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Visually Guided Robotics Using Conformal 
Geometric Computing 

Eduardo Bayro-Corrochano, Luis Eduardo Falcon-Morales and 
Julio Zamora-Esquivel, 

CINVESTAV, Department of Electrical Engineering and Computer Science. 
Unidad Guadalajara, Jalisco, Mexico 

1. Abstract 

Classical Geometry, as conceived by Euclid, was a plataform from which Mathematics 
started to build its actual form. However, since the XIX century, it was a language that 
was not evolving as the same pase as the others branches of Physics and Mathematics. 
In this way, analytic, non-Euclidean and projective geometries, matrix theory, vector 
calculus, complex numbers, rigid and conformal transformations, ordinary and partial 
differential equations, to name some, are different mathematical tools which are used 
nowadays to model and solve almost any problem in robotic vision, but the presence of 
the classical geometric theory in such solutions is only implicit. However, over the last 
four decades a new mathematical framework has been developed as a new lenguage 
where not only the classical geometry is included, but where many of these 
mathematical systems will be embedded too. Instead of using different notation and 
theory for each of those systems, we will simplify the whole study introducing the 
CGA, a unique mathematical framework where all those systems are embedded, 
gaining in principle clarity and simplicity. Moreover, incidence algebra operations as 
union and intersection of subspaces, are also included in this system through the meet 
and join operations. In this regard, CGA appears promising for dealing with 
kinematics, dynamics and projective geometric problems in one and only one 
mathematical framework. 
In this chapter we propose simulated and real tasks for perception-action systems, treated 
in a unify way and using only operations and geometrical entities of this algebra. We 
propose applications to follow geometric primitives or ruled sufaces with an arm’s robot 
for shape understanding and object manipulation, as well as applications in visual 
grasping. But we believe that the use of CGA can be of great advantage in visually guided 
robotics using stereo vision, range data, laser, omnidirectional or odometry based 
systems. 

Keywords: Computer vision; Clifford (geometric) algebra; projective and affine geometry; 
spheres projective geometry; incidence algebra; 3D rigid motion; ruled surfaces; directed 
distance; visually guided robotics. 

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany
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2. Introduction 

The Occam’s razor, a mediaeval logical principle, said that ‘when you have two competing 
theories which make exactly the same predictions, the one that is simpler is the better’. From 
this perspective the CGA is a single mathematical framework that unify and include 
different systems as matrix algebra, projective geometry, conformal transformations and 
differential forms. This chapter is an introduction to the communities of computer vision 
and robotics of this novel computational framework, called Conformal Geometric Algebra 
(CGA). This subject has been also treated in a wide scope in [4].  
Our mathematical approach appears promising for the development of perception action 
cycle systems, see Figure 1. The subjects of this chapter are an improvement to previous 
works [3, 5, 6, 7, 13], because using the CGA we are now including the group of 
transformations in our computations and expanding our study to more complex surfaces, 
the ruled surfaces. Other authors have used Grassmann–Cayley algebra in computer vision 
[14] and robotics [19], but while they can express in this standard mathematical system the 
key ideas of projective geometry, such as the meet, join, duality and projective split, it lacks 
of an inner (contractive) product and of the group of transformations, which cannot be 
included in a very simple and natural way to the system.  

Fig. 1. Abstraction of the perception action cycle. 

In fact, in the 1960’s CGA take up again a proposal ‘seeded’ in the XIX century about build a 
global mathematical framework, which would include the main mathematical systems of 
that era: matrices and determinants; vector calculus; complex numbers; conformal 
transformations; Euclidean and projective spaces; differential forms; differential geometry; 
ordinary and partial differential equations. 



Visually Guided Robotics Using Conformal Geometric Computing 21 

In this chapter we put a lot of effort to explain clearly the CGA, illustrating the 
computations in great detail. Using the same ideas showed in this chapter, another practical 
tasks of visual guided robotics could be implemented for 3D motion estimation, body  eye 
calibration, 3D reconstruction, navigation, reaching and grasping 3D objects, etc. Thus, the 
idea is to introduce a suitable computational framework to the computer vision and robotic 
communities, which can be of great advantage for future applications in stereo vision, range 
data, laser, omnidirectional and odometry based systems.  
CGA is the fusion of the Clifford Geometric Algebra (GA) and the non-Euclidean 
Hyperbolic Geometry. Historically, GA and CGA has not been taken into consideration 
seriously by the scientific community, but now and after the work of David Hestenes [10] 
and Pertti Lounesto [15] it has been taking a new scope of perspectives, not only 
theoretically, but for new and innovative applications to physics, computer vision, robotics 
and neural computing. One of the critics against CGA is the wrong idea that this system can 
manipulate only basic entities (points, lines, planes and spheres) and therefore it won’t be 
useful to model general two and three dimensional objects, curves, surfaces or any other 
nonlinear entity required to solve a problem of a perception action system in robotics and 
computer vision. However, in this chapter we present the CGA, with its algebra of incidence 
[12] and rigid-motion transformations, to obtain several practical techniques in the 
resolution of problems of perception action systems including ruled surfaces: 3D motion 
guidance of very non-linear curves; reaching and 3D object manipulation on very non-linear 
surfaces. 
There are several interest points to study ruled surfaces: as robots and mechanisms are 
moving, any line attached to them will be tracing out a ruled surface or some other high 
nonlinear 3D-curve; the industry needs to guide the arm of robots with a laser welding to 
joint two ruled surfaces; reaching and manipulating 3D-objects is one of the main task in 
robotics, and it is usual that these objects have ruled surfaces or revolution surfaces; to 
guide a robot’s arm over a critical 2D or 3D-curve or any other configuration constraint, and 
so forth.  
The organization of this chapter paper is as follows: section two presents a brief 
introduction to conformal geometric algebra. Section three explains how the affine plane is 
embedded in the CGA. Section four shows how to generate the rigid transformations. In 
section five we present the way that several ruled surfaces or complex three dimensional 
curves can be generated in a very simple way using CGA. Section six shows how motors are 
usuful to obtain the Barret Hand™ forward kinematics. Section seven presents the real and 
simulated applications to follow geometric primitives and ruled surfaces for shape 
understanding and object manipulation, and section eight the applications to visual 
grasping identification. Conclusion are given in section nine.  

2. Geometric Algebra 

In general, a geometric algebra Gn is a 2n-dimensional non-commutative algebra generated 
from a n-dimensional vector space Vn. Let us denote as Gp,q,r this algebra where p, q, r denote 
the signature p, q, r of the algebra. If p  0and q = r = 0, we have the standard Euclidean 
space and metric, if only r  0 the metric is pseudoeuclidean and if r  0 the metric is 
degenerate. See [17, 11] for a more detailed introduction to conformal geometric algebra. 
We will use the letter e to denote the vector basis ei. In a geometric algebra Gp,q,r, the 
geometric product of two basis vectors is defined as
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 (1) 

2.1 Conformal Geometric Algebra 

The geometric algebra of a 3D Euclidean space G3,0,0 has a point basis and the motor algebra 
G3,0,1 a line basis. In the latter geometric algebra the lines expressed in terms of Plücker 
coordinates can be used to represent points and planes as well. The reader can find a 
comparison of representations of points, lines and planes using G3,0,0 and G3,0,1 in [8]. 
Interesting enough in the case of the conformal geometric algebra we find that the unit 
element is the sphere which allows us to represent the other geometric primitives in its 
terms. To see how this is possible we begin giving an introduction in conformal geometric 
algebra following the same formulation presented in [11] and show how the Euclidean 
vector space Rn is represented in Rn+1,1. Let {e1,.., en,e+,e } be a vector basis with the following 
properties

 (2) 

 (3) 

 (4) 
Note that this basis is not written in bold. A null basis {e0,e } can be introduced by 

 (5) 

 (6) 
with the properties 

 (7) 
A unit pseudoscalar  which represents the so-called Minkowski plane is defined by  

(8)

Fig. 2. (a) The Null Cone and the Horosphere for 1-D, and the conformal and stereographic 
representation of a 1-D vector. (b) Surface levels A, B and C denoting spheres of radius 
positive, zero and negative, respectively.  

One of the results of the non-Euclidean geometry demonstrated by Nikolai Lobachevsky in 
the XIX century is that in spaces with hyperbolic structure we can find subsets which are 
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isomorphic to a Euclidean space. In order to do this, Lobachevsky introduced two 
constraints, to the now called conformal point . See Figure 2(a). The first 
constraint is the homogeneous representation, normalizing the vector xc such that 

 (9) 

and the second constraint is such that the vector must be a null vector,thatis,  

 (10) 

Thus, conformal points are required to lie in the intersection surface, denoted , between 

the null cone and the hyperplane :

 (11) 

The constraint (11) define an isomorphic mapping between the Euclidean and the Conformal space. 
Thus, for each conformal point  there is a unique Euclidean point  and unique 
scalars , such that the mapping . Then, the standard form of a 
conformal point xc is

 (12) 

Note that a conformal point xc and be splitted as 

 (13) 

We can gain further insight into the geometrical meaning of the null vectors by analyzing 
the isomorphism given by equation (13). For instance by setting xe = 0 we find that e0

represents the origin of Rn (hence the name). Similarly, dividing this equation by 

2

0

2

1

ec
xex −=⋅ gives  

(14)
   
Thus we conclude that e represents the point at infinity. 

The dual of a multivector A  Gn is defined by  

 (16) 

where In  e12···n is the unit pseudoscalar of Gn and the inverse of a multivector An, if it exists, 
is defined by the equation A 1A=1.

Duality give us the opportunity to define the meet M  N between two multivectors M and 

N ,using one of the following equivalent expressions 
 (17) 

Geometrically, this operation will give us the intersection between geometric primitives 
through the intersection of their generated subspaces. See [12].  

2.2 Spheres and planes 

The equation of a sphere of radius centered at point pe Rn can be written as  
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 (18) 

Since , we can rewrite the formula above in terms of homogeneous 
coordinates as  

 (19) 

Since xc · e = 1 we can factor the expression above and then  

(20)

which finally yields the simplified equation for the sphere as  

 (21) 

where

 (22) 

is the equation of the sphere. From this equation and (13) we can see that a conformal point 
is just a sphere with zero radius. The vector s has the properties 

 (23) 
 (24) 

From these properties, we conclude that the sphere s is a point lying on the hyperplane xc . 
e = 1, but outside the null cone x2= 0. In particular, all points on the hyperplane outside 
the horosphere determine spheres with positive radius, points lying on the horosphere 
define spheres of zero radius (i.e. points), and points lying inside the horosphere have 
imaginary radius. Finally, note that spheres of the same radius form a surface which is 
parallel to the horosphere. 
Alternatively, spheres can be dualized and represented as (n + 1)-vectors s*= sI 1and then 
using the main convolution I of I defined as 

 (25) 

we can express the constraints of equations (23) and (24) as 

 (26) 
The equation for the sphere now becomes  

(27)
The advantage of the dual form is that the sphere can be directly computed from four points 
(in 3D) as  

(28)
If we replace one of these points for the point at infinity we get 

(29)
Developing the products, we get 

(30)

which is the equation of the plane passing through the points xe1, xe2 and xe3. We can easily 
see that xe1 ∧ xe2 ∧ xe3 is a pseudoscalar representing the volume of the parallelepiped with 
sides xe1, xe2and xe3.Also, since (xe1 xe2) and (xe3 xe2) are two vectors on the plane, the 

expression ((xe1 xe2) ∧ (xe3 xe2)) is the normal to the plane. Therefore planes are spheres 

passing through the point at infinity. 
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2.3 Geometric identities, duals and incidence algebra operations  

A circle z can be regarded as the intersection of two spheres s1 and s2. This means that for 
each point on the circle xc  z they lie on both spheres, that is, xc  s1and xc  s2. Assuming 
that s1 and s2 are linearly independent, we can write for xc  z

 (31)  
this result tells us that since xc lies on both spheres, z=(s1 ∧  s1) should be the intersection of 
the spheres or a circle. It is easy to see that the intersection with a third sphere leads to a 
point pair. We have derived algebraically that the wedge of two linearly independent 
spheres yields to their intersecting circle (see Figure 3), this topological relation between two 
spheres can be also conveniently described using the dual of the meet operation, namely  

(32)
this new equation says that the dual of a circle can be computed via the meet of two spheres 
in their dual form. This equation confirms geometrically our previous algebraic 
computation of equation (31).  
The dual form of the circle (in 3D) can be expressed by three points lying on it as  

  (33) 
seeFigure3.a.

Fig. 3. a) Circle computed using three points, note its stereographic projection. b) Circle 
computed using the meet of two spheres. 

Similar to the case of planes show in equation (29), lines can be defined by circles passing 
through the point at infinity as  

(34)
This can be demonstrated by developing the wedge products as in the case of the planes to 
yield  

  (35) 
from where it is evident that the expression xe1 ∧  xe2 is a bivector representing the plane 
where the line is contained and (xe2  xe1) is the direction of the line.  
The dual of a point p is a sphere s. The intersection of four spheres yields a point, see Figure 
4.b . The dual relationships between a point and its dual, the sphere, are:  

(36)
where the points are denoted as pi and the spheres si for i =1, 2, 3, 4. A summary of the basic 
geometric entities and their duals is presented in Table 1.  
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There is another very useful relationship between a (r 2)-dimensional sphere Ar and the 
sphere s (computed as the dual of a point s). If from the sphere Ar we can compute the 
hyperplane  we can express the meet between the dual of the point 
s(a sphere) and the hyperplane Ar+1 getting the sphere Ar of one dimension lower 

 (37) 

This result is telling us an interesting relationship: that the sphere Ar and the hyperplane 
Ar+1 are related via the point s (dual of the sphere s*), thus we then rewrite the equation (37) 
as follows

  (38) 
Using the equation (38) and given the plane (Ar+1) and the circle z(Ar) we can compute the sphere  
 s= z 1. (39)
Similarly we can compute another important geometric relationship called the pair of points 
using the equation (38) directly  
 s= PPL 1. (40)

Fig. 4. a) Conformal point generated by projecting a point of the affine plane to the unit 
sphere. b) Point generated by the meet of four spheres.  

Table 1. Entities in conformal geometric algebra. 

Now using this result given the line Land the sphere s we can compute the pair of points PP 
(see Figure 5.b)  
 PP= sL= s ∧ L. (41)
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3. The 3D Affine Plane 

In the previous section we described the general properties of the conformal framework. 
However, sometimes we would like to use only the projective plane of the conformal 
framework but not the null cone of this space. This will be the case when we use only rigid 
transformations and then we will limit ourselves to the Affine Plane which is a n + 1 
dimensional subspace of the Hyperplane of reference P(e ,e0).
We have chosen to work in the algebra G4,1. Since we deal with homogeneous points the 
particular choice of null vectors does not affect the properties of the conformal geometry. 

Points in the affine plane x R4,1are formed as follows  

 (42) 

Fig. 5. a) The meet of a sphere and a plane. b) Pair of points resulting from the meet between 
a line and a sphere.  

where xe R3. From this equation we note that e0 represents the origin (by setting xe = 0), 

similarly, e represents the point at infinity. Then the normalization property is now 
expressed as 

  (43) 
In this framework, the conformal mapping equation is expressed as 

 (44) 

For the case when we will be working on the affine plane exclusively, we will be mainly 
concerned with a simplified version of the rejection. Noting that E= e ∧  e0= e ∧  e, we 
write a equation for rejection as follows  

 (45) 

Now, since the points in the affine plane have the form xa = xe + e0, we conclude that  

 (46) 
is the mapping from the horosphere to the affine plane. 

3.1 Lines and Planes  

The lines and planes in the affine plane are expressed in a similar fashion to their conformal 
counterparts as the join of 2 and 3 points, respectively  

 (47) 
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  (48) 
Note that unlike their conformal counterparts, the line is a bivector and the plane is a 
trivector. As seen earlier, these equations produce a moment-direction representation thus  

 (49) 
where d is a vector representing the direction of the line and B is a bivector representing the 
moment of the line. Similarlywehavethat  

a = e n + e123 (50)

where n is the normal vector to the plane and is a scalar representing the distance from the 
plane to the origin. Note that in any case, the direction and normal can be retrieved with d = 
e  · La and n = e  · a, respectively.  
In this framework, the intersection or meet has a simple expression too. Let 

and Ba =  then the meet is defined as

 (51) 

where I¯ Aa Ba is either e12e , e23e , e31e ,or e123e , according to which basis vectors span the 

largest common space of Aa and Ba .

3.2 Directed distance  

Fig. 6. a) Line in 2D affine space. b) Plane in the 3D affine space (note that the 3D space is 
“lifted” by a null vector e.

It is well known from vector analysis the so-called Hessian normal form, a convenient 
representation to specify lines and planes using their distance from the origin (the Hesse 
distance or Directed distance). In this section we are going to show how CGA can help us to 
obtain the Hesse distance for more general simplexes and not only for lines and planes. 
Figure 6(a) and (b) depict a line and a plane, respectively, that will help us to develop our 
equations. Let Ak be a k-line (or plane), then it consist of a momentum M k of degree k and of a 
direction Dk 1of degree k 1. For instance, given three Euclidean points a1,a2,a3 their 2-
simplex define a dual 3-plane in CGA that canbe expressedas  

(52)
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Then, the directed distance of this plane, denoted as pk , can be obtained taking the inner 
product between the unit direction Dk 1and the moment M k . Indeed, from (52) and using 
expressions (1) to (7), we get the direction  
from e = Dk 1and then its unitary expression Dk 1 dividing Dk 1 by its magnitude. 
Schematically,  

 (53) 

Finally the directed distance pk of Ak is

 (54)  
where the dot operation basically takes place between the direction Dk 1and the momentum 
of Ak . Obviously, the directed distance vector p touches orthogonally the k-plane Ak, and as 
we mentioned at the beginning of k this subsection, the magnitude p equals the Hesse 
distance. For sake of simplicity, in Figures (6.a) and (6.b) only Dk 1· Lk and Dk 1· k are
respectively shown.  
Now, having this point from the first object, we can use it to compute the directed distance 
from the k-plane Ak parallel to the object Bk as follows  

 (55) 

4. Rigid Transformations  

We can express rigid transformations in conformal geometry carrying out reflections 
between planes.  

4.1 Reflection  

The reflection of conformal geometric entities help us to do any other transformation. The 
reflection of a point x respect to the plane is equal x minus twice the direct distance 
between the point and plane see the image (7), that is x = x 2(  · x) 1 to simplify this 
expression recalling the property of Clifford product of vectors 2(b· a)= ab + ba.

Fig. 7. Reflection of a point x respect to the plane .

The reflection could be written  
 x’ = x ( x  x ) 1, (56)
 x’ = x x 1  x 1 (57)
 x’ = x 1. (58)
For any geometric entity Q, the reflection respect to the plane is given by 
 Q’ = Q 1 (59)
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4.2 Translation  

The translation of conformal entities can be by carrying out two reflections in parallel planes 
1 and 2 see the image (8), that is  

 (60)  

 (61) 

With a =2dn.

Fig. 8. Reflection about parallel planes.  

4.3 Rotation  

The rotation is the product of two reflections between nonparallel planes see image (9)  

Fig. 9. Reflection about nonparallel planes.  

 (62) 

Or computing the conformal product of the normals of the planes.  
 (63)  

With l = n2 ^ n1,and twice the angle between the planes 2 and 1. The screw motion called
motor related to an arbitrary axis L is M = TRT

4.4 Kinematic Chains  

The direct kinematics for serial robot arms is a succession of motors and it is valid for 
points, lines, planes, circles and spheres.

 (64) 

5. Ruled Surfaces 

Conics, ellipsoids, helicoids, hyperboloid of one sheet are entities which can not be directly 
described in CGA, however, can be modeled with its multivectors. In particular, a ruled 
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surface is a surface generated by the displacement of a straight line (called generatrix) along 
a directing curve or curves (called directrices). The plane is the simplest ruled surface, but 
now we are interested in nonlinear surfaces generated as ruled surfaces. For example, a 
circular cone is a surface generated by a straight line through a fixed point and a point in a 
circle. It is well known that the intersection of a plane with the cone can generate the conics. 
See Figure 10. In [17] the cycloidal curves can be generated by two coupled twists. In this 
section we are going to see how these and other curves and surfaces can be obtained using 
only multivectors of CGA.  

Fig. 10. (a) Hyperbola as the meet of a cone and a plane. (b) The helicoid is generated by the 
rotation and translation of a line segment. In CGA the motor is the desired multivector. 

5.1 Cone and Conics  

A circular cone is described by a fixed point v0 (vertex), a dual circle z0= a0 ∧  a1 ∧  a2

(directrix) and a rotor R ( , l), [0, 2 ) rotating the straight line L(v0,a0)= v0 ∧ a0 ∧ e ,

(generatrix) along the axis of the cone l0= z0· e . Then, the cone w is generated as

 (67) 

A conic curve can be obtained with the meet (17) of a cone and a plane. See Figure 10(a).  

5.2 Cycloidal Curves 

The family of the cycloidal curves can be generated by the rotation and translation of one or 
two circles. For example, the cycloidal family of curves generated by two circles of radius 
r0and r1 are expressed by, see Figure 11, the motor  

 M = TR1T4R2 (68)  

where

 T = T ((r0+ r1)(sin( )e1+ cos( )e2)) (69)  

 (70)  

 R2 = R2( ) (71)  



32 Mobile Robots, Perception & Navigation

Then, each conformal point x is transformed as MxM.

5.3 Helicoid 

We can obtain the ruled surface called helicoid rotating a ray segment in a similar way as 
the spiral of Archimedes. So, if the axis e3 is the directrix of the rays and it is orthogonal to 
them, then the translator that we need to apply is a multiple of , the angle of rotation. See 
Figure 10(b).  

Fig. 11. The motor M = TR1T*R2, defined by two rotors and one translator, can generate the 
family of the cycloidal curves varying the multivectors Ri and T.

5.4 Sphere and Cone  

Let us see an example of how the algebra of incidence using CGA simplify the algebra. The 
intersection of a cone and a sphere in general position, that is, the axis of the cone does not 
pass through the center of the sphere, is the three dimensional curve of all the euclidean 
points (x, y, z) such that x and y satisfy the quartic equation  

 (72)  

and x, y and z the quadratic equation  

 (x  x0)2+(y  y0)2+(z  z0)2= r. (73)

See Figure 12. In CGA the set of points q of the intersection can be expressed as the meet (17) 
of the dual sphere s and the cone w, (67), defined in terms of its generatrix L,that is  

 (74)  

Thus, in CGA we only need (74) to express the intersection of a sphere and a cone, 
meanwhile in euclidean geometry it is necessary to use (72) and (73).  

Fig. 12. Intersection as the meet of a sphere and a cone. 



Visually Guided Robotics Using Conformal Geometric Computing 33 

5.5 Hyperboloid of one sheet  

The rotation of a line over a circle can generate a hyperboloid of one sheet. Figure 13(a).  

Fig. 13. (a) Hyperboloid as the rotor of a line. (b) The Plücker conoid as a ruled surface. 

5.6 Ellipse and Ellipsoid 

The ellipse is a curve of the family of the cycloid and with a translator and a dilator we can 
obtain an ellipsoid.  

5.7 Plücker Conoid 

The cylindroid or Pl¨ucker conoid is a ruled surface. See Figure 13(b). This ruled surface is 
like the helicoid where the translator parallel to the axis e3 is of magnitude, a multiple of 
cos( )sin( ). The intersection curve of the conoid with a sphere will be obtained as the meet of 
both surfaces. Figure 14(a) and (b). 

Fig. 14. The intersection between the Plücker conoid and a sphere. 

6. Barrett Hand Forward Kinematics 

The direct kinematics involves the computation of the position and orientation of the robot 
end-effector given the parameters of the joints. The direct kinematics can be easily 
computed if the lines of the screws’ axes are given [2]. 
In order to introduce the kinematics of the Barrett HandTM we will show the kinematic of 
one finger, assuming that it is totally extended. Note that such an hypothetical position is 
not reachable in normal operation. 
Let x1o, x2o be points-vectors describing the position of each joint of the finger and x3o the end 
of the finger in the Euclidean space, see the Figure 15. If Aw, A1,2,3 and Dw are denoting the 
dimensions of the finger’s components 
 x1o = Awe1 + A1e2 + Dwe3, (75)
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 x2o = Awe1 + (A1 + A2)e2 + Dwe3, (76)

 x3o = Awe1 + (A1 + A2 + A3)e2 + Dwe3. (77)

Fig. 15. Barrett hand hypothetical position. 

Once we have defined these points it is quite simple to calculate the axes L1o,2o,3o,which will 
be used as motor’s axis. As you can see at the Figure 15, 
 L1o = Aw(e2 ∧  e ) + e12, (78)
 L2o = (x1o ∧  e1 ∧  e ) Ic, (79)
 L3o = (x2o ∧  e1 ∧  e ) Ic. (80)
When the hand is initialized the fingers moves away to the home position, this is the angle 

2 = 2.46o by the joint two and the angle 3 = 50o degrees by the joint three. In order to 
move the finger from this hypothetical position to its home position the appropriate 
transformation is as follows: 

 M2o = cos ( 2/2)  sin( 2/2)L2o (81)

 M3o = cos ( 3/2)  sin( 3/2)L3o. (82)

Once we have gotten the transformations, then we apply them to the points x2o and x3o in
order to get the points x2 and x3 that represents the points in its home position, also the line 
L3 is the line of motor axis in home position. 

(83)

(84)

 (85) 

The point x1 = x1o is not affected by the transformation, the same for the lines L1 = L1o and L2

= L2o see Figure 16. Since the rotation angles of both axis L2 and L3 are related, we will use 
fractions of the angle q1 to describe their individual rotation angles. The motors of each joint 
are computed using  to rotate around L1,  around L2 and  around L3, these 

specific angle coefficients where taken from the Barrett Hand user manual. 
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Fig. 16. Barrett hand at home position. 

 M1 = cos(q4/35) + sin(q4/35)L1, (86)

 M2 = cos(q1/250)  sin(q1/250)L2, (87)

 M3 = cos(q1/750)  sin(q1/750)L3. (88)

The position of each point is related to the angles q1 and q4 as follows: 

(89)

(90)

(91)

7. Application I: Following Geometric Primitives and Ruled Surfaces for 
Shape Understanding and Object Manipulation 

In this section we will show how to perform certain object manipulation tasks in the context 
of conformal geometric algebra. First, we will solve the problem of positioning the gripper 
of the arm in a certain position of space disregarding the grasping plane or the gripper’s 
alignment. Then, we will illustrate how the robotic arm can follow linear paths. 

7.1 Touching a point 

In order to reconstruct the point of interest, we make a back-projection of two rays extended 
from two views of a given scene (see Figure 17). These rays will not intersect in general, due 
to noise. Hence, we compute the directed distance between these lines and use the the 
middle point as target. Once the 3D point pt is computed with respect to the cameras’ 
framework, we transform it to the arm’s coordinate system. 
Once we have a target point with respect to the arm’s framework, there are three cases to 
consider. There might be several solutions (see Figs. 18.a and 19.a), a single solution (see 
Figure 18.b), or the point may be impossible to reach (Figure 19.b). 
In order to distinguish between these cases, we create a sphere  centered at 

the point pt and intersect it with the bounding sphere  of the other 

joints (see Figures 18.a and 18.b), producing the circle zs = Se ∧ St.
If the spheres St and Se intersect, then we have a solution circle zs which represents all the 
possible positions the point p2 (see Figure 18) may have in order to reach the target. If the 
spheres are tangent, then there is only one point of intersection and a single solution to the 
problem as shown in Figure 18.b. 
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Fig. 17. Point of interest in both cameras (pt).

If the spheres do not intersect, then there are two possibilities. The first case is that St is 
outside the sphere Se. In this case, there is no solution since the arm cannot reach the 
point pt as shown in Figure 19.b. On the other hand, if the sphere St is inside Se, then 
we have a sphere of solutions. In other words, we can place the point p2 anywhere 
inside St as shown in Figure 19.a. For this case, we arbitrarily choose the upper point of 
the sphere St.

Fig. 18. a) Se and St meet (infinite solutions) b) Se and St are tangent (single solution). 

In the experiment shown in Figure 20.a, the sphere St is placed inside the bounding sphere 
Se, therefore the point selected by the algorithm is the upper limit of the sphere as shown in 
Figures 20.a and 20.b. The last joint is completely vertical. 

7.2 Line of intersection of two planes 

In the industry, mainly in the sector dedicated to car assembly, it is often required to weld 
pieces. However, due to several factors, these pieces are not always in the same position, 
complicating this task and making this process almost impossible to automate. In many 
cases the requirement is to weld pieces of straight lines when no points on the line are 
available. This is the problem to solve in the following experiment. 
Since we do not have the equation of the line or the points defining this line we are going 
to determine it via the intersection of two planes (the welding planes). In order to 
determine each plane, we need three points. The 3D coordinates of the points are 
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triangulated using the stereo vision system of the robot yielding a configuration like the 
one shown in Figure 21. 
Once the 3D coordinates of the points in space have been computed, we can find now each 
plane as * = x1 ∧ x2 ∧ x3 ∧ e , and ’* = x’1 ∧ x’2 ∧ x’3 ∧ e’ . The line of intersection is 
computed via the meet operator l = ’ . In Figure 22.a we show a simulation of the arm 
following the line produced by the intersection of these two planes. 
Once the line of intersection l is computed, it suffices with translating it on the plane =

l ∧  e2 (see Figure 22.b) using the translator T1 = 1+ e2e , in the direction of e2 (the y axis) a 

distance . Furthermore, we build the translator T2 = 1+d3e2e with the same direction (e2),
but with a separation d3 which corresponds to the size of the gripper. Once the translators 
have been computed, we find the lines l’ and l’’ by translating the line l with  , 

and .

Fig. 19. a) St inside Se produces infinite solutions, b) St outside Se, no possible solution. 

Fig. 20. a) Simulation of the robotic arm touching a point. b) Robot “Geometer” touching a 
point with its arm. 

The next step after computing the lines, is to find the points pt and p2 which represent the 
places where the arm will start and finish its motion, respectively. These points were given 
manually, but they may be computed with the intersection of the lines l’ and l’’ with a plane 
that defines the desired depth. In order to make the motion over the line, we build a 
translator TL = 1 Lle with the same direction as l as shown in Figure 22.b. Then, this 

translator is applied to the points p2 = TLp2
1−

L
T and pt = TLpt

1−

L
T in an iterative fashion to 

yield a displacement L on the robotic arm.  
By placing the end point over the lines and p2 over the translated line, and by following the 
path with a translator in the direction of l we get a motion over l as seen in the image 
sequence of Figure 23. 
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7.3 Following a spherical path 

This experiment consists in following the path of a spherical object at a certain fixed 
distance from it. For this experiment, only four points on the object are available (see Figure 
24.a).

After acquiring the four 3D points, we compute the sphere S = x1
∧ x2

∧ x3
∧ x4. In order 

to place the point p2 in such a way that the arm points towards the sphere, the sphere was 

expanded using two different dilators. This produces a sphere that contains S and ensures 

that a fixed distance between the arm and S is preserved, as shown in Figure 24.b. 

The dilators are computed as follows 

(92)

(93)

The spheres S1 and S2 are computed by dilating St:

(94)
(95)

Guiding lines for the robotic arm produced by the intersection, meet, of the planes and 
vertical translation. 
We decompose each sphere in its parametric form as 

(96)

(97)

Where ps is any point on the sphere. In order to simplify the problem, we select the upper 

point on the sphere. To perform the motion on the sphere, we vary the parameters and
and compute the corresponding pt and p2 using equations (96) and (97). The results of the 
simulation are shown in Figure 25.a, whereas the results of the real experiment can be seen 
in Figures 25.b and 25.c. 

Fig. 21. Images acquired by the binocular system of the robot “Geometer” showing the 
points on each plane. 
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Fig. 22. a. Simulation of the arm following the path of a line produced by the intersection of 
two planes. b. 

7.4 Following a 3D-curve in ruled surfaces 

As another simulated example using ruled surfaces consider a robot arm laser welder. See 
Figure 26. The welding distance has to be kept constant and the end-effector should follow a 
3D-curve w on the ruled surface guided only by the directrices d1, d2 and a guide line L.
From the generatrices we can always generate the nonlinear ruled surface, and then with 
the meet with another surface we can obtain the desired 3D-curve. We tested our 
simulations with several ruled surfaces, obtaining expressions of high nonlinear surfaces 
and 3D-curves, that with the standard vector and matrix analysis it would be very difficult 
to obtain them. 

Fig. 23. Image swquence of a linear-path motion. 

Fig. 24. a) Points over the sphere as seen by the robot “Geometer”. b) Guiding spheres for 
the arm’s motion. 

8. Aplications II: Visual Grasping Identification 

In our example considering that the cameras can only see the surface of the observed 
objects, thus we will consider them as bi-dimensional surfaces which are embedded in a 3D 
space, and are described by the function 
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 (98) 

where s and t are real parameters in the range [0, 1]. Such parameterization allows us to 
work with different objects like points, conics, quadrics, or even more complex objects like 
cups, glasses, etc. The table 2 shows some parameterized objects. 

Table 2. Parameterized Objects. 

Due to that our objective is to grasp such objects with the Barrett Hand, we must consider 
that it has only three fingers, so the problem consists in finding three “touching points” for 
which the system is in equilibrium during the grasping; this means that the sum of the 
forces equals to zero, and also the sum of the moments. For this case, we consider that there 
exists friction in each “touching point”. 
If the friction is being considered, we can claim that over the surface H(s, t) a set of forces 
exist which can be applied. Such forces are inside a cone which have the normal N(s, t) of 
the surface as its axis (as shown in Fig. 27). Its radius depends on the friction’s coefficient 

, where Fn = (F · N(s, t))N(s, t) is the normal component of F. The 
angle for the incidence of F with respect to the normal can be calculated using the wedge 
product, and should be smaller than a fixed 

 (99) 

Fig. 25. a) Simulation of the motion over a sphere. b) and c) Two of the images in the 
sequence of the real experiment. 

Fig. 26. A laser welding following a 3D-curve w on a ruled surface defined by the directrices 
d1 and d2. The 3D-curve w is the meet between the ruled surface and a plane containing the 
line L.

We know the surface of the object, so we can compute its normal vector in each point using 
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 (100) 

In surfaces with lower friction, the angle is very small, then the value of F tends to its 
projection over the normal (F  Fn). To maintain equilibrium, the sum of the forces must be 
zero . This fact restricts the points over the surface in which it can 

be applied the forces. This number of points is even more reduced if we are confronted with 
the case when considering the unit normal  the forces over the object 

are equal. Additionally, to maintain the equilibrium, it must be accomplished that the sum 
of the moments is zero 

 (101) 

The points on the surface having the same directed distance to the center of mass of the 
object fulfill H(s, t) ∧  N(s, t) = 0. Due to the normal in such points crosses the center of mass 
(Cm), it does not produce any moment. Before determining the external and internal points, 
we must compute the center of mass as follows 

(102)

Once that Cm is calculated we can establish next constraint 

 (H(s, t)  Cm) ^ N(s, t) = 0  (103) 

The values s and t satisfying (103) form a subspace called grasping space. They accomplish 
that the points represented by H(s, t) are critical on the surface (being maximums, 
minimums or inflections). In this work we will not consider other grasping cases like when 
they do not utilize extreme points other when friction cones are being considered. This 
issues will be treated in future work. The equation (103) is hard to fulfill due to the noise, 
and it is necessary to consider a cone of vectors. So, we introduce an angle called ,

 (104) 

Fig. 27. The friction cone. 
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Fig. 28. Object and his normal vectors. 

Fig. 29. Object relative position. 

We use equation (104) instead of (103), because it allows us to deal with errors or data lost. 
The constraint imposing that the three forces must be equal is hard to fulfill because it 
implies that the three points must be symmetric with respect to the mass center. When such 
points are not present, we can relax the constraint to allow that only two forces are equal in 
order to fulfill the hand’s kinematics equations. Then, the normals N(s1, t1) and N(s2, t2) must 
be symmetric with respect to N(s3, t3). 

 N(s3, t3)N(s1, t1)N(s3, t3) 1 = N(s2, t2)  (105) 

Once the three grasping points (P1 = H(s1, t1), P2 = H(s2, t2), P3 = H(s3, t3)) are calculated, it is 
really easy to determine the angles at the joints in each finger. To determine the angle of the 
spread (q4 = ) for example we use 

 (106) 

or it is possible to implement a control law which will allow to move the desired finger 
without the need of solving any kind of inverse kinematics equations [1]. Given the 
differential kinematics equation 

  (107) 

If we want to reach the point H(s1, t1), we require that the suitable velocity at the very end of 
the finger should be proportional to the error at each instance .

This velocity is mapped into the phase space by means of using the Jacobian inverse. Here 
we use simply the pseudo-inverse with j1 = and j2 =
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Applying this control rule, one can move any of the fingers at a desired position above an 
object, so that an adequate grasp is accomplish. 

Fig. 30. Grasping some objects. 

9. Conclusion 

In this chapter the authors have used a single non–standard mathematical framework, the 
Conformal Geometric Algebra, in order to simplify the set of data structures that we usually 
use with the traditional methods. The key idea is to define and use a set of products in CGA 
that will be enough to generate conformal transformations, manifolds as ruled surfaces and 
develop incidence algebra operations, as well as solve equations and obtain directed 
distances between different kinds of geometric primitives. Thus, within this approach, all 
those different mathematical entities and tasks can be done simultaneously, without the 
necessity of abandoning the system. 
Using conformal geometric algebra we even show that it is possible to find three grasping 
points for each kind of object, based on the intrinsic information of the object. The hand‘s 
kinematic and the object structure can be easily related to each other in order to manage a 
natural and feasible grasping where force equilibrium is always guaranteed. These are only 
some applications that could show to the robotic and computer vision communities the 
useful insights and advantages of the CGA, and we invite them to adopt, explore and 
implement new tasks with this novel framework, expanding its horizon to new possibilities 
for robots equipped with stereo systems, range data, laser, omnidirectional and odometry. 
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