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1. Introduction

Image fusion is a process of combining a set of images of the same scene into one composite
image. The main objective of this technique is to obtain an image that is more suitable for
visual perception. This composite image has reduced uncertainty and minimal redundancy
while the essential information is maximized. In other words, image fusion integrates
redundant and complementary information from multiple images into a composite image but
also decreases dimensionality. There are many methods discovered and discussed in literature
that focus on image fusion. They vary with the aim of application used, but they can be
mainly categorized due to algorithms used into pyramid techniques (Burt (1984); Toet (1989)),
morphological methods (Ishita et al. (2006); Mukopadhyay & Chanda (2001); Matsopoulos et
al. (1994)), discrete wavelet transform (Li et al. (1995); Chibani & Houacine (2003); Lewiset al.
(2007)) and neural network fusion (Ajjimarangsee & Huntsberger (1988)).

The different classification of image fusion involves pixel, feature and symbolic levels
(Goshtasby (2007)). Pixel-level algorithms are low level methods and work either in the
spatial or in transform domain. This kind of algorithms work as a local operation despite
of transform used and can generate undesirable artifacts. These methods can be enhanced
by using multiresolution analysis (Burt (1984)) or by complex wavelet transform (Lewiset al.
(2007)). Feature-based methods use segmentation algorithms to divide images into relevant
patterns and then combine them to create output image by using various properties (Piella
(2003)). High-level methods combine image descriptions, typically, in the form of relational
graphs (Wiliams et al. (1999)).

In this work we use image fusion algorithm to achieve first of our aims, i.e. to obtain the
deepest possible depth-of-field in macro-photography using standard digital camera images.
Macro photography is a type of close-up photography. In the classical definition it is described
as photography in which the image on film or electronic sensor is at least as large as the
subject. Therefore, on 35mm film, the camera has to have the ability to focus on an area
at least as small as 24 x 36mm, equivalent to the image size on film (magnification 1:1). In
other words, macro photography means photographing objects at extreme close-ups with
magnification ratios from about 1:1 to about 10:1. There are some primary difficulties in macro
photography; one of the most crucial is the problem of insufficient lighting. When using some
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90 Image Fusion

cameras to take photos in the macro-mode, the camera must be positioned so close to the
object that it touches the front piece of glass in the lens. In this case it is impossible to place
a light source between the camera and the subject, making extreme close-up photography
impractical. 50mm is a typical focal-length lens used on a 35mm camera, and can focus so
close that the lighting problem remains. The method of choice in such situations is usually to
use a telephoto macro lenses. When using such devices in macro photography it is possible
to increase the focal length to be grater than 100mm. But this implies second problem of
macrophotography — very shallow Depth-of-Field (DOF) (see Figure 1(a)).

Because it is very difficult to obtain high values of DOF for extreme close-ups it is essential to
focus on the most important part of the subject. Any other elements that are even a millimeter
farther or closer may appear blurred in the acquired photo. For this reason, special devices like
advanced tripods for a medium-scale objects or microscope stage for micro-scale objects are
required for precise focusing. The depth of field can be defined as the distance in front of and
behind the subject appearing in focus. Only a very short range of the photographed subject
will appear in exact focus. This focus decreases rapidly on either side of this distance, but due
to imperfections of the human eye the focused area seems to be much bigger. This focused area
decreases more quickly in front of the focus point than behind as the angle of the light rays
changes more rapidly when it is closer to the lens, while becoming parallel with increasing
distance. It is for these reasons that there is no precise definition of what is focused; there are
many factors that determine whether the subject appears in focus. The most important factor
is how a single point is mapped onto the film area. If a given point is exactly at the focus
distance it will be imaged as one point on the film, but if this point is farther or nearer it will
produce a disk whose border is known as a “circle of confusion”. These circles can be used to
define the measure of focus and blurriness as they increase in diameter the further away they
are from the focus point. For the most common size of 35mm camera negative (22x16mm),
the acceptable “circle of confusion” diameter at which human eye is able to distinguish such
a circle as a dot is usually set to 0.05mm. The film size is also important when considering the
depth of field problem because, for a given scene, the larger the negative is then the longer
the lens needed to capture it. Summarizing, for a specific film format, the depth of field is
described as a function parameterized by: the focal length of the lens, the diameter of the lens
opening (the aperture), and the distance between the subject and the camera. Let D be the
distance at which the camera is focused, F the focal length (in millimeters) calculated for an
aperture number f and k - the “circle of confusion” for a given film format (in millimeters),
then depth of field (DOF) (Constant (2000)) can be defined as:

D

D
1000x Dxkx
% 100t

where DOF; is distance from the camera to the far depth of field limit, and DOF, is the
distance from the camera to the near depth of field limit. The aperture controls the effective
diameter of the lens opening. Reducing the aperture size increases the depth of field, however,
it also reduces the amount of light transmitted. Lenses with a short focal length have a
greater depth-of-field than long lenses. Greater camera-to-subject distance results in a greater
depth-of-field (see Figure 1(b)). We use this optical phenomenon to determine the distances
from the camera to every point of the scene which gives as the height map field of this scene.
The height map field allows us to achieve our second goal i.e. to create a three-dimensional
model of the photographed scene.

DOF, , =
1
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aperiure

1 deptn-of-field

(a) (b)

Fig. 1. (a) An example of very shallow depth of field in macro-photography. (b) Example
diagram of how the f-number (aperture) affects depth-of-field.

As an input we have created a series of macro photograph images of the same subject with
different focus lengths and registered them to each other to create a properly aligned stack of
images. The next step was to fuse them into a one composite image. Many of the methods
mentioned above can do this perfectly, but our finall objective is to create a 3D visualization
of that scene. And the main difficulty was to obtain the height map without spikes or noise,
generally smooth but with sharp edges. Most of the fusing methods don’t care about height
map smoothness (if create it at all) beacuse its only goal is to create good fused image. Such
an observation determined us to develop a new fusion algorithm.

Our method is based on discrete Fourier transform which copes with problem of height
map smoothness. As an effect of fusing algorithm we obtain a height map field and the
reconstructed focused image with a very deep depth-of-field. The height map field is a label
map which determines the height of each part of the scene. From this map, we can construct
a 3D model of the scene.

Generally, we limit our method to macro photography only and we assume that images were
taken perpendicularly or almost perpendicularly to the scene. There is also a strong limitation
of our method to scenes that can be represented as a height field. The whole method consists
of several phases including: image segmentation, height map creation, image reconstruction
and 3D scene generation.

2 Methodology

We capture our set of images using standard digital SLR camera mounted on a tripod with
macro lenses attached. Our method works best when the photographed plan is perpendicular
or almost perpendicular to the lens line. It is also good idea to avoid specularities and shinning
surfaces. For better results gray background can be used. All images are taken in RAW format
and then manually calibrated to one another to equalize their illumination, white ballans and
exposure.

After that, all images are aligned to each other and the reconstruction process combines the
image stack into the height map field and the fused image. We introduce a new method
which employs discrete Fourier transform to designate sharp regions in the set of images
and combines them together into an image where all regions are properly focused. From the
created height map field and the fused image we can generate a 3D surface model of the scene.
After that the mesh is created and textured with a plane mapping using the fused image.

The main difficulty is to obtain the height map field without spikes or noise, generally smooth
but with sharp edges. It is not essential from the point of view of the image fusion, but it may
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Fig. 2. Image Fusion scheme showing the steps in our method.

be crucial in three-dimensional reconstruction of the scene. Most of such peaks are generated
in smooth regions, where noise in defocused region on one image from the stack is often more
varied than in the corresponding region on sharp image. This leads to undesired deformations
of reconstructed spatial surface. For that reason, we introduced a background plane. For now,
we assumed that the background plane overlaps with the last image on the stack, but the user
can choose it by hand.

2.1 Image fusion

In our work we use discrete Fourier transform methods combined with Canny edge detector
and inpainting techniques to distinguish homogeneous regions. Our fusion method is also
capable to work with color images. Color image fusion has been discussed in (Bogoni
& Hansen (2001)). A naive approach to image fusion in color might include performing
image fusion separately and independently on each color plane, then providing the resulting
three color planes as a single color image. In practice, this does not work because
color in three-dimmensional space is a vector and not just three independent components.
Similar results gives conversion of RGB images to gray scales and processing them in
one-dimmensional color space. But in this case a great number of information is lost and
it generates another problem: how to map resulted grayscale image back to color space. And
our assumption is that the result of the fusion process applied to color images should preserve
colors and boundaries between colors. To maximize focus, fusion algorithm must emphasize
structural details of the image while the color is preserved. To meet these constraints, from
many possible choices for color image representations, we have chosen the CIE L*a*b color
space, which separates luminance channel from chromatic channels. LAB also aspires to be
perceptualy uniform and most complete color space, and its L component closely matches
human perception of lightness. Therefore, L channel, which represents the luminance of the
color space represent an edge energy itself.

At this stage we assume that images on the image stack are aligned to each other. The main
objective is to create the focused image and the height map field (HMF). The whole algorithm
diagram is shown in Figure 2.

First, the Discrete Fourier Transform for all images is calculated as follows:
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—1M-1
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Where N and M are dimensions of the image, f.(x,y) is value of the pixel at (x,y) position
taken for z — th image on the stack. This transform is multiplied with normalized two
dimensional Gaussian distribution:

Fl(u,v) = F,(u,v) * G(u,0) (3)
where
2
G(u,v) = %exp% 4)

where k is normalization factor and ¢ is a free parameter determining degree of details
preserved, which can be specified by the user. After that inverse transform f(x,y) = F~!(u,v)
is calculated. This gives us an image where pixels with high local gradients are emphasised,
see Fig. 5b). This transform is applied to to all L*, a* anb b* channels in case of color images,
converted previously to CIE L*a*b* color space. These three channels compose one high
frequency map by applying weighted sum operator, e.i.:

Fl(u,0) = 0.8 (u,v) 4+ 0.1F*(u,0) 4+ 0.1F (u,0) (5)
Next, two metrices: local variance and entropy are calculated for every point of that map:
2 14 : 72
oz (,0) = o7 ) (fz(u+jo+k) = f,) 6)
ST T
S, T
E-(u,0) = Zfz u+j,0+k)log(fz(u+jo+k)) (7)
ik

where S and T define the size of the local neighbourhood. In our case we use neigbourhood
defined as disk-shaped structure with radius equal to S/2,and S =T. f,(u,v) is a value taken
from (u,v) position in high frequency map F. for z — th blurry image, f, is a mean value of
the whole neigbourhood for current (u,v) position.

These two metrices are used for creating height map field according to:

— For every point (1,v) for both 02 and E; square y(x) = ax? + bx + ¢ function is fitted through
z — th dimension.

— Maximum for y,(x) and yg(x) is calculated and x position of the maximum (Z) is
designated as Z = 0.5xy, + 0.5xf

— Height Map Field at (u,v) position is equal to Z but only if range of ¢? values at (u,v)
position for all z is greater than k, otherwise HMF(u,v) is designated as (—1):

Z, V.range (o2 (u,v)) >k
-1, otherwise

HMF(u,v) = { (8)

k is a free threshold value controlled by the user. All values equal to (—1) are treated as
unresolved.
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(a) (b) (©

Fig. 3. Example of halo effect: (a) part of the original image, (b) the height map created only
based on frequencies - visible halo effect, (c) edges in the height map with help of inpainting.

A base Heigh Map Field (HMF) created by these steps is filtered by hit and miss morphology
operator to remove small islands, usually formed because of noise in original images.

The next step is optional but it highly improves the quality of the edges in a resulted image.
Figure 3 shows usual problem with halo effect appearing on and nearby edges and where
there is a large difference in lightness in local area.

To overcome this problem we use Canny Edge Detector filter which finds sharp edges in all
input images. This edge line is localy dilated depending on the strength of the edge in local
area. To achieve this we create distance to the edge map for whole edge image and then based
on the strength of the edge, they are thickened. The strenght of the edge is determined on the
basis of difference between original image and its version convolved with a Gaussian filter
and the distance map secures that this thickness will only be applied to exact edges. From
these edge images we form fused edge image with all edges by simply applying bitwise OR
operator for all images. Figure 4 ilustrates steps of this edge designating procedure. This
process also introduces two free parameters that control its efects: (1) standard deviation of
the Gaussian filter and (2) maximum distance to edge. Both parameters are set to default
values but much beter results are obtained when they are set by the user for a given set of
images.

With this edges image we just mark all pixels in a nearby and on the edges in the height map
field HMF(x,y) as unresolved, see Figure 5f).

To classify all unresolved pixels in the height map field HMF we distinguish two cases:

1. Field of island formed by linked unresolved pixels in bigger than background factor By -
these pixels are marked as backround.

2. Otherwise we employ image inpainting technique, described for example in (Bertalmo et
al. (2001)) to fill remaining gaps. Inpainting is a technique for reconstructing lost or broken
parts of image, widely used for image restoration or noise removing. Generally, the idea
is to fill missing gaps using information from the surrounding area. In our work we use
Bertalmo algorithm (Bertalmo et al. (2001)) which uses Navier-Stokes partial differential
equations with boundary conditions for continuity. An example of inpainting technique is
shown in Figure 5g.

Now, we have the height map field prepared to fuse blurry images into a fused one. A value

of a fused image pixel 7,54 (x,y) is equal to the pixel | 1.(2) (x,y) from z — th input image on
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(a)

(© (d)

Fig. 4. (a) Canny edges acquired from all blurry images, (b) distance to edge map calculated
for canny edge image (scaled in intensity), (c) gaussian strength of the edges (scaled in
intensity), (d) finall edge map.

the stack, where z is a value interpolated form the height map field HMF(x,y). Separately,
regions marked as a background in the HMF in fused image I,y are taken from a specific
image selected by the user, but generally they can be taken from any image from the stack due
to smoothness and not big differences between corresponding images in background regions.

2.2 Scene visualization

Before three-dimensional visualization the HMF is filtered by the median and bilateral filter
(Tomasi & Manduchi (1998)) to smooth homogeneous regions while preserving edges beetwen
objects (see Figure 8). Bilateral filtering is in details a simple, non-iterative scheme for
edge-preserving smoothing, work in spatial and intensity domain and uses shift-invariant
low pass Gauss filters. An output pixel’s value is calculated according to:

h(x) =k f(x,i)C(x,i)(I(x,i) 9)

i€R

)
C(x,i) =exp (—% (d((f:)) > (10)

where:
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a)

Fig. 5. Example of image fusion in steps; (a) input images; (b) high frequencies in images; (c)
unresolved pixels; (d) edges pixels; (e) unresolved + edges pixels; (f) composed Height map
field with unresolved pixels; (g) inpainted unresolved pixels in the HMEF, (h) fused image.

is a closeness function, a typical Gaussian filter, where d(x,i) = d(x — i) =||x — i||is the
Euclidian distance between x and i;

. 2
o) = exp <_% geniy ) a

s

is an intensity function, where §(¢,0) = d(¢ — 0) =||¢ — 0]is a suitable measure of distance
between the two intensity values ¢ and 6. An examples of different ¢ parameters for both
closeness and intensity functions are shown in Figure 7.

Because the input images are taken from an analogue camera settings, the focus lengths in
successive planes do not arrange in a constant or linear function. Thus the user can specify
the distances between successive slices in the height map field and HMF is appropriately
rescaled in intensities. Now, the HMF is prepared for creating three dimensional surface.
Generally, spatial scene can be visualized by any rendering technique which is able to show
information contained in the height map field, where each pixel value represents z coordinate
of appropriate mesh vertex. But, due to very high resolutions of tested images (up to
4096 x 4096) a regular triangle mesh (above 16 millions of triangles) can be not the very best
choise. Thus, we decided to approximate a height field with an irregular triangle mesh using
algorithm similar to (Garland & Heckbert (1995)). The input for this algorithm is a height field
map represented by an image whose scalar values are heights and the output is polygonal
data consisting of triangles. The algorithm uses a top-down decimation approach and starts
with two triangles with vertices positioned at the corners of the height field and, on each
pass, locates the point with the greatest error (difference between height field and interpolated
mesh approximation) and injects it as a vertex into the mesh using the standard incremental
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(e) (f) (8) (h)

(m) ()

Fig. 6. (a-1) A series of macro photograph taken with different focus length, (m) reconstructed
image by out algorithm, (n) the depth map for that series scaled in intensity to fit 8-bit depth.
Images courtsey of Department of Anatomy, Medical Faculty, University of Varmia and
Masuria in Olsztyn, Poland.

Delaunay point insertion algorithm. The mesh is modified in an iterative fashion until the
specific error criterion is met. As a result the number of triangles in the output is reduced
as compared to a naive tessellation of the input height field map. From our empirical tests,
it seems that the reduction of triangles compared to the regular mesh while preserving good
quality vary from 40% to 70% depending on the complexity of the approximated scene. See
the differences between regular and irregular mesh if Figure 9.

Generated mesh is smoothed and resulted surface is textured with a plane mapping by the
fused image. Additionally, the scene is lit by a directional light which is able to cast shadows
to make bumpy surfaces more visible.
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&) f
Fig. 7. Example images filtered by bilateral filter; (a) original image; (b) image filtered with
radius r = 24,0 = 20; (c) r = 24,0 = 96; (d) r = 12,0 = 12, 8 iterations; (e, f) examples of the
HMF from fusion algorithm (on left) and the HMF filtered by bilateral filter (on right).

(b)

Fig. 8. (a) Surface of 3D model without bilateral smoothing, (b) and (c) examples of 3D model
surfaces without removing spikes in fusing algorithm.

(@) (b) (©)

Fig. 9. (a) 3D model generated as a regular triangle mesh, (b) 3D model generated as
decimated irregular triangle mesh — red rectangle covers the region visible in (a), (c) full
textured 3D model rendered from the same point of view.
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3. Experimental results

The proposed method has been implemented on Linux platform in C++ language using our
Integrated Graphics and Modeling Environment (IGME) framework and Kitware VTK library
for visualisation purposes.

To test whole reconstraction procedure we have prepared eight image stacks from
macrophotography. Here, each image contains objects at different distances from the camera.
Thus, one or more objects naturally become out-of-focus when the image is taken. Each
stack containes six to twelve images taken with different depth-of-field. In all cases the
procedure is performed in the following order. At first, we have manually equalize all images
to each other, then the registration process aligns multifocus images to each other to minimize
misregistration. Next, the reconstruction process combine image stack into the height map
field and fused image. Finally, 3D scene was generated.

Reconstruction time strongly depends on the size of the images used in the fusion and the
number of images on the stack. The fusion process takes about 45%, and generation of three
dimensional mesh takes remaining 55% of all time needed for full reconstruction. For a typical
set of images, containing ten images with resolution 512x512 the whole procedure lasts about
60 seconds.

3.1 Evaluating image fusion algorithm

Examples of multifocus images with height map fields and reconstructed fused images are
shown in Figures 10(a,b) and 11(a,b). Quantitative measure that evaluates the quality of image
fusion and produces single numerical score that indicates the success of the fusion process is
hard to define and is often performed in impractical subjective trials. We have decided to
use a metric Q4B/F proposed by Xydeas and Petrovi¢ in (Xydeas & Petrovi¢ (2000)). In this
case, a per-pixel measure of information preservation is obtained between each input and the
fused image which is aggregated into a single score Q4B/F using a simple local importance
assignment. This metric is based on the assumption that fusion algorithm that transfers input
gradient information into result image more accurately performs better. Furthermore, by
evaluating the amount of edge information that is transferred from input images to the fused
image, a measure of fusion performance can be obtained. Q*B/F is in range [0,1] where 0
means complete loss of information and 1 means perfect fusion. In our case we have modified
this metric to calculate measure of quality for more than two images as it was in case of
original Q4B/F metric:

QAB/F _ Y., Q?F(n,m)wz(n,m)

12
Y, wz(n,m) (12
where z is a number of image on the stack of blurry images and:

QM (n,m) = Qg (n,m) Q" (n,m) (13)
Qg (n,m) = £ (14)

8 ’ 1+ oXg (GAF(n,m)—0g)

r

o (nm) = ; (15)

1 4 eXa (A (n,m)—0y)

where A4F (n,m) and GAF (n,m) are defined as in (Xydeas & Petrovi¢ (2000)) and describe the
relative strength and orientation of the edges in an image using the Sobel operator. Constansts
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| st | s2 | s3 | s4 | S5 | s6 | S7 | S8

QAB/E | 043 | 038 | 053 | 022 | 046 | 039 | 044 | 0.52

Table 1. The quality measure QAB/F for all eight cases.

are: I'e = 0.9994, Ty = 0.9879, kg = —15, k4, = —22, 0¢ = 0.5, 0, = 0.8. Table 1 contains velues
of Q4B/F metric that measures quality of image fusion.

3.2 Evaluating 3D reconstruction

Figures 10 and 11 show qualitative results of our method for eight tested image sets. The
biggest problem in this 3d reconstruction is to obtain a surface which is smooth enough in
uniform regions and simultaneously has sharp edges on the objects boundaries. The best
results are received when the photographs are taken perpendicularly to the background,
objects are within the scene, and they are rough without smooth regions.

Because quantitative measure of the 3D reconstruction of real models is practically impossible
we have created synthetic tests. Two simple scenes have been generated in 3D modeling
application: (1) a flat surface inclined 15° to the perpendicular plane to camera axis, this
surface has been textured and iluminated only with ambient light and (2) spherical surface,
also textured and lit with ambient light. For both scenes analytical equation of the surface
was known allowing to calculate quantities like volume or shape and to compare with other
surface(s). These surfaces are presented in Figure 12.

Both scenes have been rendered with depth-of-field filters that simulates depth-of-field effect
using Blender 3D graphic application. In both cases 10 images of partially sharp images have

Fig. 10. (a) A few samples of blurry images with height map, (b) finall fused image, (c)
reconstructed 3D model.
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(b)

Fig. 11. (a) A few samples of blurry images with height map, (b) finall fused image, (c)
reconstructed 3D model.

been created. For every image the focus length was set to different part of the scene covering
a range from the farthest parts of the scene to the nearest ones with constant step between
slices. These images were input images to test our fusing and 3D reconstruction method.
After reconstruction, created scene was rescaled to match to bounding box of the original
scene. We chose two quantites to compare 3D scene generated by 3D application and scene
generated by our method:

1. Mean square difference of differences in meshes of reconstructed and original scene:

MSD = % Y (fluy) —glxy)’ (16)
x,yER

2. Normalized cross-correlation between meshes of reconstructed and original scene:

Y (floy) = f)-(gxy) —3)
x,yER

XC = (17)

J( Y (fuy)—f* & (g(x,y)—g)z)

x,y€R x,y€R

To calculate both quantities the space of the scene was quantitized in (X,Y) dimension to the
size equal to the resolution of the height map field (marked as R). f(x,y) is interpolated height
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(a) (b)

(©) (d)

Fig. 12. Two test scenes: (a) flat surface inclined 15° to the perpendicular plane to camera
axis, (b) spherical surface, (c) wireframe rendering of the reconstructed plane scene, (d)
wireframe rendering of the reconstructed sphere scene.

(z axis) in the (x,y) position in reconstructed scene, f is the mean height of reconstructed
scene, g(x,y) is interpolated height in the (x,y) position in original scene, ¥ is the mean height
of original scene.

Mean square difference estimates the difference between the reconstructed surface and the
original one and was equal MSD = 0.018 and MSD = 0.031 respectively for plane and sphere
scenes. Cross correlation gives information about how this two surfaces are similar to each
other. Two identical surfaces give value of XC equal to 1 or (—1), value equal to 0 means
completely different surfaces. For plane scene XC was equal to 0.98 and for sphere scene XC
was equal to 0.96. Obtained results indicate very good match for both surfaces. However,
despite the use of mesh decimation algorithm the number of triangles is still much larger
than original mesh. The problem is also “effect of blocks” which must be smoothed by
very expensive algorithms for smoothing mesh of triangles. We also expect that synthetic
tests would give better results than real tests. To estimate the quality of our procedure we
plan to scan a simple but real micro-scene by a 3D laser scanner and then compare with a
reconstructed mesh to acquire more precise results.

Figure 13 shows an example of a typical failure. Our method often fails when there are large
smooth regions which don’t belong to the background plane. The main difficulty in such cases
is to distinguish between background and an object without any external spatial knowledge
of the scene.
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Fig. 13. Typical image that creates failed 3D model. This photograph presents a common
child’s spinning top. Reconstruction algorithms failed because of many smooth and uniform
regions and a lack of background plane.

4. Conclusions

This paper presented a new attempt to the image fusion and estimation of surface depth based
on multifocus images. We proposed the whole pipeline from raw photographs to the final
spatial surface. Input multifocus images were fused by DFT method and the height map
field was created. Based on the HMF the image with a greater depth-of-field was composed.
Finally, further algorithms reconstructed the 3d surface of the photographed scene.

The presented results of generation of 3D models show that our method is a good tool for
acquiring surfaces from a few photographs. However, future work should include automatic
detection of the background plane. Second, there should be more complex methods used to
identify smooth regions of objects. We think that in both cases pattern recognition algorithms
should improve effectiveness of our method. Also Feature-based fusion methods such as
(Piella (2003)) could generate more accurate height maps.
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