or computational models,  

involves choosing a behavior that is expected to yield the maximal reward and then revising 

this prediction so as to minimize the reward prediction error (Schultz, 2002), which is the 

difference between the predicted and actual reward.  

Recent neurophysiological studies have shown that midbrain dopamine neurons encode the 

reward prediction error signal (Schultz et al., 1997; Hollerman & Schultz, 1998; Waelti et al., 

2001; Fiorillo et al., 2003; Nakahara et al., 2004; Morris et al., 2006) and that the striatum 

(Hollerman & Schultz, 1998; Hikosaka et al., 2006) and cerebral cortices (Watanabe, 1996; 

Lee & Seo, 2007) use this signal to perform reinforcement learning with dopamine-induced 

synaptic plasticity (Reynolds et al., 2001; Wickens et al., 2003). Thus, computing the reward 

prediction error is one of the most essential aspects of reinforcement learning, however the 

identity of the neural structures that provide the signal s to the midbrain dopamine neurons 

and the mechanism by which the ‘reward prediction error’ is computed remain rather 

elusive. The pedunculopontine tegmental nucleus (PPTN) of the midbrain feeds strong 

excitatory inputs to dopamine neurons in the midbrain, and receives reward-related signals 

from various areas including the cerebral cortices and the striatum. We hypothesize that the 

PPTN is the key structure for computing the reward prediction error. To test this 

hypothesis, we recorded the activity of PPTN neurons in monkeys performing a saccade 

task for a juice reward (Kobayashi et al., 2002; Okada et al., 2009).  

In the most recent study (Okada et al., 2009), we used multiple analytical approaches, 

including receiver operating characteristic (ROC) analysis (Lusted, 1978), mutual 

information (Werner & Mountcastle, 1963; Schreiner et al., 1978; Kitazawa et al., 1998), and 

correlation analyses to examine neuronal responses in the PPTN neurons in monkeys 

performing saccade tasks, during which the magnitudes of rewards were predicted in 
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normal and reversed fashions. All analyses consistently indicated the existence of two 

neuronal groups, one signalling the expected reward magnitude predicted from the visual 

stimulus and the other signalling the magnitude of the actual reward, both necessary and 

sufficient pieces of information for computing the reward prediction error. The reward 

prediction error may be directly computed by subtracting the signals encoded by the two 

PPTN neuronal groups, or alternatively, by adding the time derivatives of the reward 

prediction signals to the actual reward signals, as originally hypothesized by the temporal 

difference reinforcement learning model. Thus, we concluded that the PPTN is indeed a key 

structure for computing of the reward prediction error. 

2. Background 

2.1 Classical view of the PPTN 
The cholinergic system is one of the most important modulatory neurotransmitter systems 

in the brain, and controls neuronal activity that depends on selective attention. Anatomical 

and physiological evidence supports the idea of a 'cholinergic component' of conscious 

awareness (Perry et al., 1999). The PPTN in the brainstem contains both cholinergic 

(Mesulam et al., 1983) and non-cholinergic neurons (Jones & Beaudet, 1987; Clements & 

Grant, 1990; Spann & Grofova, 1992; Ford et al., 1995; Takakusaki et al., 1996; Wang & 

Morales, 2009), but is one of the major sources of cholinergic projections in the brainstem 

(Mesulam et al., 1983). The PPTN is thought to be the central part of the reticular activating 

system (Garcia-Rill, 1991), which provides background excitation for several sensory and 

motor systems essential for automatic control of movement (Takakusaki et al., 2004), 

perception and cognitive processes (Steckler et al., 1994). It has long been known that the 

PPTN is a crucial element in the regulation of the rhythms in the cortex (Steriade et al., 1990) 

that are associated with wakefulness and rapid eye movement sleep (Leonard & Llinas, 

1994). 

Anatomically, the PPTN has reciprocal connections with the basal ganglia: the subthalamic 

nucleus, the globus pallidus, and the substantia nigra (Edley & Graybiel, 1983; Lavoie & 

Parent, 1994), and more recently, was argued to form a part of the basal ganglia (Mena-

Segovia et al., 2004). Further, the PPTN also has reciprocal connections with 

catecholaminergic systems in the brainstem: the locus coeruleus (noradrenergic) (Garcia-

Rill, 1991; Garcia-Rill et al., 1995) and the dorsal raphe nucleus (serotonergic) (Steininger et 

al., 1992; Honda & Semba, 1994; Kayama & Koyama, 2003). This basal ganglia-PPTN-

catecholaminergic complex was proposed to play an important role in gating movement, 

controlling several forms of attentional behavior (Garcia-Rill, 1991) and the reinforcement 

process (Doya, 2002). Despite these abundant anatomical findings, however, the functional 

importance of the PPTN is not yet fully understood. 

2.2 The possible role of the PPTN in reinforcement process 
Several of lesion and drug administration studies on rodents indicate that the PPTN is 

involved in various reinforcement processes (Bechara & van der Kooy, 1989; Kippin & van 

der Kooy, 2003; Alderson et al., 2006; Winn, 2006; Wilson et al., 2009). According to a 

physiological study in operantly conditioned cats, the PPTN relays either a reward or a 

salient event signal (Dormont et al., 1998). Anatomically, the PPTN receives reward input 

from the lateral hypothalamus (Semba & Fibiger, 1992) and the limbic cortex (Chiba et al., 

2001). Conversely, the PPTN abundantly projects to midbrain dopamine neurons of the 

www.intechopen.com



Reward Prediction Error Computation in the Pedunculopontine Tegmental Nucleus Neurons   

 

159 

substantia nigra pars compacta and ventral tegmental area (Beckstead et al., 1979; Jackson & 

Crossman, 1983; Beninato & Spencer, 1987; Charara et al., 1996), which encode a reward 

prediction error signal for reinforcement learning (Schultz, 1998).  

The PPTN is one of the strongest excitatory input sources for the dopamine neurons 

(Matsumura, 2005). These afferent PPTN neurons release glutamate and acetylcholine to 

target neurons, make glutamatergic and cholinergic synaptic connections with dopamine 

neurons in the midbrain (Scarnati et al., 1986; Futami et al., 1995; Takakusaki et al., 1996). In 

the rat, electrical stimulation of the PPTN induces a time-locked burst in dopamine neurons 

(Lokwan et al., 1999; Floresco et al., 2003), and chemical or electrical stimulation of the PPTN 

increases dopamine release in the striatum (Chapman et al., 1997; Forster & Blaha, 2003; 

Miller & Blaha, 2004). Other electrophysiological experiments have shown that 

acethylcholine acts through both nicotinic and muscarinic receptors to depolarize dopamine 

neurons and to alter their firing pattern (Calabresi et al., 1989; Lacey et al., 1990; Gronier & 

Rasmussen, 1998; Sorenson et al., 1998). Thus, PPTN activity and acethylcholine provided 

by the PPTN can facilitate the burst firing in dopamine neuron (Mena-Segovia et al., 2008) 

and appear to do so via muscarinic (Kitai et al., 1999; Scroggs et al., 2001) and nicotinic 

(Grenhoff et al., 1986; Pidoplichko et al., 1997; Sorenson et al., 1998; Yamashita & Isa, 2003) 

acethylcholine receptor activation. In addition, some of the effects induced by PPTN 

stimulation can be blocked by administration of the muscarinic acethylcholine receptor 

agonist carbachol into the PPTN (Chapman et al., 1997). This finding is consistent with the 

fact that cholinergic neurons in the PPTN express the inhibitory muscarinic autoreceptors 

(Yeomans, 1995) and suggests that activation of these receptors inhibits cholinergic inputs to 

the dopamine neurons (Tzavara et al., 2004; Chen et al., 2006). 

Furthermore, midbrain dopamine neurons are dysfunctional following excitotoxic lesioning 

of the PPTN (Blaha & Winn, 1993). A number of studies have found impairments in learning 

following excitotoxic lesions of the PPTN (Fujimoto et al., 1989; Fujimoto et al., 1992; Steckler 

et al., 1994; Inglis et al., 2000; Alderson et al., 2002). Thus, abundant anatomical, 

electrophysiological and pharmacological studies of slice and whole animal preparations 

indicate that the PPTN receives signals from the reward related structures including the 

cerebral cortices and the striatum (Winn et al., 1997) and provides strong excitatory inputs to 

the dopamine neurons (Clements & Grant, 1990; Blaha & Winn, 1993; Futami et al., 1995; 

Oakman et al., 1995; Blaha et al., 1996; Conde et al., 1998; Dormont et al., 1998; Mena-

Segovia et al., 2004; Pan & Hyland, 2005; Mena-Segovia et al., 2008). Interestingly, the 

dopamine/ acethylcholine interaction seems to be mutual (Scarnati et al., 1987); dopmine 

neurons in the substantia nigra pars compacta tproject back to PPTN neurons, affecting their 

excitability. Even though the dopaminergic input to the PPTN is low compared with the 

massive cholinergic innervation of the dopamine neurons (Semba & Fibiger, 1992; Grofova 

& Zhou, 1998; Ichinohe et al., 2000), dopamine released within the PPTN may play an 

important part in controlling its activity (Steiniger & Kretschmer, 2003). 

Therefore, it is plausible that the PPTN provides important information for computing 

reward prediction error by the dopamine neurons. Recent studies (Matsumura et al., 1997; 

Pan & Hyland, 2005) reported that the PPTN encodes sensory or motor rather than reward 

information of task events. However, using a visually guided saccade task requiring the 

animal to shift its gaze from a fixation to a saccade target, we demonstrated the existence of 

two groups of neurons within the PPTN, one whose resposes to presentation of the fixation 

target to initiate the task were correlated with the success and failure of individual task 

trials, and another that was responsive to the reward delivery (Kobayashi et al., 2002). 
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We hypothesized that the task performance-related neurons signal the reward prediction 

and the reward delivery-related neurons signal the reward outcome. This hypothesis was 

tested in monkeys by studying the activity of PPTN neurons during visually guided saccade 

tasks that were rewarded with different amonts of juice that were cued by the shape of the 

fixation target (Okada et al., 2009). 

3. Responses of PPTN neurons to different reward magnitude 

3.1 Effect of reward prediction on behavior and neuronal activity of PPTN 
In this study, Japanese monkeys were trained on a visually guided saccade task that 

required them to maintain fixation on a central fixation target, and to make a horizontal 

saccade to a peripheral saccade target that was presented after the disappearance of the 

fixation target (Fig. 1A). Correct trials were rewarded randomly with either one or three  
 

 

Fig. 1. Two-valued reward, visually guided saccade task.  

A. Schimatic of screen views for the two-valued visually guided saccade task. A fixation 

target (square or circle) was presented for 400-1000 ms. A saccade target was presented to the 

left or the right of the fixation target (eccentricity, 10°) 300-500ms after fixation target offset. 

The monkey was required to maintain fixation on the fixation target during the entire time it 

was presented, and to then make a saccade to the saccade target within 500 ms after saccade 

target onset. They were rewarded for successful trials with  either one or three drop of juice 

in a quasirandom fashion.  

B. Mean reaction times on the the fixation target. Error bars = SEM, * indicates p<0.001 

(Student’s t-test).  

C. Photomicrograph of a coronal section through midbrain of one monkey  showing 

electrode tracks and the lesion (within the circle) marking the recording site in the PPTN. 

Figures were modified from our recent paper (Okada et al., 2009). 
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drops of juice; the amount (large or small) being cued at the outset by the shape of the initial 

central fixation target (square or circle, respectively).  

The behavior of the monkeys was influenced by the reward value expectation, the 

percentage of successful trial being significantly higher for large rewards than for small 

ones. In the unsuccesful  trials, three types of errors occured: monkeys failed to fixate on the 

fixation target (fixation error), they failed to maintain fixation until the appearance of the 

saccade target (fixation hold error), and they failed to make a saccade towards the saccade 

target (saccade error). The reaction time to fixate on the the fixation target  was significantly 

shorter in the successful than in the unsuccesuful ones. There was also a systematic 

difference in the reaction time within the successful trials: those associated with large 

rewards were significantly shorter than those for small rewards (Fig. 1B). 

One hundred fifty-three PPTN neurons (see, recording sites in Fig. 1C) exhibited significant 

responses to one or more task events. Of these, 30 neurons exhibited increased firing around 

the time of the onset of the fixation target, with significant dependency on the magnitude of 

the predicted reward (fixation target neurons), and 15 neurons exhibited increased firing only 

around the time of the reward delivery with significant dependency on the reward 

magnitude of the current reward (reward delivery neurons). 

Figures 2A, B show raster displays and spike density functions for a representative fixation 

target neuron. This neuron showed elevated firing throughout the trial that was greater 

when the cued reward was large: compare the red raster lines and traces (large reward) with 

the green (small rewards). The population plot for the 30 fixation target neurons (Fig. 2C) 

indicates that the differences in responses to the large and small reward cues generally 

began to emerge about 100 ms after the cue was presented (the 1st dotted line), even though 

there were non-differential responses before the onset of the fixation target/ cue, presumably 

in anticipation of its appearance. Note that the differential responses extended throughout 

the working memory period following offset of the fixation target/ cue and lasted until and 

even after reward delivery (3rd dotted line), almost unaffected by other task events, such as 

the onset of the peripheral saccade target (black bars in Fig. 2A, 2nd dotted line in Fig. 2C) 

and the saccade to the saccade target (inverted triangles in Fig. 2A). 

In contrast, reward delivery neurons were almost unresponsive jst before the reward was 

delivered, when they discharged transiently, reaching a peak discharge rate shortly after 

reward delivery and then rapidly declining back to baseline (Figs. 2E, F). In trial with larger 

rewards, the discharge rate of the transient response reached a higher peak at a slightly later 

time and took a few hundred milliseconds longer to decay back to baseline than did that 

during small reward trials. 

The clear suggestion here is that the differential dependencies of the fixation target and 

reward delivery neurons in encode the magnitudes of the predicted and current rewards, 

respectively. Further, we analyzed the precision for neuronal activity to encode the reward 

magnitude in two ways; 1) by ROC analysis  for discrimination between the small and large 

rewards; 2) by mutual information analysis to estimate the information contained in the 

spike discharges with respect to the magnitude of the reward (Werner & Mountcastle, 1963; 

Schreiner et al., 1978; Kitazawa et al., 1998) where. These two analyses were conducted 

using a sliding time window of 200 ms moved in 1 ms steps. 

First, the reliability with which the activity of individual neurons encoded large or small 

reward was estimated by deriving an ROC value (cumulative probability of the ROC curve) 

that measures the accuracy by which an ideal observer could correctly distinguish between 

large and small reward from the neuronal signal: 
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Fig. 2. Responses of the fixation target and the reward delivery neurons to task events.  

A, B, a rastergram and peri-task event spike density function for activities of a 

representative fixation target neuron over 10 successive trials, aligned to the onsetof the 

fixation target. Red and green rasters (A) and traces (B) indicate large and small reward 

trials, respectively. In (A) blue squares and circles indicate fixation target onset,  black bars 

onset of the saccade target, blue triangles saccade onset and the blue lines the times at which 

large (three bars) and small (one bar) rewards were delivered. C, The population spike 

density function for the 30 fixation target neurons. Responses are aligned to fixation target 

and saccade target onsets and the moment of reward delivery (vertical dotted lines). Large 

and small reward trials are indicated once again with red and green, respectively, as above, 

and thick horizontal bars above indicate the durations of the respective events. D-F, a 

similar rastergram (D) and response histogram (E) for a representative reward delivery 

neuron and the population response histograms (F) for the 15 reward delivery neurons. 

Formats are the same as in A-C. Figures were modified from our recent paper (Okada et al., 

2009). 

  = ∫
1

0
( )ROC P Q dQ    (1) 

  = ∫0( ) ( )
x

P x p x dx   (2) 

 = ∫0( ) ( )
x

Q x q x dx   (3) 
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x  denotes the neuronal activity sampled through the moving window. ( )p x  and ( )q x  

denote the probability distributions for a ideal observer to answer whether the reward is 

large or  small, respectively; ( )P x  and ( )Q x  denote the cumulative probability of these 

functions. ( )P Q  represents an ROC curve, and the ROC value is the area under the ROC 

curve evaluated as ∫
1

0
( )P Q dQ , and Q  is the cumulative probability function for small 

reward trials that was taken as the reference distribution.  

In principle, ROC analysis evaluates the reliability with which an ideal observer can tell 

whether the reward is large or small from the noisy signal in terms of statistical significance 

of the signal difference between the two rewards in comparison with the baseline noise. 

Therefore, an ROC value = 0.5 and > 0.56 imply that the answer is 50 and 95 % correct, 

respectively. 

Second, the information capacity for the PPTN neuronal ensemble to signal reward 

magnitude during the three task periods was estimated via mutual information analysis 

where: 

 

= =

= − − − −

− − −∑ ∑
2 2 2 2

2 2

2 2

1 1

[ ( / )log ( / ) ( / )log ( / ) ( / )log ( / ) ( / )log ( / )]

[ ( / )log ( / ) ( / )log ( / )]

reward

i i i i

i i

I L N L N S N S N High N High N Low N Low N

l N l N s N s N

 (4) 

L , S  and N  denote numbers of large and small reward and total trials respectively. High  

and Low  denote the numbers of trials where the neuronal response was larger and smaller 

than the median response for all trials, respectively. Therefore 
1
l  and 

2
l  and 

1
s  and 

2
s  

represent large and small reward trials where the neuronal response was larger and smaller 

than the median response, respectively. Mutual information plots for individual neurons 

evaluate the information capacity for the neurons to express the reward magnitude in terms 

of a response correlation with the reward magnitude, and cumulative plots evaluate that for 

the ensemble neurons for an ideal case where the individual neuronal responses are 

perfectly independent.  

Therefore, these two analyses estimate different aspects of neuronal signal precision, 

although they are related. Our ROC methods estimate the signal significance in comparison 

with the baseline noise, and the mutual information analysis evaluates the signal precision 

in terms of signal correlation with the reward magnitude. 

We conducted an ROC analysis on the 45 fixation target and reward delivery neurons to 

estimate how reliably the discharges of the individual neurons indicated whether the 

reward was large or small. ROC values for the fixation target neurons (top 30 rows in Fig. 

3A) started out near the chance level (ROC value = 0.5) and generally first acquired 

significance (ROC value > 0.56) during the fixation target/ cue period. Most fixation target 

neurons continued to show significant ROC values through the working memory periods 

after the fixation target/ cue disappeared, albeit with some substantial fluctuations, and 

more than half of them remained above the chance level even after reward delivery. The 

ROC values of the reward delivery neurons (the bottom rows in Fig. 3A), on the other hand,   

did not rise above chance level until after reward delivery, and then only transiently. Thus, 

the ROC analysis reinforced the idea that the fixation target neurons convey information 

about the magnitude of the predicted reward during the cue and working memory periods 

as well as up to and beyond the time of reward delivery and the reward delivery neurons 

convey information about the magnitude of the current reward only after it has been 

delivered. The free reward paradigm experiment also supports this view(Okada et al., 2009). 
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We obtained further support for this view by computing the mutual information (Kitazawa 

et al., 1998) in the responses about the magnitude of the reward (large or small). The 

cumulative plots of the mutual information conveyed by the individual fixation target 

neurons (cyan traces in Fig. 3B) indicated that the information grew rapidly during the 

fixation target/ cue period, peaked roughly as the fixation target/ cue disappeared, and then 

declined thereafter during the working memory period, but did not reach baseline in most 

neurons until after the reward was delivered, as did the ROC values. The mutual 

information conveyed by the individual reward delivery neurons (black traces in Fig. 3B) 

generally did not rise above the null level until after reward delivery, when it showed an 

abrupt substantial increase often lasting more than half a second. 

 

Fig. 3. Receiver operating characteristic (ROC) and mutual information analyses of 

responses in the fixation target and reward delivery neurons.  

A, Pseudo color plots of the instantaneous ROC values (sliding time window, 200 ms) for 

large and small rewards indicated by activities in each of the 30 fixation target and 15 

reward delivery neurons. The plots are aligned to fixation target onset and saccade target 

onset, and reward delivery (dotted lines) and ordered according to the neuronal ROC value 

after reward delivery. A white horizontal line indicates the border between the fixation 

target and reward delivery neurons. B, Cumulative plots of mutual information about 

reward amounts encoded by the 30 fixation target (cyan traces) and 15 reward delivery 

(black traces) neurons. A thick horizontal white bar indicates the duration of the respective 

neuronal type. Time axes in A and B are broken to align the responses to the onset of 

fixation, saccade target and reward delivery. Figures were modified from our recent paper 

(Okada et al., 2009). 

Further insights were obtained by recording the activities of fixation target and reward 

delivery neurons in a context reversal paradigm, in which the meaning of the fixation 

target/ cue was suddenly reversed while recording from a given neuron so that squares and 

circles indicated large and small rewards, respectively, in the first 10 trials and the opposite 
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in the next 10 trials. The responses of the fixation target neurons during both the fixation 

target/ cue period (Fig. 4A) and the subsequent working memory period (the maintenance 

period of reward prediction) (Fig. 4B) clearly reflected the context reversal with a delay of 

one trial, the net result being that by the second trial after the context reversal the cue 

predicting the larger reward was again associated with the higher discharge rate (i.e., one-

trial learning). In contrast, the responses of the reward delivery neurons did not change after 

the reversal, so that larger rewards were still associated with larger neuronal responses even 

on the first trial after the context reversal (Fig. 4C). 

 

Fig. 4. Effects of context reversal on the responses of fixation target and reward delivery 

neurons. A, Responses of the fixation target neurons to fixation target (squares and circles) 

presentation (mean responses of 200-600 ms after fixation target on, fixation target/ cue 

period) before and after reversal of fixation target context (from squares and circles for large 

and small rewards in the initial 10 trials to squares and circles for small and large rewards in 

the last 10 trials). B, Similar to A, but for responses after fixation target offset (maintenance 

period of reward prediction, 200-600 ms after fixation target off). C, Similar to A and B but 

for the responses of the reward delivery neurons to reward delivery (200-600 ms after 

reward delivery, post reward delivery period) to large and small rewards. Responses were 

estimated as the average firing frequency normalized for the peak responses of the 

individual neurons. Error bars indicate standard error of mean. Figures were modified from 

our recent paper (Okada et al., 2009). 
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3.2 Correlation of fixation target response with behavioral performance 
In a previous study on visually guided saccade task with single-value rewards we 

demonstrated that PPTN neuronal responses were stronger during trials that were 

successfully completed (Kobayashi et al., 2002). Therefore we questioned whether the 

reward prediction signaled by the fixation target neuronal response might also be related to 

the motivation of the monkey to perform the task. We tested this in the two-value reward 

task by studying the correlation of the fixation target responses of the the reward 

magnitude-dependent fixation target neurons with the task performance. Figure 5 shows the 

comparison of representative and ensemble fixation target neuronal responses to large and 

small rewards across fixation error, fixation-hold error, and successful trials. This 

representative neuron (Fig. 5A) showed no significant increase in its activity during the 

entire period of the fixation error trials, during which the animal failed to fixate on the 

target. Conversely, in the fixation hold error trials during which the animal did initially 

fixate on the target but failed to maintain the fixation, the activity increased during the pre-

cue period (onset, -100 ms from fixation target presentation) and declined roughly at the 

time of the fixation break (200 ms, cf. the upward arrow in the cyan eye movement trace of 

Fig. 5A). The pre-cue period response during thsese trials was reward magnitude-

independent in that the responses during the large and small reward trials were nearly 

equal, while the response was magnitude-dependent during the cue period, being larger for 

large reward trials than for small reward ones (cf. the red and green spike density traces 

before the dotted line with those after the line in Fig. 5A). In the successful trials, the fixation 

target period responses also consisted of a reward magnitude-independent component 

during the pre-cue period that matched that for the fixation hold error trials (cf. cyan spike 

density trace with the red and green spike density traces of Fig. 5A). A late reward 

magnitude-dependent component that emerged during the fixation target/ cue period, was 

much stronger than that in the fixation hold error trials and was sustained across the 

maintenance period until the postreward delivery period. The ensemble response for the 

fixation target neurons also showed a similar tendency as that of the representative neuron 

(Fig. 5B). The pre-cue period response was virtually absent in the fixation error trials, but 

there were significant pre-cue period responses in the fixation hold error and the successful 

trials. The magnitude-dependent response in the fixation hold error trials was small and 

transient, while that in the successful trials was much larger and was sustained until the 

post-reward delivery period. 

The fact that the reward magnitude-independent pre-cue period response was absent in the 

fixation error trials and commonly present in both the fixation hold error and the successful 

trials indicates that it may reflect the monkey’s motivation to fixate on the fixation target in 

anticipation of its presentation. Although the task intervals were quasi-randomized, 

monkeys appared to be able to anticipate the onset of the fixation target and to be motivated 

to fixate on the target in both the fixation hold error and the successful trials prior to fixation 

target onset, but were probably not motivated to do so in the fixation error trials. 

In addition, these findings indicate that the activities of the 52 reward magnitude-

independent neurons also signal the early component of the motivational drive to fixate on 

the fixation target in an almost equal fashion as that of the reward magnitude-dependent 

fixation target neurons (Fig. 5C). 
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Fig. 5. Fixation target neuronal responses in unsuccessful and successful trials of the two-

valued visually guided saccade task. A, (top and middle) Rastergram and spike density 

functions of a representative reward magnitude-dependent fixation target neuronal 

response over five success, fixation hold error and fixation error trials with normal cue 

(bottom) eye positions in a single representative case of each of the four trial categories. 

Upward arrow indicates the time of the fixation break. Two horizontal dotted lines indicate 

the fixation window within which the monkey was required to maintain eye position. B, 

Population spike density function of 30 reward magnitude-dependent fixation target 

neurons averaged for fixation error (black solid trace), fixation hold error (solid red and 

solid green traces for trial with large and small reward cues), and successful trials (dotted 

red and dotted green traces for trial with large and small reward cues), aligned to fixation 

target onset, saccade target onset and reward delivery. The spike density is the population 

average normalized for the peaks of the mean individual neuronal responses. C, Population 

spike density functions of 52 reward magnitude-independent neurons following the same 

format as (B). Figures were modified from our recent paper (Okada et al., 2009). 

www.intechopen.com



 Advances in Reinforcement Learning 

 

168 

4. Computation of reward prediction error in dopamine neurons with input 
from the PPTN 

4.1 PPTN neuronal activity for predicted and actual reward 
We previously demonstrated that PPTN activity in the fixation period of a simple visually-

guided saccade task predicted task outcome (Kobayashi et al., 2002). In the two-valued 

reward visually guided saccade task just described, we revealed new functional aspects of 

PPTN activity. The temporal profiles of the activities of fixation target and reward delivery 

neurons in this task indicated that these functional neuronal classes may encode the 

predicted and actual reward magnitudes, respectively. ROC analysis of the magnitude-

dependent fixation target and reward delivery neuronal responses in our task revealed that 

most fixation target and reward delivery neurons reliably signaled whether reward is large 

or small. Mutual information analysis further showed that fixation target and reward 

delivery neurons signaled reward magnitude with high precision (maximum information 

capacities of 2.6 and 3.5 bits, corresponding to 0.04 and 0.25 bits/ neuron), comparable to 

those reported for the sensory (0.2 bits/ neuron (Gochin et al., 1994)) and motor systems 

(0.05 bits/ neuron (Kitazawa et al., 1998)). The high information capacities of fixation target 

and reward delivery neurons imply that they are potentially capable of differentiating 6 and 

11 levels of reward magnitude, respectively. Mutual information analysis also showed that 

fixation target neurons conveyed information about predicted reward magnitude 

throughout the cue and maintenance periods, with no significant attenuation until the 

reward delivery neurons signaled actual reward magnitude. 

Finally, the fixation target neurons responded to changes in the cue-reward contingency 

within two trials, rapidly revising their prediction of reward magnitude following changes 

in cue shape. These results are consistent with a role of fixation target neurons in reward 

prediction error computation in reinforcement learning. Conversely, the responses of the 

reward delivery neurons were based on the magnitude of the rewards delivered, regardless 

of cue shape. These results are consistent with reward delivery neurons signalling the 

magnitude of the delivered reward. 

4.2 PPTN neuronal activity for motivation 
Consistent with previous lesion (Conde et al., 1998) and recording studies (Kobayashi et al., 

2002), PPTN (the fixation target) neurons may also signal motivation to perform a given 

task, the monkey’s reaction times to fixate on the fixation and saccade targets were 

significantly correlated with their subsequent successful/ unsuccessful completion of the 

task, and the responses of the fixation target neurons were significantly smaller in the 

fixation error trials than in the successful trials. 

We also found a significant number of reward magnitude-independent fixation target 

neurons whose responses were significantly correlated with the successful/ unsuccessful 

completion of the task (Fig. 5C). The functional implication of the reward magnitude-

independent fixation target neurons remains unclear, but they may represent the timestamp 

of the reward expectation (Pan & Hyland, 2005). The neurons responsive to reward delivery 

also included reward magnitude-dependent and -independent groups;  however, none of 

these reward delivery neurons showed a response correlation with the 

successful/ unsuccessful completion of the task, which is consistent with the view that they 

monitor the time and magnitude of the actual task reward. Finally, the responses of the 

reward magnitude-dependent fixation target and reward delivery neurons did not signal 
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only the reward magnitude but also the timestamps of reward expectation like those found 

in the reward magnitude-independent fixation target and reward delivery neurons; this was 

reflected in the anticipatory responses preceding the onset of the fixation target and reward 

delivery. 

4.3 Possible source of the fixation target response 
We demonstrated neuronal activity within the PPTN in response to the appearence of a 

fixation target that was predictive of the animal's performance on the task (Fig. 5) 

(Kobayashi et al., 2002). This activity appeared to be related to motivation level, reward 

prediction and conditioned sensory responses. This last association is consistent with a 

previous study in cats showing that neuronal activity in the PPTN was elicited during 

classical conditioning tasks in response to the conditioned stimulus (Dormont et al., 1998). 

Our result further suggests that the salience of the conditioned stimulus in the particular 

task (i.e. fixation target onset in the visually guided saccade task) was influenced by the 

monkey’s motivation for performing the task. Thus, PPTN neurons may comprise a 

substrate, whose role is to transform a sensory cue into a behavioral action. If this 

hypothesis is correct, it is quite reasonable to expect the response of a given neuron to a cue 

in a cue-reward association task are modulated by the magnitude of the expected reward. 

From where does the PPTN receive this motivational or reward prediction signal? The 

fixation target neurons may receive the signals of reward prediction from the orbitofrontal 

cortex (Tremblay & Schultz, 1999; Hikosaka & Watanabe, 2000; Roesch & Olson, 2004; 

Simmons & Richmond, 2008), prefrontal cortex (Kitazawa et al., 1998; Leon & Shadlen, 1999; 

Roesch & Olson, 2003; Kennerley & Wallis, 2009; Luk & Wallis, 2009), cingulated cortex 

(Cornwall et al., 1990), striatum (Mena-Segovia et al., 2004; Hikosaka et al., 2006; Winn, 

2006) or hippocampus (Yang & Mogenson, 1987).  

We propose that the signals travel via 1) the ventral striatum-ventral pallidum pathway, 

which receives input mainly from the limbic cortex (Yang & Mogenson, 1987; Schultz et al., 

1992; Brown et al., 1999), 2) the amygdala and the subthalamic nucleus (Semba & Fibiger, 

1992), and 3) the cerebral cortices. Recently, Matsumura has emphasized the functional role 

of cortical input to the PPTN in the integration mechanism of limbic-motor control 

(Matsumura, 2005). 

The dopamine neurons respond to expected, unexpected and salient sensory events with 

short latency, but little is known about the sensory systems underlying this response 

(Ljungberg et al., 1992). Studies of rats, cats and primates indicate that neurons in the 

superior colliculus, relaying visual information, make direct synaptic contacts with 

dopamine neurons in the substantia nigra (Comoli et al., 2003; McHaffie et al., 2006; May et 

al., 2009). In addition to the inputs of the substantia nigra via the superior colliculus, the 

dopamine neurons are also innervated by neurons, as described above. Furthermore, as the 

PPTN also receives input from the superior colliculus (Huerta & Harting, 1982; Redgrave et 

al., 1987; May & Porter, 1992). We propose that the PPTN may also relay visual information 

to dopamine neurons. We showed that PPTN neurons exhibited responses to the fixation 

target (a salient visual stimulus) that varied with subsequent performance of the task (Fig. 

5). The responses of some of these neurons occurred with short latency (about 100ms), 

similar to the reported latency of dopamine neurons to the cue signal (50-120 ms, 

(Mirenowicz & Schultz, 1994; Schultz, 1998)). There have been only a few studies examining 

visual responses of PPTN neurons. Pan & Hyland (2005), reported visual responses of PPTN 
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neurons in rats, which had a mean response latency to the onset of a light stimulus of 70 ms, 

but they observed no variable visual responses for reward prediction (Pan & Hyland, 2005). 

In contrast to these results, a population of our recorded PPTN neurons in primates 

responded differentially to a visual stimulus with dependent on motivational state. Our 

results may be closer to another study of PPTN neurons in cats, whose conditioned cue 

responses occurred with a short latency (Dormont et al., 1998). Further studies are needed to 

examine the effect of reward prediction on the short latency response to salient stimulus in 

the PPTN (Stewart & Dommett, 2006). 

Interestingly, similar to the cholinergic structure PPTN, the noradrenergic locus coeruleus 

has been implicated in responses to both salient and motivational sensory events. Locus 

coeruleus neurons were phasically activated prior to behavioral responses on both correct 

and incorrect trials, but were not activated by stimuli that failed to elicit lever responses or 

by lever movements outside the task (Clayton et al., 2004). In contrast to the locus coeruleus 

neurons, we observed a sustained, tonic activity in the PPTN during the task. Recent 

pharmacological studies suggest that another monoaminergic neurotransmitter, serotonin, is 

also involved in reward processing. Nakamura and colleagues showed that serotonergic 

neurons in the dorsal raphe nucleus were tonically modulated by the size of expected 

reward with either a large- or small-reward preference, and after reward delivery, they were 

tonically modulated by the size of the received reward (Nakamura et al., 2008). Thus, dorsal 

raphe nucleus neurons also encode the expected and received reward value, albeit, in a 

different pattern than the PPTN neurons. There are reciprocal mutual, inhibitory 

interactions between PPTN, locus coeruleus, and dorsal raphe nucleus neurons (Koyama & 

Kayama, 1993). Thus, we should compare the reward-related activities of neurons in these 

area while controlling arousal, motivation, and learning. 

4.4 Possible primary reward signal in the PPTN 
In the PPTN, we observed transient reward responses for free reward and reward during 

the two-valued reward task(Okada et al., 2009). The reward delivery neurons may receive 

the actual reward signals from the lateral hypothalamus (Rolls et al., 1980; Fukuda et al., 

1986; Nakamura & Ono, 1986). This pathway directly excites the PPTN (Semba & Fibiger, 

1992), which responds with a brief burst and then accommodates or habituates (Takakusaki 

et al., 1997; Dormont et al., 1998). This brief burst, in turn, directly excites the midbrain 

dopamine neurons via cholinergic and glutamatergic projections (Conde, 1992) and thereby 

causes a phasic burst in dopamine neurons projecting to the striatum (Gerfen, 1992) for 

actual reward. We plan to examine whether the response properties of the PPTN fulfill the 

necessary features of a primary reward signal (i.e., whether the activity is related to reward 

occurrence, to value coding, and shows no adaptation under a fully learned condition). 

4.5 Computation of reward prediction error signal in dopamine neurons 
As described above, dopamine neurons have unique firing patterns related to the predicted 

volume and actual times of reward (Hollerman & Schultz, 1998; Schultz, 1998). 

Computational models (Houk et al., 1995; Montague et al., 1996; Schultz et al., 1997; Berns & 

Sejnowski, 1998; Suri & Schultz, 1998; Contreras-Vidal & Schultz, 1999) of dopamine firing 

have noted similarities between the response patterns of dopamine neurons and well-known 

learning algorithms, especially temporal difference reinforcement learning algorithms 

(Montague et al., 1996; Schultz et al., 1997; Suri & Schultz, 1998). The temporal difference 
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model uses fast-sustained excitatory reward prediction and delayed slow-sustained 

inhibitory pluse signals in dopamine neurons, a sustained tonic reward prediction pulse 

originating from the striatum is temporally differentiated to produce an onset burst 

followed by an offset suppression. In the model the neurons in the striatum (the striosome) 

provide a significant source of GABAergic inhibition to dopamine neurons (Gerfen, 1992), 

and the fast excitatory, reward-predicting signals are derived via a double inhibition 

mechanism to dopamine neurons (matriosome-pallidum-dopamine neuron pathway (Houk 

et al., 1995)). Thus, the polysynaptic double inhibition pathway and monosynaptic direct 

inhibition may provide temporal differentiation of reward prediction in dopamine neurons. 

However, the model may not be realistic, because it is assumed that (1) the polysynaptic, net 

excitatory signal is faster than the direct monosynaptic inhibitory signal, and (2) the double 

inhibition pathway is required to strongly excite burst activity in dopamine neurons in 

response to a conditioned cue. A significant difference between the model we will propose, 

derived from the present findings, and the previous model is the source of excitation for 

dopamine neurons (Contreras-Vidal & Schultz, 1999). We propose that the excitatory PPTN 

neurons may send both a tonic reward prediction signal and a transient current  reward 

signal to dopamine neurons. 

Interestingly, the predictive and actual reward responses of the fixation target and reward 

delivery neurons follow comparable time courses to those supposed for the value function 

and the actual reward signals, respectively, in the temporal difference model of 

reinforcement learning (Houk et al., 1995; Schultz et al., 1997; Doya, 2000; Suri, 2002; 

Laurent, 2008). Therefore, the reward prediction error may be computed in the dopamine 

neurons from the fixation target and reward delivery signals, using the temporal difference 

algorithm, (Doya, 2000). 

It is known from the classical conditioning paradigm of reinforcement learning that 

dopamine neurons show transient excitatory responses to cue presentation but not to 

reward delivery, and inhibitory responses to reward omission at the expected reward 

delivery time (Brown et al., 1999; Contreras-Vidal & Schultz, 1999; Doya, 2000; Fiorillo et al., 

2008). The fixation target neuronal response that slowly rises at fixation target/ cue 

presentation may be conveyed to the dopamine neurons, transformed by temporal 

differentiation of the temporal difference mechanism as transient excitatory (Lokwan et al., 

1999) and inhibitory signals timed at fixation target presentation and reward delivery, 

respectively, and summed with the actual reward signals of the reward delivery neurons, 

for computation of reward prediction errors.  

The excitatory transients impinge on the dopamine neurons in the absence of neuronal 

reward delivery signals, producing a sharp cue response, while upon reward delivery, the 

inhibitory transients are summed with the excitatory actual reward signals for computation 

of the reward prediction error, producing no response when the reward prediction matches 

with the actual one (Tobler et al., 2003; Fiorillo et al., 2008). 

In our recent study, the fixation target responses in the PPTN do not primarily explain this 

inhibitory omission response of the dopamine neurons, as the responses of the majority of 

the fixation target neurons were shutdown at the actual, rather than the expected, reward 

delivery timing in the temporal reward omission experiments (Okada et al., 2009). 

Therefore, they would feed the inhibitory transients to the dopamine neurons through the 

temporal difference mechanism, at the time of the actual rather than the expected reward. 

However, a minority of fixation target neurons, whose responses were terminated at the 

time of the expected reward delivery (Okada et al., 2009), could convey the inhibitory 
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transients to the dopamine neurons, producing the inhibitory omission response. It is 

possible that the former and latter fixation target neurons, whose responses were shutdown 

at the times of the actual and expected rewards, respectively, represent the value functions 

V(t) and V(t+1) for the current and predicted task events (Houk et al., 1995; Sutton & Barto, 

1998; Doya, 2000). Furthermore GABAergic axon terminals originating from the PPTN were 

observed in the midbrain (Charara et al., 1996), these inhibitory connections may inhibit 

dopamine neurons and generate the inhibitory reward omission response. Alternatively, the 

inhibitory reward signals may be sent to the dopamine neurons from other neuronal 

structures such as the striosome (Brown et al., 1999; Contreras-Vidal & Schultz, 1999), 

ventral pallidum (Wu et al., 1996), habenula (Matsumoto & Hikosaka, 2007) and 

rostromedial tegmental nucleus (Jhou et al., 2009). 

Finally, we present our hypothesis of how the PPTN drives dopamine neurons to compute 

the reward prediction error signal (Fig. 6). Our recent observations support the view that the 

fixation target and reward delivery neurons signal the predicted and actual reward 

magnitude, respectively. The prolonged response of the fixation target neurons indicates 

that they may maintain the signals of the predicted reward from the time of cue 

presentation until the reward delivery neurons signal the actual reward magnitude.  

This study revealed that the strong excitatory inputs exerted by the PPTN on midbrain 

dopamine neurons (Mena-Segovia et al., 2004; Pan & Hyland, 2005; Winn, 2006) convey the 

memory of the predicted reward and the signals of the actual reward, two essential elements 

needed for computing the reward prediction error. The high information capacities of the 

fixation target and reward delivery neurons to signal the reward magnitude may help the 

dopamine neurons to accurately compute the reward prediction error and to efficiently 

execute reinforcement learning. 

 

Fig. 6. Possible PPTN neuronal circuit for exciting dopamine neurons in reinforcement 

learning. 
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Computation of the reward prediction error requires a temporal memory of the predicted 

reward (established at cue onset and sustained until reward delivery) and a comparison of 

the actual reward with the predicted one. The reward predictive structures (cerebral cortex 

and striatum) may learn the cue-reward magnitude contingency during the training and 

task periods as a synaptic memory and recall that memory as the signals of the predicted 

reward magnitude at the time of cue presentation. These signals would then be transferred 

to the fixation target neurons and stored as working memory (Compte, 2006) of the reward 

prediction until the time of reward delivery. Thus, the PPTN is an important center, 

providing information of both reward prediction and actual reward to dopamine neurons. 

Moreover, our study addresses the broader science of memory: we demonstrated that the 

memory of the task reward is recalled as neuronal activity signaling the predicted reward 

magnitude, which is then compared with neuronal activity signaling the actual reward 

magnitude. To our knowledge, the mechanism whereby past memories, engrammed in 

synaptic efficacy, are decoded into dynamic neural activity for comparison with the current 

neuronal activity, remains totally unexplored, in spite of the fact that the inverse process of 

encoding the firing rate of current neural events into synaptic efficacy has been extensively 

studied by plasticity researchers. Thus, our study is the first demonstration that structural 

memories of past experience are decoded into dynamic neural activity and compared with 

that for the present experience. And moreover, that the PPTN is the site where both signals 

are simultaneously represented. 
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