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I. Perfilieva, M. Daňková, P. Hod’áková and M. Vajgl
Institute for Research and Applications of Fuzzy Modeling, University of Ostrava

Czech Republic

1. Introduction

Developments in hardware, sensor quality and imaging technology have attracted a great
deal of research interest in image processing and associated fields in the last two decades.
Here, we focus particularly on the problem of image fusion due to the fact that it is one of the
leading areas of intense research and development activity. Moreover, image fusion is used
in many real-world applications such as medical diagnosis with multimodal images (for an
overview of medical applications, see Constantinos et al. (2001)), person or weapon detection
by automated defense systems and classification of objects (e.g., roads, rivers, mountains and
towns) in multi-sensor geographical images. (a wide overview of applications can be found
in Piella (2003)).
Image fusion aims at the integration of various complementary image data into a single, new
image with the best possible quality. The term “quality” depends on the demands of the
specific application, which is usually related to its usefulness for human visual perception,
computer vision or further processing. As stated in Šroubek & Flusser (2005), if u is an ideal
image (considered as a function of two variables) and c1, . . . , cK are acquired images, then the
relation between each ci and u can be expressed by

ci(x,y) = di(u(x,y)) + ei(x,y), i = 1, . . . ,K

where di is an unknown operator describing the image degradation, and ei is an additive
random noise.
Image fusion is a means to obtain an image û that yields in some sense a better representation
of the ideal image u than is provided by each individual image ci. There are various fusion
methodologies currently in use. The main categories are determined by the level at which
the fusion is actually executed Zhang (2010). The methodologies are designed on the basis
of the following mathematical fields: statistical methods (e.g., using aggregation operators,
such as the MinMaxmethod Blum (2005)), estimation theory Loza et al. (2010), fuzzy methods
(see Singh et al. (2004); Ranjan et al. (2005); Ashoori et al. (2008)), optimization methods (e.g.,
neural networks, genetic algorithms Mumtaz & Majid (2008)) and multiscale decomposition
methods, which incorporate various transforms, e.g., discrete wavelet transforms (for a
classification of these methods see Piella (2003); a classification of wavelet-based image
fusion methods can be found in Amolins et al. (2007), and for applications for blurred
and unregistered images, refer to Šroubek & Flusser (2005); Šroubek & Zı́tová (2006)). The
choice of a fusion methodology is basically influenced by parameters relating to the type of
degradation operators di, the occurrence of noise and the type of outputs of the preprocessing
analysis.
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2 Image Fusion

The main purpose of this contribution is to show that the F-transform technique
is a promising and efficient method for image fusion Daňková & Valášek (2006);
Perfilieva & Daňková (2008). The original motivation for the F-transform (an abbreviated
name for the fuzzy transform) came from fuzzy modeling Perfilieva (2006; 2007). The
purpose was to show that, similarly to traditional transforms (Fourier and wavelet),
the F-transform performs a transformation of an original universe of functions into
a universe of their “skeleton models” (vectors of F-transform components) in which
further computation is easier (e.g., an application to the initial-value problem with a
fuzzy initial condition Perfilieva, De Meyer, De Baets & Plšková (2008)). In this respect,
the F-transform can be as useful in many applications as traditional transforms
(see applications to image compression Perfilieva, Pavliska, Vajgl & De Baets (2008) and
time-series procession Perfilieva, Novák, Pavliska, Dvořák & Štěpnička (2008)). Moreover,
sometimes the F-transform can be more efficient than its counterparts. Without going into
specific details here, we claim that F-transform has a potential advantage over the wavelet
transform; while the latter uses a single “mother wavelet” that determines all basic functions,
the former can use basic functions with different shapes.
This contribution is organized as follows: Section 2 introduces the F-transform technique and
gives an overview of its properties; Section 3 describes the details of image representation
for image fusion using the F-transform; Section 4 provides the details of two algorithms
(where the first algorithm is a special case of the second one) for image fusion that use
image representation based on the F-transform; Section 5addresses some particular problems
in image fusion and highlights the advantages of the optional setting in the introduced
algorithm. Finally, conclusions, comments and some future trends in our research are given
in the Section 6.

2. F-transform

To find a fused image, we propose two algorithms that are based on the F-transform technique.
Before going into the details of image fusion, we give a general characterization and the
relevant details of the technique developed herein.
Generally speaking, the F-transform produces an image by a linear mapping from a set of
ordinary continuous/discrete functions over a domain P onto a set of functions within a fuzzy
partition of P. We assume that the reader is familiar with the notion of the fuzzy set and how
is it represented.
Below, we explain the F-transform in more detail and adapt our explanation to the purpose of
this chapter (we refer to Perfilieva (2006) for a complete description). The explanation will be
given for the example of a discrete function that corresponds to the image u.
Let u be represented by the discrete function u : P → R of two Variables, where P = {(i, j) |
i = 1, . . . ,N, j = 1, . . . ,M} is an N × M array of pixels, and R is the set of reals. If (i, j) ∈ P is a
pixel, then u(i, j) represents its intensity range.
The F-transform of u corresponds u to the matrix Fnm[u] of F-transform components:

Fnm[u] =

⎛

⎜

⎝

F[u]11 . . . F[u]1m
...

...
...

F[u]n1 . . . F[u]nm

⎞

⎟

⎠
. (1)

Each component F[u]kl is a local mean value of u over a support set of the respective fuzzy
set Ak × Bl . The latter is an element of a fuzzy partition of the Cartesian product of intervals

4 Image Fusion
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F-Transform Based Image Fusion 3

[1,N] × [1,M]. Using the fact that a fuzzy partition of a Cartesian product is the Cartesian
product of fuzzy partitions, we first introduce this notion for a single interval and then for a
Cartesian product of intervals.
Let [1,N] = {x | 1 ≤ x ≤ N} be an interval on the real line R, n ≥ 2, a number of fuzzy sets in
a fuzzy partition of [1,N], and h = N−1

n−1 the distance between nodes x1, . . . ,xn ∈ [1,N], where
x1 = 1, xk = x1+(k− 1)h, k= 1, . . . ,n. Fuzzy sets A1, . . . ,An : [1,N]→ [0,1] establish a h-uniform
fuzzy partition of [1,N] if the following requirements are fulfilled:

(i) for every k = 1, . . . ,n, Ak(x) = 0 if x ∈ [1,N] \ [xk−1,xk+1], where x0 = x1, xN+1 = xN ;

(ii) for every k = 1, . . . ,n, Ak is continuous on [xk−1,xk+1], where x0 = x1, xN+1 = xN ;

(iii) for every i = 1, . . . ,N, ∑
n
k=1 Ak(i) = 1;

(iv) for every k = 1, . . . ,n, ∑
N
i=1Ak(i)> 0;

(v) for every k = 2, . . . ,n− 1, Ak is symmetrical with respect to the line x = xk .

The membership functions of the respective fuzzy sets in a fuzzy partition are called basic
functions. The example of triangular basic functions A1, . . . ,An, n ≥ 2 on the interval [1,N] is
given below.

A1(x) =

{

1− (x−x1)
h , x ∈ [x1,x2],

0, otherwise,

Ak(x) =

{

|x−xk|
h , x ∈ [xk−1,xk+1],

0, otherwise,

An(x) =

{

(x−xn−1)
h , x ∈ [xn−1,xn ],

0, otherwise.

Note that the shape (e.g., triangular or sinusoidal) of a basic function in a fuzzy partition is
not predetermined and can be chosen according to additional requirements.
We now introduce two extreme fuzzy partitions of [1,N] that will be used in the following.

Largest partition. The largest partition contains only one fuzzy set, A1 : [1,N]→ [0,1], such that
for all x ∈ [1,N], A1(x) = 1.

Finest partition. The finest partition is established by N fuzzy sets, A1, . . . ,AN : [1,N] → [0,1],
such that for all k, l = 1, . . . ,N, k �= l, Ak(xk) = 1 and Ak(xl) = 0.

If fuzzy sets A1, . . . ,An establish a fuzzy partition of [1,N] and B1, . . . ,Bm do the same for [1,M],
then the Cartesian product {A1, . . . ,An} × {B1, . . . ,Bm} of these fuzzy partitions is the set of
all fuzzy sets Ak × Bl , k = 1, . . . ,n, l = 1, . . . ,m. The membership function Ak × Bl : [1,N] ×
[1,M] → [0,1] is equal to the product Ak · Bl of the respective membership functions. Fuzzy
sets Ak× Bl , k= 1, . . . ,n, l= 1, . . . ,m establish a fuzzy partition of the Cartesian product [1,N]×
[1,M]. In Figure 1, an example of a fuzzy partition of [1,3]× [1,4] by triangular membership
functions is given.
Let u : P → R and fuzzy sets Ak × Bl , k = 1, . . . ,n, l = 1, . . . ,m, establish a fuzzy partition of
[1,N]× [1,M]. The (direct) F-transform of u (with respect to the chosen partition) is an image
of the mapping F[u] : {A1, . . . ,An} × {B1, . . . ,Bm} → R defined by

5F-Transform Based Image Fusion
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4 Image Fusion

Fig. 1. An example of a fuzzy partition of [1,3]× [1,4] by triangular membership functions.

F[u](Ak × Bl) =
∑

N
i=1 ∑

M
j=1 u(i, j)Ak(i)Bl(j)

∑
N
i=1 ∑

M
j=1 Ak(i)Bl(j)

, (2)

where k = 1, . . . ,n, l = 1, . . . ,m. The value F[u](Ak × Bl) is called an F-transform component
of u and is denoted by F[u]kl. The components F[u]kl can be arranged into the matrix
representation as in (1) or into the vector representation as follows:

(F[u]11, . . . ,F[u]1m, . . . ,F[u]n1, . . . ,F[u]nm). (3)

The inverse F-transform of u is a function on P, which is represented by the following inversion
formula, where i = 1, . . . ,N, j = 1, . . . ,M:

unm(i, j) =
n

∑
k=1

m

∑
l=1

F[u]klAk(i)Bl(j). (4)

It can be shown that the inverse F-transform unm approximates the original function u on the
domain P. The proof can be found in Perfilieva (2006; 2007).

Example 1 Let discrete real function u= u(x,y) be defined on the N×M array of pixels P= {(i, j) |
i = 1, . . . ,N, j = 1, . . . ,M} so that u : P → R. We now characterize F-transforms of u for two extreme
fuzzy partitions introduced above.

Largest partition. The largest partition of [1,N]× [1,M] contains only one fuzzy set, A1 × B1, such
that for all (x,y) ∈ [1,N]× [1,M], (A1 × B1)(x,y) = 1. The respective F-transform component
F[u]11 and the respective inverse F-transform u11 are as follows:

F[u]11 =
∑

N
i=1 ∑

M
j=1u(i, j)

NM
,

u11(i, j) = F[u]11, i = 1, . . . ,N, j = 1, . . . ,M.

It is easy to see that F[u]11 is the arithmetic mean of u.

Finest partition. The finest partition of [1,N]× [1,M] is established by N × M fuzzy sets Ak × Bl ,
such that for all k = 1, . . . ,N, and l = 1, . . . ,M, (Ak × Bl)(xk,yl) = 1, and for all r = 1, . . . ,N,
and s = 1, . . . ,M, such that (k, l) �= (r, s), (Ak × Bl)(xr ,ys) = 0. The respective F-transform

6 Image Fusion
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F-Transform Based Image Fusion 5

components F[u]kl, k = 1, . . . ,N, l = 1, . . . ,M, and the respective inverse F-transform uNM are as
follows:

F[u]kl = u(k, l),

uNM(i, j) = u(i, j), i = 1, . . . ,N, j = 1, . . . ,M.

It is easy to see that uNM = u.

The following two statements (for the proof see Perfilieva & Valášek (2005)) justify the
image-fusion method proposed below. Both are based on the following assumptions: the
interval [a,b] is h-uniformly partitioned by A1, . . . ,An, where n > 2 and h= (b− a)/(n− 1), f
is a continuous function on [a,b], F[ f ]1, . . . andF[ f ]n are the F-transform components of f with
respect to A1, . . . ,An.

S1. For each k = 1, . . . ,n− 1, and for each t ∈ [xk,xk+1] the following estimations hold:

| f (t)− F[ f ]k| ≤ 2ω(h, f ), | f (t)− F[ f ]k+1| ≤ 2ω(h, f )

where
ω(h, f ) =max

|δ|≤h
max

x∈[a,b−δ]
| f (x+ δ)− f (x)|

is the modulus of continuity of f on [a,b].

S2. The k-th component F[ f ]k (k = 1, . . . ,n) minimizes the function

Φ(y) =
∫ b

a
( f (x)− y)2Ak(x)dx.

3. Image representation for image fusion: step by step

In the next section, two algorithms for image fusion are presented. Both are based on
the F-transform technique, leading to one-level or higher-level decomposition of an image;
here we explain the technical details of these decompositions. We assume that the image
u is a discrete real function u = u(x,y) defined on the N × M array of pixels P = {(i, j) |
i = 1, . . . ,N, j = 1, . . . ,M} so that u : P → R. Moreover, let fuzzy sets Ak × Bl , k = 1, . . . ,n,
l = 1, . . . ,m, where 0< n ≤ N,0< m ≤ M establish a fuzzy partition of [1,N]× [1,M].
We begin with the following representation of u on P:

u(x,y) = unm(x,y) + e(x,y), where 0< n ≤ N,0< m≤ M, (5)

e(x,y) = u(x,y)− unm(x,y), ∀(x,y) ∈ P, (6)

where unm is the inverse F-transform of u and e is the respective residuum. If we replace e in
(5) by its inverse F-transform eNM with respect to the finest partition of [1,N]× [1,M] (see the
Example above), the above representation can then be rewritten as follows:

u(x,y) = unm(x,y) + eNM(x,y), ∀(x,y) ∈ P. (7)

We call (7) a one-level decomposition of u.
If function u is smooth, then the error function eNM is small, and the one-level decomposition
(7) is sufficient for our fusion algorithm. However, images generally contain various types of
degradation that disrupt their smoothness. As a result, the error function eNM in (7) is not

7F-Transform Based Image Fusion
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6 Image Fusion

negligible, and the one-level decomposition is insufficient for our purpose. In this case, we
continue with the decomposition of the error function e in (5). We decompose e into its inverse
F-transform en′m′ (with respect to a finer fuzzy partition of [1,N]× [1,M] with n′ : n < n′ ≤ N
and m′ : m < m′ ≤ M basic functions, respectively) and a new error function e′. Thus, we
obtain the second-level decomposition of u:

u(x,y) = unm(x,y) + en′m′ (x,y) + e′(x,y),

e′(x,y) = e(x,y)− en′m′ (x,y), ∀(x,y) ∈ P.

In the same manner, we can obtain a higher-level decomposition

u(x,y) = un1m1(x,y) + e
(1)
n2m2

(x,y) + . . .+ e
(k−2)
nk−1mk−1

(x,y) + e(k−1)(x,y), where

0< n1 ≤ n2 ≤ . . . ≤ nk−1 ≤ N,

0< m1 ≤ m2 ≤ . . .≤ mk−1 ≤ M,

e(1)(x,y) = u(x,y)− un1m1 (x,y),

e(i)(x,y) = e(i−1)(x,y)− e
(i−1)
nimi

(x,y), for i = 2, . . . ,k− 1 and (x,y) ∈ P,

which can be rewritten as follows:

u(x,y) = un1m1(x,y) + e
(1)
n2m2

(x,y) + . . .+ e
(k−2)
nk−1mk−1

(x,y) + e
(k−1)
nkmk

(x,y). (8)

Below, we work with the two decompositions of u that are given by (7) and (8).

4. Two algorithms for image fusion

We propose two algorithms:

1. The simple F-transform-based fusion algorithm (SA) and

2. The complete F-transform-based fusion algorithm (CA).

These algorithms are based on the one-level decomposition (7) and the higher-level
decomposition (8), respectively. Moreover, the first algorithm is a special case of the second.
Both algorithms are derived from the one developed in Daňková & Valášek (2006).
The main role in fusion algorithms is played by the so-called fusion operator κ : R

K → R,
defined as follows:

κ(x1 , . . . ,xK) = xp, if |xp| =max(|x1|, . . . , |xK |). (9)

Note that other definitions of a fusion operator are possible. The choice of a fusion operator
is influenced by a type of image degradation encountered. Below, we show that a rather wide
class of degradations can be captured by the κ defined above.

4.1 Simple F-transform-based image fusion

Assume that we are givenK≥ 2 input images c1, . . . , cK with various types of degradation. Our
aim is to recognize undistorted parts in the given images and to fuse them into one image. In
this section, we describe the algorithm for image fusion based on the one-level decomposition
(7).

8 Image Fusion
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F-Transform Based Image Fusion 7

Each input image ci, i = 1, . . . ,K, is assumed to be a discrete real function ci = ci(x,y) defined
on the N × M array of pixels P = {(x,y) | x = 1, . . . ,N,y = 1, . . . ,M} so that ci : P → R.
Moreover, the set [1,N] × [1,M] is assumed to be partitioned by fuzzy sets Ak × Bl , where
k = 1, . . . ,n, l = 1, . . . ,m and 0< n≤ N,0< m≤ M. Denote I = {1,2, . . . ,K}. The algorithm can
be summarized as follows:

(1) Decompose input images c1, . . . , cK into inverse F-transforms and error functions using the
one-level decomposition (7).

(2) Apply the fusion operator (9) to the respective F-transform components of ci, i ∈ I, and
obtain the fused F-transform components of a new image.

(3) Apply the fusion operator to the to the respective F-transform components of the error
functions ei, i ∈ I, and obtain the fused F-transform components of a new error function.

(4) Reconstruct the fused image from the inverse F-transforms with the fused components of
the new image and the fused components of the new error function.

We now proceed with a detailed description of the simple F-transform-based image-fusion
algorithm (SA).

Setting:

Step 0. Choose n,m, 0< n≤ N,0<m≤M, – the numbers of basic functions in the fuzzy
partitions of [1,N] and [1,M], respectively.

Initialization:

Step 1. Create the fuzzy partitions A
(1)
1 , . . . ,A

(1)
n and B

(1)
1 , . . . ,B

(1)
m of [1,N] and [1,M],

respectively.

Denote A
(2)
1 , . . . ,A

(2)
N and B

(2)
1 , . . . ,B

(2)
M the finest partitions of [1,N] and [1,M],

respectively.

Transformation:

Step 2. For all i ∈ I, compute the direct and the inverse F-transforms of each input image
ci and obtain:

F[ci]11, . . . ,F[ci]nm – the F-transform components of ci,

cinm – the inverse F-transform of ci.

Step 3. For all i ∈ I, compute the error functions: ei = ci − cinm . Identify values ei(x,y),
(x,y) ∈ P, with the F-transform components F[ei]xy of ei with respect to the finest
partitions of [1,N] and [1,M].

Fusion:

Step 4(a). Apply the fusion operator κ to the respective components of the direct
F-transforms of the input images ci, i ∈ I:

κ(F[c1]11, . . . ,F[cK]11) = κ
(1)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ(F[c1]nm, . . . ,F[cK]nm) = κ
(1)
nm,

9F-Transform Based Image Fusion
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8 Image Fusion

and obtain the fused F-transform components of a new image:

(κ
(1)
11 , . . . ,κ

(1)
nm). (10)

Step 4(b). Apply the fusion operator κ to the respective components of the direct
F-transforms of the error functions ei, i ∈ I, with respect to the finest partitions
of [1,N] and [1,M]:

κ(F[e1]11, . . . ,F[eK]11) = κ
(2)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ(F[e1]NM, . . . ,F[e1]NM) = κ
(2)
NM,

and obtain the fused F-transform components of a new error function:

(κ
(2)
11 , . . . ,κ

(2)
NM). (11)

Reconstruction:

Step 5. The fused image c is equal to the sum of the two inverse F-transformswith fused
components (10) and fused components (11), i.e.:

c(x,y) =
n

∑
k=1

m

∑
l=1

κ
(1)
kl A

(1)
k (x)B

(1)
l (y) +

N

∑
k=1

M

∑
l=1

κ
(2)
kl A

(2)
k (x)B

(2)
l (y), (x,y) ∈ P.

4.2 Complete F-transform-based algorithm

In this section, we describe the second algorithm for image fusion, i.e., based on the
higher-level decomposition (8). All the assumptions made above remain valid. Moreover,
the summarized description of the complete F-transform-based algorithm coincides with the
one given above up to the descriptions of their respective decompositions.
We proceed with a detailed description of the complete F-transform-based image fusion
algorithm (CA).

Setting:

Step 0. Choose

kmax – maximal number of iterations,

step – coefficient for an increment of the number of basic functions in each fuzzy partition,

nstart – starting number of basic functions in the fuzzy partition of [1,N],

mstart – starting number of basic functions in the fuzzy partition [1,M],

where step≤min(N− nstart,M−mstart) and 0< n(m)start ≤ N(M).

Denote e
(0)
i = ci for i ∈ I.

For k = 0 · stepk to kmax

Initialization:

10 Image Fusion
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F-Transform Based Image Fusion 9

Step 1.1. Compute n = nstart · step
k, m = mstart · step

k.

Step 1.2. Create fuzzy partitions A
(0)
1 , . . . ,A

(0)
n and B

(0)
1 , . . . ,B

(0)
m of [1,N] and

[1,M], respectively.

Transformation:

Step 2. For all i ∈ I, compute the direct and the inverse F-transforms of each

function e
(k)
i and obtain:

F[e
(k)
i ]11, . . . ,F[e

(k)
i ]nm – the F-transform components of e

(k)
i ,

e
(k)
inm

– the inverse F-transform of e
(k)
i .

Step 3. For all i ∈ I, compute error functions: e
(k+1)
i = e

(k)
i − e

(k)
inm

.

Fusion:

Step 4. Apply fusion operator κ to respective components of the direct

F-transforms of functions e
(k)
i :

κ(F[e
(k)
1 ]11, . . . ,F[e

(k)
K ]11) = κ

(k)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ(F[e
(k)
1 ]nm, . . . ,F[e

(k)
K ]nm) = κ

(k)
nm ,

and obtain the fused F-transform components as follows:

(κ
(k)
11 , . . . ,κ

(k)
nm). (12)

Step 5. k = k+ 1.

End For

Last step of fusion:

Step 6. For all i ∈ I, identify values e
(kmax+1)
i (x,y), (x,y) ∈ P, with the F-transform

components F[e
(kmax+1)
1 ]xy of e

(kmax+1)
i with respect to the finest partitions of

[1,N] and [1,M]. Apply the fusion operator κ to the respective F-transform

components of e
(kmax+1)
i :

κ(F[e
(kmax+1)
1 ]11, . . . ,F[e

(kmax+1)
K ]11) = κ

(kmax+1)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ(F[e
(kmax+1)
1 ]NM, . . . ,F[e

(kmax+1)
K ]NM) = κ

(kmax+1)
NM ,

and obtain the fused F-transform components as follows:

(κ
(kmax+1)
11 , . . . ,κ

(kmax+1)
NM ). (13)

11F-Transform Based Image Fusion
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10 Image Fusion

Reconstruction:

Step 7. The fused image c is equal to the sum of two inverse F-transforms with
fused components (12) and fused components (13), i.e.:

c(x,y) =
nstart

∑
k=1

mstart

∑
l=1

κ
(0)
kl A

(0)
k (x)B

(0)
l (y) + . . .

. . .+
N

∑
k=1

M

∑
l=1

κ
(kmax+1)
kl A

(kmax+1)
k (x)B

(kmax+1)
l (y) (x,y) ∈ P, (14)

where n0 = nstart and m0 = mstart, . . . ,nkmax+1 = N,mkmax+1 = M.

4.3 Justification of the algorithms

By S1, a smaller modulus of continuity leads to a higher-quality approximation of an input
image by its inverse fuzzy transform. If a certain part of the input image is affected
by degradation, then by S2, the respective F-transform component captures the weighted
arithmetic mean and the error function is close to zero at that part. Thus, by the proposed
fusion operator κ, we choose components with maximal absolute values that correspond to
those parts of the input image which are least degraded.

5. Experimental results

We tested the algorithms described above on examples of input images which are available at
“http://irafm.osu.cz/”. Two types of degradations were applied to these images so that they
appear as either:

1. multi-focus input images, or

2. multi-sensor input images.

Multi-focus input images are affected by degradation in the form of blurring caused by
imaging devices (due to their optical properties or display limitations) and/or the complexity
of the image subject. Such images are blurred and noisy and generally exhibit further
phenomena such as various motions in the field or input images having different resolutions;
these effects were neglected in the subsequent experiments, as our aim was only to minimize
blurring and noise in the fused image.
In contrast, multi-sensor input images do not contain a priori degraded information. They
can be characterized as more likely to be carriers of complementary information coming from
different types of sensors. Of course, additional blurring may occur as well as noise and
other distortions in the input images. Here, a fused image should contain the most useful
information available in the input images.
The following experiments produced a series of fused images. They differed in their initial
settings of the values of the algorithms and thus in their resulting quality. Because the latter
is not obvious, we focus on a performance of a particular algorithm and demonstrate various
fusions that are better than the input originals. Whenever possible, we compare fused images

with ideal images. In this case, the Euclidean distance E(c,d) =
√

∑x∈P(c(x)− d(x))2 was
used as a measure of quality.
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5.1 Multi-focus images

In this section, we demonstrate a multi-focus image fusion. In the first two examples, a
Gaussian noise was artificially added to an ideal image at complementary or disjoint regions.
In the following two examples, real images made by a digital camera were fused.
Ideally, the fused image is produced by combining regions that are in focus. If this is the case,
our fusion operator κ defined by (9) works reasonably well. We can explain (and justify) this
as follows: if the one-level decomposition is applied, then the error function of a blurred part
is smaller than that of the unblurred (sharp) part. Therefore, the maximal absolute values of
the F-transform components reflect the level of sharpness, which is important for fusion. In
the case of the SA and CA, an important role is played by the initial settings of the values of
the algorithm parameters: the number of basic functions, m,n, in the case of SA and CA and
the values of the increment, step, and the number of iterations, kmax, in the case of CA.

5.1.1 Artificial input images

Figs. 2(d) – 2(f) illustrate the use of the SA and the CA in the case of artificially blurred input
images Fig. 2(a) and 2(b). The results show that the best choice was the SA with m,n = 3. In
this case, the fused image was identical to the original one shown in Fig. 2(c), and for this
reason, it is not demonstrated. A lower or a higher number of basic functions propagated
the blur into the fused images (see Fig. 2(d), 2(e), and 2(f)), with the respective pictures of
the pointwise absolute differences shown in Fig. 2(g), 2(h), and 2(i), where the values that
are “close to zero” are in “close to black” color. Moreover, the SA, with the optimal choice
m,n = 3, has a small computational complexity and was thus very fast. Surprisingly, the CA,
with step = 2 and 8 iterations (see Fig. 2(f)), did not provide a better fusion.
The next example is slightly different: there are two different Gaussian blurs1 applied to two
disjoint regions of the ideal image Fig. 3(c). Unlike the previous case, we were not able to
obtain a fused image identical to the ideal one. The results of our fusion algorithms were as
follows: the SA required a rather fine partition, with m,n = 250 basic functions (see Fig. 3(e),
the Euclidean distance is E = 75.58), and the CA slightly outperformed the SA (see Fig. 3(f),
the Euclidean distance is E = 72.53). However, the computational complexity of the first
algorithm (SA) was significantly smaller than that of the second (CA). We finally remark that
the application of the simplest SA, with m,n = 1 (see Fig. 3(d)), produced a very good fusion
with the Euclidean distance E = 187.07. The quality of fusion was especially good in the
background part of the image.

5.1.2 Real input images

5.1.2.1 Grayscale digital input images

Fig. 4 presents the fusion ofmulti-focus images originating froma digital camera. Due to space
limitations, we show here only the SA output Fig. 4(c) and note that it is comparable (measures
of quality are almost equal) to the CA. Because we did not have a whole, ideal image at our
disposal, we compare “ideal” parts of the input images with their respective parts in the fused
image. These “ideal” parts are designated by the two color boxes in Fig. 4(d), referred to as
the “left box” and the “right box”. In Fig. 4(e) and Fig. 4(f), we see graphs of the pointwise
absolute differences between the “ideal” and blurred parts, where again, the values that are
“close to zero” are in “close to black” color. It is easily seen that the quality of fusion in the
background region (left box) is better than that in the foreground region (right box). This was

1A Gaussian blur is a type of an image filter, which combines Gaussian function and the input image
by means of convolution.
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(a) 1’st blurred image (b) 2’nd blurred image (c) O – Original image

(d) F1 – fused image by SAwith
n,m = 1

(e) F2 – fused image by SAwith
n,m = 9

(f) F3 – fused image by CAwith
nstart,mstart = 1,kmax = 8, step=
2

(g) |O− F1| (h) |O− F2| (i) |O− F3|

Fig. 2. Illustration of various initial setting values of SA and CA applied to a blurred image
(Gaussian blur).
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(a) 1’st blurred image (b) 2’nd blurred image (c) Original image

(d) F1 – fused image by SAwith
n,m = 1

(e) F2 – fused image by SAwith
n,m = 250

(f) F3 – fused image by CA
with nstart,mstart = 1,kmax =
10, step= 2

(g) |O− F1| (h) |O− F2| (i) |O− F3|

Fig. 3. Application of SA to artificially blurred images (Gaussian blur).

caused by differences in reflections from the surfaces of the boxes. It seems that the initial
setting values (in our case n,m= 200) did not play a significant role in this application.

5.1.2.2 Multichannel color input images

The application shows how the CA can be successfully used for the fusion of multi-focus
color images. In our case, the fusion was performed separately for each color component.
We assumed the RGB format for input color images and applied the CA with the same initial
setting values three times on each R, G and B component. The final fused image was then
composed from the fused individual color components.
The input images Fig. 5(a) and Fig. 5(b) depict a rather complicated scene with a lot of different
smooth and glossy objects in the background. This observation forced us to choose the CA
and not the simpler SA. The resulting (fused) toy in Fig. 5(c) and 5(d) seems to be perfect
except for the one blurred area that is still blurred in all the input images. This blurred area
is situated in a background area that contains both smooth and glossy elements and is thus
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(a) C1 – 1’st image (right box in
focus)

(b) C2 – 2’nd image (left box in
focus)

(c) F – fused image by SA with
n,m = 200

(d) Regions to compare (e) |L− LC2
| (f) |R− RC1

|

Fig. 4. Application of SA to multi-focus images

very sensitive to any disturbances. Figs. 5(f) and 5(g) present graphs of the pointwise absolute
differences (over the region of interest extracted from C1) between the respective fused images
and the first input image in Fig. 5(a). Obviously, the CA with a higher value of nstart,mstart

gives a better fused image (compare Fig. 5(c) and 5(d)).

5.2 Multi-sensor images

This section presents two particular examples of multi-sensor images and their fusion using
the F-transform technique.

5.2.1 Image fusion helps navigation

We start with a known benchmark, which can be downloaded from
”http://www.metapix.de”. It contains two input images taken by two sensors: a thermal
imaging forward-looking infrared (FLIR) sensor, depicted in Fig. 6(a), and a low-light
television (LLTV) sensor on Fig. 6(b). The sensors were used together in a helmet-mounted
display intended for a helicopter pilot. The sensor input images help the helicopter pilot with
orientation under poor-visibility conditions. However, they are not both simultaneously at
the pilot’s disposal. Therefore, image fusion is required. The goal here was to extract and
fuse the most important characteristics of the scene, i.e., the paths and their localization in the
landscape. In this case, a fast and efficient fusion method is highly desirable.
SAwas deemed themost suitable for this application due to its low computational complexity.
The results of the SA fusion (see Fig. 6(d)) were compared with the benchmark fusion
(available on the same site) based on a multiresolution analysis (see Fig. 6(c)). The quality
of our result, shown in Fig. 6(d), is visibly better. The main visual advantage lies in the part
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(a) C1 – 1’st input image (background in focus) (b) C2 – 2’nd input image (toy in focus)

(c) F1 – fused image by CA with nstart,mstart =
1,kmax = 5, step= 2

(d) F2 – fused image by CA with nstart,mstart =
10,kmax = 4, step= 2

(e) R – region of interest
extracted from C1

(f) |R− RF1 | (g) |R− RF2 |

Fig. 5. Application of CA to multi-focus color images
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R marked by the red color in Fig. 6(e); it displays a field. In contrast to the output of the
multiresolution analysis, the SA did not change this area. We note that the CA produced
a fusion of even better quality (e.g. Fig. 6(f)), although at the cost of higher computational
complexity.

5.2.2 Image fusion in medical diagnosis

An important field of applications for image-fusion methods is in medical diagnostics.
Imaging methods such as computer tomography (CT), magnetic resonance imaging (MRI)
or positron-emission tomography (PET) produce a multitude of images displaying particular
information destined for further analysis and interpretation. The significant benefits of image
fusion in this field are indisputable and widely sought.
For this application, we used brain MRI images, as in Bloch (2008). These images represent a
slice of a dual-echo MRI image acquired with various parameters. As stated in Bloch (2008),
the pathology (called adrenoleukodystrophy) is indicated by the bright area in Fig. 7(b) and
is not visible in Fig. 7(a). There, the normal structure (ventricles) of a healthy brain is well
delineated.
Initial experimental results with the original input images showed that the pure algorithms
SA and CA could not be successfully applied. The reason is that Fig. 7(b) is almost uniformly
smooth, and the F-transform components corresponding to this image are not within the
values of the fusion operator. As can be deduced from the properties S1 and S2, the contrast
of an input image is very important for our F-transform-based fusion. Therefore, we modified
the original input image in Fig. 7(b) by enhancing its contrast and obtained a new input image,
depicted in Fig. 7(c). After this modification, the fusion was again applied to the input images
in Fig. 7(b) and Fig. 7(c). The result is shown in Fig. 7(d). The pathological parts as well as the
structure of the displayed brain are now nicely visible in the fused image.

6. Conclusion

This study focused on the application of the F-transform to the problem of image fusion.
After a brief introduction to the theory of F-transform, detailed descriptions of two
fusion algorithms were given. These algorithms are based on one-level and higher-level
decompositions of input images. We then proposed an appropriate fusion operator and
discussed several types of degradations that can be eliminated by its application.
In various examples, we showed that the proposed approach can be successfully applied in
cases when input images are available as either:

1. multi-focus input images or

2. multi-sensor input images.

We examined input images that were artificially blurred and those blurred by inherent
restrictions of the imaging tools. For the artificially blurred images, we estimated fusion
quality by the Euclidean distance with the origin. For the others, we used the known
benchmarks. Last, but not least, we discussed the influence of initial settings of the parameter
values of the proposed algorithms on the quality of the resulting fusion.
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(a) FLIR image (b) LLTV image

(c) Fusion by means of
multiresolution analysis

(d) SA n,m = 100

(e) Problematic part R (f) CA with nstart,mstart =
40,kmax = 3, step= 2

Fig. 6. Illustration of various initial setting values in SA and CA applied to multi-sensor
images
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(a) 1’st MRI image (b) 2’nd MRI image

(c) 2’nd image with modified contrast (d) CA with nstart,mstart = 10,kmax = 5, step= 2

Fig. 7. One axial slice of dual-echo magnetic resonance imaging acquisitions (pathological
brain image), courtesy of Professor Catherine Adamsbaum, Saint Vincent de Paul Hospital,
Paris.
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