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1. Introduction 

Advanced oxidation processes (AOPs) are technologies with significant importance in 
environmental restoration applications (Anipsitakis and Dionysiou, 2003; Bandala et al., 
2007). The AOPs concept was established by Glaze et al., (Huang et al., 1993, Glaze, 1987; 
Glaze et al., 1987) who defined AOPs as processes involving the generation of highly 
reactive oxidizing species able to attack and degrade organic substances (Bolton, 2001). 
Nowaday AOPs are considered high efficiency physical-chemical processes due to their 
thermodynamic viability and capable to produce deep changes in the chemical structure of 
the contaminants (Domenech et al., 2004) via the participation of free radicals (Domenech et 
al., 2004). These species, mainly hydroxyl radicals (HO�), are of particular interest because 
their high oxidation capability (Andreozzi et al., 1999; Goswami and Blake, 1996; Huston 
and Pignatello, 1999; Legrini et al., 1993; Rajeshwar, 1996). However, other studies have 
suggested that, besides hydroxyl radicals, AOPs can also generate other oxidizing species 
(Anipsitakis and Dionysiou, 2003; 2004). Generated radicals are able to oxidize organic 
pollutants mainly by hydrogen abstraction (eq. 1) or by electrophylic addition to double 
bonds to generate organic free radicals (R�) which can react with oxygen molecules forming 
peroxyradicals and initiate oxidative degradation chain reactions that may lead to the 
complete mineralization of the organics, as proposed in eq. (1) (Blanco, 2003).  

 ( )4 2 RH HO or SO HR H O• •− •+ → +  (1) 

Free radicals in AOPs, may be produced by photochemical and non-photochemicals 
procedures. Table 1 list some of the most frequently reported AOPs for application in water 
restoration. 
Among the different approaches for pollutants removal from water, some of them are 
recognized as mainly efficient for pesticide degradation. Ozonation and ozone related 
processes (O3/H2O2, UV/O3), heterogeneous photocatalysis (TiO2/UV), homogeneous 
photocatalysis (Fenton and Fenton-like processes) and electrochemical oxidation are 
considered as the most efficient for pesticide degradation in water (Somich et al., 1990; Scott 
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 Non-photochemical AOPs Photochemical AOPs 

Alkaline media ozonation Fenton and Fenton-like reactions 
O3/H2O2 Heterogeneous photocatalysis 
Fenton reaction UV/H2O2 
Electrochemical oxidation UV/O3 
Hydrodynamic/ultrasonic cavitation  
Sub/super critical water  

Table 1. Frequently reported AOPs 

and Ollis, 1995; Zepp et al., 1994; Legrini et al. 1993, Bandala et al., 2002a; Arancibia et al., 
2002; Masten and Davies, 1994; Chiron et al., 2000; Ikehata and El-Din, 2005; Ikehata and El-
Din, 2006, Bandala and Estrada, 2007, Martínez-Huitle et al., 2008). Several different 
successful laboratory scale applications have been reported for many of these methodologies 
(Malato et al., 2004; Blanco et al.,2007), however only few full scale development are 
currently reported, pendent task mostly depending on deep knowledge and analysis of 
current results and the generation of new approaches to the engineering of the processes 
(Malato et al., 1999; 2000).  

2. Pesticide degradation using photocatalysis 

2.1 Heterogeneous photocatalysis (HP) 
Photocatalysis have been defined by Kisch (1989) as the acceleration of a photoreaction by a 
catalyzer. To take place, homogeneous photocatalysis require that the catalyzer (usually a 
semiconductor) absorbs an energy quantum. After energy absorption, the absorber specie 
(C) generates energy carriers (e- and h+) and excited electrons are transferred to the oxidant 
(Ox1). At the same time, the catalyzer accepts electrons from the reducer (Red2) which fill the 
holes generated in valence band of the semiconductor. Electron flux in both directions is null 
and the catalyzer remains unaltered as proposed in reaction sequence (2) (Malato, 1999): 

 

( )hν - +

+
2 2

-
1 1

C C e +h

h +Red Ox

e +Ox Red

⎯⎯→

→

→

 (2) 

The heterogeneous photocatalytic degradation concept involves the use of a solid 
semiconductor (i.e. TiO2, ZnO, others) to generate a colloidal suspension stable under 
radiation for stimulate a reaction in the solid/liquid (or solid/gas) interface. When the 
semiconductor is in contact with a solution containing a redox pair, charge transference 
occurs along the interface to balance chemical potentials between the two faces. Metallic 
oxides and sulfurs are among the most used semiconductor materials available for 
photocatalytic purposes. Norwadays, titanium dioxide (TiO2) is the most frequently used 
semiconductors for heterogeneous photocatalytic processes anytime it has demonstrated to 
be the most active (Blake, 2000; Blanco et al., 2007). Table 2 depicts some of the 
semiconductor materials used in photocatalytic reactions along with their band gap energy 
required for catalyzer activation and the maximal wavelength required for activation. 
Degradation of organic pollutants by HP is among the most successful applications of the 
AOPs as suggested by the wide variety of research groups, installations, references and 
patents for use of this technology for removing toxic substances in water (Ajona and Vidal, 
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Material Band gap energy (eV) Activation wavelength (nm) 

BaTiO3 3.3 375 
CdO 2.1 590 
CdS 2.5 497 
CdSe 1.7 730 
Fe2O3 2.2 565 
GaAs 1.4 887 
GaP 2.3 540 
SnO2 3.9 318 

SrTiO3 3.4 365 
TiO2 3.2 387 
WO3 2.8 443 
ZnO 3.2 390 
ZnS 3.7 336 

Table 2. Band gap energy and activation wavelength for some semiconductors (Malato, 
1999). 

2000; Blake, 2000; Bandala and Estrada, 2007). But, the use of heterogeneous photocatalysis 

for restoration of water contaminated with pesticides has been shown as one of the best 

fields for application of this technology. It is proposed as an ideal methodology because it 

can be used for low concentration effluents or complex multicomponent commercial 

suspensions. Its success application has being recognized by GEF as a promising innovative 

technology for the destruction and decontamination of Persistent Organic Pollutants (POPs) 

in developing countries (McDowall et al., 2004). The number of tested pesticides for 

heterogeneous photocatalytic degradations is wide. Among them, chlorinated, 

phosphorated, carbamic, thiocarbamic and triazine type pesticides are the most frequently 

reported. Table 3 shows an actualized reference collection of works published for pesticide 

degradation using TiO2 mediated photocatalytic degradation in recent years. This Table 

shows the importance on the treatment of this type of pollutans, due to the extensive use. 

   

Pesticide References Pesticide References Pesticide References 

Aldrin Bandala et al., 2002; 
Ormad et al., 2010 
 

DMMP O´Shea,1997. Permethrin Chiaranzelli et 
al., 1995 

Acrinatrin 
 

Malato et al., 2000a; 
Malato et al., 2004 

3,4-DPA Pathirana,1997 Phorate Chen et al., 
1996: Hisanaga 
et al., 1990 

Alachlor Chiron et al., 1997; 
Moza et 
al.,1992;Muszkat et 
al., 1992, 1995; Wong 
and Chu, 2003a,b; 
Hincapié et al., 2005; 
Ormad et al., 2010; 
Farre et al., 2005 

Endosulfan and 
derivatives 

Ormad et al., 2010 Pyrimethanil Oller et al., 
2006 

Aldicarb 
 

Parreño et al., 1994. 
 

Endrin Ormad et al., 2010 Pirimiphos-methyl Herrmann et 
al., 1999 

Ametryn Ormad et al., 2010 EPTC 
 

Mogyoródi et al., 1993. 
Vidal et al., 1991 
 

Procimidona Hustert and 
Moza, 1997 
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Pesticide References Pesticide References Pesticide References 

Asulam Tanaka et al., 1992. Fenitrothion Chiron et al., 1997, 
Tanaka et al., 1992; 
Herrmann,1999, 
Hasegawa,1998; 
Tapalov et al., 2003; 
Mahmoodi et al., 2008

Prometon Borio et al., 
1998;Herrman
n, 
1999c;Pelizzetti
, 1990b, 1993; 
Ormad et al., 
2010 
 

Atrazine Parra et al., 2004; 
Clestur et al., 1993; 
Lackhoff and 
Niessner, 2002; 
McMurray et al., 
2006; Campanella 
and Vitalliano, 2006; 
Zhang et al., 2006; 
Bellobono,1995 
Chiron et al., 2000; 
Herrmann,1999; 
Minero et al., 
1996b;Muszkat 
etal.,1992,1995; 
Pelizzetti, 
1987,1990a,1990b,199
1,1992,1993. Sullivan 
et al., 1994; 
Texier,1999a, 1999b; 
Parra et al., 2004; 
Ormad et al., 2010; 
Farre et al., 2005 

Fenobucarb Hasegawa, 1998. Prometryn 
 

Muszkat et al., 
1992, 1995; 
Pelizzetti, 
1990b, 1993; 
Borio et al., 
1998; 
Evgenidou et 
al., 2007; 
Ormad et al., 
2010 

Azinfphos-methyl Domínguez,1998; 
Calza et al., 2008 
 

Fenuron Richard and Bengana, 
1996. 

Propachlor Muszkat et al., 
1995; 
Konstantinou 
et al., 2002; 
Muneer et al., 
2005 

Bendiocarb 
 

Hasegawa, 1998. Imidachloprid Chiron et al., 1997; 
Texier et al., 1999a; 
1999b; Agüera et al., 
1998; Fernández et al., 
1999; Sharma et al., 
2009 

Propanil Sturini at al., 
1997; 
Konstantinou 
et al., 2001 

Carbaryl Arancibia et al., 2002; 
Gelover et al., 2004 

HCH and 
derivatives 

Ormad et al., 2010 Propazine Muszkat et al., 
1992, 1995; 
Pelizzetti, 1992; 
Ormad et al., 
2010 

Carbetamid Brun, 1995; 
Percherancier et al., 
1995. 

Heptachlor Ormad et al., 2010 Propetryne Herrmann, 
1999 
 

Chlorfenvinfos Farre et al., 2005; 
Ormad et al., 2010 

Iprobenfos Hasegawa, 1998. Propoxur Lu et al., 1995, 
1999 

Chlorpyrifos Ormad et al., 2010 Isoprothiolane 
 

Hasegawa et al., 1998. Propyzamide Chiarenzelli et 
al., 1995; 
Hasegawa, 
1998;  
Torimoto et al., 
1996. 
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Pesticide References Pesticide References Pesticide References 

Carbofuran 
 

Kuo and Lin, 2000; 
Mahalakshmi et al., 
2006; Mansour, 1997; 
Tennakone, 1997 

Isoproturon Amorisco et al., 2005. 
Mansour, 1997; Farre 
et al., 2005; Sharma et 
al., 2008a,b,c,d; 2009; 
Ormad et al., 2010; 
Haque and Muneer, 
2003 

Simazine Hasegawa, 
1998.;Pelizzetti 
et al., 
1990b;1992;199
3; Ormad et al., 
2010 

Cyanobenzoate Muszkat et al., 1995 
 

Lindane Chiron et al., 1997; 
Herrmann, 1999c; 
Sabin , 1992; Guillard 
et al., 1995; Vidal, 
1998; Zaleska et al., 
2000. 
 

2,4,5-T Barbeni et al., 
1987; Chiron et 
al., 1997; Ollis 
et al., 1991a; 
Pelizzetti, 1993; 
Kamble et al., 
2006 

Cycloate Vidal et al., 1999; 
Mogyoródi et al., 
1993; Vidal, 1991 
 

Malathion Muszkat et al., 1995; 
Mak and Huang, 1992; 
1993; Doong and 
Chang 1997 

2,3,6-TBA Bianco-Prevot 
et al., 1999 

Chloroxynil Muszkat et al., 1992 Manuron Herrmann et al., 1999 Terbutylazina Mansour et al., 
1997 

Chlorpyriphos Picaht et al., 
2007;Chiarenzelli et 
al., 1995. 
 

MCC 
 

Tanaka et al., 1999 Terbutryn Muszkat et al., 
1992; Ormad et 
al., 2010 

Chlorsulfuron Fresno et al., 2005; 
Maurino et al., 1999 

Metamidophos Doong and Chang, 
1997; Hisanaga et al., 
1990; Malato et al., 
1999 

Tetrachlorophenol Pelizzetti, 1985 

2,4-D 
 

Terashima et al., 
2006: Sanjay et al., 
2004; Singh and 
Muneer, 2004; 
Chiron et al., 1997; 
2000; 
D´Oliveira,1993a; 
Herrmann et al., 
1998;1999; Lu et al., 
1995,1997; Martin et 
al., 1995; Müller, 
1998;Pichat et 
al.,1993a;1993b; 
Trillas et al., 
1995;Sun and 
Pignatello, 1995; 
Kamble et al., 2006 

Metamitron Mansour ,1997. Tetrachlorvinphos Herrmann,199
9; Kerzhentsev 
et al., 1996 

DBS Domínguez et al., 
1998; 

Metolachlor 
 

Sakkas et al., 2004; 
Chiron et al., 1997; 
Ormad et al., 2010 

Tetradifon Chiron et al., 
1997; Ormad et 
al., 2010 

DCB 
 

Muszkat et al., 1992. 
 

Metobromuron
 

Amine et al., 2005; 
Muszkat et al., 1992. 
 

Thiram Hasegawa, 
1998. 

DDT and DDT 
derivatives 
 

Borello et al., 1989; 
Chiron et al., 1997; 
Herrmann,1999c; 
Pelizzetti, 1985; 
1993;Sabin, 1992; 
Zaleska et al., 2000; 
Ormad et al., 2010 

Methoxychlor Ormad et al., 2010 Tifensulfuron-methyl 
 

Maurino et al., 
1999. 
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Pesticide References Pesticide References Pesticide References 

DEMP 
 

O´Shea, 1997a MIPC 
 

Tanaka et al., 1999 Thiobencarb Nishida and 
Ohgaki, 1994. 
 

DEP 
 

Tanaka et al., 1992; 
Hisanaga et al., 1990; 
Muneer et al., 1998. 

MMPU 
 

Muszkat et al., 1992. 
 

Thiocarbaryl Nishida and 
Ohgaki, 1994. 
 

Diazinon Sakkai et al., 2005; 
Mahmoodi et al., 
2007;Doong and 
Chang, 
1997;Hasegawa, 
1998.; Mak,1992; 
Mansour,1997; 
Kouloumbos et al., 
2003; 

Molinate Mogyoródi et al, 1993; 
Konstantinou et al., 
2001; Ormad et al., 
2010;  
 

Triadimefon 
 

Chiarenzelli et 
al., 1995. 

Dichloran Chiarenzelli et al., 
1995. 

Monocrotophos Shankar et al., 
2004;Chen et al., 1996 

Trifluralin Ormad et al., 
2010 

Dichloroaniline Muszkat et al., 1995. Monuron Augliaro, 1993; 
Pramauro et al., 1993 
 

Trichlorophenol Barbeni et al., 
1986;D´Oliveir
a et al., 1993; 
Jardim et al., 
1997; Ollis et 
al., 1991a; 
Pelizzetti, 1985; 
1993; Tseng  
and Huang, 
1991; 
Tanaka et al., 
1992 

Dichlorophenol 
 

Bhatkhade et al., 
2004; Kim and Choi, 
2005; Boyarri et al., 
2005; Texier et al., 
1999a,b;Jardim et al., 
1997; Manilal, 1992 

MPMC Tanaka et al., 1999. Trichlopyr 
 

Poulius, 1998; 
Qamar et al., 
2006 

Dichloropyridine Kyriacou et al., 1997 MTMC Tanaka , 1999. Trietazine Muszkat et al., 
1992, 1995 

Dichlorvos Hasegawa et al., 
1998; Chen et al., 
1996; Chen, 1997; Lu, 
1993, 1995; Mak et 
al., 1992, Mak and 
Hung, 1993; 
Hisanaga et al., 1990; 
Evgenidou et al., 
2005;2006; Oancea 
and Oncescu, 2008 

Oxamil 
 

Texier  1999a.; Malato 
et al., 2000b; Oller et 
al., 2006 
 

Vernolate Mogyoródi et 
al., 1993; Vidal, 
1991. 

Dicofol Chiron et al., 1997; 
Ormad et al., 2010 

Paraquat Florencio et al., 
2004;Moctezuma, 
1999. 

Vinclozoline Hustert and 
Moza, 1997. 

Dieldrin Ormad et al., 2010 Parathion 
 

Zoh et al., 2005, 
2006;Chen et al., 1996; 
Chiron et al.,1997; 
Herrmann, 1999; 
Sakkas et al., 2002 

Pendimetalin Mansour, 1997; 
Moza et al., 
1992 

Diquat Florencio et al., 2004; 
Kinkennon et al., 
1995. 

Paration-metil Sakellarides et al., 
2004; Zoh et al., 
2005,2006;Chiron et 

XMC Tanaka et al. , 
1999 
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Pesticide References Pesticide References Pesticide References 

al., 1997, 2000; 
Evgenidou et al., 
2007b; Ormad et al., 
2010 

Dimethoate Oller et al., 
2006;Domínguez et 
al., 1998;Evgenidou 
et al., 2006; Oller et 
al., 2006; Ormad et 
al., 2010 

PCDD Barbeni et al., 1986; 
Pelizzetti, 1985 

  

Diuron Canle et al., 2005; 
Kinkennon et 
al.,1995;Muneer et 
al., 1998; Farre et al., 
2005;Katsumata et 
al., 2009;Macounova 
et al., 2003;Ormad et 
al., 2010 

PCDF Barbeni et al., 1986; 
Pelizzetti, 1985. 

  

Table 3. References on heterogeneous photocatalytic degradation of pesticides in water 
using TiO2. 

2.2 Kinetics and reaction mechanisms 

For an extended period of time different works analyzing heterogeneous photocatalysis 

mechanisms have proposed hypotheses on the generation of photoproduced holes (h+) and 

surface trapped hydroxyl radicals (HO�) (Romero et al., 1999). Initial steps involved in band-

gap irradiation of TiO2 particles (or any other semiconductor) have been studied in detail by 

lasser-flash photolysis measurements (Bahnemann et al., 1997; Serpone, 1996). It is well 

stablished that TiO2 illumination with radiation of the proper wavelength (≥ Eg) generates 

electron/hole pair which can recombine or dissociate (both reactions are in competition) to 

produce, in the latter case, a conduction band electron and a valence band hole which are 

able to migrate to the particle surface. Once in the surface, both charge carriers will be able 

to interacting with adsorbed electron acceptors and oxidize electron donors. In the 

heterogenous process in aqueous face, oxygen is often present as electron acceptor and HO- 

and H2O are available as electron donors to yield hydroxyl radicals. It is well documented 

that these trapping reactions occurs in less than 30 ps (Colombo et al., 1995; Skinner et al., 

1995; Serpone et al., 1995).  

Considering the importance of mass transference in the process, initial practical approaches 

to quantitative description of HP kinetics has been commonly carried out using a Langmuir- 

Hinshelwood (L-H) kinetics model (Al-Ekabi et al., 1988, 1989). This mathematical model 

assumes that the reaction occurs on the catalyst surface. According to L-H model, the 

reaction rate (r) is proportional to the fraction of particle surface covered by the pollutant 

(θx). Mathematically, 

 r
r x

s s

dC k KC
r=- =k θ =

dt 1+KC+K C
 (3) 

where kr is the reaction rate constant, K is the pollutant adsorption constant, C is the 
pollutant concentration at any time, Ks is the solvent adsorption constant and Cs is its 
concentration. During eighties, many authors presented their data using L-H kinetic 
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approach (Chen et al., 1983; Herrmann et al., 1983; Matthews, 1988; Nguyen and Ollis, 1984; 
Ollis, 1984; Pruden and Ollis, 1983). Nevertheless, despite L-H approach fits properly 
experimental data, it does not consider the interaction of the radiation field (Bandala et al., 
2004; Arancibia et al., 2002).  

Other kinetic studies on heterogeneous photocatalysis suggest that reaction rate increases 
with catalyst concentration to get a maximum value for catalyst concentration between 0.2 
and 1 g/L, depending on the compound and the reactor used. Over these concentrations, 
reaction rate remains unaffected or decreases when catalyst concentration increases 
(Jimenez et al., 2000; Arancibia et al., 2002; Curco et al., 1996; Gimenez et al., 1999). An 
interesting problem is the relation between catalyst concentration, reaction rate, radiation 
absorption and process improvement, because, several studies have suggested important 
associations depending on the catalyst radiation absorbed (Schiavello et al., 1999; Brandi et 
al., 1999, Arancibia et al., 2002; Bandala et al., 2004). From these results, several models, most 
of them based on complex mathematical or static computational approaches, have been 
developed and proposed in order to predict radiation absorption and scattering as function 
of catalyst concentration, optical path and catalyst type and its relation to pseudokinetic 
constants experimentally obtained (Bandala et al., 2004; Arancibia et al., 2002; Curco et al., 
2002). Based on the radiation absorbed by the catalyst, some authors, as Cassano’s group 
considered the most representative in the field, have considered that the vital point in this 
process resides on the a priori design of photochemical reactors, that improve of HP 
reactions and the generation of intrinsic reaction kinetic that may lead to process scaling-up 
(Alfano et al., 2000; Cassano and Alfano, 2000; Romero et al., 1999; Brandi et al., 2000). 
Besides reactor design, heterogeneous photocatalytic degradation reaction can be enhanced 
by the use of higher active catalyst or inorganic oxidizing species. In the first case, activation 
of TiO2 under visible light is a desirable technological approach. In order to utilize visible 
light for TiO2 excitation, several dye-synthesized and ion-doped TiO2 have been developed 
achieving higher performances in their use for photocatalyzed degradation of different 
organic substrates (Bae and Choi, 2003; Lin et al., 2006; Xu et al., 2002; Iwasaki et al., 2000; 
Asah et al., 2001; Irie et al., 2003; Burda et al., 2003) using the band gap narrowing effect 
produced. However, only few recent reports deals with application of visible light activated 
TiO2 to photoassisted pesticide degradation (Senthilnathan and Philip, 2010; Sojicetal, 2010). 

2.3 Effect of oxidizing species on the reaction rate 

According to reaction sequence 2, production of charge carriers is a fundamental step in 

degradation processes using HP. Once generated, these species may lead to hydroxyl 

radicals generation (and the subsequent organic matter degradation) or can recombine to 

generate the initial state and energy emission. This latter reaction, known as recombination, 

is a practical problem when using TiO2 catalyst and it is extremely efficient (reaction rate = 

10-9 s) when no proper electron acceptor is present in the reaction media (Malato et al., 1998; 

Hoffman et al., 1995). This side process is energy-wasting and limiting to get high quantum 

yield (i.e. number of primary chemical reactions per photon absorbed). In most of the cases, 

dissolved oxygen is used as electron scavenger in these processes and several works have 

dealed on its efficiency as oxidant agent to complete organic matter mineralization (Li Puma 

et al., 1993; Martin et al., 1995; Mills et al., 1993; Ollis et al., 1991; Pelizzetti and Minero, 

1993). Nevertheless, it has been demonstrated that only low mineralization is reached when 

dissolved oxygen is used as oxidant agent in, for example, the photoassisted degradation of 
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pesticides (Mills and Morris, 1993; Serra et al., 1994; Minero et al., 1996). Several previous 

studies have investigated the role of alternative electron acceptors such as peroxide 

compounds (Wang and Hong., 1999; Wong and Chu, 2003; Dionysiou et al., 2004). Among 

them, hydrogen peroxide has been identified as widely used to improve photocatalytic 

processes. This simple peroxide is considered as environmentally friendly and of great 

interest for “green” chemistry and engineering applications (Ghosh et al., 2001). Hydrogen 

peroxide has been applied to enhance the rates of TiO2 photocatalytic reactions (Madden et 

al., 1997; Pacheco et al., 1993; Malato et al., 1998; Wang and Hong, 1999; Doong and Chang, 

1997; Wong and Chu, 2003) using UV radiation (Mengyue et al., 1995; Haarstrick et al., 1996; 

Pacheco et al., 1993; Malato et al., 1998). The improvement of photocatalytic rates using 

H2O2 has been attributed to many factors, mainly: hydrogen peroxide is better electro 

acceptor than oxygen (Ollis et al., 1991; Madden et al., 1997; Malato et al., 1998; Peterson et 

al., 1991; Cornish et al., 2000; Ohno et al., 2001), its potential for reduction is 0.72 V while this 

value for oxygen reduction is – 0.13 V (Cornish et al., 2000), it is considered able to favor 

photocatalytic mechanisms by the removal of photogenerated electrons in the conduction 

band (Dionysios et al., 2004). Nevertheless it has been well documented that, at high 

concentrations of H2O2, it can compete for adsorption with organic matter (Dionysios et al., 

2004; Bandala et al., 2002; Sauer et al., 2002; Cornish et al., 2000). Besides hydrogen peroxide, 

other oxidant agents have been tested for improve photocatalytic reactions (Martin et al., 

1995; Pelizzetti et al., 1991; Al-Ekabi et al., 1992; Kenneke et al., 1993). For example, 

peroxidisulphate ( 2-
2 8S O ) has been indicated as an important oxidant, allowing drastical 

improvements in the TiO2 photocatalyzed mineralization of pesticides and pesticide 

mixtures by Malato et al. (1998; 1999; 2000) and they think its use is justified when pesticide 

mineralization is the major concern. 

2.4 Material science implications: slurries or immobilized photocatalyst 
Generation of catalyst sludges is among main disadvantages for HP processes in water 
treatment. This kind of treatment, currently available at pilot-plant level, uses suspended 
TiO2 in photoreactors where the semiconductor is recovered after the treatment (Malato et 
al., 2000; 2002).  According to various lab scale research reports (Bideau et al., 1995; 
Matthews and McEvoy, 1992; Sabate et al., 1992; Chester et al., 1993), the use of TiO2 in 
suspensions is more efficient than on its immobilized form. Nevertheless, this latter form 
posses specific advantages, such as cost reductions, material losses decrease and skipping 
recovery steps in the process, which make desirable the generation of immobilized titania 
photocatalyst with higher efficiency as compared with those reported to date 
(Balasubramanian et al., 2004; Gelover et al., 2004).  
Several supporting materials, from sand to quartz optical fiber, have been reported so far for 
TiO2 immobilization. In the same way, a wide number of methods for catalyst fixation as 
reviewed by Pozzo et al., (1997). In last years, the use of in situ catalyst generation method 
seems to be the most promising technology for catalyst immobilization (Rachel et al., 20002; 
Guillard et al., 2002; Gelover et al., 2004). Other authors (Guillard et al., 2003; Gelover et al., 
2004) has demonstrated that, by the use of these in situ catalyst generation method, fixed 
form of titanium dioxide generated present equal efficiency as Degussa P-25 (considered as 
the most efficient form of titanium dioxide) suspended catalyst for pesticide degradation. 
However, more scientific research is necessary about the development of this promising 
idea before it can be considered for future design of efficient photocatalytic plants.  
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2.5 Homogeneous photocatalysis  
Homogeneous photocatalysis refers to those photocatalytic processes in which the catalyst is 
dissolved in water during the redox process. In general, homogeneous processes can be 
represented as depicted in reaction sequence (4) (Domenech et al., 2004): 

 

C
hν⎯ → ⎯ C∗

C∗ + R → R∗ + C

R∗ → P

 (4) 

Similarly to heterogeneous photocatalysis, homogeneous processes are based in the 
generation of hydroxyl radicals but, in difference, some other highly oxidant species can be 
generated and be responsible of organic contaminant degradation (Anipsitakis and 
Dionysiou, 2004; Yamazaki and Piette, 1991; Sawyer et al., 1996). Since the well known 
Fenton’s experiments in the latest XIX century, it is documented that hydrogen 
peroxide/ferrous salts solutions are capable to oxidize organic compounds (Fenton, 1894). 
Fenton reagent has been reported of high efficiency degrading aliphatic hydrocarbons, 
halogenated aromatics, polychlorinated byphenils, nitroaromatics, azo-dyes and pesticides 
(Bigda, 1995) as shown in Table 4. 

3. Fenton-like reactions 

Besides Fenton reaction, several Fenton-based procedures have been developed, being these 
reactions, inspired on the Fenton reaction chemistry (so-called Fenton-like processes). It has 
been demonstrated that, in many of the cases, Fenton-like processes are more efficient than 
Fenton reaction to water treatment and will, probably, be the next step in the scaling-up of 
AOPs application to pesticide treatment in water. 
When Fenton reaction involves ultraviolet radiation, visible light or both, the reaction is 
known as the photo-Fenton process. Compared with dark Fenton reaction, photo-Fenton 
process has numerous advantages such as the increase of degradation rate, minimize in 
sludge generation and the use of solar energy, among others (Malato et al., 2002; De Laat  
and Le Troung, 2006; Chacón et al., 2006, Orozco et al., 2008). Photo-Fenton process is 
among the most efficient methods to generate hydroxyl radicals (Bauer et al., 1999). Even 
higher than other very well studied and widely applied AOPs such as TiO2/UV and 
H2O2/UV as shown in comparative studies using 4-chlorophenol as model wastewater 
contaminant (Krutzler and Bauer, 1999). Many parameters, such as initial concentration of 
ferric salt and hydrogen peroxide, the ratio of [H2O2]0/[Fe(II)]0, pH, light intensity and 
temperature influence on the efficiency of photo-Fenton process (Bandala et al., 2007; Lee 
and Yoon, 2004) are determinants in the efficiency. 
Except for Fenton reagent, the potential of generating highly reactive radical species using 
transition metals coupled with electron acceptors have not been explored completely for 
water treatment (Anipsitakis and Dionysiou, 2004). Recently, Anipsitakis and Dionysiou 
(2004) have carried out experiments in order to identify radical generation by the interaction 
of transition metals with common oxidants. They tested 14 different combinations of metals 
and oxidant and found that cobalt (II)/potassium peroximonosulfate (Co/PMS) system 
posses very attractive characteristics for water decontamination (Anipsitakis and Dionysiou, 
2004). This homogeneous system have been shown to be able for generate sulfate radicals 
and demonstrate greater efficiencies when compared with Fenton reagent for the treatment 
of water containing organic pollutants (Anipsitakis and Dionysiou, 2004). 
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Pesticide References Pesticide References Pesticide References 

Abamectin  Fallaman et al., 
1999 

  Metoxichlor 
 

Houston and 
Pignatello, 
1999; 
Pignatello and 
Sun, 1995 

Acephate Yu, 2002 Dichlorophenol
 

Wadley and Waite, 
2002; Aaron and 
Oturan, 2001; 
Detomaso et al., 2003; 
Momani et al., 2006; 
Momani, 2006; 
Bayarri et al., 2007 

Metolachlor Malato et al., 
2002, 2003 

Acrinatrin 
 

Fallaman et al., 
1999 

Dimethoate Nikolaki et al., 2005; 
Oller et al., 2005 
 

Metomyl 
 

Wang et al., 
2004; Scherer 
et al., 2004; 
Muszkat et al., 
2002 

Alachlor Houston and 
Pignatello, 1999; 
Laperlot et al., 2006; 
Farre et al., 
2007,2005; Wang 
and Lemley, 2001; 
Hincapie et al., 2005; 
Perez et al., 2006 

Diuron Malato et al., 2002; 
Lapertot et al., 2006; 
Farre et al., 2007; 
Hincapié et al., 2005; 
Perez et al., 2006; 
Farre et al., 2005; 
Malato et al., 2003; 
Edelahi et al., 2004 

Metribuzin 
 

Yu, 2002 

Aldicarb 
 

Houston and 
Pignatello, 1999  
 

DMDT Barbusinski and 
Filipek, 2001 

Metamidophos Fallaman et 
al., 1999 
 

Atrazine Bandala et al., 2007; 
Houston and 
Pignatello, 1999; 
Sun and Pignatello, 
1993; Laperlot et al., 
2006; Wang et al., 
2003; Farre et al., 
2007; Ostra et al., 
2007; Pignatello, 
1993; Arnold et al., 
1995; Adams et al., 
1990; Ijpelaar et al., 
2000; Hincapie et 
al., 2005; Perez et 
al., 2006; Farre et 
al., 2005  

3,4-DPA 
 

Saltmiras and 
Lemley, 2000 

Parathion-ethyl Oturan, 2003 

Azinphos-methyl Houston and 
Pignatello, 1999 
 

Ethylene 
thiourea 

Fallaman et al., 1999 Paration-methyl Pignatello and 
Sun, 1995; Roe 
and Lemley, 
1997; 
Gutierrez et 
al., 2007 

Bromacil 
 

Muszkat et al., 2002 Endosulfan Yu, 2002 Pentachlorophenol Farre et al., 
2007 

Carbaryl Kong and Lemley, 
2006; Wang et al., 
2003  

Edifenphos Barbusinski and 
Filipek, 2001; Yu, 
2002; Badaway et al., 
2006 

Pyrimethanil Fallaman et 
al., 1999 
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Carptan Houston and 
Pignatello, 1999 

Fenitrothion Fallaman et al., 1999; 
Malato et al., 2002; 
Malato et al., 2003 

Pichloram Houston and 
Pignatello, 
1999 

Carbofuran 
 

Houston and 
Pignatello, 1999; 
Wang et al., 2003 

Formetanate Houston and 
Pignatello, 1999 

Profenophos Badawy et al., 
2006 

Chlorfenvinphos Farre et al., 2005; 
Hincapié et al., 
2005; Lapertot et al., 
2006; Barbusinski 
and Filipec, 2001 

Glyphosate Barbusinski and 
Filipek, 2001 

Propamocarb Fallaman et 
al., 1999 

Chlorophenol Krutzler et al., 1999; 
Detomaso et al., 
2003 

HCH 
 

Yu, 2002 Simazine Houston and 
Pignatello, 
1999; Adams 
et al., 1990 

Chlorotalonil Gutierrez et al., 
2007 

Fenthion Fallaman et al., 1999; 
Malato et al., 2002; 
Malato et al., 2003 

2,4,5-T Pignatello, 
1993; Aarón 
and Oturan, 
2001; 
Pignatello, 
1992; Sun and 
Pignatello, 
1993 

Chlorpyriphos Yu, 2002 Imidachloprid Lapertot et al., 2006; 
Farre et al., 2007; 
Hincapie et al., 2005; 
Farre et al., 2005 

Tebuconazole Faxeira et al., 
2005 

4-chloro-
phenoxia-cetic 
acid 

Sedlak et al., 1992 Isoproturon Fallman et al., 1999 Tamaron Faxeira et al., 
2005 

2,4-D 
 

Oturan et al., 1999; 
Pignatello, 1992; 
Sun and Pignatello, 
1993; Bandala et al., 
2007; Sun and 
Pignatello, 1992; 
Sun and Pignatello 
1993a,b; Wang et 
al., 2003;  Wang and 
Lemley, 2001; 
Aaron and Oturan, 
2001; Kong and 
Lemley, 2006 

Luteron Roe and Lemley, 
1997; Oturan, 2003; 
Houston and 
Pignatello, 1999 

Treflan MTF Saltmiras and 
Lemley, 2001 

Dicamba Houston and 
Pignatello, 1999 

Malathion Houston and 
Pignatello, 1999 

Terbutryn Adams et al., 
1990 

Disulfoton 
 

Houston and 
Pignatello, 1999 

MCPP Aaron and Oturan, 
2001 

Tetraethyl 
pyrophosphate 

Oturan, 2003 

DDT 
 

Barbusinsky and 
Filipek, 2001; 
Bousahel et al., 2007

Metamidophos Gutierrez et al., 2007; 
Yu, 2002; Fallaman et 
al., 1999; Faxeira et 
al., 2005 

Trichlorophenol Aaron and 
Oturan, 2001 

Diazinon Wang et al., 2003;  
Badaway et al., 
2006; Yu, 2002 

  Trifluralin Wang et al., 
2003 

 

Table 4. References on homogeneous photocatalytic degradation of pesticides in water 
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3.1 Effect of metal counterion  

An interesting effect that should be take account when applying homogeneous 

photocatalysis is salt counterion. Inorganic anions ( -Cl , 2-
4SO , 2-

4HPO  )in wastewater or 

added as reagents have a significant effect on the reaction rate in the case of Fenton process. 

These effects are a) complexation with Fe(II) or Fe(III), affecting iron species reactivity and 

distribution; b) Precipitation reactions leading to a decrease of the active dissolved Fe(III); c) 

Scavenging of hydroxyl radicals and d) oxidation reactions involving these inorganic 

radicals. It have been well documented that cloride ions shows inhibitory effect for 

oxidation reactions, using both Fe(II) and Fe(III), of phenols (Tang and Huang, 1996), 

dichlorvos (Lu et al., 1997), atrazine (De Laat et al., 2004) and azo-dyes (Orozco et al., 2008). 

On the other hand, the effect of inorganic salt counterion in cobalt-mediated Fenton-like 

processes is not completely clear. It has been shown that precence of chloride ions produce 

highly chlorinated intermediates during oxidation process probably due to chloride radicals 

generation (Anipsitakis et al., 2006). The presence of sulfate or nitrate ions did not show any 

effect on reaction rate. The effect of organic counterion for cobalt salts can be related with 

the availability to cobalt (II) re-generation during oxidation processes and enhancing of 

reaction rate by radiation. Currently, we are testing the effect of several organic cobalt salts 

in the degradation rate of the herbidice 2,4-D and observed that the counterion effect is very 

important on the global reaction rate. 

4. Radiation source 

In homogeneous and heterogeneous photocatalysis, radiation is identified as a very important 

supply to the overall process. Two main radiation sources have been used to promote these 

processes: artificial radiation and solar radiation. The use of artificial radiation (generally a 

high pressure mercury or xenon arc lamp) sources has been widely applied for pesticide 

degradation by mean of different photochemical processes, among them homogeneous or 

heterogeneous photocatalysis (Chiron et al., 2000). In recent years, application of 

photocatalytic processes using solar radiation has increased as a cost-effective alternative for 

these technologies. It is interesting note that, actual industrial/commercial applications 

developed recently are related to solar enhanced processes (Blanco and Malato, 2003). 

Different to solar thermal processes, where large amounts of radiation of any wavelength is 
collected, in solar photocatalytic processes only high-energy radiation is able to be used to 
promote photochemical reactions (i.e. λ<600 nm). This selective wavelength range produce 
that only very specific solar collection geometries can be useful to be applied for solar driven 
photocatalytic reactions. Several different solar collector geometries have been tested for 
application to solar photocatalytic processes (both, homogeneous and heterogeneous) and a 
wide number of works dealing with the comparison between all these experimental results 
have been reported (Bandala and Estrada, 2007). From all these information, the actual 
consense is that low concentration collectors seems to be the best technological option 
instead of earlier high concentration designs (Blanco et al., 2007; Bandala and Estrada, 2007). 
In particular, compound parabolic concentrators (CPCs) have been identified as very 
promising technological approach to industrial application of solar photocatalysis. CPCs 
combine the characteristics and advantages of high range concentrators and static flat 
systems. Among their main advantages are use of global solar radiation, absence of tracking 
systems, low evaporation of volatile compounds, low cost and high optical and quantum 
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efficiencies conditions. Some authors have reported the comparison some solar collection 
geometries and found that V trough concentator is able to perform solar photocatalytic 
processes in practically equivalent conditions than widely reported CPCs (Bandala and 
Estrada, 2007). This solar collection geometry have not being tested enough for solar 
chemistry applications but, as far as we can see, could be an interesting alternative anytime 
the actual solar collection geometry design is simpler than CPCs, optical and quantum 
yields are similar and cost could be considerably lower. 

5. Coupled advanced technologies for pesticide degradation 

Despite AOPs are cost effective processes for water and mainly wastewater treatment, one 
of their main problems is their cost when compared with other conventional treatment 
processes such as biological treatment (Sarria et al., 2003). The treatment of water containing 
non-biodegradable toxic organic compounds is an environmentally complex issue in several 
industries such as pulp and paper, textile and petroleum industries. Considering the toxic 
nature of pesticides, it is clear that these kinds of xenobiotics are, in many cases, low 
biodegradable and, in most cases, highly refractory organic compounds. Due to this reasons, 
coupling AOPs and biological processes should be a good alternative to minimize the costs of 
treatment of water or wastewater containing this kind of pollutants. The strategy of combining 
chemical and biological processes to degrade contaminants in water has been proposed since 
middle of 90’s (Scott and Ollis, 1995; 1997). Since then several works on the biological 
treatment of wastewater deal with the combined operation of chemical and biological 
oxidations (Scott and Ollis; 1995; Beltran et al; 1997; Benitez et al., 2001). Felsot et al. (2003), 
among other authors, have suggested that the combination of physical or chemical methods 
with biological treatment is likely a feasible option for the treatment of pesticide wastewater. 
In all these works is demonstrated the beneficial use of chemical oxidation process as a 
pretreatment or post-treatment of a biological process (Beltran, 2004, Lapertot et al., 2007). 
Usually, when coupling chemical and biological processes the aim of the chemical oxidation 
is not to mineralize the organic contaminants but produce the conversion of high toxic, 
refractory parent components into biodegradable intermediates capable to be completely 
removed by biological processes (Esplugas et al., 2004). The possibility of minimal use of the 
oxidant agent, usually the most expensive component of the chemical process, followed by a 
low cost biological process (i.e. activated sludge, biofilm reactors) can help to improve the 
cost efficiency of a high effective process. 
The effectivity of the coupled process is usually recorded using time evolution of coarse 
concentration variables such as total organic carbon (TOC), chemical oxygen demand 
(COD), biochemical oxygen demand (BOD) or some of their relationships (Esplugas et al., 
2004; Sarria 2003; Pulgarin et al., 1999). 
Relatively few works on the application of this kind of coupled methodologies are available 
in literature. Most of them corresponds to ozonation processes (Marco et al., 1997; Helble et 
al., 1999; Yeber et al., 1999; Beltran et al., 1999; Benitez et al., 2001; Ledakowicz et al., 2001), 
H2O2/UV (Adams and Kuzhikanni, 2000;  Ledakowicz et al., 2001), TiO2/UV oxidation (Li 
and Zhang, 1996; Li and Zhao, 1997; Chum and Yizgohon, 1999; Hess et al., 1998; Parra et 
al., 2002), Fenton and Fenton-like (Pulgarin et al., 1999; Chamarro et al., 2001; Sarria et al., 
2003; Rodriguez et al., 2002; Sarria et al., 2001; Sarria et al., 2002) and wet oxidation 
(Donlagic and Levec, 1998). Table 5 shows some examples of physical-chemical/biological 
processes, including the treated pesticide, both process and the correspondent reference. 
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Pesticide(s) Biological process Physical-chemical 
process 

References 

EPTC, molinate, propazine, 
atrazine, simazine, prometryn, 
ametryn, simetryn, pyrazon, 

tris MEA, 

Attached biomass 
(biofilter) 

ozonation Mezzanote et al. 
(2005) 

Tetraconazole, metribuzin suspended cells anodic Fenton Scherer et al. 
(2004) 

Atrazine biomineralization ozonation Scherer et al. 
(2004). 

Atrazine/sotriazine microorganisms chemical Scherer et al. 
(2004). 

Atrazine Klebsiella terragena 
DRS-1 

ozone Ikehata and El-
Din, 2005. 

Eyanazine, atrazine, metachlor 
and paraquat 

microorganisms ozone Ikehata and El-
Din, (2005) 

Simazine various 
microorganisms 

oxzone, UV, 
photolisis or 

O3/UV 

Ikehata and El-
Din, (2005) 

Eyanuric acid, amino-S-
triazines, chloro-amino-
strazines, chloroethyl-S-

triazines 

microbial culture ozone Ikehata and El-
Din, (2005). 

Table 5. Some examples of coupled biological-physical-chemical process reported in 
literature 

It is clear that pesticide removal from water should be one of the main applications of this 
coupled methodology. Nevertheless few reports are available in literature dealing with the 
use of this approach to pesticide remotion (Parra et al., 2000; 2002; Sarria et al., 2002; 
Lapertot et al., 2007; Al-Momani et al., 2006; Contreras et al., 2003). They had found that 
most of the tested pesticide effluents, readily determined as non-biodegradable by the Zahn-
Wellens test, increased in their biodegradability once the photoassisted process was applied. 
The actual behavior of toxicity of isoproturon effluent, for example, showed an increase in 
this parameter during the first reaction minutes followed of sharp decrease. Authors suggest 
(Parra et al., 2000) that this behavior could be due to formation of intermediate compounds 
with higher toxicity than the parent pesticide and its further oxidation. For some other cases, 
effluent biodegradability was not completely reached after photoassisted process. For 
example, in the case of metobromuron the BOD/COD ratio went from 0.0 (stated as 
completely non-biodegradable) to 0.1, too low if compared with the BOD/COD ratio 
considered for municipal biodegradable wastewater, 0.4 (Parra et al., 2000). 
As another example, Table 5 shows the partial contribution of the pre- and post treatment 
using ozone, over the entire coupled ozonation-biological process applied to in streams 
containing different pesticides, at different concentrations. As observed, preozonation of the 
stream can be very advantageous for the coupled process, contributing with a 56-98% of the 
overall pesticide removal. Biological process can contribute (in this specific case) with 1.8-
41% of the removal, and finally, post-ozonation process can polish the stream, with 
additional removals of 0-3%. 
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6. Pesticide degradation by advanced electrochemical oxidation processes 

6.1 General aspects 

In the last years, there has been great interest in the development of effective methods of 

pollutans removal from aqueous solutions based on direct and indirect electrochemical 

techniques. The most useful direct electrochemical method is anodic oxidation (Kaba et al., 

1990; Kotz et al., 1991; Stucki et al., 1991; Comninellis and Pulgarin, 1991, 1993; Murphy et 

al., 1992; Comninellis and Nerini, 1995; Feng et al., 1995; Johnson et al., 1999; Gandini et al., 

2000; Rodrigo et al., 2001; Rodgers and Bunce, 2001; Wu and Zhou, 2001) where organic 

compounds are essentially degraded by reaction with adsorbed hydroxyl radicals at the 

anode surface, which are generated from water oxidation: 

 + -
2 adsH O   OH +H +e→ i  (5) 

Since the participation of ads OHi  radicals in the reaction is the key factor to degrade the 

pollutan, then the generation efficiency of them should be tightly related to the nature of the 

anodic material. Thus, although the traditional Pt anodes has been used for this purpose 

(Kaba et al., 1990; Kotz et al., 1991; Stucki et al., 1991; Comninellis and Pulgarin, 1991, 1993; 

Murphy et al., 1992; Comninellis and Nerini, 1995), it are less efficient that the oxide-base 

electrodes such as PbO2 (Kaba et al., 1990; Feng et al., 1995; Wu and Zhou, 2001), doped 

PbO2 (Feng et al., 1995), doped SnO2 (Kotz et al., 1991; Stucki et al., 1991; Comninellis and 

Pulgarin, 1991, 1993; Johnson et al., 1999), IrO2 (Comninellis and Nerini, 1995; Rodgers and 

Bunce, 2001) or more recently to the boron-doped diamond thin-layer anode, BDD (Gandini 

et al., 2000; Rodrigo et al., 2001). 
On the other hand, the indirect electrochemical methods involves the previous formation of 

oxidizing agents such as H2O2 (Hsiao and Nobe, 1993; Do 1993, 1994; Ponce de Leon and 

Pletcher, 1995; Brilla et al., 1996; Brillas et al., 1998; Alvarez-Gallegos and Pletcher, 1999; 

Harrington and Pletcher, 1999; Oturan et al., 1999; Brillas et al., 2000; Oturan et al., 2000, 

Oturan, 2000; Oturan et al., 2001): 

 O2  +  2H+  +  2e−  →  H2O2 (6) 

or the well known Fenton’s reagent (H2O2/Fe2+) (Hsiao and Nobe, 1993; Do 1993, 1994; 

Ponce de Leon and Pletcher, 1995; Alvarez-Gallegos and Pletcher, 1999; Oturan et al., 1999; 

Oturan et al., 2000, Oturan, 2000; Oturan et al., 2001): 

 Fe2+  +  H2O2  →  Fe(OH)2+  +  ·OH (7) 

The combination of chemical and electrochemical procedures has also been reported as a 

good alternative to water treatment. The electro-Fenton  and photoelectro-Fenton methods 

can be considered as advanced electrochemical oxidation processes, AEOPs (Brilla et al., 

1996; Brillas et al., 1998; Brillas et al., 2000; Boye, et al., 2002). 

6.2 Mechanism of the electrochemical pollutan oxidation 

Principal advantages of the electrooxidation method are the case of operations, a wide range 

of treatment conditions and eliminations of the need to generate, dispense and store 

treatment reagents, but more important is their capability to induce a very deep oxidation 
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that can result in a virtually complete mineralization of the pollutan (Comninellis C. 1994; 

Houk et al., 1998; Feng and Li, 2003). It has been shown that the electrode material plays a 

key role on the evolution of the oxidation process (Martínez-Huitle and Ferro, 2006; 

Martínez-Huitle et al, 2004; Belhadj and Savall, 1998)  and consequently on the by-products 

of oxidation. According to the mechanism involved in the pollutant oxidation (Martínez-

Huitle and Ferro, 2006), the electrode materials have been classified in two main groups: 

active and non-active electrode material (Martínez-Huitle and Ferro, 2006; Martínez-Huitle et 

al, 2004). 

The proposed model assumes that the initial reaction in both kind of anodes (generically 
denoted as M) corresponds to the oxidation of water molecules leading to the formation of 

physisorbed hydroxyl radical (M(•OH)): M  +  H2O  →  M(•OH)  +  H+  +  e-. Both the 

electrochemical and chemical reactivity of heterogeneous M(•OH) are dependent on the 

nature of the electrode material. The surface of active anodes interacts strongly with •OH 
radicals and then (Martínez-Huitle and Ferro, 2006; Martínez-Huitle et al, 2004; Quiroz et al., 
2005; Quiroz et al., 2006), a so-called higher oxide or superoxide (MO) may be formed. This 
may occur when higher oxidation states are available for a metal oxide anode, above the 

standard potential for oxygen evolution (Eº = 1.23 V vs. SHE): M(•OH)  →  MO  +  H+  +  e− . 

The redox couple MO/M acts as a mediator in the oxidation of organics by MO  +  R  →  M  
+ RO; which competes with the side reaction of oxygen evolution via chemical 

decomposition of the higher oxide species: MO  →  M  +  ½ O2 . 

In contrast, the surface of a non-active anode interacts so weakly with •OH radicals that 

allows the direct reaction of organics with M(•OH) to give fully oxidized reaction products 

such as CO2 and H2O (M(•OH)  +  R → M + m CO2 + n H2O +   H+  +  e− ) where R is an 

organic compound with m carbon atoms and 2n hydrogen atoms, without any heteroatom, 

which needs (2m + n) oxygen atoms to be totally mineralized to CO2 and H2O. This reaction 

also competes with the side reaction of M(•OH) like direct oxidation to O2 (M(•OH)  →  M  +  

½ O2  +  H+  +  e−) or indirect consumption through dimerization to hydrogen peroxide by 2 

M(•OH) → 2 M  +  H2O2. A non-active electrode does not participate in the direct anodic 

reaction of organics and does not provide any catalytic active site for their adsorption from 

the aqueous medium (Martínez-Huitle and Ferro, 2006; Quiroz et al., 2006). It only acts as an 

inert substrate and as a sink for the removal of electrons. In principle, only outer-sphere 

reactions and water oxidation are possible with this kind of anode. Hydroxyl radical 

produced from water discharge is subsequently involved in the oxidation process of 

organics. The model presupposes that the electrochemical activity (related to the 

overvoltage for O2 evolution) and chemical reactivity (related to the rate of organics 

oxidation) of physisorbed M(•OH) are strongly linked to the strength of the M-•OH 

interaction. As a general rule, the weaker the interaction, the lower the anode reactivity for 

organics oxidation with faster chemical reaction with M(•OH). The BDD anode is the best 

non-active electrode verifying this behavior (Martínez-Huitle and Ferro 2006; Belhadj and 

Savall 1998; Quiroz et al., 2006; Marcelli et al., 2003), then being proposed as the preferable 

anode for treating organics by electrochemical oxidation. 

On the basis of this model, metal oxides such as IrO2 and RuO2 (Martínez-Huitle and Ferro 
2006; Da Pozzo et al, 2005) known as active electrodes, achieving an incomplete oxidation of 
organic pollutants; whereas non-active oxides, such as Ti/SnO2 and Pb/PbO2 and their 
doped analogues are capable to oxidized organics to CO2 (Martínez-Huitle and Ferro 2006; 
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Quiroz et al., 2005; Panizza et al., 2001). Within this last group of electrode materials, boron 
doped diamond (Si/BDD) electrodes have received great attention due to the wide range of 
their electrochemical properties (Quiroz et al., 2006; Marcelli et al., 2003). 

6.3 Application of the direct electrochemical oxidation to removal pesticides from 
aqueous media 

There is a scarce range of studies concerned with direct electrochemical oxidation for 
removal pesticides from aqueous media. Several reasons can be wielded to explain this little 

attention given to the study of their degradation, but all seems to indicated that this lack of 
attention is the risk to form degradation products of pesticides even more toxic than the 
parent compound that forms the pesticide. This assumption it is addmited if we takes into 

account the experimental conditions by which various electrooxidation pesticides processes 
quoted in literature has been performed. However, other important factor of pesticides to be 
condidered is their unique chemical structure which can associate functional groups with 
diferent susceptibility to the oxidation. This last characteristic make difficult to determine 

the degree of pesticide degradation and their corresponding oxidation pathway.  
In spite of to be a known fact that the best anode materials to degrade pollutan organic 

compounds are those based in metallic oxides, the use of Pt electrodes has still been the 

preferable choise as anode material to degrade pesticides by direct electrochemical 

oxidation. 

6.4 Organophosphates 

This is the type of pesticides more reported being the more commonly quoted in literature 

methidathion, methylparathion, monochrotophos, phosphamidon, demeton-S-methyl, 

methamidophos, fenthion, and diazinon. 

(a) Methylparathion (C10H14NO5PS) 

Methylparathion is a sintetic insecticide widely used in farm crops but with a strict control 

by the Environmental Protection Agency (EPA). The EPA allows 0.002 mg of 

methylparathion per liter of drinking water, which made justifiable the application of AOPs 

methods for their destruction from residual waters of agricultural nature. Arapoglou et al. 

(2003) reported by the first time the application of a direct electrochemical oxidation for the 

treatment of organophosphoric pesticides. Their electrochemical system was a Ti/Pt anode 

and a stainless steel 304 as cathode in a brine solution (H2O + NaCl) under an applied 

currect of 36 A. After 2h of electrolysis a high reduction of COD and BOD5 of the oxidized 

methylparathion as well as a low kWh/CODr ration were reported. No degradation by-

products of this organophosphoric pesticide were identified in any of these experiments. 

Vlyssides et al. (2004) reported the electrochemical degradation of methylparathion by using 

Ti/Pt as anode in an aqueous medium of sodium chloride as electrolyte at 45ºC and an 

applied current density of 560 mA/cm2. It was shown that an 8% w/w aqueous suspension 

of methylparathion and 20 g/L of sodium chloride can be electrolyzed in 2 h of reaction 

time. Methylparathion is quickly degraded, but a complete mineralization was not 

observed. Several degradation by-products and intermediates of methylparathion produced 

by electrochemical oxidation were reported. Formation of paraoxon, p-nitrophenol, 

benzoquinone, and hydroquinone were identified as primary intermediates of 

methylparathion degradation. The formation of these type of intermediates originates the 
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formation of carboxylic acids such as oxalic, formic, and acetic acids as final products of the 

degradation process. Inorganic species were also identified between them nitrate, sulfate, 

phosphate, as well some oxides such as nitrogen oxides, sulfur dioxide and carbon dioxide. 

The full chemical analysis of liquid phase as well as of gas phase allows to the author to 

propose a degradation pathways for methylparathion electrochemical oxidation. 

(b) Methidathion (C6H11N2O4PS3) 
Hachami et al. (2008) investigated the degradation of 1.4 mM of methidathion in in aqueous 
solution by anodic oxidation using a boron-doped diamond (BDD) anode. They observed an 
important reduction of chemical oxygen demand (COD) in the presence of 2-3 % of NaCl, as 
well as in the pH of electrolyzed solution. From these results the authors has suggested a 
pseudo first-order kinetics for the COD reduction of methidathion with a rate constant 
dependent on the applied current and on the electrolysis temperature: k = 0.0073 s-1 at 20 
mA and 0.0146 s-1 at 60 mA, while k = 0.0131 s-1 at 298 K and 0.0077 at 363 K. It was 
concluded that applied current increases the rate of electrochemical oxidation but decreases 
it with the increases in temperature. The obtained activation energy (- 10.75 kJ) is in agree 
with the stablished conclusions. No attempt was made to identify the degradation products 
of methidathion although was suggested that mechanism of electrochemical mineralization 
can involve some mediators like chlorinated species or other radicals. 
(c) Monochrotophos (C7H14NO5P) 
Yatmaz and Uzman (2009) investigated the direct electrochemical oxidation for removal of 

monochrotophos on Ti electrodes in aqueous solution of sodium salts (chloride or sulphate) 

as a function of applied current density and initial concentrations of pesticide. At 50 A/m2 

the monochrotophos degradation efficiencies were increased from 40 to 62% with the 

increase of initial concentration from 50 to 300 mg/L in the first five minutes of electrolysis 

after which the degradation reaction was stopped The increase in current density from 50 to 

100 A/m2 has a negligible effect on the degradation parameters owing to a poor generation 

of ·OH radicals on this type of anodes. The use of high concentration of NaCl electrolyte 

solution increases the electrochemical oxidation efficiency but increases also the risk to 

formation of chlorined compounds as residuals of degradation. In general, this 

electrochemical arrangement based on use of Ti as anodes for direct oxidation of 

monochrotophos was not an efficient method for removal this organophosphorous pesticide 

from aqueous media. 

(d) Phosphamidon (C10H19ClNO5P) 
Phosphamidon is also an organophosphate insecticide, considered as an obsolete pesticide 
but whose disposal provokes serious environmental problems. It is soluble in water and 

stable in neutral and acid media and for this reason easy to find in aquatic media. This 
organophosphoric pesticide has been treated by direct electrochemical oxidation using Ti/Pt 
as anodes. Vlyssides et al. (2005) has reported experimental results from a laboratory scale 

pilot plant  where the achieved reduction was nearly 26%. 
Vlyssides et al. (2005) has also reported the electrochemical oxidation of the 
phosphorothioate pesticides Demeton-S-methyl (C6H15O3PS2), Methamidophos 
(C2H8NO2PS), Fenthion (C10H15O3PS2), and Diazinon (C12H21N2O3PS). These pesticides were 
treated by an electrolysis system using Ti/Pt anode and a stainless steel 304 as cathode and 
also in a laboratory scale pilot plant. They reported that for Fenthion the achieved reduction 
was over 60%, while for Demeton-S-methyl, Methamidophos and Diazinon was more than 
50%. 
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(e) Methamidophos (C2H8NO2PS) 
The anodic oxidation of methamidophos was studied by Martínez-Huitle at al. (2008) in a 
sodium sulphate aqueous solution on Pb/PbO2, Ti/SnO2, and Si/BDD (boron doped 
diamond) electrodes at 30°C. Under galvanostatic conditions, it was observed that the 
performance of the electrode material is influenced by pH and current density as it was 
shown by HPLC and ATR-FTIR analyses of methamidophos and its oxidation products 
along the electrolysis. It was found that methamidophos degradation using Pb/PbO2 in acid 
media (pH 2.0 and 5.6) generates formaldehyde as the main product of reaction giving 
evidence of an indirect mineralization mechanism. Under the same conditions, Ti/SnO2 

showed poor formaldehyde production compared to the Pb/PbO2 electrode. On Si/BDD 
electrodes formaldehyde production was not observed, instead the ATR-FTIR results 
showed the formation of phosphate as the reaction progressed suggesting a complete 
methamidophos mineralization on this electrode. In addition, HPLC results showed that the 
electrode efficiency is also dependant on the applied current density. This current density 
influence is remarkably clear on the Si/BDD electrodes where was evident that the most 
efficient current density towards a complete methamidophos mineralization was reached 
with the application of 50 mA/cm2. 
(f) Other pesticides 
Until now, electrochemical methods of direct oxidation have seldom been applied to the 

degradation of other pesticides different to the organophosphorus. However, the 

electrochemical oxidation of some thiocarbamate (R1,R2,NCOSR3, where R’s are alkyl, 

cicloalkyl or aryl groups) herbicides in aqueous NaCl solutions has been investigated 

(Mogyoródy 2006), as well the oxidation of thiram (C6H12N2S4) (Priyantha and 

Weliwegamage 2008), an organo-sulfur fungicide, and also of the atrazine (C8H14ClN5) 

herbicide (Malpass et al. 2006; Mamián et al. 2009). In addition, the electrochemical 

combustion of mecoprop (C10H11ClO3) (Flox et al. 2006), carbaryl (C12H11NO2) (Miwa et al. 

2006, Malpass et al. 2009), and propham (C10H13NO2) (Ozcan et al. 2008) herbicides has also 

been reported recently. 

(g) In conclusion, the application of electrochemical methods by direct oxidation in pesticide 

removal has scarcely been explored. The complex nature of the molecular structure of 
pesticides, highly heteroatomic, is a restritive factor to stablish the chemical composition 
characteristics of solution due to the solubility problems and/or generation of dangerous 
intermediates. Thus, for instance, pesticides containing N atoms can to form chloramines if 

the aqueous solution has NaCl as electrolyte (Mogyoródy 2006a, 2006b). However, it is 
important to point out that presence of NaCl in solution can also confer to the electrodes an 
enhanced activity. In this case the Cl- species at the electrode surface act as intermediates in 

the electron transfer between the pesticide molecule and the electrode (Miwa et al. 2006). 
The anode material is other important restrictive factor which determinates reaction 
parameters such as current efficiency, selectivity and product composition. Several works 
have reported the use of Ti or Pt electrodes (Mamián et al. 2009; Yatmaz and Uzman 2009; 

Mogyoródy 2006a, 2006b; Vlyssides et al. 2005a, 2005b, 2004; Arapoglou et al. 2003; Pulgarin 
and Kiwi 1996) with results little adequated for consider its as anodic material for removal 
of pesticides from aquatic media. The formation of complex mixture of oxidation by-

products in solution, no detoxification of solution, or desactivation phenomena of anodes 
are some of limitations of these type of electrodes for their use in the electrochemical 
method of direct oxidation. Better results has beeb achieved by using metallic oxides such as 
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SnO2, PbO2, or RuO2 (Martínez-Huitle et al. 2008; Mogyoródy 2006a, 2006b; Pulgarin and 
Kiwi 1996), dimensionally stable anodes (Miwa et al. 2006; Malpass G.R.P. et al. 2006, 2009), 
and more recently boron-doped diamond surfaces (Gao et al. 2009; Ozcan et al. 2008; Flox et 

al. 2006; Hachami et al. 2008; Martínez-Huitle et al. 2008). 
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occurring pesticides degradation phenomena, the environmental effects of the break down products, and

different approaches to pesticides residues treatment. Written by leading experts in their respective areas, the

book is highly recommended to the professionals, interested in pesticides issues.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Marco A. Quiroz, Erick R. Bandala and Carlos A. Martínez-Huitle (2011). Advanced Oxidation Processes

(AOPs) for Removal of Pesticides from Aqueous Media, Pesticides - Formulations, Effects, Fate, Prof.

Margarita Stoytcheva (Ed.), ISBN: 978-953-307-532-7, InTech, Available from:

http://www.intechopen.com/books/pesticides-formulations-effects-fate/advanced-oxidation-processes-aops-for-

removal-of-pesticides-from-aqueous-media



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


