We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

4

Reinforcement Learning of User Preferences for a
Ubiquitous Personal Assistant

Sofia Zaidenberg and Patrick Reignier
Prima, Grenoble Informatics Laboratory (LIG) / INRIA
France

1. Introduction

New technologies bring a multiplicity of new possibilities for users to work with computers.
Not only are spaces more and more equipped with stationary computers or notebooks,
but more and more users carry mobile devices with them (smart-phones, personal digital
assistants, etc.). Ubiquitous computing aims at creating smart environments where devices
are dynamically linked in order to provide new services to users and new human-machine
interaction possibilities. The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from it (Weiser, 1991). This
network of devices must perceive the context in order to understand and anticipate the user’s
needs. Devices should be able to execute actions that help the user to fulfill his goal or that
simply accommodate him. Actions depend on the user’s context and, in particular, on the
situation within the context. The context is represented by a graph of situations (Crowley
et al., 2002). This graph and the associated actions reflect the user’s work habits. Therefore it
should be specified by the user him-self. However, this is a complex and fastidious task.

The objective of this work is to construct automatically a context model by applying
reinforcement learning techniques. Rewards are given by the user when expressing his degree
of satisfaction towards actions proposed by the system. A default context model is used from
the beginning in order to have a consistent initial behavior. This model is then adapted to each
particular user in a way that maximizes the user’s satisfaction towards the system’s actions.
The ambient intelligence application domain imposes constraints that we had to consider for
the selected reinforcement learning approach.

We will first introduce the Ambient Intelligence application domain and the associated
constraints. We will then present a qualitative user study conducted to validate our
hypothesis. We will motivate our reinforcement learning algorithm selection and present
the way we have modified it to fulfill our particular constraints. We will then present
experimental results.

2. Pro-active ambient intelligence

Our research domain is Pro-active Ambient Intelligence applications development. We have
decided to use reinforcement learning as a paradigm to let the end user adapt the application’s
behavior to his own needs. In this section, we will briefly present the Ambient Intelligence
domain to motivate this choice and to introduce the particular constraints we have to manage.

www.intechopen.com

60 Advances in Reinforcement Learning

2.1 Ubiquitous computing: Weiser’s vision

In the late 1980s and early 1990s, Xerox PARC researcher Mark Weiser developed the
concept of ubiquitous computing presented in his seminal paper: The Computer for the 21st
Century (Weiser, 1991). He characterized the computer evolution in three main eras:

1. mainframes: a central processing unit shared by a group of users,
2. personal computers: one central unit per user,
3. mobility: several processing units per user, following his movements.

The integration of computing devices into everyday environments has been one of the
predominant trends over the last decade. Cell phones, PDAs and laptop computers
as well as WLAN networks have become part of almost every household. This trend
enables computer-everywhere environments. The objective is to make computers not only
user-friendly but also invisible to the user. Interaction with them should be possible in forms
that people are naturally comfortable with:

“The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it.”

Some of the first ubiquitous applications were the tabs, pads and boards developed by Xerox
PARC between 1988 and 1994 (Adams et al., 1993). Other examples can be found from the
Things That Think! consortium of the MIT Media Lab. This group is inventing tomorrow’s
artifacts by embedding computers in everyday life objects.

In 1995, Weiser has introduced the new notion of calm computing. Calm computing is an
approach that engages both the center and the periphery of our attention. Our attention can
move from one to another. When we drive a car, our center of attention is on the road and
the noise of the engine is on the periphery. If this noise is unusual, our attention will instantly
move from the center to the periphery. Periphery can inform without overwhelming, center
allows to get control.

The multiplication of computing devices goes also with a proliferation of interconnected
sensors. These sensors can measure physical parameters (temperature, humidity, light, etc.).
They can also be software probes as for instance the next appointment in his diary, the arrival
of a new email. Ambient Intelligence (or AmI) is the conjunction of ubiquitous computing
and artificial intelligence. The goal is to exploit the perception capacities of all these sensors to
analyze the environment, users and activities and allow the system to react to the current
context. Ambient Intelligence concept has been first defined in 1998 by Philips in their
reflection on the future of consumer electronic equipments. Among the very first applications,
we can cite the Coen Intelligent Room (Coen, 1998), the Abowd eClass Project (Abowd et al.,
1996) or the Mozer Adaptive House (Michaél, 1998).

In the rest of this chapter, we will consider pro-active Ambient Intelligence applications, as
defined by Salovaara and Oulasvirta (Salovaara & Oulasvirta, 2004):

“...the concept proactive refers to two critical features of a system: 1) that the system is
working on behalf of (or pro) the user, and 2) is taking initiative autonomously, without
user’s explicit command.”

lhttp://ttt.media.mit.edu

www.intechopen.com

Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant 61

2.2 Where are we now?

Since 2000, the number of computer devices in our personal and professional life has
exploded: personal computers, smart-phones, PDAs, video game consoles connected to
the Internet etc. Weiser’s vision of ubiquitous computing has been partly achieved (the
multiplication of CPUs around us). But pro-active Ambient Intelligence applications are still
in the laboratories and did not reach everyday life. What are the difficulties?

There are many. Some of them are directly inherited from “classical” Artificial Intelligence,
as for instance the frame problem: how should we model the environment (context model) and
how shall we update this model based on the sensors’ values (Lueg, 2002)? In this chapter, we
will focus on the important problem of the user’s confidence in his proactive applications.
User’s confidence in an automated system is a common problem that is not limited to Ambient
Intelligence. In particular, Muir and Morray have shown in the field of process automation
that the user’s trust in an automatic system is directly related to the user’s perception of
the skill of that system (Muir & Moray, 1996). The end user should not underestimate or
overestimate the capabilities of that system to optimally use it (calibration of trust).

One way to establish this trust relation is to let the system expose its internal behavior to
the end user. This is what Bellotti and Edwards named the intelligibility (Bellotti & Edwards,
2001):

“Context-aware systems that seek to act upon what they infer about the context must
be able to represent to their users what they know, how they know it, and what they are
doing about it.”

Cheverst (Cheverst et al., 2005) talked about comprehensibility to suggest that the user should
be able to look inside the device (like a glass box) to examine its inner working. In particular,
comprehensibility reduces the fear of having a system doing something “in our back” (Abowd
& Mynatt, 2000). Comprehensibility is also associated to scrutability, which refers to the ability
for a user to interrogate his user model to understand the system’s behavior. As stated by
Kay (Kay et al., 2003), scrutability is contradictory with the invisible computer concept as
defined by Weiser, but it seems to be necessary to gain the user’s acceptance.

Based on scrutability and on the level of system control versus user control (pro-activity),
Cheverst is categorizing the various Ambient Intelligence applications. In figure 1 adapted
from his article, the gray circle characterizes the kind of applications we want to develop.
Developing a pro-active Ambient Intelligence application is a complex task. It cannot be
supported only by the developer or the end user. Pattie Maes argued that to gain trust,
the end user must be involved in the specification of the system’s behavior, but he usually
cannot directly program it (Maes, 1994). User’s habits are also evolving through time (Byun
& Cheverst, 2001), implying repeated modifications of the application. Machine learning
has been proposed as a possible solution for those problems. In particular, Remagnino
(Remagnino & Foresti, 2005) thinks that the future of Ambient Intelligence is correlated to
machine learning researches because associations between sensory outputs and intelligent
behavior are too complex to be hand-coded.

We have presented in this section a brief introduction on Ambient Computing. We have
focused on particular characteristics that those applications must exhibit to gain user’s
acceptance. This gives us some constraints that must be considered for building our assistant.
To validate those constraints, we have first conducted a user study that we will present in the
next section.

www.intechopen.com

62 Advances in Reinforcement Learning

high scrutability

Easyliving Intelligent Office System
(Brumit at al,/ 2000)

system control user control

Changing Places/House_n

Adaptive House (Intille, 2000)

(Mozer et Miller, 1998)

low scrutability

Fig. 1. Two-dimensional design space spanning control and scrutability dimensions, adapted
from (Cheverst et al., 2005): the gray circle characterizes the applications we are considering.

3. User study

The goal of this user study was to measure the expectations and needs of users with regard
to an ambient personal assistant. Subjects were 26 active persons, 12 women and 14 men,
distributed in age categories as follows: 9 subjects between 18 and 25, 7 between 26 and 40, 7
between 40 and 60, and 3 over 60. None of the subjects had advanced knowledge in computer
science.

3.1 Description

The study was based on ~1 hour interviews with every subject. The interviewer followed
a predefined script. The script started with a few open questions about information
and communication technologies to evaluate the subject’s general knowledge, but also his
perception and his uses of such technologies. Then, the interviewer presented our ubiquitous
system using a model (an interactive power point presentation: some of the slides are shown
figure 2). This interacting powerpoint was exposing a simple scenario about the user’s
laptop. The scenario starts in the morning and the user is at home, browsing for movies
and restaurants (figure 2(a)). When he arrives at work, the laptop automatically switches to
the user’s “work” setting (figure 2(b)). Then, the assistant turns the user’s cellphone to vibrate
and displays a message about this action. The user can ask for an explanation about this action
and choose to undo it or select another action for this situation (figure 2(c)). At the end of the
day, the system switched back to the “home” setting. The interviewer explained also orally
other examples of services that could be offered by the assistant.

After the presentation, the subject was asked for his opinion about such a system. He could
freely express the advantages and drawbacks of what he saw and the situations in which he
thought the assistant was particularly useful or interesting. This gave him the opportunity
to talk about ubiquitous assistants in general and about what their usage implies for his

www.intechopen.com

Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant 63

(a) Slide 1 (b) Slide 2 (c) Slide 5

Fig. 2. A few slides from the model used to present our system to the subjects.

everyday life. Another goal of the conversation was to determine the acceptability of the
system. The interviewer asked the following questions:

— “If the assistant learns badly, if it offers you wrong services at wrong times, what would be
your reaction?”

— “If the assistant makes mistakes, but you know that he is learning to adapt to your behavior,
would you give him a chance?”

— “Would you accept to spend some time to answer questions to make the assistant learn
more quickly?”

— “What would you gain from getting an explanation about the assistant’s decisions?”

We were also interested in finding out if the subjects would feel observed and fear that their
privacy was in jeopardy. If they would not bring the subject up themselves, we would ask
questions about this.

3.2 Results

After analyzing all the interviews, it appeared that 44% of subjects were interested in our
assistant, and 13% were conquered. Interested persons share the same profile: they are very
active, very busy in their professional as well as personal lives, they suffer from cognitive
overload and would appreciate some help to organize their schedule. Other noticeable
observations standing out from the interviews are the following:

— Having a learning assistant is considered as a plus by users. In fact, subjects felt a learning
system would be more reliable since it would respond to their own training.

— Users prefer a gradual training versus a heavy configuration at the beginning.
— This training must indeed be simple and pleasant (“one click”).
— The initial learning phase must be short (one to three weeks).

— Itis absolutely necessary for the assistant to be able to explain its decisions. This aspect was
particularly discussed by (Bellotti & Edwards, 2001).

— The amount of interactions wanted between the user and the assistant varies from one
subject to another. Some accept only to give one-click rewards while others would be happy
to give more inputs to the system. This confirms that people are interested in engaging
systems, as stated by (Rogers, 2006). For those users, we could add an optional debriefing
phase where the assistant goes through the learned behavior and the user corrects or
approves it.

www.intechopen.com

64 Advances in Reinforcement Learning

— Mistakes made by the system are accepted to some extent as long as the user knows that
the system is learning and as the system is useful enough to the user. But errors must not
have critical consequences. Users always want to remain in control, to have the last word
over the system and even have a “red button” to stop the whole system at any time.

— Some subjects pointed out that the assistant could even reveal to them their own automatic
and subconscious customs.

— A recurrent worry expressed by interviewees is the fear of becoming dependant of a
system that cares for them and becoming unable of living without it (what if the system
is broken-down?).

This user study justifies our ubiquitous assistant since a sizeable part of interviewed subjects
were prone to using it. Points listed above give us constraints to respect in our system. They
will be listed in the next paragraph.

3.3 Our constraints

Based on the Ambient Intelligence presentation (section 2) and this user study, we will now
present the constraints we have considered for our approach.

We want to build a personal assistant whose behavior is learned from user inputs. We have to
respect several constraints:

(a) The system must not be a black box. As detailed in (Bellotti & Edwards, 2001), a
context-aware system can not pretend to understand all of the user’s context, thus it must
be responsible about its limitations. It must be able to explain to the user what it knows,
how it knows it, and what it is doing about it. The user will trust the assistant (even if it
fails) if he can understand its internal functioning.

(b) The training is going to be performed by the user thus it must be simple, non intrusive
and it must not put a burden on the user.

(c) The learning should be Life-Long learning to continuously track the user’s changes of
preferences.

(d) The training period must be short, unless the user changes preferences.
(e) The system must have an initial behavior that is not incoherent.

We have been exploring in a previous work a supervised learning approach for
situation <+ action association (Brdiczka, 2007) for a virtual assistant. Another example is
the a CAPpella system (Dey et al., 2004). Even if they produce some promising results, both
approaches are based on an off-line annotation of recorded data. This annotation process
can be quite painful for the end user and because of the off-line nature of the process, it
is performed “out of context”. To overcome these limitations, we have been considering
Reinforcement Learning as a solution for getting “in context” qualitative (not too intrusive)
feedback from the user.

4. Reinforcement learning: a quick overview

4.1 Definition

Reinforcement learning (Sutton, 1988; Sutton & Barto, 1998) is an approach where an agent
acts in an environment and learns from its previous experiences to maximize the sum of
rewards received from its action selection. The reward is classically a continuous function
between —1 and 1. 1 corresponds to satisfaction, —1 disapproval and 0 means no opinion.

www.intechopen.com

Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant 65

In reinforcement learning approaches, the environment is typically modeled as a Markov
Decision Process (or MDP). A Markov Decision Process is defined by (S, A, R, P):

S is the set of all possible states of the environment.

A is the list of possible actions.

R:S8 x AxS — [—1;1] is the reward function. R(s,a,s’) indicates the opportunity to
choose action 4 in situation s.

P:S x Ax S — [0; 1] is the transition function modeling the environment. P(s,a,s’) gives
the probability of being in situation s’ when applying action 4 in situation s. The Markov
property specifies that the next situation depends only on the current situation and action
and is not based on previous situations.

With Markov Decision Processes (and so, with classical reinforcement learning approaches),
the current state must be completely known. The environment’s evolution may be stochastic
(hence the probabilistic transition function), but it must be stationary: the probabilistic law
must not change over time.

An agent has a policy function 7 : S — A, proposing an action for every situation: the
agent’s behavior. This policy function can be evaluated using a value function V' (s). This
value function computes the expected discounted future rewards received by the agent being
currently in state s and applying its policy 7. This value function is expressed by the following
equation:

[ee]

V™(s)=E {

The goal is to build an optimal policy 7* maximizing the corresponding value function V7 .
This optimal value function is the solution of the recursive Bellman’s equation (equation 3):

VT (s) = max, <E {) Voriksls: = s}) (2)

k=0

Yo einlse = s} with0 <y <1 (1)
k=0

= max, <ZP(s,a,s’)(R(5,a,s’) + 4V (s'))) (3)

Once the optimal value function is determined, the optimal policy is directly calculated with:

7 (s) = argmax, (ZP(S,Q,S’)(R(S,Q,S’) +yV* (s'))) (4)

If we have a model of the environment (the P and R functions of the corresponding Markov
Decision Process), the Bellman equation is fully determined. The optimal strategy can be
found using dynamic programming. It is an off-line optimization problem.

If the environment model is unknown, there are two main categories of approaches:

Model-Free : no explicit model of the environment is constructed. The optimal strategy is
built as a result of the agent’s interactions with its environment. Some examples of
Model-Free approaches are: Q-Learning (Watkins & Dayan, 1992), SARSA (Rummery
& Niranjan, 1994), Actor-Critic etc.

Model-Based : a model of the environment is constructed (learning phase) and then
exploited (planning phase) to build the optimal strategy. This is for instance the Dyna
approach (Sutton, 1991) that we will present in subsection 4.4.

www.intechopen.com

66 Advances in Reinforcement Learning

4.2 Examples

Reinforcement learning application domain covers a lot of ground, from robotics to industrial
manufacturing or combinatorial search problems such as computer game playing. We will
present some examples involving pro-active agents interacting with an end-user.

Robyn Kozierok and Pattie Maes (Kozierok & Maes, 1993) have proposed in 1993 an agent
helping the user to schedule meetings (agenda assistant). One of the very interesting aspects
of this approach is the smooth control transfer from the end user to the agent. This smooth
transition allows a progressive trust relation establishment, an important step for the system
acceptance. The agent’s learning is a combination of memory based and reinforcement
learning. The agent is first observing the end user, recording every situation < action
association. When a new situation is detected, the agent extracts from its database the closest
previously observed situation and the associated action. If the proposed action is incorrect,
reinforcement learning is used to try to correct it. This approach combines two important
properties: establishing a trust relationship with the user based on a smooth control transfer
and consolidating this relationship with an intelligible model. If the agent is choosing a wrong
action, the system tells the user the reasons for its choice and the user can explain why this is
incorrect. One of its main drawbacks is the simplicity of the situation model (well suited for
the agenda problem).

Another example is Walker’s application of reinforcement learning to dialog selection in a
spoken dialog system for emails (Walker, 2000). The agent must learn to optimally vocally
interact with the end user to quickly provide him the right information. The difficulty of this
application is the complexity of the state space: 13 discrete variables that can take between 2
and 4 different values each. The authors recommend to reduce the state space to significantly
improve the system’s performances. This state space reduction is done by searching for
irrelevant variables in the learning process.

4.3 The Markovian hypothesis

Our learning agent perceives the environment’s state. This environment is both “physical”
(user entering a room, ...) and “computer based” (new email arriving, agenda alarm, ...).

In our problem, the agent is not the only acting entity modifying the environment. The
environment is modified by external elements, out of the agent’s control. The end user is one
of those elements: for instance, he enters or leaves his office, triggering localization events,
sends emails, etc. All those actions modify the environment. They are motivated by the
user’s internal state. The agent would need to access this internal state to fully understand
and predict the environment’s evolution. As this is not possible, the agent has only a partial
perception of the environment.

4.3.1 Partial environment perception

An agent in a Markov Decision Problem that has only a partial perception of its environment
breaks the Markov hypothesis. Let us consider for instance the classical maze problem. If the
robot has an exact perception of its state in the environment (position and nearest obstacles),
it might be able to correctly decide its next action to reach the goal (see top part of figure 3). If
it has a partial perception (the nearest obstacles for instance), there is an ambiguity on its real
position: it cannot decide anymore what to do based on the current perceived state (see bottom
part of figure 3). The Markov hypothesis is no more true: it needs to remember previous states
and actions to disambiguate its current position. The action selection is no more based solely
on the current state.

www.intechopen.com

Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant 67

Next action

Whatdo lsee? Lo ---------------------- | T —

'

Where am | ?
What to do next ?

(b) The robot perceives only surrounding obstacles

Fig. 3. Consequences of having a complete or partial state observation

When an agent has only a partial access to the current state, Markov Decision Processes
are then replaced by Partially Observable Markov Decision Processes? (Astrém, 1965). In a
Partially Observable Markov Decision Process approach, the agent does not know its real
state s but it only has access to an observation o. It then acts based on an estimated state
b (belief state) defined by a probability distribution on S (all states). A Partially Observable
Markov Decision Process is a non-Markovian process which can be reduced to a Markovian
process on a continuous state space: the belief space. The belief space is the space which, from
the probability of being in each state and an action, gives the new probability of being in each
state (for a quick introduction, see for example (POMDPs for Dummies: Page 5, 1999)).

Partially Observable Markov Decision Processes are used in particular for multi-agent
problems. In a multi-agent system, each agent has access to its internal state, to the external
environment state but has no perception of the other agents” internal state: each agent has

2POMDP

www.intechopen.com

68 Advances in Reinforcement Learning

a partial view of the global system’s state (Littman, 1994). If each agent is governed by a
Partially Observable Markov Decision Process, we talk of Decentralized Partially Observable
Markov Decision Process or DEC-POMDP.

Solving a Partially Observable Markov Decision Process problem is p-space
hard (Papadimitriou & Tsitsiklis, 1987). There are some approximate solutions: (Pineau
et al., 2003), (Spaan & Vlassis, 2005) or (Smith & Simmons, 2005) for instance. But it remains
very difficult, especially with convergence speed constraints imposed by the end user being
in the loop.

4.3.2 Non Markovian stationary or Markovian non stationary?

Considering the end-user as part of the environment, our learning agent problem can be
naturally modeled as a Partially Observable Markov Decision Process. The agent cannot
perceive the end-user’s internal state, responsible for the user’s actions and part of the
environment evolution. As stated by Buffet in his PhD (Buffet, 2003), our system is non
Markovian and stationary. It is stationary because:

— the environment without the user can be considered as stationary (the rules of evolution are
not changing);

— the end user might introduce a non stationary aspect (his behavior is evolving through time)
but this non stationary part is embedded in the non observable part.

We could also consider that the end-user is not part of the agent’s environment. The agent has
a full perception of the state: the problem is now Markovian but it is no more stationary. The
end user is a “disruptive” element, causing non deterministic environment state changes. As
we have seen in subsection 4.1, a non deterministic evolution of the environment is compatible
with a Markov Decision Process as long as the probabilistic evolution law is not changing
(stationary). In our case, the non stationary part corresponds to the end-user’s behavior
evolution. We can consider that this behavior evolution is slow and that our problem is locally
stationary. If the agent’s learning speed is much faster that the user behavior’s evolution, then
the agent can track user evolutions and constantly adapt to them.

As we have explained in the previous section, Partially Observable Markov Decision Process
approaches are difficult. We have preferred to use a more classical Markov Decision Process
approach, selecting the second solution: the end user is seen as a “disruptive” element, outside
of the agent’s environment.

4.4 Reducing user’s burden: indirect reinforcement learning

Reinforcement learning approaches need a lot of steps to converge. For instance, the
backgammon agent had to play 1.5 million games to learn (Kaelbling, 2004). In a
reinforcement learning approach, the agent is building its policy through interaction with its
environment. If this environment is virtual (like for the Backgammon game), the convergence
time (due to a high number of learning steps) can be partly reduced by parallelizing the
algorithm for instance or by using faster processors. But in a real environment, especially
if the end-user is part of the learning step giving for instance the rewards, the bottleneck is not
the processor speed but the end-user himself who can quickly get bored.

To limit end-user’s interactions, indirect reinforcement learns a real world model that can
be used by the agent as a “virtual playground” to produce as many off-line experiments as
necessary. The world model allows imaginary experiments as defined by Craik (Craik, 1943).
The world model is a transformation S x A — S. Building a world model is a life-long
learning process. The agent is repeatedly updating its world model based on new available

www.intechopen.com

Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant 69

Agent
Action
State
Reward
Real World L
World Model
Dyna Switch

Fig. 4. The Dyna architecture: the agent is learning either on the real world or the world
model

observations (s,4,s") coming from the real environment (supervised learning). Because it is a
life long process, the world model can track evolutions of the real environment. Building an
optimal policy (planning phase) is a quick process, exploiting the current world model.
Indirect reinforcement learning approaches have been introduced by Sutton with the Dyna
architecture (Sutton, 1991). The Dyna system is composed of three asynchronous tasks:

1. learn a world model
2. build a policy from this world model
3. build a policy from the real world interactions (not using the world model).

The first task is executed in parallel with the two others. The agent is acting and learning
either in the real world or in the world model (Dyna switch) as illustrated in figure 4.

5. Our approach

5.1 Indirect reinforcement learning adaptation

As stated in section 3.3, learning the user preferences must not be a burden on the end-user.
The system has to learn quickly and without over-soliciting the user. Indirect reinforcement
learning, presented section 4.4, proposes a solution by using a world models. Applying
Dyna implies describing two parts: interactions with the user in the real environment and
the non-interactive learning part using world models.

In the interactive part, the system perceives events from the environment through its sensors.
The internal representation of the environment’s state is updated accordingly (see section 5.2
for further details on state representation). As a reaction to the state change (caused by the
detected event), the system selects an action to be executed through its actuators.

The non-interactive part consists in running episodes of Q-Learning in the world model
(composed of a transition function and a reward function). Instead of sending actions to the

www.intechopen.com

70 Advances in Reinforcement Learning

real environment, we query the transition function for the next state given the last action and
state. Similarly, the reward function returns us the expected reward for action a in state s.
Those functions have to be representative of the real environment’s dynamics, which are not
fixed but evolving over time. Acquiring them through supervised learning seems appropriate.
This learning will be a life-long process in order to keep the models up-to-date with the
environment. The learning of the transition function is described section 5.3.1 and the learning
of the reward function is the concern of section 5.3.2.

5.2 Internal state representation

One of our constraints defined section 3.3 concerns the intelligibility of the agent (constraint a).
The internal functioning of the system should be transparent to the user for him to trust the
agent. The modelling choice of environment states should take this constraint into account.
We chose to represent a state as a set of predicates. Each predicate represents a relevant part
of the environment. Zero-order predicates would not provide a sufficiently informative
description of the environment because of its complexity. We use first-order predicates,
defined with arguments which can take any value or no value. A state is a particular
assignment of argument values, which may be null. These predicates are described below.

alarm(title, hour, minute) A reminder fired by the user’s agenda.

xActivity(machine, isActive) The activity of the X server of a machine.

inOffice(user, office) Indicates the office that a user is in, if known, null otherwise.

absent(user) States that a user is currently absent from his office.

hasUnreadMail(from, to, subject, body) The latest new email received by the user.

entrance(isAlone, friendlyName, btAddress) Expresses that a bluetooth device just entered the user’s
office. isAlone tells if the user was alone or not before the event.

exit(isAlone, friendlyName, btAddress) Someone just left the user’s office.

task(taskName) The task that the user is currently working on.

user(login), userOffice(office, login), userMachine(machine, login) The main user of the assistant, his
office and main personal computer (not meant to be modified).

computerState(machine, isScreenLocked, isMusicPaused) Describes the state of the user’s computer
regarding the screen saver and the music.

An example would be the state:

alarm (minute=<null>, title=<null>, hour=<null>);

xActivity (isActive=<null>, machine=<null>);

inOffice (office=<null>, user=<null>);

absent (user=<null>);

hasUnreadMail (from=<null>, to=<null>, body=<null>,
subject=<null>) ;

entrance (isAlone=<null>, friendlyName=<null>,
btAddress=<null>);

exit (isAlone=false, friendlyName=Sonia,
btAddress=00:12:47:C9:F2:AC);

task (taskName=<null>) ;

screenlocked (machine=<null>, isLocked=<null>);

musicPaused (isPaused=<null>, machine=<null>);

user (login=zaidenbe) ;

userOffice (office=E214, login=zaidenbe);

userMachine (login=zaidenbe, machine=hyperion);

In this example, the main user is zaidenbe and a bluetooth device just left the office.

www.intechopen.com

Reinforcement Learning of User Preferences for a Ubiquitous Personal Assistant 71

Each predicate is endowed with a timestamp accounting for the number of steps since the
last value change. Among other things, this is used to maintain integrity of states, e.g. the
predicate alarm can keep a value only for one step and only one of in0ffice and absent can
have non-null values.

Our states contain free values. Therefore, our state space is very large. This exact information
is not always relevant for choosing an action. The user might wish for the music to stop
when anyone enters the office, but to be informed of emails only from his boss. As soon
as we observe the state “Bob entered the office”, we have an estimated behavior for the state
“someone entered the office”, which is more satisfying for the user. We generalize states in the
behavior definition by replacing values with wildcards: “<+>"” means any value but “<nu11>"
and “<»>"” means any value.

In this manner, an action is associated to a “super-state” encompassing numerous actual states.
A generalized state may be split when it is relevant to distinguish between encompassed,
more particular, states. This splitting can be done offline, by analyzing the history of rewards
and detecting persistent inconsistencies of user rewards for a state. This aspect has not been
further studied yet.

5.3 World model

The world model is intended to replace the real world in part of the actions executed for
exploration, as shown figure 4. In classical reinforcement learning, the world model takes as
input an action executed by the agent and the state that the world was in at the time the action
was chosen. The output of the model is the state of the environment after the action and the
expected reward (see section 4.4).

In our case, as explained section 4.3.2, the environment state is modified by actions from the
agent as well as by exterior events generated by the user. Our world model takes as input the
current state and an action or an event.

The world model is composed of the transition and reward functions P and R. We modify
slightly the classical definition given section 4.1 by the following definition of the transition
function: P : S x O x § — [0; 1], where O = AU & represents the set of occurrences, an
occurrence being an action or an event (£ is the set of events), as illustrated figures 5(a)
and 5(b).

The world model is automatically acquired using supervised learning based on real
interactions examples. The system records every state, event and reward and action, and uses
these examples for supervised learning as described in sections 5.3.1 and 5.3.2.

Action Action Event
Il []
State mm) m) E[next state] State mm) m) E[next state]
E[reward] E[reward]
(a) The classical world model (b) Our world model

Fig. 5. World model definition

www.intechopen.com

72 Advances in Reinforcement Learning

Algorithm 1: The supervised learning of the transition function.

Input: A set of examples {s, 0,5}

Output: P

foreach example {s,0,s'} do

if a transformation t that obtains s' from s with the occurrence o, can be found then

| Increase the probability of ¢;

else
Create a transformation starting with s, having the action a or a generic event created
from e and ending in s’ with a low probability;
Decrease the probability of any other transformation ' that matches the starting state
s and the occurrence o but whose ending state is different from s’;

5.3.1 Supervised learning of the transition function

In our case, the transition function P(s,0,s’) gives the probability of being in situation s’ when
applying action 4, or perceiving event e (where o is an occurrence a or e), in situation s. We
modeled our transition function as a set of transformations. Each transformation includes a
starting state s!, an occurrence of, a probability p' and the modifications that will be applied
on the observed starting state to compute the next state M' = {m!,i € [1; n]}.

A modification operates on an predicate’s argument. It can erase the argument’s value, set
a given value, copy the value of one of predicate’s a argument into one of predicate’s b
argument. The transformation can also be to reset the timestamp. We denote a transformation
by t(st, of, pt, M").

In the same way as we factorize states for the behavior definition (see section 5.2), we use
generic transformations in order to reduce the size of the transition function. The starting
state st isa generalized state, defined with wildcards (for instance, “some entered the office”,
no matter what the other argument values are).

The transition function is initialized using common sense, and it is enriched by the supervised
learning algorithm 1. For instance, consider: st = <x>, which matches any state, at =
lockScreen, the action of activating the screen saver. The transformation would be to set
to true argument isScreenLocked of predicate computerstate, indicating that the screen
is locked in the next state. = When new examples confirm knowledge already included in
the model, they strengt