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1. Introduction  

1.1 Context  
With the development of new satellite systems and the accessibility of data from public 
through web services like Google Earth, remote sensing imagery, knows today an important 
growing which advanced and still advances researches in this area on different aspects. 
Especially in cartography, many studies have been conducted for multi-source satellite 
images classification. These studies aim to develop automatic tools in order to facilitate the 
interpretation and provide a semantic land cover classification. 
Classical tools based on satellite images deal essentially with one category of satellite images 
which allows a partial interpretation. Multi-sensor or multi-source image fusion have been 
applied in the field of remote sensing since 20 years and continues today to provide efficient 
solutions to problems related to detection and classification. The work presented in this 
chapter is a part of multi-source fusion research efforts to have reliable and automatic 
satellite image interpretation. We propose to apply the new fusion concepts and theories for 
multi-source satellite images. Our main motivation is to measure the real contribution of 
multi-source image fusion according to the exploitation of satellite images separately.  
Recent studies suggest that the combination of imagery from satellites with different 
spectral, spatial, and temporal information may improve land cover classification 
performance. The use of multi-source satellites images fully take into account the 
complementary and supplementary information provided by different data sources and 
considerably optimize the classification of cartographic objects. Particularly, combination of 
optical and radar remote sensing data may improve the classification results because of the 
complementarities of these two sources. Spectral features extracted form optical data may 
remove some difficulties faced when using only radar images. However, radar images 
present the following massive advantage: the possibility of penetrating the clouds. Thus, 
data fusion technique is applied to combine these two kinds of information.  

1.2 Proposed approach 
In literature, there is a huge variety of fusion theories mainly probabilistic and Bayesian 
theory [Mitchell, 2007], fuzzy and possibility theory [Milisavljevi'C & Bloch, 2009], 
Dumpster and Shafer theory, etc. [Milisavljević & Bloch, 2008]. However, most of them are 
investigated in four steps which are: modeling, estimation, combination and decision (cf. 
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Fig. 1.). For radar and optical images fusion, we choose to apply a Bayesian fusion 
framework in order to take into account the speckle radar texture which can be better 
represented by a Markovian gamma distribution [Rui-hui et al., 2009].  
The originality of the proposed method is on one hand, the introduction of spatial and 
contextual information in fusion process using Markovian modeling with an optimal 
neighborhood order. Indeed, it has been shown [Meddeb et al., 2007] that the optimal 
neighborhood order allows a better representation of the speckle radar texture in terms of 
contrast, homogeneity, isotropy, etc. On the other hand, the given approach characterizes 
the radar texture data with a Markovian gamma auto-model. The radar texture is being 
usually modeled by a Gaussian model in probabilistic fusion processes.  
Fig. 1. presents the main steps for multi-source image classification. As we can see, before 
applying fusion processing, some pretreatments must be applied to both satellites data due 
to the different nature of optical and radar images. The first pretreatment is the geometric 
correction which allows the superposition of the two remote sensing images [Zitova & 
Flusser, 2003]. The second pretreatment is the single image classification applied to both 
radar and optic images using a Fuzzy C-Means (FCM) algorithm [Wang, 1990]. Radar 
images are gamma MAP [Hosomura & Jayasekera, 1993] filtered before classification in 
 

 

Fig. 1. Multi-source probabilistic fusion approach for land cover classification: main steps. 
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order to smooth the granular texture and reduce speckle noise. For each pixel, we model its 
posterior probability by a Besag Markov Gaussian auto-model in optical case and a Besag 
Markov gamma auto-model in radar case [Besag, 1974]. Parameters models are estimated 
using Expectation Maximization (EM) algorithm [Hogg et al., 2005]. Then the posterior 
probabilities are combined by the way of Bayesian fusion theory [Bloch, 2008]. 
This chapter is organized as follows. First, we describe briefly the three pretreatments 
phases. Secondly, the posterior probability modeling is presented for both radar and optical 
images. These probabilities are then used to present the Bayesian fusion process. Finally, 
pretreatments and fusion results are exposed in order to show land cover classification 
performances. Qualitative and Quantitative evaluations of the obtained results are also 
presented.  

2. Fusion preprocessing  

The exploitation of multi-source satellite images allows the obtaining of new signatures. 
However, these images are generated from various sensors, have different features 
(geometric, resolution, lighting, etc.) and are mainly not associated to the pixel level. Fusion 
process appears then complex and very sensitive to these data. To deal with this problem, 
some pretreatments must be done before combination step in order to correct images and 
prepare them for a simultaneous exploitation. 
These preprocessing steps are essentially: 
- Geometric correction  
- Filtering  
- Single image classification 
- Data representation or modeling. 

2.1 Geometric correction 
The first pretreatment is the geometric superposition and geocoding [Hong & 
Schowengerdt, 2005]. For both optical and radar images, acquisition process is not the same 
and the measured data have different natures. Because of sampling and oblique geometric 
acquisition in radar imagery, there is no direct transformation from radar to optical image 
and inversely. Several registration techniques exist. Each registration method is 
characterized by four criteria that are essentially:  
- The attributes: these are features extracted from both images to guide the 

transformation. There are extrinsic attributes (e.g. fixed external markers) and intrinsic 
attributes (e.g. the grayscale or extracted geometric primitives).  

- The similarity criterion: it sets a certain distance between images attributes to quantify 
the notion of similarity.  

- The deformation model: it determines how the image is geometrically changed. It can 
be local or global, and is characterized by a certain number of degrees of freedom.  

- The optimization strategy: it determines the best processing within the meaning of a 
certain similarity criteria and a deformation model.  

Depending on the type of deformation model, there are two types of registration: rigid and 
elastic registration [Shabou et al., 2007]. Among rigid registration family, there are linear or 
nonlinear transformations. The control points based registration is a non linear approach for 
which the geometric correction is determined according to a polynomial model 
(deformation model). The polynomial coefficients are calculated by minimizing the 
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geometric errors between two sets of control points selected manually in both images 
(optimization strategy). These points should be visible on the two images. The quality of the 
geometric correction depends on the precision of these points’s localization, their 
distribution in the image and their number. More, are the marked points, better is the 
correction. The polynomial transformation is then performed projecting one image onto 
another.  

2.2 Radar texture filtering 
The exploitation of radar images in terms of land cover classification presents some 
difficulties mainly because of the speckle noise. 
The Synthetic Aperture Radar (SAR) is a coherent imaging system where backscattered 
signals coming from multiple distributed targets may interfere in any point of the space. If 
the interference is constructive, it results a brilliant point otherwise a dark point. The speckle 
noise, which gives the SAR image a granular character, reduces the correlation between 
pixels increasing thus the variance and the mean radar reflectivity of a local area. This 
phenomenon is a serious problem that degrades the quality of SAR images and causes 
difficulties for targets detection thus image interpretation.  It is often compared to a 
multiplicative noise i.e. in direct proportion of the radar reflectivity which increases the 
difficulty of completely eliminating it.  
It appears therefore necessary to reduce the speckle noise before using SAR images. Many 

techniques exist in the literature. Two techniques are often used: the multi-look processing, 

usually done at acquisition time, averages out the speckle noise by taking several "looks" at 

a single pixel of the radar image and the spatial filtering technique which includes adaptive 

and non-adaptive filters, is applied locally on a neighborhood around each pixel. The 

optimal choice of a filter depends on the ability of this filter to reduce speckle noise when 

preserving radiometric and radar texture information. The non-adaptive filters apply the 

same weights uniformly across the entire image thus they do not take into account 

backscattered signal local properties (example, the median and simple mean filters). 

The adaptive filters adapt their weights across the image to the speckle level. They explicitly 

take account of the speckle and integrate local backscattering properties in their 

mathematical models. There are many forms of adaptive speckle filtering [Lee et al., 1994], 

including the Lee filter, the Frost filter, and the Gamma Maximum-A-Posteriori (GMAP) 

filter [Baraldi & Panniggiani, 1995]. The last one is based on the assumption that the radar 

intensity follows a gamma distribution. This filter, relatively to other filters, improves 

detection of edges and details in high-texture areas using second order spatial statistics and 

without losing information. Many other filters have been recently introduced [Maître, 2000] 

[Lee et al., 1994] but they have all comparable smoothing effects.  

2.3 Single image classification 
A critical step of multi-source satellite images processing is classification, whose objective is 
to identify all land cover types. There are mainly two categories of classification techniques:  
- The supervised classification: it relies on prior information knowledge to search for 

classes. Training areas corresponding to sample pixels that are representative of specific 
classes, are selected manually by the user who also designates the outputs. The 
classification system is then used to develop a statistical characterization of each class 
basing on the training samples. The image is then classified by examining each pixel 
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and making a decision about which of the signatures it is closest to. The most known 
supervised classification methods include neuronal network [Benediktsson et al., 1990] 
and SVM based approaches [Bazi & Melgani, 2006].  

- The non-supervised classification: it uses data discriminating features to separate pixels 
in different classes as homogeneous as possible. The number of classes is often 
unknown by the user. These automatic methods are usually iterative and construct 
gradually classes basing on distances or pseudo-distances. Among these methods, we 
can mention the K-means algorithm [Philips, 2002] which has been largely used. Then, 
the “ISODATA (Iterative Self Organizing Data Analysis) clustering” algorithm [Philips, 
2002], the FCM (Fuzzy C-means) method [Wang, 1990] [Bezdek et al., 1984], the 
"Competitive Learning" technique [Tang, 1998], etc. In the presented work, we focused 
on two non-supervised classification methods which have been used for satellite 
images: "ISODATA clustering" and FCM algorithm. The ISODATA algorithm is similar 
to the k-means algorithm with the distinct difference that the number of clusters is not 
previously known. It minimizes the distance to the mean as method of clustering and 
iterates through the data until user specified thresholds are reached and the optimal set 
of output classes is obtained. The ISODATA algorithm is very sensitive to initial 
starting values. Another commonly used unsupervised classification method is the 
FCM algorithm which is very similar to K-Means, but fuzzy logic is incorporated and 
recognizes that class boundaries may be imprecise or gradational. The FCM 
classification method creates an initial set of prototype classes and then determines a 
membership grade for each class for every pixel. The grades are used to adjust the class 
assignments and calculate new class centres, and the process is repeated until the 
iteration limit is reached. The FCM algorithm is more adaptive than other hard 
clustering methods and performs extremely well in situations of large variability of 
cluster shapes, densities and number of data points in each cluster.  

Each optical and filtered radar image is classified using an automatic unsupervised FCM 

algorithm [Wang, 1990] to allow cartographic objects detection and classification. The results 

of FCM algorithm classification constitute the input of the fusion process. 

2.4 Data representation  
The exploitation of spatial information is fundamental for image processing, more 

particularly in image fusion. We often require specific developments to adapt the methods 

for each application. In the context of this work, we aim to introduce spatial information at 

the level of combination in fusion processing. Probabilistic Markov Random Fields (MRF) 

offer a natural framework to this. Markovian modelling implies that the probability that a 

random variable, in a pixel takes a given value knowing the entire image is equal to the 

probability in this pixel knowing its neighbours. It allows thus describing spatial interaction 

between level's pixels, by their neighbor's graph which coverage is quantified by a field 

order.  

Previous works [Decombes et al., 1999] [Lorette et al., 2000] show Markov models 

effectiveness for texture and region characterization. Besag Markovian auto-models [Besag, 

1974] form a class of Markov Random fields particularly simple and useful for spatial 

statistics. They are based on conditional distributions which are assumed to belong to an 

exponential family.  

A Besag auto-model is defined as a Markovian field associated to Gibbs energy by: 
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( , )

( ) ( ) ( , )s s r
s S s r C

U x x x xφ φ
∈ ∈

= +∑ ∑  (1) 

Where xs is the current pixel, S is the whole set of pixels in the image, C2 represents the set of 
all possible order 2 cliques, xr are order 2 neighborhood pixels of pixel xs. Both 1 and 2 
characterize totally the Markovian field: 

1( )sxφ is the data description potential.  

2( , )s rx xφ is the interaction potential between xs and xr.  

Order 2 is the lowest order to convey contextual information. It is widely used because of its 
simple formulation and low computational cost. However, previous works [Meddeb et al., 
2007] show that superior orders neighborhoods allow a better representation of the optical 
and the radar texture. The optimal neighborhood order is determined basing on descriptors 
such as contrast, homogeneity, isotropy, entropy, texture coefficients, etc. Experimental 
results (cf. Fig. 2.) showed a convergence of descriptors majority to order 4.  However, the 
obtained curves show a small loss of performances between order 3 and 4.  For this reason 
and due to calculation complexity, we choose the third order neighborhood.  
 

 

Fig. 2. Radar texture features versus neighborhood order for three region of interest: Left 
(water area), middle (Urban area), right (vegetation area) [Meddeb et al., 2007] 

The auto-models can be classified according to the energy potential 1 i.e. to assumptions 
made about xs probability laws.  Among these models, we can distinguish the auto-logistic, 
the auto-binomial, the auto-normal and the auto-gamma models. The following describes 
briefly the two last MRF models for representing respectively optical and radar image 
textures. 

2.4.1 Auto-normal model  
An auto-normal model also called Gaussian MRF is much used in the literature especially 
for segmentation, restoration and regularization problems. The corresponding energy is of 
the following form: 

 
2 2

( , )

( ) s s s r
s S s r C

U x x x xα μ β
∈ ∈

= − + −∑ ∑  (2) 

Where C is the set of cliques around the pixel xs, μs is the local mean and: 

- 
2

s s
s S

xα μ
∈

−∑ is the potential describing the data, 
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- 
2

( , )
s r

s r C

x xβ
∈

−∑ is the regularization term describing interaction between pixels.  

The conditional probability density function (pdf) of the site s, is given by: 

 2( / , ) ( , )s s r r s s sP X x X x r V N μ σ= = ∈ =  (3) 

Where Xs, Xr represent respectively the random variables associated to sites s with value xs 
and r of value xr and Vs is the neighbourhood of the site s. 
The mean and the variance of the site s are defined by: 
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Where ms and mr are respectively the means around the site s and r and βsr is the interaction 
parameter between sites s and r.  
Thus the conditional probability becomes:  
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Where μs, σs and βsr are the normal auto-model parameters to be estimated.  
Several works [Descombes et al., 1999] demonstrate that Gaussian MRF shows better 
representation of optical images mainly because of texture homogeneity of the most 
cartographic objects. Other works [Belhadj et al. 2000] showed that the auto-gamma model 
is more adapted to radar images than auto-normal one because of the granular nature of 
radar texture.  

2.4.2 Auto-gamma model  
The auto-gamma model takes into account simultaneously the radar and speckle texture 
which guarantees to this model a considerable advantage [Belhadj et al., 2000]. Indeed, it 
makes it possible to be free from the pretreatment step which is speckle filtering. However, 
filtering is necessary before single radar image classification to limit the number of classes 
and to regularize their contours.  
The auto-gamma model law is given by: 

 ( / , ) ( ,( ))
s

s s r r s s sr r
r V

P X x X x r V a xγ α β
∈

= = ∈ = + ∑  (6)   

Where a and αs are the auto-gamma model parameters.  
The local conditional probability becomes starting from this expression by:  

 

1
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Where a, αs and βsr are the gamma auto-model parameters to be estimated.  

2.4.3 Parameter estimation  
One of the main tasks of Bayesian classification is parameters estimation. In order to 
estimate the auto-models parameters by the maximum likelihood method we use the 
Expectation-Maximizing (EM) algorithm. Proposed by Dumpster et al. [Dumpster et al., 
1977], the EM algorithm is an iterative algorithm for the calculation of the estimator of the 
maximum likelihood parameter of a model. The EM algorithm proceeds in two steps: an 
expectation step, followed by a maximization step which are iterated until convergence.  
Parameters estimation algorithm was applied on both auto-normal and auto-gamma 
simulated images in order to validate the estimation process.   

3. Probabilistic fusion model  

In this section, we present a definition of data fusion in the field of image processing as well 
as the principal fusion steps applied to multi-source images. We will especially focus on the 
Bayesian probabilistic approach which has been adopted in this work.  

3.1 Fusion steps 
In the literature, there are several definitions for data fusion. Most of them are quoted in 

[Bloch, 2008] [Klein, 2004]. The definition that we adopt here was introduced by Bloch in 

[Bloch, 2008] and is adapted to the case of multi-source images: “The information fusion 

consists in combining heterogeneous information resulting from several sources in order to 

improve the decision.” This definition is sufficiently general to include the diversity of 

fusion problems in signal and image processing.  

Fusion is not usually a simple task. It can be investigated into four steps. We describe them 

briefly here, because they will be used for the presentation of fusion Bayesian theory. Let us 

consider a general fusion problem for which one has K sources, S1, S2,…, SK and for which 

the goal is to make a decision chosen from N possible decisions d1, d2,…, dN. The principal 

steps necessary to build fusion process are as follows [Bloch, 2008]: 

- Modelling 
- Estimation 
- Combination 
- Decision. 
1. Modelling: this step includes the formalism choice and the mathematical expressions to 

be connected to this formalism. This step can be guided by additional or prior 
information about the context or the field of study. Let us suppose that each source Sj 
provides information represented by the model Mij for the decision di. The shape of Mij 
depends of course on the selected formalism.   

2. Estimation: the majority of modelling techniques require a parameters estimation phase 
(for example all the distributions based methods). Here also additional information can 
be used.  

3. Combination: this step relates on the choice of a compatible operator to the modelling 
formalism. It is also guided by additional information.  

4. Decision: it represents the crucial fusion step, which makes it possible to change the 
information (provided by the sources) to the choice of a decision di.  
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The way in which these stages are arranged defines the fusion system and its architecture. In 

the literature, there are several fusion approaches. We focus here on probabilistic fusion 

theory and describe in details its main steps.  

3.2 Bayesian fusion theory 
The probabilistic fusion theory is the most useful fusion tool which is associated to Bayesian 

decision theory. This approach treats information uncertainty and is based on solid 

mathematical tools.  

- Modelling 

Information in probabilistic theory is modelled by a conditional probability. For example, 

the probability that a pixel x belongs to a particular class Ci, given the available image Ij has 

the following form [Bloch, 2008]:  

 ( ) ( / )j
i jiM x p x C I= ∈  (8)   

This probability is calculated starting from the information extracted from the image 

features fj(x). In the simplest case, it can be the considered pixel grey level, or more complex 

information requiring some pretreatments. The previous equation does not then depend any 

more on the entire image Ij and is written in the simplified form as:  

 ( ) ( / ( ))j
i jiM x p x C f x= ∈  (9) 

- Estimation 

In absence of strong functional modelling of the observed phenomena, probabilities 

( ) ( ( ) / )j
j iiM x p f x x C= ∈ or more generally ( ) ( / )j

j iiM x p I x C= ∈ represents the conditional 

probability according to class Ci, of the information provided by the image Ij. They are 
learned or estimated by enumeration on test areas (the simplest case) or by training on these 
areas the parameters of a given probabilistic law.  
- Combination within a Bayesian framework 

Once information resulting from each sensor, represented by a convenient model, they can 

be combined according to specific rules according to the selected theoretical framework. The 

probabilistic and Bayesian fusion can be carried out by two equivalent ways and at two 

different levels [Bloch, 2008]:  

- The fusion can be done at the modelling step. Then we calculate probabilities for l 

images sources as 1( / ,..., )i lp x C I I∈ . Using the Bayes rule:  

 1
1

1

( ,..., / ) ( )
( / ,..., )

( ,..., )
l i i

i l
l

p I I x C p x C
p x C I I

p I I

∈ ∈
∈ =  (10) 

The different terms are estimated by training. 
- The fusion can also be done using Bayes rule itself.  The information resulting from a 

source comes to update the information estimated according to the preceding sources:  

 1 1 1
1

1 1 2 1 1

( / )... ( / , ,... ) ( )
( / ,..., )

( ) ( / )... ( / ,..., )
i l i l i

i l
l l

p I x C p I x C I I p x C
p x C I I

p I p I I p I I I
−

−

∈ ∈ ∈
∈ =  (11) 
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Very often, known the complexity of the training starting from several sensors and the 
difficulty of obtaining sufficient statistics, these equations are simplified under the 
independence assumption. Several criteria were proposed to check the validity of this 
assumption. The previous formula becomes then:  

 1
1

1

( / ) ( )
( / ,..., )

( ,..., )

l
j i ij

i l
l

p I x C p x C
p x C I I

p I I

=
∈ ∈

∈ =
∏

 (12) 

The equation (12) revealed clearly the type of information combination as a product. We can 

notice also that the prior probability p(x∈Ci) plays the same role as the sources in the 
combination. Let us mention here that the Bayesian combination has a conjunctive character 
[Bloch, 2008] by the means of multiplication. 
- Decision 

The last fusion step is the decision. For example, the choice of the class to which a point 
belongs. This binary decision can be weighted with a quality measurement, allowing its 
acceptance or its rejection. The most used rule for the probabilistic and Bayesian decision is 
the maximum a posteriori:  

 { }1 1( / ,..., ) max ( / ,..., ),1i i l k lx C si p x C I I p x C I I k N∈ ∈ = ∈ ≤ ≤  (13) 

Several other criteria were developed to adapt the user needs and the decision context as 
well as possible. Especially, we cite: the maximum probability, the maximum entropy, the 
maximum hope, the minimal risk, etc. 
The next section presents the results corresponding to each processing step and the final 
fusion results.   

4. Results 

4.1 Pretreatments results  
4.1.1 Data description 
The proposed Bayesian fusion approach was applied using seven satellite images covering 
Tunis City area, North Africa: three ERS images acquired at three different dates 
(acquisitions relatively close, cf. Fig. 3.) and one Spot4 image containing four spectral bands 
(cf. Fig. 4.).  
 

    

Fig. 3. The multi-temporal radar ERS image composed of three images acquired at three 
different dates. 
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Fig. 4. The Spot4 image composed of four spectral bands. 

4.1.2 Geometric correction  
There are two types of geometric corrections:  
- The correction of distortions due to the geometry variations between the ground and 

the sensor, 
- The transformation of the data into true coordinates i.e. into ground geometry 

coordinates.  
We firstly identify several clearly distinct points on the image to be corrected i.e. the radar 
image. The Spot4 image is geo-referenced (ground known reference).  Then, these points are 
connected to another set of points selected on the optical image.   
Fig. 5. illustrates the geometric correction result applied to the seven images. This 
preprocessing step is very delicate since its accuracy disturbs fusion results. Registration 
errors are chosen less than 10-2.  
 

    
 

Fig. 5. Result of geometric correction applied between optical and radar images. 
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4.1.3 Speckle filtering   
The proposed fusion approach does not require radar images filtering phase since the radar 

texture model takes into account the speckle. However, we need filtering for single image 

classification since it necessitates a strong homogeneity degree inside the classes to be able 

to distinguish between them.  

As explained in paragraph 2.2, the gamma Map filter was retained because it makes it 

possible to smooth the scene and reduce the speckle noise while preserving the radiometric 

and textural radar features.  

 
 

  
 

Fig. 6. Filtering results: original radar image (left). Radar image obtained after gamma MAP 
filtering (right). 

The window size of the gamma MAP filter is fixed at 5x5. Fig. 6. shows the radar texture 

before and after speckle filtering. Radar filtering improves classification results.  

4.1.4 Single image classification results  
FCM classification algorithm was applied on both radar and optical images. To choose the 

classes number, we study auxiliary data such as maps and High Resolution (HR) images. 

We identify six classes. For the considered region, there are two types of vegetation: small 

trees and vegetation under water that we call humid area. There are also two types of urban 

areas: dense and disperse agglomeration regions.    

Fig. 7. and 8. show Fuzzy classification results for the Spot4 four spectral bands and the 

three ERS radar images. As we can notice the single classification results vary from one 

image to another. This is due to differences between spectral features and speckle noise. 

Single classification results give good reason to combine all this kind of information in order 

to improve land cover classification. 

4.1.5 Parameter estimation results  
EM algorithm (cf. paragraph 2.4.3) was applied for Markovian parameters estimation. Both 

auto-normal and auto-gamma models parameters exposed in 2.4 are estimated for each 

classified area.  
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Fig. 7. FCM classification results for Spot4 XS1, XS2, XS3 and XS4 bands (from left to right). 
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Fig. 8. FCM classification results for ERS images. 

4.2 Fusion results  
In order to highlight the contribution of spatial and contextual information introduced at the 
modelling level, we will present and compare fusion results obtained with and without 
spatial information exploitation. The four principal fusion steps are then investigated one by 
one in both cases. 

4.2.1 Fusion without spatial information 
First, we combine the optical and radar images without taking into account the pixel 
neighbourhood using Bayesian fusion. The expression of the posterior probability is given 
by the equation (12). In the case of radar and optical images, it becomes: 
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The modelling step consists in representing the conditional probability related to optical 
image by a Gaussian distribution and the one related to the radar image by a gamma 
distribution. The two probabilities are thus written: 

 2( / ) ( , )
jradar i i ip I x C N μ σ∈ =  (15) 

Where μi and σi2 represent the Gaussian distribution parameters for the optical image Ij and 
the class Ci, they correspond respectively to the average and the variance.  

 ( / ) ( , )
joptical i i ip I x C aγ α∈ =  (16)   

Where, ai and αi represent the gamma distribution parameters for the radar image radar Ij 
and the class Ci. 
Let us notice here, that we assume the sources independence which is justified by different 
nature of sensors.  

Concerning the choice of the prior probability p(x∈Ci), we fixed the same probability for 
each class. Indeed, since we do not have prior information about the real percentage of each 
class in the studied zones, one of the prior probabilities can be considered as equally 
probable.  
Other choices can be carried out for the prior probability such as the occupation percentage 
of each class according to the most reliable image source, the Markovian modelling, etc. 

The second step which is the estimation consists in determining for each class Ci, μI, σi2, ai 

and αi  by likelihood maximization. The combination is done using the Bayesian rule and the 
decision criterion is the posterior maximum.  

4.2.1.1 Qualitative evaluation 

We can notice here that the multi-source image fusion allows the characterization of humid 
and small vegetation dispersed areas inside Tunis City Lake.  The fusion of two set of 
images of different nature highlights the presence of these zones. As we can see from high 
resolution Google earth image (cf. Fig. 9.), these areas have already existed and are not 
selected by a single image classification which underline the need of multi-source image 
classification. 
The fusion of the seven images also characterizes better the urban zones and the road 
network. Indeed, we can observe the good detection of linear and fine structures at the level 
of the airport crossing raising thus confusion with vegetation areas. Moreover, the bare 
ground class is not too present after fusion; there is a certain confusion with urban classes, 
especially around Tunis City Lake. 

4.2.1.2 Quantitative evaluation  

Beside qualitative results, a manual classified image delimited by the help of higher 
resolution images, is used to evaluate quantitatively results accuracies. Thus we calculate  
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Fig. 9. The fist image corresponds to Bayesian fusion results without spatial information and 
the second image represents a high resolution Google Earth image. 

the confusion matrix [Bloch, 2008] according to the manual classified image (table1). This 
quantitative measure expresses the good detection and false alarms rates according to each 
class. As we can see, without taking into acount spatial information, we obtain suffisent 
results. 
 

Water  Vegetation Urban 1  Bare ground  Urban 2 Humid zone  

Water  97.50%  0.00%  1.70% 0.00%  0.00%  2.61%  
Vegetation  0.00%  91,65%  1.00% 1.50%  3.10%  0.35%  
Urban 1  0.00%  1.50%  89%  3.40%  2.67%  3.36%  
Bare ground  0.00%  2.55%  4.98% 91.55%  0.10  0.15  

Urban 2  0.00%  3.00%  1.32% 3.20%  92.44  1.13%  
Humid zone  2.50%  1.30%  2%  0.35%  0.79%  92.40%  

Table 1. The resulted Bayesian fusion confusion matrix. Case of the non exploitation of 
spatial information.  

For the second step, we introduce space information into the fusion process. 

4.2.2 Fusion with  spatial information 
The introduction of spatial information is done using the Markovian modelling of each class 

conditional probability. Besag auto-models are attributed to each source of information. We 

used auto-normal model for optical images because of optical texture homogeneity and 

auto-gamma model for non filtered radar images (cf. paragraph 2.4). Indeed, it has been 

shown that radar speckle texture follows a gamma distribution which has different features 

compared to a Gaussian distribution. Comparisons between Gaussian and gamma modeling 

are carried out to highlight the efficiency of gamma modeling in case of radar texture. Thus 

for optical texture the conditional probability is defined as: 

www.intechopen.com



Remote Sensing Image Fusion for Unsupervised Land Cover Classification   

 

281 

 2

2

1 1
( / ) exp(( ( ( ))) )

2 2j

s

optical s i s i i r i
r Vi i

P I x C x xμ β μ
πσ σ ∈

∈ ∝ − − − −∑  (17)    

Where μi, σi and βi are the Markov Gaussian model parameters for each class and Vs is the 
neighborhood of each site s in the image. As for non filtered radar texture the conditional 
probability is defined by the following equation: 

 1( / ) ( ,( )) exp( ( ))i

j

s s

a
radar s i i i i r s s i i r

r V r V

P I x C a x x x xγ α β α β−

∈ ∈
∈ ∝ + ∝ − +∑ ∑  (18) 

Where αi, αi and βi are the gamma auto-model parameters for each considered class. Vs is the 
neighborhood of each site s. We remind here that radar images are not filtered for fusion 
process as for classification, because the gamma model takes into accounts the speckle 
granular texture [Belhadj et al., 2000]. 

The prior probability is chosen as a uniform probability to avoid FCM initial classifications 

influence in fusion process. The second step of the proposed fusion process consists in 

Markovian auto-models parameters estimation. Therefore, the parameters ˆˆ ˆ( , , )i i iμ σ β  for 

Gaussian model and ˆˆ ˆ( , , )i i ia α β  for gamma model are estimated using an EM algorithm.  
The neighborhood order is fixed at 3 [Meddeb et al., 2007] for both radar and optical images. 
The fusion combination step is done by multiplying the modeled posterior probability of 
each source of information following the Bayesian fusion theory. We refer to equation (14) to 
replace the conditional probability term by its corresponding expression, equation (17) for 
optical data and equation (18) for non filtered radar texture. Class decision is the last step of 
the fusion process. It is assured for each pixel using the Maximum A Posteriori probability 
(MAP) method.  

4.2.2.1 Qualitative evaluation  

Comparing to single FCM classification and fusion by introducing spatial information 
results, we point out a clear improvement of class distribution. Indeed, on the one hand, 
urban zones are better delimited (cf. fig. 10.). On the other hand, humid and vegetation  
 

 

Fig. 10. The fist image corresponds to Bayesian fusion results by introducing the spatial 
information and the second image represents a high resolution Google Earth image. 
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areas in the middle of Tunis City Lake are refined. However, there are some false alarms 
especially for vegetation areas and missed detections for urban areas.  
The urban zones 1 and 2 are quite present on the image with some confusion with the bare 
ground class which is less present after fusion. Also, the false alarm water areas selected 
away from Tunis City Lake are not present any more, and confusion with the vegetation 
was raised.  

4.2.2.2 Quantitative evaluation  

Looking at the obtained confusion matrix, we notice that diagonal values corresponding to 
good classification rates are sufficiently important. Besides, false alarm water areas outside 
Tunis City Lake are removed (comparing to single classification) reducing confusion with 
vegetation areas. However, there are still confusions between humid and vegetation areas, 
urban and bare ground areas.  
By comparing tables 1 and 2, we notice an improvement for the good classification rate. On 
the other hand, it is noted that certain false alarms are less important. The introduction of 
spatial information is then quantitatively justified.  
 

Water  Vegetation Urban 1  Bare ground  Urban 2 Humid zone  

Water  98.10%  0.00%  1.71%  0.00%  0.00%  1.23%  
Vegetation  0.00%  92,00%  1.00%  1.50%  2.10%  0.00%  
Urban 1  0.00%  1.50%  93.88% 1.78%  0.55%  1.20%  
Bare ground  0.00%  2.55%  2.33%  94.22%  0.10  1.35  

Urban 2  0.00%  3.00%  0.15%  2.15%  96.40  0.12%  
Humid zone  1.90%  1.30%  1.54%  0.35%  0.85%  96.10%  

Table 2. The resulted Bayesian fusion confusion matrix. 

5. Conclusion 

Two Besag Markovian auto-models are used to characterize remote sensing data issued 
from two different sensors. Gaussian model is applied on optical images whereas gamma 
model is used to represent radar images. For both models, an optimal Markov 
neighborhood order is used. Confusion matrix rates show that the proposed Bayesian fusion 
approach gives sufficient results according to single FCM classification. For future works 
and in order to improve the obtained results, we can introduce a reliability degree to each 
source of information in a fuzzy Bayesian fusion framework.   
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