
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



6 

Biodegradable Hydrogel as Delivery Vehicle for 
the Controlled Release of Pesticide 

Fauze Ahmad Aouada1,3, Márcia Regina de Moura2,3,  
Luiz Henrique Capparelli Mattoso3 

1IQ, Universidade Estadual Paulista - UNESP, Araraquara, SP 
2IFSC, Universidade de São Paulo - USP, São Carlos, SP 

3Laboratório Nacional de Nanotecnologia para o Agronegócio - LNNA, Embrapa 
Instrumentação Agropecuária - CNPDIA, São Carlos, SP 

Brazil 

1. Introduction  

1.1 Agrochemical controlled release goals 
Controlled release is a chemical activation method, which is provided to specific plant 
species at preset rates and times. Different polymers are largely used to control the delivery 
rates, mobilities, and the chemicals period of effectiveness. The main benefit of the 
controlled release method is that if fewer chemicals are used for the protected plants over 
the predetermined period, then there is a lesser effect on the other plant species, while 
reducing leaching, volatilization, and degradation. The macromolecular nature of polymers 
is the key to chemical loss reduction throughout the production. Controlled release polymer 
systems can be divided into two categories. In the first, the active agent is dissolved, 
dispersed, or encapsulated within the polymeric matrix or coating. Its release takes place 
through diffusion or after biological or chemical breakdown of the polymer. In the second 
category, the active agent either constitutes a part of the macromolecular backbone or is 
attached to it. Here its release is the result of biological or chemical cleavage of the bond 
between the polymer and the bioactive agent [Mitrus et al., 2009]. 
The main problem with conventional agrochemical applications is using greater amounts of 
agrochemicals, over a long period of time, than what is actually needed, possibly leading to 
crop damage and environmental contamination [Bajpai & Giri, 2003]. Controlled release 
polymer matrix systems offer numerous advantages, not only to avoid treating excess 
amounts of active substances, but also to offer the most suitable technical solution in special 
fields of application [Wang et al., 2007]. The objective of controlled release systems is to 
protect the supply of the agent to allow the automatic release of the agent to the target at a 
controlled rate and to maintain its concentration in the system within the optimum limits 
over a specified period of time, thereby providing great specificity and persistence without 
diminishing efficiency. Controlled release of agrochemicals (pesticides, herbicides, 
nutrients) is used to maintain the local concentration of active ingredients in the soil and to 
reduce losses due to run off. 
Controlled release systems for pesticides involve advanced pesticide delivery technologies, 
highlighting new means to reduce toxicity, increase efficacy, lessen the environmental 
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impact from pesticides and pesticide applications, reduce potential transportation hazards, 
as well as facilitating new product development [Abd El-Rehim et al., 2005]. 

1.2 Use of hydrogels in controlled release 
Over the past decades, hydrogel polymers have attracted a great deal of attention as 
potential delivery vehicles for controlled release applications. For instance, Kenawy, 1998 
obtained a series of polyacrylamide gel derivatives by transamidation of crosslinked 
polyacrylamide polymer with various diamine of different structures such as 
ethylenediamine, hydrazine hydrate, etc. The amount of 2,4-dichlorophenoxyacetic acid 
(2,4-D) herbicide released from acrylamide formulations was monitored by UV-
spectrophotometric analyses at 25 °C in water solution buffered at pH 4, 7 and 9. Results 
showed that the release rate of 2,4-D is dependent of pH of the medium: it was slower in 
acidic medium than in neutral or alkaline medium. The best release rate was found for 
crosslinked polyacrylamide hydrogels amidated with bis-(3-aminopropyl) poly 
(tetrahydrofuran) 1100 (BAPPTHF-1100), close to 600 mg.  
Kulkarny et al., 2000 investigated the encapsulation and release of a natural liquid pesticide 

‘neem (Azadirachta Indica A. Juss.) seed oil’ designated as NSO, using sodium alginate (Na-Alg) 

as a vehicle carrier after crosslinking with glutaraldehyde (GA). The higher NSO release rates 

were observed for higher NSO loading. An increase in the degree of crosslinking of the 

precipitated Na-Alg polymer resulted in a significant decrease of NSO release from the beads. 

The empirical parameter n values calculated for the release of NSO from the beads were 

between 0.70 to 0.94, indicating that the diffusion deviates slightly from Fickian transport and 

the kinetic constant k values are considerably small, indicating the absence of any interactions 

between the polymer and the active ingredient. The k values further show a decrease with the 

increase in crosslinking and also an increase with the increase in NSO loading. 

Işıklan, 2004 investigated the effects of the bead preparation conditions, such as percent of 

carboxymethylcellulose (NaCMC), insecticide carbaryl:NaCMC ratio, crosslinker 

concentration and kaolin clay addition as filler on carbaryl release. The copper-

carboxymethylcellulose (CuCMC) beads were prepared by the ionotropic crosslinking of 

NaCMC with copper ions. The beads were characterized by carbaryl encapsulation 

efficiency, bead diameter, scanning electron microscopy, equilibrium swelling degree and 

carbaryl release kinetics. The beads diameter decreased from 2.08 to 1.74 mm when 

car:NaCMC ratio was increased from 1:1 to 1:8. The authors attributed this effect to the 

hydrodynamic viscosity concept, i.e. as the car:NaCMC ratio increases the carbaryl content 

in the bead decreases and the interfacial viscosity of the polymer droplet in the crosslinker 

solution also decreases. The higher carbaryl release rates were observed for lower 

car:NaCMC ratio, higher NaCMC percent and higher kaolin addition. Also, the increase in 

CuCl2 concentration resulted in a significant decrease of carbaryl release from the beads. 

Singh et al., 2009 studied the release of thiram, a dithiocarbamate fungicide, from starch–
alginate-clays beads with different compositions by varying the amount of kaolin and 
bentonite clays. The beads with diameters between 1.07 and 1.34 mm had a high loading 
capacity of thiram fungicide, up to 97.49 ± 1.27 %. The maximum release of thiram was of 
about 10 mg after 300 h. The decrease to 6.9 mg and 6.3 mg, in the presence of kaolin and 
bentonite due to differences, is the ability of montmorillonite (the clay mineral in bentonites) 
for intercalation, whereas kaolin does not intercalate thiram. Moreover, the presence of 
kaolin and bentonite in starch–alginate bead formulation retarded the release of the 
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fungicide thiram; with the release slower for bentonite-based formulations than for 
formulations containing kaolin. 
Roy et al., 2009 prepared biopolymer microspheres of sodium alginate and starch using CaCl2 

as a crosslinker, which are promising to function as carriers for the controlled release of the 

pesticide chlorpyrifos. The microspheres show greater swelling with increasing wt% of 

alginate and decreasing wt% of starch, hence exhibiting an optimum water uptake at a definite 

composition of beads (57.3 wt% alginate and 42.7 wt% starch). The biopolymeric beads show 

that their swelling ratio significantly decreases with increasing crosslinking. The polymer 

beads show great potential for the release of chlorpyrifos, while the fractional release increases 

with increasing wt% of alginate and decreases with increasing content of starch. However, an 

optimum fractional release for a bead composition is obtained with more alginate and less 

starch. The cumulative release occurred in a controlled and sustained manner up to 14 days. 

1.3 Hydrogels properties   
Hydrogels are three-dimensional hydrophilic macromolecular networks that can absorb 

water many times their dry mass and significantly expand in their volume [Aouada et al., 

2006; Moura et al., 2006; Aouada et al., 2009a]. The ability of hydrogels to undergo 

substantial swelling and collapsing in response to the presence and absence of water allows 

for their potential application in different areas, including the biomedical [Jayakumar et al., 

2010; Melchels et al., 2010], cosmetic [Angus et al., 2006; Lee et al., 2009] and agrochemical 

fields [Pourjavadi et al., 2009]. The structural integrity of hydrogels depends on crosslinks 

established between the polymer chains through covalent bonds, hydrogen bonding, van 

der Waals interactions, or physical entanglements [Park et al., 1993]. The stability of the gel 

structure is due to a delicate balance between the hydrogen bonds and the degree of 

shrinking, with the swelling highly dependent on factors such as temperature, pH, pressure 

and electric fields. 

Hydrogels are formed by physical or chemical crosslinks of homopolymers or copolymers, 
which are appropriately used to give the three-dimensional structures their specific 
mechanical and chemical characteristics. Hydrogels can be classified into different groups 
based on their [Deligkaris et al., 2010]: 

• physical structure: amorphous, semi crystalline, hydrogen bonded or supramolecular; 

• electric charge: ionic (charged) or neutral; 

• crosslink: physically or chemically crosslinked; 

• responses to external effects: stimulus-sensitive and –insensitive ones; 

• origin: synthetic and natural. 

2. Characterization of hydrogels 

To characterize the hydrogels, the most common techniques used are water uptake 
[Lohakan et al., 2010;  Wang et al., 2010]; mechanical properties [Baker et al., 2010; Jiang et 
al., 2010; Xu et al., 2010]; scanning electron microscopy (SEM) [Moura et al., 2009; Ferrer et 
al., 2010; Gao et al., 2010; Li et al., 2010; Zhao et al., 2010]; Fourier transform infrared (FTIR) 
spectroscopy [Kim et al., 2010; Wang & Wang, 2010]; nuclear magnetic resonance (NMR) 
[Yin et al., 2010]; differential scanning calorimetry (DSC) [Castelli et al., 2008; Rao et al., 
2010]; thermogravimetric analysis (TGA) [Rodkate et al., 2010]; structural properties [Panic 
et al., 2010] through average molar mass between crosslinks (Mc), crosslink density (q), and 
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number of elastically effective chains, completely included in a perfect network, per unit 
volume (Ve); and controlled release of drugs [Koutroumanis et al., 2010; Liu & Lin, 2010; 
Sajeesh et al., 2010; Tanigo et al., 2010]; and agrochemicals [Saraydin et al., 2000; Bajpai & 
Giri, 2003; Bajpai et al., 2006; Wang et al., 2007; Pourjavadi et al., 2009]. 

3. Preparation of hydrogels and their application in pesticide controlled 
release     

Our research group has recently focused on the preparation and characterization of 
polyacrylamide (PAAm) and methylcellulose (MC) biodegradable hydrogels, as potential 
delivery vehicles for the controlled release of paraquat pesticide, since they play an essential 
role in the use of hydrogels in controlled release technology. 

3.1 Mechanism to form and prepare the PAAm and MC hydrogels  
In a simplified preparation process of acrylamide hydrogel by the free radical co-
polymerization of acrylamide (AAm) and a divinyl crosslinker, e.g. N,N’-methylene-bis-
acrylamide (MBAAm), linear polymers are first formed in the solution during the fast 
propagation step, and later crosslinked with other molecules through their pendent double 
bonds and additional monomer units [Stepto, 1998]. According to Karadag et al., 2005 the 
polymerization of vinyl monomers, such as AAm and MBAAm in the presence of 
ammonium persulfate and N,N,N’,N’- tetramethylethylene-diamine (TEMED), is first 
initiated by the reaction between ammonium persulfate and TEMED, in which the TEMED 
molecule is left with an unpaired valance electron. The activated TEMED molecule can 
combine with an AAm and/or crosslinker molecule, in which the unpaired electron is 
transferred to the monomeric units so that they then become reactive. Thus, another 
monomer or co-monomer can be attached and activated in the same way. The poly(AAm) or 
other copolymer hydrogel can continue growing indefinitely, with the active centre 
continually shifted to the free end of the chain.  
The synthesis of PAAm-MC hydrogels was reported in the literature [Aouada et al., 2009a; 
Aouada et al., 2010]. AAm (3.6 – 21.7 in w:v%), MC (0 - 1.0 in w:v%), MBAAm, and TEMED 
were placed in a bottle and homogenized by stirred mixing. TEMED concentration was 
fixed at 3.21 µmol mL-1. After the mixture was prepared, it was deoxygenated by N2 
bubbling for 25 min. Then, aqueous sodium persulfate (final conc. of 3.38 µmol mL-1), also 
deoxygenated, was added to initiate the polymerization reaction. The resulting solution was 
quickly placed between two glass plates separated by a rubber gasket and kept at room 
temperature. The system was kept closed by means of metallic straps for 24 h at ambient 
temperature (ca. 25 °C). At this stage, the complete polymerization/cross-linking of AAm 
occurred. After 24 h, the hydrogels, in a membrane form (Scheme 1), were removed from the 

plates. These membranes (final thickness ≈ 9 – 10 mm) were then freed from the unreacted 
chemicals by dialysis with distilled/deionized water for 10 days. The polymeric network 
PAAm-MC was used to study the hydrophilic properties of the hydrogels and pesticide 
paraquat sorption from the aqueous solution. Polymeric networks were made by chemically 
induced polymerization through free radical mechanism, in which SP radical species 
generates the reactive sites on the MC, AAm and MBAAm. Due to the polyfunctionality of 
the crosslinker MBAAm, it has four reactive sites which can be linked to the radical on the 
methylcellulose and to the poly(acrylamide). Scheme 2 presents the formation of crosslinked 
network structures based on poly(acrylamide) and methylcellulose. 
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Scheme 1. Photo of hydrogel composed of PAAm and MC in membrane form after dialysis 
process: [AAm] = 6.0 in w:v%; [MC] = 1.0 in w:v% [Aouada et al., 2010]. 

 

Scheme 2. Formation of crosslinked network structure based on poly(acrylamide) and 
methylcellulose [Aouada et al., 2009a]. 
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3.2 Some physical-chemistry properties of PAAm-MC hydrogels 
3.2.1 Hydrophilic properties 
The hydrophilic properties of PAAm-MC hydrogels were investigated by measuring their 
water uptake (WU). For the water uptake studies, the swollen hydrogels in membrane form 
were cut into cylindrical shapes of 13 mm and the average of dry hydrogels used was of 
approximately 150 mg. WU values were obtained by the mass ratio of the swollen hydrogel 
to dried hydrogel. Measurements were performed in replicate at 25.0 ºC to check 
reproducibility and the error bars indicate the standard deviation (n = 3). 
Figure 1 shows the dependences of WU as a function of the immersion time of the hydrogels 
swelled in distilled water.  
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Fig. 1. Dependence of water uptake as a function of time for: (a) PAAm-MC0.5 and (b) 
PAAm-MC1.0, in distilled water (pH = 6.7), at 25.0 ºC. Different concentrations of AAm 
were tested as indicated. Error bars represent standard deviations for the three experiments. 

Changes on equilibrium in WU values as a function of the AAm concentration in the feed 
solution are shown in Figure 2. It can be pointed out that the value of WU decreases 
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abruptly when the concentration of AAm in the gel-forming solution increases. This 
reduction is related to the increase of network rigidity, where the flexibility of a hydrogel 
network is directly related with the amount of total water absorbed by the hydrogel 
[Aouada et al., 2006]. The highest WU value obtained for 3.6 % AAm and 1.0 % MC, was of 
around 90 g/g. Also, the WU values abruptly increased when the concentration of MC in 
feed solution was increased. This trend is attributed to the increase in the hydrogel 
hydrophilicity (thus the increase in water absorption capacity) due to the incorporation of 

hydroxyl groups from MC segments. This tendency was also observed in the PAAm/poly(γ-
glutamic acid) hydrogels studied by Rodríguez et al., 2006. 
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Fig. 2. Dependence of equilibrium water uptake as a function of acrylamide for PAAm, 
PAAm-MC0.5 and PAAmMC1.0 hydrogels, in distilled water (pH = 6.7), at 25.0 ºC. Error 
bars represent standard deviations for the three experiments. 

3.2.2 Mechanical properties 
Uniaxial compression measurements were performed on equilibrium swollen hydrogels 
after their preparation. Compression tests were performed using a universal testing machine 
(Instron, Model 5500R, Canton, MA). Hydrogel compression was measured using a 1.27 cm 
diameter cylindrical probe. The probe was attached to the upper jaw of the Instron machine. 
The crosshead speed was of 12.0 mm min-1 with a 100 N load.  
The measurements were conducted up to 30% compression of hydrogel. In this case, the 

maximum load (σmax) of hydrogels was recorded. The modulus of elasticity (E) was 
calculated by Eq. (1), where F is the force and A is the cross-sectional area of the strained 

specimen. The relative strain (λ) was calculated from Eq. (2), where ΔL is the change in 
thickness of the compressed hydrogel and L0 is the initial thickness. Six tests were run for 
each gel. 

 2( )
F

E
A

σ λ λ−= = −  (1) 

 
0

L

L
λ Δ

=  (2) 
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The effective (or apparent) cross-linking density, νe, was obtained from the slope of linear 

dependence of σ versus (λ - λ-2), Eq. (3), where R is the universal gas constant, T is the 

temperature in absolute scale, φg,0 and φg are the polymer volume fractions of the hydrogel 
in the relaxed state and in the swollen state, respectively. 

 
,0 2/3 2( ) ( )

g
g e

g

RT
φ

σ φ υ λ λ
φ

−= −  (3) 

The length of the effective chains between crosslinking points (N) is related to the effective 

cross-linking density νe by Eq. (4): 
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Fig. 3. Measured force and stress as a function of Strain (λ - λ-2) at 25 °C for hydrogels 
synthesized with (a) [MC] = 0.5 in w:v%, [MBAAm] = 8.6 µmol mL-1 and different AAm 
concentrations; (b) [AAm] = 6.0 in w:v%, [MBAAm] = 10.0 µmol mL-1, [MC] = 0.75 in w:v% 
[Aouada et al., 2009b]. 

www.intechopen.com



Biodegradable Hydrogel as Delivery Vehicle for the Controlled Release of Pesticide   

 

89 

 1( )e lN Vυ −=  (4) 

where Vl is the molar volume of the segment, which is taken as the molar volume of water 
(18 cm3 mol-1). 
To evaluate the mechanical properties of the PAAm and PAAm-MC hydrogel, the 

maximum load (σmax) and modulus of elasticity (E) of the hydrogels were measured. 
Representative stress–strain curves for the hydrogels tested with uniaxial compression are 
shown in Fig. 3, where the linearity between force and strain can be observed. The 
reproducibility of the stress-strain experiments is shown in Fig. 3b.  
The linear correlation indicates that elastic deformation occurred, i.e. the strain is 
recoverable after removing the applied stress. In the most elementary form, recoverable 
strain means that if the hydrogel is under an applied load, the polymer chains are 
rearranged to accommodate the deformation. At the same time, retractive elastic force 
develops in the polymer networks because of their tendency to return to their original 
formation [Buchholz & Graham, 1997]. 
The dependence of maximum load as a function of acrylamide concentration for hydrogels 
with different methylcellulose concentrations is shown in Fig. 4.  
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Fig. 4. Measured force and stress as a function of Strain (λ - λ-2) at 25 °C for hydrogels 
synthesized with (a) [MC] = 0.5 in w:v%, [MBAAm] = 8.6 µmol mL-1 and different AAm 
concentrations; (b) [AAm] = 6.0 in w:v%, [MBAAm] = 10.0 µmol mL-1, [MC] = 0.75 in w:v% 
[Aouada et al., 2009b]. 

The increase in mechanical property values was observed when the amount of acrylamide in 
the feed solution was increased. These results corroborate with the swelling degree results (see 
Table 1), where increasing AAm concentration and consequently, the rigidity of the networks, 
results in decreasing water-uptake. Maximum load and modulus of elasticity properties 
decrease with increasing MC concentration. The maximum load of the (3.6-8.6-MC) hydrogels, 

where MC is the methylcellulose concentration, were 1.35 ± 0.14, 0.89 ± 0.05 and 0.55 ± 0.09 kPa 
for M = 0, 0.5 and 1.0 (in w:v%), respectively. For the same hydrogel, the modulus of elasticity 

values were 1.85 ± 0.08, 1.43 ± 0.06 and 1.06 ± 0.15 kPa. Such a decrease is attributed to the 
increase of network hydrophilicity from an increase of hydroxyl groups entrapped in the 
PAAm network. Additionally, when the MC concentration was increased from 0 to 1.0 (in 
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w:v%), the decrease in the mechanical property values was more pronounced in hydrogels 
with low AAm concentration, demonstrating that the water-uptake (from interactions with 
hydrophilic groups present in MC chains) depends on PAAm flexibility. 
 

Hydrogels* 
SD 

(g/g) 
σmax 

(kPa) 
E 

(kPa) 
υe  ** 

(10-4 mol cm-3) 
N ** 

(3.6-8.6-0) 35.4 ± 4.3 1.35 ± 0.14 1.85 ± 0.08 4.13 134.46 

(3.6-8.6-0.5) 64.0 ± 2.3 0.89 ± 0.05 1.43 ± 0.06 3.89 142.79 

(3.6-8.6-1.0) 92.0 ± 3.1 0.55 ± 0.09 1.06 ± 0.15 3.25 170.68 

 

(6.0-8.6-0) 25.7 ± 0.7 5.65 ± 0.16 5.44 ± 0.19 10.92 50.88 

(6.0-8.6-0.25) 30.3 ± 1.9 6.23 ± 0.11 6.12 ± 0.22 12.98 42.81 

(6.0-8.6-0.5) 42.0 ± 3.7 4.37 ± 0.08 5.82 ± 0.04 13.76 40.37 

(6.0-8.6-0.75) 85.0 ± 2.7 3.74 ± 0.13 4.79 ± 0.11 14.33 38.78 

(6.0-8.6-1.0) 98.1 ± 2.4 2.68 ± 0.12 3.61 ± 0.14 11.33 49.06 

 

(6.0-4.3-0.75) 211.2 ± 10.2 0.79 ± 0.03 1.48 ± 0.03 6.00 92.67 

(6.0-6.4-0.75) 109.9 ± 4.5 1.45 ± 0.05 2.54 ± 0.05 8.28 67.13 

(6.0-10.0-0.75) 104.1 ± 8.6 2.37 ± 0.04 4.07 ± 0.11 13.02 42.66 

(6.0-12.8-0.75) 105.4 ± 6.8 2.70 ± 0.09 3.64 ± 0.12 11.70 47.50 

(6.0-17.1-0.75) 98.1 ± 6.2 2.98 ± 0.09 3.85 ± 0.19 12.08 46.00 

 

(9.0-8.6-0) 18.8 ± 0.5 12.8 ± 0.39 13.48 ± 0.32 24.38 22.79 

(9.0-8.6-0.25) 26.9 ± 0.5 8.99 ± 0.59 11.24 ± 0.52 22.91 24.25 

(9.0-8.6-0.5) 29.7 ± 1.8 9.96 ± 0.18 10.16 ± 0.38 21.40 25.96 

(9.0-8.6-0.75) 49.5 ± 4.5 6.39 ± 0.22 7.89 ± 0.33 19.71 28.19 

(9.0-8.6-1.0) 57.8 ± 2.4 5.49 ± 0.22 7.43 ± 0.32 19.54 28.43 

 

(12.0-8.6-0.25) 21.0 ± 0.5 13.71 ± 0.17 16.15 ± 0.20 30.31 18.33 

(12.0-8.6-0.75) 33.7 ± 0.9 10.32 ± 0.07 14.02 ± 0.16 30.80 18.03 

 

(21.7-8.6-0) 12.2 ± 0.2 21.25 ± 1.32 27.50 ± 1.11 43.06 12.90 

(21.7-8.6-0.5) 13.0 ± 0.1 22.34 ± 1.46 24.60 ± 1.00 39.35 14.12 

(21.7-8.6-1.0) 14.0 ± 0.2 17.50 ± 0.36 20.53 ± 1.05 36.26 15.32 

* the notation (AAm-MBAAm-MC) will be used to characterize the composition of hydrogels. 
** calculated based on the SD and E average values.  

Table 1. AAm, MBAAm, and MC concentrations in feed solutions used in hydrogel 
synthesis and numerical values of mechanical properties [Aouada et al., 2009b]. 

The properties σmax and E can be correlated to the effective crosslinking density (νe) and 

length of the effective chains between crosslinking points (N), for which it was observed in 

Table 1 that νe values increases and N decreases when the σmax and E increase. The highest 

νe values were found for hydrogels synthesized with (21.7-8.6-MC). Consistently, these 

hydrogels presented lower N values, whereas higher AAm and MBAAm contents decreased 

the mobility of polymer chains within the gel, and thereby a higher loading was required for 
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compressing the hydrogel. Two different behaviours were observed in the variation of 

modulus of elasticity as a function on MBAAm crosslinker concentration. Firstly, modulus 

of elasticity increased with increasing crosslinker density from 4.3 to 8.6 µmol mL-1. When 

the crosslinker density is increased, the water-absorption capacity of the hydrogels 

decreases significantly. Secondly, at MBAAm concentrations higher than 8.6 µmol mL-1, a 

decrease in modulus of elasticity was observed. In this condition, additional polymeric 

chains, essentially constituted of MBAAm crosslinking, can be formed and entrapped in the 

hydrogel network. Due to high hydrophilicity, MBAAm chains have lower mechanical 

properties when compared with PAAm and PAAm-MC. 

3.2.3 Morphological properties  
Morphological properties of equilibrium swollen PAAm-MC hydrogels were investigated 
using a Hitachi scanning electron microscope (model S 4700) with 200 X magnification and 
an accelerating voltage of 15 keV. The samples were removed from the water and quickly 
frozen by immersion in liquid nitrogen. The hydrogels were freeze-dried at 80 ºC to 
maintain their porous structure without any collapse. After 48 h lyophilization, the dried 
sample was deposited onto an aluminium stub and sputter-coated with gold for 60 s to 
enhance conductivity. 
 

  

                                              (a)                                                               (b) 

 

(c) 

Fig. 5. SEM micrographs for semi-IPN hydrogels: (a) PAAm3.6-MC0.0; (b) PAAm3.6-MC0.5 
and (c) PAAm3.6-MC1.0. The gels were lyophilized after swelling in distilled water at 25.0 
ºC. All micrographs were taken at 200 X magnification. 
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Scanning electron microscopy technique was used to analyze the morphology of PAAm and 
PAAm-MC hydrogels. Average pore size values were estimated by considering at least 20 
individual pore size values [Tang et al., 2007]. The SEM image of PAAm3.6 MC0.0 (3.6 % 
AAm and 0 % MC), shown in Fig. 5a, indicates the formation of homogeneous and highly 

porous material with a mean pore size of 90 (± 20) µm. The addition of MC into the solution-
forming hydrogel caused morphological changes, mainly in the size and shape of the pores. 
From the SEM micrographs shown in Fig. 5b and 5c, it was possible to see that hydrogel 
pores are more foliaceous, larger, and highly heterogeneous than those shown in Fig. 5a. 
Due to the pore formation with high heterogeneity, it is not possible to accurately estimate 
the pore size of these hydrogels. 

3.3 Pesticide controlled release from PAAm-MC hydrogels 
3.3.1 Controlled release principles 
The release of chemicals entrapped in a hydrogel occurs only after water penetrates the 
network to swell the polymer and dissolve the chemicals, followed by diffusion along the 
aqueous pathways to the surface of the device. The release of chemicals is closely related to the 
swelling characteristics of the hydrogels, which in turn is a key function for the chemical 
architecture of the hydrogels [Singh et al., 2008]. Scheme 3 shows the schematic 
representations of loading and the paraquat release process, which are directly correlated with 
the swelling capacity of the hydrogels. For instance, in the loading process, there is water and 
paraquat sorption. For the release case, the water sorption contributes to the pesticide 
desorption due to two main factors: (1) difference in chemical potential [Shang et al., 2008] (Eq. 
5), and (2) osmotic pressure defined by the Donnan equilibrium theory [Liang et al., 2009] (Eq. 6). 
 

 

Scheme 3. Schematic representations of (a) the loading process showing the sorption of 
water and paraquat; and (b) the release process showing the sorption of water and 
desorption of paraquat. 
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where G is Gibb's free energy, ni is the amount of component i, V is volume and P is 
pressure. The subscripts indicate that temperature, pressure and the amount of all other 
components are maintained constant. 
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where Ci is the mobile ion concentration of species i, and superscripts ‘g’ and ‘s’ represent 
the gel and solution phase, respectively. R is the universal gas constant and T is the absolute 
temperature. 

3.3.2 Effects of AAm and MC concentration on paraquat pesticide release  
Hydrogels presented high loading capacity for paraquat pesticide. The pesticide was not 
chemically attached to the polymeric chain and the only likely interactions were ionic 
attractions. The hydrogels were loaded up to 82 % of paraquat, in relation to the amount of 

paraquat available in the loading solution. The maximum paraquat adsorption (qeq) in 
hydrogels without MC was low, when compared with hydrogels containing MC, which was 
of around 0.7 mg g-1. The low adsorption could be attributed to the absence of hydroxyl 

groups entrapped in PAAm chains. The paraquat molecules were absorbed into the 
hydrogels by an interaction with amide groups proceeding from PAAm chains. The general 
trend indicated that an increase in qeq resulted from an increased MC concentration, due to 
the greater number of hydroxyl groups inherent in the MC. In these conditions, the 

adsorption was probably due to paraquat-MC interactions. It was also observed that an 
increased AAm concentration provoked a decrease in the qeq values [Aouada et al., 2009a]. 
The varying effects of AAm and MC contents on releasing paraquat from PAAm-MC 

hydrogels were investigated in details and their results will be now discussed. Fig. 6 shows 
the amount of paraquat released as a function of time for PAAm-MC hydrogels prepared 
with 6.0 % AAm using different MC contents. 
In general, the initial rate of paraquat release was fast, and after several days it decreased. 
This fact indicates that paraquat on the hydrogels surface (or close to) diffused rapidly from 
the initial swelling of the gel. Later, paraquat was released slowly from the hydrogels, up to 
45 days. The content of methylcellulose significantly affects the amount of paraquat 
released, where the maximum release, close to 23 mgL-1, was observed when an 
intermediate content of MC (0.5 %) was used. 
Fig. 7 shows the effect of methylcellulose percentage on the kinetic behaviour of cumulative 
paraquat release. It is possible to see in Fig. 7a that the paraquat release from the hydrogel 

constituted of 6.0 % AAm is 100 % after 1 day. This fast release is attributed to the 
hydrophobic weak interactions between the cationic groups (from the paraquat) and amide 
groups from the PAAm chains. The Figure also reveals that the cumulative release occurred 

in a very controlled and sustained manner, in which the concentration of paraquat after 15 
days was maintained constant up to 46 days. It was also observed that the quantity of 

paraquat release increases from 41.3 ± 5.6 % to 72.6 ± 6.1 % when the amount of MC in the 
gel-forming solution increases in the range of 0.25–0.5 (in w:v%), Fig. 7b. By increasing the  
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Fig. 6. Profiles of the amount of paraquat released as a function of time for PAAm-MC 
hydrogels with different MC concentrations: [MC] = 0; 0.25; 0.5; 0.75 and 1.0 in w:v%, 
[AAm] = 6.0 in w:v%, and C0 = 37.48 mg L-1. Error bars represent standard deviations for the 
three measurements (mean ± S.D., n = 3) [Aouada et al., 2010]. 

MC content of the matrix, the swelling of the matrix also increased due to the more 

hydrophilic nature of MC, leading to the percentage increase of the released paraquat. 

Similar observations have been noticed by Rokhade et al., 2007. The release profiles indicate 

that the amounts of paraquat released decreased in the hydrogel prepared with MC 

concentration above 0.5 %. At higher concentrations of MC (beyond 0.5 g), the density of 

network chains increases so much that both the diffusion of solvent molecules and 

relaxation of macromolecular chains are reduced. Similar behaviours have been observed in 

other studies on the characterizations of hydrogel hydrophilicity [Graiver et al., 1995; Bajpai 

& Giri, 2003]. This explains the drop in the hydrogels release capacity. Moreover, one of the 

primary factors in the application of hydrogels as a delivery vehicle for the controlled 

release of pesticide is the loading percentage effect on the solute release rate, because a 

larger hydrogel loading can facilitate the relaxation of macromolecular chains. In addition, 

the results of paraquat removal from aqueous solutions using PAAm and MC hydrogels, 

recently published by our group [Aouada et al., 2009a], indicated that paraquat adsorption 

is more favourable in hydrogels prepared with an MC concentration of around 0.5 %.  

In general, the hydrogels did not release the total loaded paraquat because of the strong 

interaction of the paraquat-hydrogel matrix, specifically between the hydroxyl and amide 

groups (from MC and PAAm, respectively) with cationic regions from the paraquat. 

Controlled release systems studied by Alemzadeh & Vossoughi, 2002 and Sing et al., 2008 

presented similar behaviours. 

Fig. 8 shows the effects of acrylamide concentration on the cumulative paraquat release 

from PAAm-MC hydrogels prepared with different AAm and MC combinations. The 

releasing kinetic and the released quantity can be controlled up to 40-45 days and up to 75 % 

by adjusting the PAAm and MC contents in the gel-forming solution. In both cases, it was 

observed that as the polymeric matrix becomes rigid due to the increase in the concentration 

of acrylamide in the hydrogels, from 6.0 to 9.0 % (Fig. 8a) and from 6.0 to 12.0 % (Fig. 8b), the  
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Fig. 7. (a) profiles of paraquat release as a function of time, and (b) dependence of 
equilibrium cumulative paraquat release as a function of methylcellulose concentration for 
PAAm and MC hydrogels: C0 = 37.48 mg L-1, and [AAm] = 6.0 in w:v%. Error bars represent 
standard deviations for the three measurements (mean ± S.D., n = 3) [Aouada et al., 2010]. 

cumulative paraquat release decreased. This tendency was also reported by Işiklan, 2007, 

where the author explained that the decreases in the cumulative release are due to the 

increasing of the monomer concentration, which gives rise to a compact network of the 

polymer, hence the free volume reduces and the penetration of water molecules and 

diffusion of pesticide molecules become difficult. 

In accordance with Singh et al., 2009, the primary requisites for using agrochemicals to 

control the environment and health hazards are by means of controlled release and 
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sustained manner. Also, PAAm-type hydrogels must act as carriers for herbicidal agents 

and hydrogels, such as in water preservation systems (soil conditioning), hence inducing 

aggregation, diminishing water evaporation and promoting plant growth [Siyam, 1994]. 

Moreover, acrylamide was selected due to its industrial importance and its better known 

properties [Kenawy, 1998]. Consequently, the hydrogels studied in this work have 

enormous potential to be applied in agriculture fields. 
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Fig. 8. Profiles of paraquat release from hydrogels constituted by PAAm and MC as a 
function of time in different conditions: (a) 6.0 % AAm and 0.5 % MC, 9.0 % AAm and 0.5 % 
MC; (b) 6.0 % AAm and 0.75 % MC, 12.0 % AAm and 0.75 % MC. C0 = 37.48 mg L-1. Error 
bars represent standard deviations for the three measurements (mean ± S.D., n = 3) [Aouada 
et al., 2010]. 
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3.3.3 Mathematical modeling of paraquat release from PAAm and MC hydrogels 
Hydrogels have a unique combination of characteristics that make them useful in controlled 
delivery applications. Due to their hydrophilicity, hydrogels can imbibe large amounts of 
water (> 90 in-wt %). Therefore, the molecule’s release mechanisms from hydrogels are very 
different from hydrophobic polymers. Both simple and sophisticated models have been 
developed to predict the release of an active agent from a hydrogel device as a function of 
time. The most widely applicable mechanism for describing solute release from hydrogels is 
the diffusion-controlled release [Lin & Metters, 2006]. Fick's law of diffusion with either 
constant or variable diffusion coefficients is commonly used in modeling diffusion-
controlled release [Andreopoulos & Tarantili, 2001]. Although there are a number of reports 
dealing with the mathematical modeling through swelling controlled release polymeric 
systems, no single model successfully predicts all the experimental observations [Singh et 
al., 2009]. 
The values of release exponent “n” and gel characteristic constant “k” calculated using Eq. 7 
for the release dynamics of pesticide from the PAAm-MC hydrogels are in Table 2. 

 ntM
k t

M∞
=  (7) 

where the Mt/M∞ is the fractional release, k is a constant incorporating structural and 
geometric characteristics of the macromolecular polymeric system and the pesticide, and n is 
designated as the release exponent representing the release mechanism. 

The curves obtained from Eq. 3 presented good linearity (regression coefficient, R2 ≥ 0.999), 
indicating that the Peppas model can be applicable to analyze the systems. The values of n 
remained in a range corresponding to Fickian diffusion (n = 0.45 – 0.5) until MC = 0.5 % for 
AAm concentration equal to 6.0 % (in w:v%). After this concentration, the paraquat release 
occurred through the non-Fickian diffusion. Non-Fickian or anomalous diffusion occurs 
when the diffusion and relaxation rates are comparable. Thus, the paraquat release depends 
on two simultaneous rate processes, water migration into the beads and diffusion through 
continuously swelling hydrogels [Ritger & Peppas, 1987]. The values of k showed that the 
release of paraquat becomes slower when the MC and AAm concentration increases. 
 

Hydrogel k (h -1) n Mechanism 

(6.0-0)* 0.529 ± 0.0308 0.44 ± 0.02 Fickian 

(6.0-0.25) 0.0678 ± 0.0008 0.44 ± 0.03 Fickian 

(6.0-0.5) 0.0404 ± 0.0010 0.50 ± 0.02 Fickian 

(6.0-0.75) 0.0541 ± 0.0021 0.63 ± 0.01 Anomalous 

(6.0-1.0) 0.0375 ± 0.0010 0.58 ± 0.04 Anomalous 

(9.0-0.5) 0.0147 ± 0.0302 0.34 ± 0.08 More-Fickian 

(12.0-0.75) 0.00533 ± 0.00010 0.38 ± 0.09 More-Fickian 

* [AAm] = 6.0 in w:v% and [MC] = 0 in w:v%. 

Table 2. Parameters k and n obtained for paraquat pesticide release from hydrogels 
synthesized with various AAm and MC concentrations at 25.0 °C: C0 = 37.48 mg L-1. 
[Aouada et al., 2010]. 
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4. Final remarks 

Controlled release polymer matrix systems offer numerous advantages, not only to avoid 
treating excess amounts of active substances, but also to offer the most suitable technical 
solution in special fields of application. The objective of controlled release systems is to 
protect the supply of the agent to allow the automatic release of the agent to the target at a 
controlled rate and to maintain its concentration in the system within the optimum limits 
over a specified period of time. 
The book chapter reported the use of biodegradable hydrogels as a potential delivery 
vehicle for the controlled release of pesticide. PAAm-MC hydrogels presented high loading 
capacity of paraquat pesticide, up to 82 % of paraquat, in relation to the amount of paraquat 
available in the loading solution. The release mechanism of paraquat from hydrogels was 
investigated through a semi-empirical model proposed by Ritger and Peppas. The release of 
pesticides entrapped in a hydrogel occurs only after water penetrates the network to swell 
the polymer and dissolve the pesticides, followed by diffusion along the aqueous pathways 
to the surface of the device. The release of chemicals is closely related to the swelling 
characteristics of the hydrogels, which in turn is a key function for the chemical architecture 
of the hydrogels. Pesticide diffusion capacity out of hydrogel was dependent on the 
swelling of the matrix and the density of the network chains, i.e. MC/AAm ratio and pore 
sizes. The values of k showed that the release of paraquat becomes slower when the MC and 
AAm concentration increases.  
Further work is in progress with fertilizers (NPK-type) and other pesticides using PAAm-
MC and novel hydrogels as matrix, aiming to understand the controlled release process. In 
this sense, works are also underway to investigate the kinetic behaviour (release 
mechanism, cumulative release, etc…) of paraquat release from PAAm and MC in soil in a 
greenhouse to confirm the applicability of these hydrogels as delivery vehicles for the 
controlled release of agrochemicals. 
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