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1. Introduction 

Food samples present an enormous challenge to analytical chemists in their efforts to 
determine residues of pesticides at trace levels to satisfy food safety regulations in EU, USA 
and Japan. The wide array of food matrices from liquids to solids require different sample 
preparation techniques for accurate and reproducible results with chromatographic 
techniques such as Gas chromatography(GC) and High Performance Liquid 
Chromatography (HPLC). In addition, there exists a wide range of pesticides which are used 
legally for crop protection and their residue content in food must be accurately monitored 
for safe consumption. The GC and HPLC techniques with different types of detector 
systems can provide such analysis at trace levels to fulfill the maximum residue levels(MRL) 
as per the food safety regulations in these countries. However, the accurate and 
reproducible results often depend upon the sample preparation techniques associated with 
the different food matrices. 
Sample preparation has always been regarded as the bottleneck in the analytical laboratory 
performing numerous analyses, but it is the key to accurate analysis. In this regard, as per 
pesticide residue analysis, where not only the physical volume of the analyses can be 
enormous but also the number of pesticides involved can range from a selected few to a 
broad spectrum depending on the food source. This will usually necessitate the employment 
of different sample preparation methods for different targeted pesticides as well as the 
multitude of food matrices. 
It has been estimated that the sample preparation step in most determinations consume 
approximately 60 – 70 % of the total time required for the analysis. It must be able to 
produce analytically accurate results and be economically efficient for routine analysis. In 
addition, it must be safe and easy to perform. 
Most sample preparation procedures for GC and HPLC determination follow the basic steps 
as outlined below: 
1. The food sample is homogenized or blended to obtain a uniform matrix. 
2. This will be followed by extraction of the pesticide residue with solvents. 
3. A cleanup step is employed to remove interfering matrix components from the GC or 

HPLC chromatograms. 
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4. The elution and/or fractionation of the extracted analytes. 
5. Concentrate the eluent and re-constitute in a solvent which is compatible with the GC 

or HPLC conditions. 
6. Finally, the solution containing the pesticide can be introduced into the GC or HPLC. 
The different types of sample preparation for such analyses will be presented . These are 
liquid-liquid extraction, solid phase extraction, solid phase microextraction, single drop 
microextraction, liquid-solid extraction, microwave assisted solvent extraction, supercritical 
fluid extraction, dispersive liquid-liquid microextraction and accelerated solvent extraction. 

2. Liquid-liquid Extraction (LLE) 

Analytes in solutions or liquid samples can be extracted by direct partitioning with an 
immiscible solvent. Liquid-liquid extraction (LLE) is based on the relative solubility of an 
analyte in two immiscible phases and is governed by the equilibrium distribution/partition 
coefficient. Extraction of an analyte is achieved by the differences in the solubilising power 
(polarity) of the two immiscible liquid phases. 
LLE is traditionally one of the most common methods of extraction, particularly for organic 
compounds from aqueous matrices. Typically a separating funnel is used and the two 
immiscible phases are mixed by shaking and then allowed to separate. To avoid emulsions, 
in some cases, a salt may be added and centrifugation can be used if necessary. Alternatively 
a matrix solid-phase dispersion(MSPD) approach can be used to avoid emulsions. Both 
layers can be collected for further analysis. To ensure the complete extraction of an analyte 
into the required phase, multiple extractions may be necessary. Due to the limited 
selectivity, particularly for trace level analysis, there is a need for cleanup or analyte 
enrichment and concentration steps prior to instrumental analysis. 
In the case of multiresidue methods, the extracting solvent has to be suitable for the 
extraction of compounds within a wide polarity range from a variety of matrices containing 
different amounts of water, fats, sugars and other substances. The usual way for extracting 
pesticide residues from the sample is by thorough disintegration of the matrix in a high 
speed homogenizer in the presence of the solvent or solvent mixture. In this way, even the 
AOAC method, which is one of the most commonly instituted methods, has been modified. 
The original methods which were extraction with acetonitrile, followed by liquid-liquid 
partitioning with petroleum ether/dichloromethane and a laborious florisil column cleanup, 
was modified in 1985 to include acetone instead of acetonitrile (Torres et al., 1996). 
Acetone extraction is usually preferred since it is suitable for both non-polar and polar 
pesticides, as has been demonstrated in many comparative studies performed by GC and 
HPLC. In addition, acetone has low toxicity, is easy to purify, evaporate and filter and is 
inexpensive. Fruit and vegetable extracts in acetone are usually cleaner than those obtained 
with other solvents of similar polarity (Torres et al., 1996).   
A rapid and efficient multiresidue extraction procedure using ethyl acetate and sodium 
sulphate, followed by GPC on an SX-3 column, was first reported by Roos et al. (1987). 
Recoveries better than 90% were obtained for organochlorine(OC) and organophophorous 
(OP) pesticides, fungicides and chlorobiphenyls. The ethyl acetate and sodium sulphate 
extraction without further cleanup was applied as a screening method for the analysis of 
eight OP pesticides with varying polarities in different types of vegetables using gas 
chromatography coupled to the flame photometric and nitrogen-phosphorous(GC-FPD, GC-
NPD) detectors. With the use of specific detectors, interfering chromatographic peaks were 
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reduced and the analysis time and solvent usage were also minimized, resulting in lower-
cost analyses (Cai et al., 1995).  
In another study, Castro et al. (2002) developed a rapid LLE method for the determination of 
endosulfan isomers and endosulfan-sulfate in plant samples. Tomato leaf samples were 
homogenized with ethyl acetate and extracts cleaned-up on an aluminium oxide column. 
The pesticides were eluted with a hexane-ethyl acetate (80:20, v/v) mixture. Recoveries 
obtained from plant samples were higher than 78% with an RSD lower than 14% and 
detection limits were 0.02 µg/g for each pesticide. Barriada-Pereira et al. (2004) compared 
the use of cartridges filled with four different sorbents: florisil, a tandem of florisil and 
alumina, silica, and carbon black to clean up plant leaf extracts prior to OC pesticides 
determination. Carbon black was shown to be the preferred sorbent, providing colorless 
eluates, cleaner chromatograms and fewer interferences. Jansson et al. (2004) used the 
National Food Administration (NFA) ethyl acetate extraction to determine 57 different 
pesticides and metabolites in a wide variety of fruits and vegetables by LC-MS/MS. The 
recoveries obtained were in the range 70 – 100%. The proposed method is quick and 
straightforward and no additional clean-up steps are needed.  

3. Solid-phase Extraction (SPE) 

Solid phase extraction (SPE) was developed in the mid-1970 as an alternative approach to 
LLE for separation, purification, pre-concentration and solvent exchange of solutes for 
solution (Thurman and Mills, 1998). SPE can be used directly as an extraction technique for 
liquid matrices, or as a cleanup method for solvent extracts.   
An SPE method always consists of three to four successive steps, as illustrated in Figure 1. 
First, the solid sorbent should be conditioned using an appropriate solvent. This step is 
crucial, as it enables the wetting of the packing material and the solvation of the functional 
groups. In addition, it removes possible impurities initially contained in the sorbent or the 
packaging. Also, this step removes the air present in the column and fills the void volume 
with solvent. The nature of the conditioning solvent depends on the type of the solid 
sorbent. Typically, for reversed phase sorbent, methanol is frequently used, followed by 
water or an aqueous buffer whose pH and ionic strength are similar to that of the sample. 
Precautionary steps are taken to prevent the solid sorbent from drying in between the 
conditioning and the sample treatment steps, otherwise the analytes will not be efficiently 
retained giving rise to poor recoveries. If the sorbent is dry for more than several minutes, it 
must be reconditioned. 
The second step is the percolation of the sample through the solid sorbent. Depending on 
the system used, the volumes used can range from 1 mL to 1 L. The sample may be applied 
to the column by gravity, pumping, aspirated by vacuum or by an automated system. The 
sample flow rate through the sorbent should be low enough to enable efficient retention of 
the analytes, and high enough to avoid excessive retention. During this step, the analytes are 
concentrated on the sorbent. Even though the matrix components may also be retained by 
the solid sorbent, some of them could pass through, thus enabling some purification (matrix 
separation) of the sample. 
The third step (which is optional) may be the washing of the solid sorbent with an 
appropriate solvent, having low elution strength, to eliminate matrix components which 
have been retained by the solid sorbent, without displacing the analytes. A drying step may 
also be advisable, especially for aqueous matrices, to remove traces of water from the solid 
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sorbent. This will eliminate the presence of water in the final extract, which, in some cases, 
may hinder the subsequent concentration of the extract and the analysis. 
 

 
Fig. 1. SPE Operation Procedures 

The final step is the elution of the analytes of interest by an appropriate solvent, without 
removing the retained matrix components. The solvent volume should be adjusted so that  
quantitative  recovery  of  the analytes is achieved with a subsequent low dilution. In 
addition, the flow rate should be correctly adjusted to ensure efficient elution. It is often 
recommended that the solvent volume be fractionated into two aliquots, and to allow the 
solvent to soak into the solid sorbent before the elution. 
The SPE cartridge possesses two important features, standardization and hence greater 
reproducibility, which includes a wide range of phases, from normal phase, reversed phase 
to ion-exchange materials thus enabling aqueous solutions to be treated and employing 
additional trapping mechanisms. 
The sorbents come in different packaging: filled micro-columns, cartridge, syringe barrels 
and discs. The disposable sorbent containers are illustrated in Figure 2. Although the 
cartridges are for single use only and disposable, thus representing a significant consumable 
cost, this has been shown to be much lower than the cost of chemicals and the manpower 
needed for the corresponding traditional solvent extraction methods. Other types of SPE 
have also been developed, including flat disks with the stationary phase particles supported 
on a mesh, enabling very large volumes to be rapidly extracted. Recent use of high flow 
rates through extraction cartridges has been shown to give improved extraction but such 
“turbulent flow extractions” were very similar to conventional extractions. 
Many of the published methods for pesticide determination in fresh fruits and vegetables 
use a combination of two or more commercially available SPE columns for cleanup in the   
 

Washing / 
conditioning Loading Washing Elution 
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Fig. 2. Disposable SPE Sorbent Containers 

normal-phase (NP) mode. Weak anion-exchange sorbents such as primary secondary amine 
(PSA), aminopropyl (NH2), or diethylaminopropyl (DEA) modified silica are often used for 
cleanup of food samples together with strong anion-exchange sorbents (SAX) (Sharif et al., 
2006). Other SPE cleanup approaches include the combination of GCB (graphitized carbon 
black) and PSA columns (Abhilash et al., 2007). In addition, there are other applications 
using reversed-phase (RP) SPE for pre-concentration / cleanup of pesticide residues from 
fruit and vegetable samples.  
Before the SPE technique can be applied to a solid matrix such as fruits and vegetables, a 
separate homogenization step and often filtration, sonication, centrifugation and liquid-
liquid cleanup are required. Stajnbaher and Zupancic-Kralj (2003) used solid-phase 
extraction on a highly cross-linked polystryrene divinylbenzene column (LiChrolut EN) for 
the simultaneous isolation of 90 pesticides of different physico-chemical  properties  from  
fruits and vegetables and pre-concentration of the pesticides from the water-diluted acetone 
extract. It only used small volumes of solvent per sample (30 ml acetone and 14 ml ethyl 
acetate, 6 ml methanol). The majority of pesticide recoveries for various fruits and 
vegetables exceeded 80% in the concentration range from 0.01 to 0.50 mg/kg.  
Hernandez et al. (2006) determined pesticide residues in fruits and vegetables by SPE. 20 g 
of homogenized sample was mixed in 60 mL of methanol:water (80:20, v/v) 0.1% HCOOH. 
The mixture was extracted for 2 min at 8000 rpm and filtered. The filtrate was diluted with 
MeOH:H2O (80:20, v/v) 0.1% HCOOH to 100 mL. Then, the extract was diluted eight times 
with LC-grade water. 2.5 mL aliquot was taken and diluted to 20 mL. 5 mL of diluted extract 
was passed through a SPE cartridge, preconditioned with 5 mL of MeOH, 5 mL of 
methanol:methyl tert buthyl ether (10:90, v/v) 0.1% HCOOH, 5 mL of MeOH 0.1% HCOOH 
and finally with 5 mL of acidified water. The cartridge was dried for 1 hour before the 
sample was loaded and eluted with 5 mL MeOH:MTBE (10:90, v/v) 0.1% HCOOH. The 
recoveries ranged from 70% to 110% with satisfactory precision (< 15%) that could be used 
for the accurate determination of 52 pesticides and metabolites in one single determination 
step at the 0.01 mg/kg level. 
Shimelis et al. (2007) evaluated the performance of different sorbents for cleanup of oily 
vegetable matrices. The authors highlighted the use of a dual-layer SPE, using a 
combination of PSA with GCB for sample cleanup during multi-residue pesticide screening 
of agricultural and food products. The retention of fatty acids by the PSA sorbent was 
quantified and the effect of the elution solvent on the retention of fatty acid on the SPE 

             Syringe barrel        Cartridge           Disk
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cartridge was evaluated. The use of stronger elution solvents to elute certain pesticides from 
graphitized carbon was shown to interfere with the capacity of PSA to bind fatty acids. The 
ability of the PSA to retain fatty acids was found to be highly dependent on the conditioning 
and elution protocols. A necessity to use a stronger solvent in order to elute polar pesticides 
from dual-layer GCB/PSA SPE weaken the capacity of the PSA for removal of fatty acids 
from the samples. Therefore, practical applications of dual-layer GCB/PSA cartridges 
should be limited to food samples with lower levels of fatty acids.  
Stajnbaher and Zupancic-Kralji (2008) determined 24 pesticides representing different 
chemical classess (OPPs, OCPs, carbamates and pyrethroids) in fruits and vegetables using 
GC-MS. The samples were homogenized and extracted by adding 18mL acetone. The 
sample was thoroughly mixed in a vortex for 2 min and the extract was centrifuged for 10 
min at 4000 rpm. The supernatant was transferred to a volumetric tube and acetone:water 
(2:1, v/v) mixture was added. After shaking, a 2.5 mL aliquot corresponding to 1g of sample 
was transferred to a 15 mL reservoir of a funnel shaped SPE column filled with 150 mg of 
LiChrolut EN sorbent which was washed with 4 mL of ethyl acetate and preconditioned 
with 4 mL of methanol followed by 5 mL of deionized water. The pesticides retained were 
then eluted with 4 mL of ethyl acetate. Recoveries were found to be between 70% and 110% 
for most of the pesticides. It was reported that the miniaturized SPE method in connection 
with programmed temperature vaporizing (PTV)-based large volume injection was faster in 
sample preparation and economically beneficial as it reduced the costs of the SPE material 
and use of solvents.  
In comparison with traditional liquid extraction techniques, SPE is simpler, more 
convenient, and easier to automate. In addition, SPE possesses other distinct advantages 
including: (1) requires a lower volume of solvent than traditional liquid-liquid extractions; 
(2) involves simple manipulations which are not time consuming and makes it possible for 
field treatment of samples; (3) the SPE cartridges can be used for short-term storage of the 
compounds; (4) provides high enhancement factors proportional to the volume of water 
passed through the SPE cartridges. One of the drawbacks of the SPE method is that the 
packing must be uniform to avoid poor efficiency and although the pre-packed commercial 
cartridges are now considered reliable, solid and oily components in a sample matrix may 
plug the SPE cartridge or block pores in the sorbent causing it to become overloaded and 
also automated systems can have difficulties with reproducibility for some sample types. 
The sample matrix can also  affect  the  ability of  the  sorbent  to  extract  the  analyte  due  
to  competition  for retention. Many traditional sorbents are limited in terms of selectivity 
and insufficient retention of very polar compounds can pose a problem. The use of 
hydrophilic materials for the improved extraction of the more polar compounds by SPE was 
detailed by Fontanals et al. (2005). A comprehensive review, covering trends, method 
development, coupled with liquid chromatography and different types of SPE sorbent 
materials was published by Hennion (1999) and some examples of the use of SPE in food 
analysis were given in a review by Buldini et al. (2002).  

4. Solid-phase Microextraction (SPME)  

Solid-phase microextraction (SPME), was developed by Pawliszyn and co-workers in 1990 
in an attempt to redress the limitations inherent in SPE and LLE (Kataoka et al., 2000). It is a 
new sample preparation technique using a fused-silica fiber that is coated on the outside 
with an appropriate stationary phase. The analyte in the sample is directly extracted and 
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concentrated onto the fiber coating. The method saves preparation time, solvent usage and 
disposal costs, and can improve the detection limits (Pawliszyn, 1997). It has been used 
routinely in combination with GC and HPLC, and successfully applied to a wide variety of 
compounds, especially for the extraction of volatile and semivolatile organic compounds 
from environmental, biological and food samples (Eisert and Levsen, 1996; Pawliszyn, 1997; 
Prosen and Zupancic-Kralj, 1999). The main advantages of SPME extraction compared to 
solvent extraction are the reduction in solvent use, the combination of sampling and 
extraction into one step and the ability to examine smaller sample sizes. It can also have 
high sensitivity and can be used for polar and non-polar analytes in a wide range of 
matrices by linking to both GC and LC.  
There are currently three SPME modes that require either fused-silica fibers or GC capillary 
columns. Headspace (HS) and direct immersion (DI) SPME are the two fiber extraction 
modes, while the in-tube SPME mode is applied in the LC or HPLC instrument. 
In the DI-SPME mode, the fiber is inserted into the sample medium and the analytes are 
transported directly to the extraction phase. For aqueous matrices, more efficient agitation 
techniques, such as fast sample flow, rapid fiber or vial movement, stirring or sonication are 
required. These actions are undertaken to reduce the effect caused by the “depletion zone” 
which occurs close to the fiber as a result of fluid shielding and slow diffusion of analytes in 
the liquid media. DI-SPME is the most common mode for pesticide analysis, and is 
conducted by directly inserting the fiber into the sample matrix. A method for the 
determination of seven OP pesticides in fruits and fruit juice samples was developed and 
validated by Simplicio and Boas (1999). Mean recoveries were all above 75.9% and below 
102.6% for juice and between 70% and 99% for the fruit samples. Limits of detection of the 
method for fruits and fruit juice matrices were below 2 μg/kg for all pesticides. Beltran et al. 
(2003) has developed a DI-SPME method for the determination of seven pyrethroid 
pesticides in tomatoes and strawberries. Detection limits for tomato and strawberry samples 
were between 0.003 and 0.025 mg/kg with RSD values of less than 25%. Residues of 
metobromuron, monolinuron and linuron herbicides and their aniline homologs in carrots, 
onions and potatoes have been quantified with DI-SPME with the polyacrylate (PA) fiber. A 
juice was obtained from samples, then diluted, added with sodium chloride and buffered. 
Recoveries obtained were between 76 – 95% with RSD values of less than 10% (Berrada et al., 
2004). Sagratini et al. (2007) developed a new analysis method to detect carbamates and 
phenylurea pesticide residues in fruit juices using DI-SPME coupled with LC/MS and 
LC/QIT-MS. The pesticide residues present in watery matrices such as fruit juices were 
extracted using three types of fibers: 50-μm Carbowax/templated resin (CW/TPR), 60-μm 
poly(dimethylsiloxane) /divinylbenzene (PDMS/DVB) and 85-μm polyacrylate. After 
extraction, the desorption (in a static mode) was performed in the specific interface chamber 
SPME/HPLC, previously filled with 70% methanol and 30% water. The best recoveries, 
evaluated at two fortification levels (0.2 and 0.5 mg kg−1) in fruit juices, were obtained using 
PDMS/DVB and CW/TPR fibers, and ranged from 25 to 82% (monolinuron, diuron and 
diethofencarb), with relative standard deviations (RSDs) from 1 to 17%. All the limits of 
quantification (LOQs) were in the range of 0.005–0.05 μg ml−1 which are equal to, or lower 
than the maximum residue limits (MRLs) established by the Italian and Spanish legislations.  
A new vanguard–rearguard analytical method for determining 54 pesticide residues in 
different fruit juices (natural and commercial orange, peach and pineapple juices were 
tested) is proposed by Cortés-Aguado et al. (2008). First, pesticides are quickly extracted 
with ethyl acetate in a test tube, transferred to a mixture of water:acetone 9:1 (v/v), and 
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isolated by solid-phase microextraction (SPME). Only 1 mL of juice sample is required for 
the analysis. The combination of a solvent and SPME extractions offer a significant 
selectivity and sensitivity with a proven reduction of false-positive and false-negative cases. 
The use of a vanguard–rearguard strategy can reduce by 50%, the total time required for 
routine determination of juice samples in a laboratory following the accepted strategy of 
identification, confirmation and quantification of the pesticides in the samples by a 
conventional analytical method. 
In the headspace sampling mode, the analyte is transported through a layer of gas before 
reaching the coating. This protects the fiber coating from damage by high molecular weight 
substances and other non-volatile concomitants present in the liquid sample matrix, such as 
humic materials or proteins. The amount of analyte extracted at equilibrium using DI or HS 
sampling are identical as long as the sample and gaseous headspace volumes are the same. 
This is a result of the equilibrium concentration being independent of the fiber location in 
the sample/headspace system. If the above condition is not satisfied, a significant sensitivity 
difference between the direct and headspace technique exists only for very volatile analytes. 
The choice of sampling mode has a significant impact on the extraction kinetics. When the 
fiber coating is in the headspace, the analytes are removed from the headspace first, 
followed by indirect extraction from the matrix. Therefore, volatile analytes are extracted 
faster than semivolatile components since they are at a higher concentration in the 
headspace, which contributes to faster mass transport rates through the headspace. The 
temperature has a significant effect on the kinetics of the process by determining the vapor 
pressure of the analytes. The equilibrium times for volatile components are shorter in the 
headspace SPME mode than for direct extraction under similar agitation conditions. This 
outcome occurs as a result of two factors: a substantial portion of the analyte is in the 
headspace prior to extraction, and the diffusion coefficients in the gas phase are about four 
orders of magnitude greater than in the liquid media. Navalon et al. (2002) determined the 
fungicides, pyrimethanil and kresoxim-methyl in green groceries by HS-SPME. The analysis 
yielded good reproducibility with the RSD values between 7.4% and 15%. Lambropoulou 
and Albanis (2003) extracted and quantified seven OP pesticide residues in strawberries and 
cherries in the HS-SPME at an LOD < 13 μg/kg. HS-SPME has been used to quantify eight 
pesticides in wine and fruit juices (Zambonin et al., 2004).   
Chai M.K., Tan, G.H., & Asha, L. (2008) and Chai, M.K. and Tan, G.H. (2009) optimized and 
evaluated the headspace solid-phase microextraction (HS-SPME) for the simultaneous 
determination of multiclass pesticide residues in fruits and vegetables by GC-ECD. The 
average recoveries obtained for each pesticide ranged between 71% and 98% at three 
fortification levels with the relative standard deviation of less than 5%. Repeatability (0.3–
3.7%) and intermediate precision (0.8–2.5%) were shown to be satisfactory. The limits of 
detection (0.01–1 μg L−1) and the limits of quantification (0.05–5 μg L−1) of these pesticides 
were much lower than the maximum residue levels (MRL), allowed for fruits and vegetables 
in Malaysia. 
In-tube SPME using an open tubular capillary column as the SPME device was developed to 
couple directly with an HPLC or LC-MS. It is suitable for automation, and can continuously 
perform extraction, desorption and injection using a standard autosampler. With the in-tube 
SPME technique, organic compounds in aqueous samples are directly extracted from the 
sample into the internally coated stationary phase of a capillary column, and then desorbed 
by introducing a moving stream of mobile phase or static desorption solvent when the 
analytes are more strongly absorbed onto the capillary coating. The capillaries selected have 
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coatings similar to those of commercially available SPME fibers. The capillary column is 
placed between the injector loop and the injection needle of the HPLC autosampler. While 
the injection syringe repeatedly draws and ejects samples from the vial under computer 
control, the analytes partition from the sample matrix into the stationary phase until 
equilibrium is reached.  
Subsequently, the extracted analytes are directly desorbed from the capillary coating by 
mobile phase flow or by aspirating a desorption solvent. The desorbed analytes are 
transported to the HPLC column for separation, and then detected with the UV or mass 
selective detection. Mitani et al. (2003) applied an automated on-line method for the 
determination of the isoflavones, daidzein and genistein in soybean foods by using in-tube 
SPME coupled to HPLC. The detection limits obtained were 0.4 – 0.5 ng/mL and the 
recoveries were above 97%. Another potential advantage of in-tube SPME is that it can be 
easily coupled to miniaturized chromatographic systems thus enhancing the sensitivity. 
This has been illustrated for triazines by Chafer-Pericas et al. (2006). The limits of detections 
obtained for such pesticides were about 250 – 500 times lower than those achieved by using 
on-fibre SPME combined with conventional LC.  
The fiber used in SPME is coated with a thin polymeric film, which concentrates the organic 
analytes during absorption or adsorption from the sample matrix. There are two 
mechanisms, absorption or adsorption according to the nature of the fiber. If the fiber is a 
liquid phase, the analyte are extracted by absorption; if the fiber is a porous particle blend, 
the analytes are extracted by adsorption. Absorption is a non-competitive process where 
analyte dissolve into the bulk of the liquid, whereas adsorption is a competitive process 
where analytes bind to the surface of the solid (Pawliszyn, 1999). In the adsorption case, 
there are a limited number of sites where analytes can bind to. When all the sites are 
occupied, the fiber is saturated. Therefore the linear range of the adsorption-type fibers is 
smaller than the one for absorption-type fibers. In a competitive process, analytes of higher 
affinity for the coating can displace analytes of lower affinity for the fiber. A large number of 
fiber coatings based on solid sorbents are now available, in addition to the original general-
purpose poly(dimethylsiloxane) (PDMS) and poly(acrilate) (PA) coated fibers, namely: 
PDMS/divinylbenzene (DVB), Carbowax/DVB, Carbowax/template resin (TR), 
Carbowax/PDMS, and DVB/Carboxen/PDMS-coated fibers. Extraction of analytes by the 
new porous polymer SPME fibers with mixed coating is primarily based on adsorption 
rather than absorption. Some of these porous polymer SPME fibers with bipolar 
characteristics can be very useful for the simultaneous analysis of pesticides, enlarging the 
spectrum of SPME applications (Cai et al., 2006). 
Menezes-Filhoa et al. (2010) developed a method for the simultaneous analysis of 14 
pesticide residues (clofentezine, carbofuran, diazinon, methyl parathion, malathion, 
fenthion, thiabendazole, imazalil, bifenthrin, permethrin, prochloraz, pyraclostrobin, 
difenoconazole and azoxystrobin) in mango fruit, based on SPME coupled to GC–MS. 
Different parameters of the method were evaluated. The best results were obtained using 
polyacrylate fiber and direct immersion mode at 50 ºC for 30 min, along with stirring at 
250rpm and desorption for 5 min at 280 ºC. The method was validated using mango samples 
spiked with pesticides at concentration levels ranging from 33.3 to 333.3 µgkg−1. The average 
recoveries (n = 3) for the lowest concentration level ranged from 71.6 to 117.5%, with RSD 
between 3.1and 12.3%, respectively. Detection and quantification limits ranged from 1.0 to 
3.3 µgkg−1 and from 3.33 to 33.33 µgkg−1, respectively.  
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Amongst the advantages it should be stated that the SPME method has a higher degree of 
automation when compared to other more laborious protocols. The procedure can be 
completely automated using an autosampler with SPME equipment. Other advantages of 
SPME are the inherent high sensitivity and the absence of solvents and sample pre-
treatment required, thus minimizing the sample manipulation and contamination. The main 
disadvantages include poor fiber-to-fiber reproducibility, and poor precision and 
ruggedness on the determination. The technique is limited to relatively semi-volatile or 
volatile compounds, and matrix-effects showed up in complex matrices. Finally, relatively 
expensive consumables and a dedicated and skilled optimization of different experimental 
conditions and parameters are required, making the SPME method not as straightforward 
for multi-residue method development. 

5. Matrix Solid-phase Dispersion (MSPD) 

Since its introduction in 1989, matrix solid phase dispersion (MSPD) has been cited as the 
extraction method employed in over 250 studies (Barker, 2007). It has proven to be an 
efficient and somewhat generic technique for the isolation of a wide range of drugs, 
pesticides, naturally occurring constituents and other compounds for a wide variety of 
complex plant and animal samples. MSPD combines aspects of several analytical 
techniques, performing sample disruption while dispersing the components of the sample 
on and into a solid support, thereby generating a chromatographic material that possesses a 
particular character for the extraction of compounds form the dispersed sample.  
In the MSPD process, a sample (liquid, semi-solid or solid) is placed in a glass or agate 
mortar containing an appropriate bonded-phase or other solid support material such as 
octadecylsiloxane (ODS) and derivatized silica (C18) or other suitable support materials 
(Figure 3).  
The solid support and sample are manually blended together using a glass or agate pestle, a 
step that takes about 30 seconds. When blending is complete, the sample is then packed into 
an empty column or on top of a solid-phase extraction (SPE) sorbent without any further 
drying or cleanup prior to elution. The column is often an empty syringe barrel or a 
cartridge with a stainless-steel or polypropylene frit, cellulose filter or a plug of silanized 
glass wool at the bottom. A second frit or plug is often placed on top of the sample before 
compression with a syringe plunger. The main difference between MSPD and SPE is that the 
sample is dispersed throughout the column and not retained in only the first few 
millimeters. As regards elution, there are two possibilities: (a) the target analytes are 
retained on the column and interfering compounds are eluted in a washing step, followed 
by the target analytes being eluted by a different solvent; or (b) the interfering matrix 
components are selectively retained on the column and the target analytes directly eluted. 
Finally, additional cleanup is performed or the sample is directly analyzed. Sometimes, the 
MSPD column is coupled on line with an SPE column or, as in several recent applications; 
the SPE sorbent is packed in the bottom part of the MSPD column to remove interfering 
matrix components (Kristenson et al., 2006).  
Several factors have been examined for their effects in the MSPD extraction. These include:  
a. the effects of average particle size diameter, where as expected, very small particle sizes 

(3 - 10 μm) would lead to extended solvent elution times and the need for excessive 
pressures or vacuum to obtain an adequate flow. A blend of silicas possessing a range 
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of particle sizes (40 - 100 μm) works quite well and such materials also tend to be less 
expensive.  

b. the character of the bonded-phase. Depending on the polarity of the phase chosen, 
various effects on the results may be observed. Applications requiring a lipophilic 
bonded-phase employ C18 and C8 materials interchangeably.  

 

 

Sample 

Solid support 

Blend with pestle
Transfer

Blended sample

Frit and co-column 

Compress with plunger 
Elute

Solvent 

Sample for analysis 

 
Fig. 3. MSPD Extraction Procedures (Barker, 2007) 

c. the use of underivatized silica or other solid support materials. Use of unmodified or 
underivatized solids, such as sand to blend samples do not work in exactly the same 
manner as originally described for the bonded-phase solid support, such as ODS. Silica-
based support materials (derivatized silica, silica gel, sand, florisil) are still being used 
almost exclusively in MSPD. Blasco et al. (2004) have demonstrated the use of an 
activated carbon fiber for the isolation of dithiocarbamates from fruits, vegetables and 
cereals.  

d. the best proportion ratio of sample to solid support material. The most often applied is 
1 to 4, respectively, but it can vary from application to application. This ratio is 
dependent on the method employed. Both smaller and greater ratios have been used 
successfully.  

e. Chemical modification of the matrix or matrix solid support blend. Addition of 
chelating agents such as acids and bases at the time of blending would affect the 
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distribution and elution of target analytes from the sample. The solution profile of 
matrix components is likewise affected.  

f. The optimum choice of eluent and the sequence of their application to a column. The 
elution solvent sequence is to isolate the analyte or further clean the column of 
interfering substances with each solvent step. MSPD columns permit isolation of 
analytes with different polarities or the entire chemical classes of compounds in a single 
solvent, making MSPD amenable to multiresidue analysis on a single sample. Several 
recent studies have reported the use of hot water as an eluting solvent as well as the 
addition of pressure, which is known as pressurized-liquid extraction (PLE) or 
accelerated solvent extraction (ASE) (Bogialli et al., 2004). Such applications 
demonstrate the potential to make extraction methods based on MSPD free of 
hazardous solvents and even less expensive to perform.  

g. The elution volume. It has been observed that for an 8 ml elution of a 2 g MSPD column 
blended with 0.5 g sample, the target analytes usually elute in the first 4 ml, which is 
approximately one column volume. This will vary for each application and should be 
examined to reduce the use of solvent and the unintended co-elution of potential 
interferences.  

h. The effect of the sample matrix itself. All the components of the sample are dispersed 
throughout the column, covering much of the bonded-phase solid support surface, 
creating a new phase that can have dramatic effects on isolation in going from one 
matrix to another (Barker, 2000a; Barker, 2000b). 

Kristenson et al. (2001) developed a miniaturized automated MSPD method for extracting 
pesticides from apples, pears and grapes. Only 25 mg of sample and 0.1 ml ethyl acetate 
were used and the extracts were analyzed by GC-MS without any further purification. In 
terms of recovery, C18, C8 and silica were compared for use as dispersants. The best results 
were obtained by using C18. The LODs were 4 - 90 μg/kg. Bogialli et al. (2004) developed a 
simple, rapid and specific method for analyzing seven widely used carbamate insecticides in 
fruits and vegetables. After matrix deposition on crystobalite (sand), the analytes were 
extracted with water, heated to 50 - 100 oC. At 50 oC, recoveries were between 76 to 99 %.  
A method based on MSPD and GC was proposed for the determination of OC and 
pyrethroid insecticides in tea leaves (Hu et al., 2005). After evaluating various extraction 
conditions, Hu et al. (2005) found that the best compromise in terms of recovery and cleanup 
was the use of Florisil as the dispersant and hexane-dichloromethane (DCM) as the 
extractant. LODs of the method ranged between 2 and 60 ng/g, which are lower than the 
MRLs set by the EU. Barker et al. (2000b), Bogialli and Corcia (2007) detailed a number of 
applications of MSPD for the analysis of residues and Kristenson et al. (2006) detailed 
advances in the technique. 
Recently, Cunha et al. (2007) proposed a similar approach for the determination of phosmet 
and its metabolites in olives using C18 and MgSO4 as sorbent and acetonitrile as eluting 
solvent. They found that C18 and MgSO4 as matrix sorbents have advantageous effects on 
extraction yields compared with polar sorbents such as silica, alumina, Florisil or 
aminopropyl. No additional cleanup step was proposed. A single-step extraction and 
purification method was developed for the separation of 26 OCPs, 3 pyrethroid pesticides 
and 6 PCBs from fatty foods of either animal or vegetable origin (portions of meat adipose 
tissues, meat products, milk and milk products, cheese, eggs, etc.) (Kodba et al., 2007). The 
method included homogenization of the isolated fat and DE (celite). Separation was 
achieved using a mini Pasteur pipette where a MSPD was carried out with only 5 mL of 
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dimethyl sulphoxide (DMSO) as the eluting solvent. A Pasteur pipette was joined to a pre-
packed slurry filled Florisil column, where the LLE and adsorption chromatography 
successively took place. Recoveries for PCBs were from 81% to 86% and for OCPs 68–94% 
but one, which gave lower, and more variable recoveries. Excellent recoveries were obtained 
for pyrethroid pesticides, mostly more than 80%. The method was applied to 509 fatty 
samples for monitoring these compounds. 
An ultrasonic-assisted MSPD method employing C8 as sorbent was developed for extracting 
and cleaning-up 15 OPs and 9 triazines in fruits (Ramos et al., 2008), in order to increase 
process efficiency. The method performances were compared between those of a 
conventional MSPD with those of a heat-assisted MSPD. The employment of a sonoreactor 
allowed the reduction of the sonication time to 1–3 min, and consequently overcomes the 
possible analyte degradation associated with increased temperatures occurring in longer 
sonication times. The low method detection limits(MDLs) of the ultrasound-assisted MSPD 
method ensured proper determination of maximum allowed residue levels for all, except for 
dimethoate and disulfuton. All the evaluated samples, such as apples, pears and apricots, 
showed a low or no matrix effect with this method. 
Silve et al. (2008) proposed a simple and effective extraction method based on MSPD to 
determine dimethoate, malathion, lufenuron, carbofuran, 3-hydroxycarbofuran, 
thiabendazole, difenoconazole and trichlorfon in coconut pulp using gas-chromatography-
mass spectrometry. Different parameters of the method were evaluated, such as type of 
sorbent (C18, alumina, silica gel and Florisil), the amount of sorbent and eluent 
(dichloromethane, acetone ethyl acetate, acetonitrile, n-hexane and n-hexane:ethyl acetate 
(1:1, v/v). The best results were obtained using 0.5 g of coconut pulp, 1.0g of C18 as 
dispersant sorbent, 1.0 g of Florisil as cleanup sorbent and acetonitrile saturated with n-
hexane as the eluting solvent. 
Analysis of pesticides belonging to different classes was performed by LC–MS/MS after 
MSPD using diatomaceous earth as dispersant and dichloromethane as eluent (Radišić et al. 
2009). Significant matrix effects observed for most of the pesticides tested were eliminated 
using matrix-matched calibration plots. Recoveries were in the range 71–118%, with RSDs 
between 5–15%. It was determined that the pH had a decisive influence on the carbendazim 
recovery, while its influence was not so prominent for other tested pesticides. The highest 
recoveries for carbendazim were obtained with the pH-value adjusted to 6, and a slight 
increase in recoveries of other pesticides was also observed. 
The main advantages of MSPD extraction are that besides requiring only small amounts of 
sample and solvents, it is rapid, inexpensive and can be carried out under mild extraction 
conditions (room temperature and atmospheric pressure) and provides acceptable yield and 
selectivity, and thus, in turn, decreases environmental contamination and improves worker 
safety. Moreover, the flexibility and versatility of MSPD allows the application of the 
process to a wide variety of analytes and biological and environmental matrices. In fact, 
MSPD has shown its feasibility not only for solid or semi-solid samples, but also for the 
viscous samples (milk, blood, etc.). For these reasons, the employment of MSPD which was 
first introduced in 1989, has still grown in recent years. Although useful for the analysis of 
trace contaminants in food, particularly as an aid or an alternative to LLE or solid phase 
extraction, the MSPD technique is not easily automated and could be time-consuming for a 
large number sample size. Although the MSPD extracts are clean enough for direct 
instrumental analysis, a further cleanup step is often required, particularly with fatty 
matrices. 
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6. Dispersive Liquid-liquid Microextraction (DLLME) 

Dispersive liquid-liquid microextraction (DLLME) is developed by Razaee et al. (2006). The 
method is based on the ternary component solvent system. A mixture of a water-immiscible 
extraction solvent dissolved in a water-miscible disperser solvent is injected rapidly into an 
aqueous sample. A cloudy solution consisting of fine droplets of the extraction solvent 
dispersed into an aqueous phase is formed. Due to the considerably large surface area 
between the extraction solvent and the aqueous sample, the extraction of the analytes is 
achieved quickly. Then centrifugation takes place, and the extraction solvent with the 
analytes is sedimented and analysed by an appropriate method (Berijani et al., 2006). 
DLLME is a miniaturized liquid-liquid extraction (LLE) using microliter volumes of 
extraction solvent, which is based on the equilibrium distribution process of the target 
analytes between sample solution and extraction solvent. The enrichment factor and 
extraction recovery are calculated as follows (Berijani et al., 2006; Rezaee et al., 2006): 

F = Csed/Co 

R=(Csed Vsed)/(Co Vaq) 

Where F, Csed and Co are the enrichment factor, the analyte concentration in the sediment, 
and the initial concentration of analyte in the aqueous sample, respectively; R, Vsed and Vaq 
are the extraction recovery, the volume of the sediment phase, and the volume of the 
aqueous sample, respectively. 
The extraction efficiency for the target analyte by DLLME is influenced by many factors, 
such as the type of extraction and dispersive solvent, and their volume, the extraction time 
and salt addition (Kozani et al., 2007). 
The selection of an appropriate extraction solvent is a major parameter for DLLME process. 
The extraction solvent should satisfy two conditions: one is the higher density of the 
extraction solvent than that of water, which makes it possible to separate extraction solvent 
from aqueous phase by centrifugation; the other is the extraction capability of extraction 
solvent for the compounds of interest, good chromatographic behavior, and low solubility 
of extraction solvent in water (Kozani et al., 2007; Farahani et al., 2007). The extraction 
solvent volume has a large effect on the enrichment factor. With the increase of the 
extraction solvent volume, the final organic phase obtained by centrifugation is increased, 
resulting in a decrease of the concentration of the target analyte in the organic phase. 
Although the extraction recovery remains constant, the enrichment factor will be decreased, 
leading to a decrease in the sensitivity of the determination for the target compounds. 
Therefore, the selection of the optimal extraction solvent volume should result in both the 
high enrichment factor and adequate volume for the subsequent determination after 
centrifugation (Kozani et al., 2007; Farahani et al., 2007). 
The disperser solvent is soluble in the extraction solvent and should be miscible in water, 
thus enabling the extraction solvent to be dispersed as fine particles in the aqueous phase to 
form a cloudy solution (water/disperser solvent/extraction solvent). In such a case, the 
surface area between extraction solvent and aqueous phase (sample) can be infinitely large, 
thus increasing the extraction efficiency.  The disperser solvent volume directly affects the 
formation of the cloudy solution, the degree of the dispersion of the extraction solvent in the 
aqueous phase, and subsequently, the extraction efficiency (Fattahi et al., 2007).  
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In DLLME, the extraction time is defined as the interval between injecting the mixture of 
disperser solvent and extraction solvent and centrifugation. It is was found that the 
extraction time has little effect on the extraction efficiency of DLLME (Farahani et al., 2007; 
Fattahi et al., 2007). This is because the extraction solvent can be evenly dispersed after the 
formation of the cloudy solution, the transition of the analyte from aqueous phase (sample) 
to extraction phase can be very fast, and the equilibrium state can be subsequently achieved 
very quickly, resulting in a very short extraction time needed for equilibrium. A short 
extraction time is an advantage associated with the DLLME technique (Farahani et al., 2007; 
Fattahi et al., 2007).  
Pesticide analysis is probably the field in which DLLME has found its major applications.  
Different sources of water (mainly tap, river, well and lake waters) were selected as the 
matrix for the DLLME. In few cases, food matrices (Zhao et al., 2007; Cunha et al., 2009; Fu 
et al., 2009; Moinfar et al., 2009; Ravelo-Pe´rez et al., 2009a; Ravelo-Pe´rez et al., 2009b) have 
also been analyzed, and to a lesser extent, probably because of the complexity of the samples 
and also because of the need to develop a previous pretreatment procedure based mainly on 
solvent or water extraction.  
Zhao et al. (2007) demonstrated that there were no significant differences when acetonitrile 
and chlorobenzene were employed as the  disperser and extraction solvents, respectively, to 
extract six OPPs (ethoprophos, parathion methyl, fenitrothion, malathion, chlorpyrifos and 
profenofos) from watermelon and cucumber. In this study, sample pretreatment consisted 
of adding 10 mL of acetonitrile to 10 g of sample together with 4 g of anhydrous MgSO4 and 
1 g of NaCl. The mixture was then shaken in a vortex mixer and centrifuged. In the DLLME 
procedure, 27 mL of chlorobenzene (extraction solvent) were added to 1 mL of acetonitrile 
taken from the previous extraction step and the mixture was introduced into 5 mL of 
purified water. After shaking and centrifuging, the sedimented chlorobenzene phase was 
collected and injected into the GC-FPD system. Recoveries for each target analyte were in 
the range between 67 and 111%. The RSD varied between 2 and 9% (n = 3). LODs were 
found ranging from 0.010 to 0.190 µg/kg for all the target pesticides. Compared with the 
conventional sample preparation method, the proposed method has the advantage of being 
quick and easy to operate, and having high-enrichment factors and low consumption of 
organic solvents. 
Fu et al. (2009) developed a DLLME method to determine carbamate (carbaryl) and 
organophosphorus (triazophos) pesticide residues in water and fruit juices. Using the 
optimum extraction conditions -extraction solvent: tetrachloroethane, 15.0 µL; dispersive 
solvent: acetonitrile, 1.0 mL; no addition of salt and extraction time below 5 s, the 
enrichment factors for the carbaryl and triazophos were 87.3 and 275.6, respectively. The 
linearity was obtained in the concentration range of 0.1–1000 ngmL−1 with correlation 
coefficients from 0.9991 to 0.9999. The LODs, ranged from 12.3 to 16.0 pg mL−1. The RSDs, 
for 10 ng mL−1 of carbaryl and 20 ng mL−1 of triazophos varied from 1.38% to 2.74% (n = 6). 
The relative recoveries of fruit juice samples were in the range of 86.3–105.3%.  
In the past decade, a new type of solvent, ionic liquids (IL), has been introduced into 
analytical chemistry as an extractant (Poole and Poole, 2010). ILs are low-melting salts that 
form liquids composed entirely of ions, which have generally been found to be less toxic, 
less volatile and less contaminating than conventional solvents. These salts have also been 
used as extraction solvents in DLLME for extracting pesticides in fruit samples (Ravelo-
Pe´rez et al. 2009a; Ravelo-Pe´rez et al. 2009b) 
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The first application of IL-DLLME for the extraction of pesticides from matrices other than 
water was recently developed by Ravelo-Pe´rez et al. (2009a, 2009b) for the extraction of 
fruit extracts. In these cases, disperser solvents were used together with the IL. In the first of 
these studies (Ravelo-Pe´rez et al. 2009a), parameters affecting the IL-DLLME of eight 
pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, 
oxyfluorfen, hexythiazox and fenazaquin) were optimized by means of an experimental 
design (central composite design). The selected parameters were sample pH, NaCl 
percentage, IL amount (1-hexyl-3-methylimidazolium hexafluorophosphate)- [HMIm][PF6]) 
and methanol volume (disperser solvent). The final procedure in this study consisted of the 
ultrasonic- assisted extraction of 1 g of homogenized bananas with acetonitrile using 
different salts (MgSO4, NaCl, sodium hydrogen citrate sesquihydrate and sodium citrate 
tribasic dihydrate) to improve the recoveries. After centrifugation and evaporation of the 
supernatant, reconstitution of the extract in water at pH 2.7 provided the best media to 
develop the IL-DLLME procedure, which used 88 mg of [HMIm][PF6], 714 L of methanol 
and 28.9% (w/v) of NaCl. The combination of these two procedures (acetonitrile extraction 
of the fruit and reconstitution of the evaporated extract in water) provided a suitable 
arrangement that allowed application of DLLME as part of the sample-pretreatment 
procedure for extraction of pesticides from complex samples. Mean recovery percentages 
were 53–97% with RSD values below 8.7%, which represent LODs of 0.320–4.66 µg/kg, well 
below maximum residue limits of the European Union (EU MRLs). In the later study 
Ravelo-Pe´rez et al. (2009b) extended the application of the method for the extraction of the 
same group of pesticides from grapes and plums. Mean recovery values were 72–100% for 
table grapes and 66–105% for plums, with LODs very similar to those reported in the earlier 
study, which are aslo below the EU MRLs. In both these studies, the method was also 
applied to the analysis of commercial fruit samples, in which residues of pesticides could be 
found in some samples, with some exceeding the MRLs. 
Compared to other techniques, DLLME is characterized by very short extraction times, 
mainly because of the large surface area between the solvent and the aqueous phase. Other 
advantages are simplicity of operation, low cost, and high recovery and enrichment factors, 
offering potential for ultra-trace analysis. However, the main drawback of DLLME is that its 
efficiency is restricted by solvent selection to systems capable of forming a dispersive phase, 
somewhat limiting its range of application by sample. However, the introduction of new 
solvents (e.g., ILs, which are numerous) may provide a new alternative. Automation of 
DLLME seems to be very difficult and has not yet been achieved, although an attempt was 
made for the analysis of inorganic species (Anthemidis and Ioannou, 2009).  

7. Stir-bar Sorptive Extraction (SBSE) 

Stir bar sorptive extraction (SBSE) was developed by Baltussen et al. (1999) to overcome the 
limited extraction capacity of SPME fibers. A glass stirrer bar is coated with a potentially 
thick bonded absorbent layer (polydimethylsiloxane – PDMS) to give a large surface area of 
stationary phase, leading to a higher phase ratio and hence a better recovery and sample 
capacity (Figure 4). The advantages of sorptive extraction using PDMS include predictable 
enrichment, the absence of displacement effects, inertness, and rapid thermal desorption at 
mild temperature. Stir bar sorptive extraction of a liquid sample is performed by placing a 
suitable amount of sample in a headspace vial. The stir bar is added and the sample is 
stirred, typically for 30 - 240 min. the extraction time is controlled kinetically, determined by 
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sample volume, stirring speed, and stir bar dimensions and must be optimized for a given 
application.  
 

                                     
Fig. 4. Schematic Diagram of a SBSE Setup 

Normally, SBSE is applied to the extraction of aqueous samples containing low 
concentrations of organic compounds. For samples containing high concentrations of 
solvents, the solutions should be diluted before extraction. For the extraction of highly non-
polar solutes, an organic modifier is added to minimize wall adsorption. Thus, the 
optimization of the organic modifier concentration is necessary. 
After extraction, the stir bar is removed, then placed on a clean tissue paper, rinsed with 
distilled water to remove water droplets, and introduced in a thermal desorption unit. This 
step will avoid the formation of non-volatile material during the thermal desorption step. 
Rinsing would not cause any solute loss, because the adsorbed solutes are present inside the 
PDMS phase. After thermal desorption, the stir bars can be reused. Typically, the lifetime of 
a single stir bar is approximately 20 to 50 extractions, depending on the matrix (David and 
Sandra, 2007). 
Since SBSE using PDMS coating is similar to liquid-liquid extraction using a non-polar solvent, 
the technique is mainly used for non-fatty matrices (< 3% fat). The analysis of pesticides in 
fruits and vegetables (Sandra et al., 2003; Juan-Garcia et al., 2004; Juan-Garcia et al., 2005; Zuin 
et al., 2006) has been described. After homogenization, the fruit and vegetable samples are 
extracted using a water miscible solvent. An aliquot of the extract is diluted with water and 
followed by SBSE. Both LC-MS desorption and thermal desorption GC-MS have been used.  
Sandra et al. (2003) used SBSE with thermal desorption capillary GC-MS for the screening of 
pesticides (OPPs and OCPs) in fruits, vegetables and baby food. A 10 mm stir bar coated 
with 0.5 mm PDMS was used. The recoveries for spiked samples ranged between 43-75%. 
The coupling of SBSE with RTL-GC-MS operated in the scan mode could monitor 
simultaneously about 300 pesticides present in fruits, vegetables and baby food. The 
detection limits from mg/kg to the sub µg/kg level were obtained. 
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Juan-Garcia et al. (2004) studied the detection of fungicide residues in grapes by LC-MS.  
Two procedures based on SPE and SBSE have been assessed for extracting these compounds 
in grapes. The recoveries obtained by SPE in samples spiked at the LOQ level ranged from 
60 to 100% with RSDs from 7 to 17%. With the SBSE the recoveries obtained from samples 
spiked at the LOQ level were between 15 and 100% and the RSDs between 10 and 19%. The 
LOQs of most compounds are better via the SPE (0.003–0.01 mg kg−1) than by SBSE (0.01 mg 
kg−1 for all fungicides).  
Guan et al. (2008) prepared a novel poly(phthalazine ether sulfone ketone) (PPESK) film and 
coated this on stir bars with a thickness of  250 μm for sorptive extraction. The PPESK coated 
stir bar has high thermostability (290 °C) and a long lifetime (50 repeated use). The 
extraction properties of this stir bar were evaluated for the extraction of both polar and 
semi-polar analytes, including organochlorine compounds and organophosphorus 
pesticides. The PPESK stir bar showed higher affinity towards polar compounds than that of 
a PDMS coated stir bar and a higher sample load compared with the corresponding PPESK 
fiber. It was applied to the determination of organophosphorus pesticides in juices by gas 
chromatographic analysis. Limits of detection for organophosphorus pesticides were in the 
range of 0.17–2.25 ng L−1 and 2.47–10.3 ng L−1 in grape and peach juice, respectively, using 
the flame thermionic detector (FTD), with precisions of less than 20% RSD.  
Although SBSE is widely applied in environmental and food analysis, it has also some 
limitations or drawbacks. One of the drawbacks is related to the fact that the coated stir-bar 
cannot be directly desorbed in a simple split/splitless injection port of a gas chromatograph. 
Hence the analyte has to be back extracted into a suitable solvent, which adds an additional 
step to the overall analytical method, or a specially designed Thermal Desorption Unit 
(TDU) has to be used. Moreover, operations like removing the stir-bar from the sample, 
rinsing and drying are usually performed manually, which is laborious and can introduce 
errors. Automation of these steps is possible but this increases the cost and complexity of the 
hardware involved. However, the most important limitations of SBSE are related to the 
coating of stir-bars. The non polar PDMS is at present the only polymer commercially 
available as a coating for stir-bars. Recovery of polar analytes is poor and often in situ 
derivatisation is applied to increase extraction yields. Stir-bars coated with materials with 
better affinity to polar compounds would improve SBSE flexibility and selectivity while 
maintaining its concentration capability. New approaches or concentrating materials are 
therefore required to overcome the above-mentioned limitation and to extend the range of 
applications. Up to now, developments of novel stir-bars have been reported with limited 
references. One of the methods developed was to use dual-phase-coated stir-bars, which 
combine two or more sampling materials with different concentration capabilities (Bicchi et 
al. 2005). These new stir-bars consist of a short PDMS tube at both ends with two magnetic 
stoppers, whose inner cavity is packed with different types of adsorbents such as activated 
carbon. Dual-phase stir-bars with carbon have been shown to improve the recovery of 
volatile and polar compounds compared to the conventional PDMS stir-bar.  

8. Single-drop Microextraction (SDME) 

Recently, alternative but SPME related concepts have been introduced for sample extraction. 
The use of a single droplet for extraction purposes was first recommended in the mid-1990s 
(Mester and Sturgeon, 2005). Figure 5 shows one possible embodiment of the SDME 
technique employing a microsyringe. The syringe needle is used to pierce the septum of a 
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closed container. When the tip of the needle is in the desired position (in the aqueous phase 
or in the headspace) a hanging droplet of solvent is exposed to the matrix by depressing the 
plunger of the syringe. After extraction is completed, the droplet is withdrawn into the 
syringe barrel by lifting the plunger. The extracted samples can then be submitted directly 
to GC analysis. Thus the system requires two discrete parts: the first for extraction and the 
second for injection.  
 

 
Fig. 5. Schematic Diagram of a SDME Setup (Mester and Sturgeon, 2005) 

The properties of the analyte and its matrix will determine whether direct immersion (DI-
SDME) or headspace (HS-SDME) extraction is appropriate. Thus, one must consider the 
volatility (boiling point), ionization (for acids and bases) and polarity of the analyte and 
matrix. HS-SDME is appropriate for most polar and non-polar, lower molecular weight, 
volatile and semivolatile compounds. DI-SDME extraction is appropriate for non-polar or 
moderately polar higher molecular weight, semivolatile chemicals. There are some 
important restrictions on the selection of a particular extracting solvent. When extracting 
from an aqueous solution, the solvent needs to be water immiscible. The solvent needs to 
have a boiling point high enough that it will not evaporate, but also appropriate for the 
chromatographic system. It needs to have a high enough viscosity to cling onto the tip of a 
syringe needle, but not so viscous that the diffusion rate of the analyte into the drop affects 
extraction time significantly. The intermolecular attraction characteristics of the solvent 
must also be compatible with the analyte being extracted. Toluene appears to be the most 
commonly used acceptor phase, because it has high solubility for the target analytes, is 
immiscible in water and stable enough over the extraction time. Based on this solvent as the 
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acceptor phase, several methods were validated and applied to the determination of OP and 
OC pesticides in solid samples (Xiao et al., 2006; Zhao, E. et al., 2006b). Carbon tetrachloride 
has also been successfully applied to the extraction of OP pesticides (Ahmadi et al., 2006); 
this solvent is, however, more prone to dissolve or become dislodged when long extraction 
periods are used. Isooctane and n-hexane have been also used for the determination of OP 
and OC pesticides (Zhao, L. and Lee, 2001; Lopez-Blanco et al., 2003). In the SDME 
procedure, solvent volumes lower than 3 µL are commonly used, due to the instability of the 
microdrop at higher values as well as to the good compatibility with the GC instruments.  
SDME involves dynamic partitioning of the target compounds between the acceptor phase 
and the sample solution, and the extraction efficiency depends on the mass transfer of 
analyte from the aqueous phase to the organic solvent phase. Since the mass transfer is a 
time-dependent process, a graph representing the relationship between peak area and 
extraction time is typically reported. Generally, extraction yield increases over relatively 
long exposure times. Since SDME is not an exhaustive extraction technique, it is not always 
practical to match extraction time with extraction equilibrium, because the potential for 
solvent loss due to dissolution increases with time. Therefore, extraction times are rarely set 
at equilibrium but rather at a point where sensitivity and precision are maximized over an 
acceptable experimental time. For pesticide analysis, extraction times of 15-30 min are 
usually selected.  
Agitation is a critical parameter in SDME procedures. The mass transfer of the target 
compounds to the organic solvent can be enhanced by agitation of the sample solution, 
thereby reducing the time required to attain thermodynamic equilibrium. However, 
excessive agitation could result in a dislodgement of the acceptor phase and difficulties in 
analyte quantification, especially with prolonged exposure times.  
The “salting out” effect was studied, and the results showed that high salt concentrations in 
the aqueous samples usually decrease the diffusion of analytes toward the organic phase 
thus impairing the extraction. This effect is more pronounced in the case of SDME and thus 
most of the studies have been performed without or with a small amount of salt addition 
(Zhao, L. and Lee, 2001; Xiao et al., 2006; Ahmadi et al., 2006).  Caution should be taken when 
high salt concentrations are used in the sample matrix, since under these conditions, in 
combination with the agitation of the sample, the formation of air bubbles was promoted, 
increasing the incidence of drop loss or dislodgement of organic solvent.  
Generally, the studies of SDME in the determination of pesticides in food samples are very 
limited because of their complex matrices (Xiao et al., 2006; Zhao, E. et al., 2006b; Zhang et al., 
2008; Amvrazia & Tsiropoulos, 2009a).  
Xiao et al., 2006 developed a single-drop microextraction (SDME) procedure for the analysis 
of organophosphorus pesticides (OPPs) in fruit juice by gas chromatography (GC) with 
flame photometric detection (GC-FPD). Two types of SDME mode, static and cycle-flow 
SDME, were evaluated. The enrichment factors for six OPPs in static SDME were nearly 100-
fold (except for dichlorvos 23-fold), which were much better than that in cycle-flow SDME. 
Therefore, static SDME with tributyl phosphate (TBP) as the internal standard was selected 
for the real sample analysis. A 100-fold dilution of fruit juice samples is adequate to 
determine levels of most pesticides below the MRLs because of the low limits of detection of 
the method. The recoveries for the spiked juice samples were from 77.7 to 113.6%.  
An approach for the extraction of 9 kinds of organochlorine pesticides (OCPs) from 
vegetable samples (cabbage, cauliflower, Chinese cabbage) coupling single-drop 
microextraction with gas chromatography–mass spectrometry was presented by Zhang et al. 
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(2008). An effective extraction was achieved by suspending a 1.00 μL mixed drop of p-
xylene and acetone (8:2, v/v) to the tip of a microsyringe immersed in a 2 mL donor 
aqueous solution and stirred at 400 rpm. The relative recoveries were from 63.3 to 100%, 
with repeatability ranging from 8.74 to 18.9% (R.S.D.). In contrast to some common acceptor 
solvents, a novel combination of liquids comprising p-xylene and acetone showed better 
extractions and lower detection limits (0.05 ng mL−1) for organochlorine pesticides. 
Amvrazia & Tsiropoulos (2009a) evaluated the single-drop microextraction (SDME) 
technique coupled with GC-NPD and GC-ECD for the determination of14 types of multi-
class pesticides in vegetables (tomato and courgette). The optimum sample preparation was 
achieved with the use of a mixture of acetone/H2O (10/90, v/v) in a donor sample solution 
and subsequent SDME using a toluene drop (1.6 μL) under mild stirring for 25 min. The 
efficiency of the extraction process was studied in fortified tomato and courgette samples 
and the matrix effect assessment performed showed that quantification should be 
performed using a standard curve of spiked vegetable samples since certain matrix 
components as observed in the tomato analysis, may enhance pesticide recoveries via 
SDME. The proposed method showed good linearity, limits of detection at the sub-μg kg−1 
level and high precision (RSD <15%) and was applied successfuly in real vegetable samples 
showing that SDME can be a promising way for sample preparation in pesticide residue 
analysis.  
Due to its simplicity, ease of implementation, and insignificant startup cost, SDME is accessible 
to virtually all laboratories. However, it has some limitations, for example: (a) in its most basic 
form, direct immersion mode it requires   careful   and elaborate manual operation because of 
the problem of drop dislodgment and instability; (b) the SDME is affected by the presence of 
humic acids or suspended solids indicating that it has a limited advantage in complex 
matrices, in which extra filtration of the sample is necessary; (c) notwithstanding the 
acceptable analytical performance mentioned above, the sensitivity and the precision of SDME 
methods can be further improved. The main issue lies with the adverse consequences of 
prolonged extraction time and fast stirring rates, since they may result in drop dissolution and 
dislodgement; (d) SDME is not yet suitable as a routine online pre-concentration procedure. 
Although some progress has been made to automate SDME, cost considerations will mean 
that the approach will not be widely accessible (Xu et al., 2007).  

9. Pressurized Fluid Extraction (PFE) 

This technique, also named accelerated solvent extraction (ASE) or pressurized liquid 
extraction (PLE), is a solid-liquid extraction process performed in closed vessels at relatively 
elevated temperature, usually 80 to 200 oC, and elevated pressures, between 10 and 20 MPa 
conditions for short time periods (5-10min). Therefore, PFE is quite similar to supercritical 
fluid extraction(SFE) but CO2 is replaced by organic solvents to mitigate potential polarity 
problems. Extraction is carried out under pressure to maintain the conventional organic 
solvents in its liquid state, but extracting at temperatures well above their atmospheric 
boiling points. Therefore, the solvent is still below its critical condition during PFE but has 
enhanced solvation power and low viscosities and hence allows higher diffusion rates for 
the analytes. In this way the extraction efficiency increases, minimizing the amount of 
solvent needed and expediting the extraction process. The time required for extraction is 
independent of the sample mass and the efficiency of extraction is mainly dependent on the 
temperature. Figure 6 shows a schematic diagram of a PFE system. 
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Fig. 6. Schematic Diagram of a PFE System (Buldini et al., 2002) 

Both static and flow through extraction systems can be used. In the static extraction mode, 
the sample is loaded in an inert cell and pressurized with a solvent heated above its boiling 
point for some time. The extract is then automatically removed and transferred to a vial. In 
the flow through extraction mode, a fresh solvent is continuously introduced to the sample. 
This improves the extraction efficiency but, the extract is subsequently diluted. The extract is 
pushed into the collection vial by a second aliquot of solvent inserted into the extraction cell 
and this second aliquot is then collected into the same vial by pushing it with an inert gas 
flow. The whole process takes approximately 15-20 min. 
In PFE, the pressure is applied to maintain the solvent in its liquid state. This reduces the 
number of parameters that need to be optimized to achieve efficient extractions compared 
with SFE. The main parameters to consider now are temperature and time and this reduces 
the time devoted to method development and optimization of the extraction procedure. The 
method set up is generally straightforward because the same solvent recommended in the 
official and routine Soxhlet methods can be used. Therefore, PFE is an attractive technique 
because it is fast (e.g. extraction time approximately 15 min per sample), uses less solvent 
volume (15-40 ml), no filtration is required after extraction, the instrumentation allows 
extraction in unattended operation and different sample sizes can be accommodated. The 
two main disadvantages of PFE include limited selectivity because it usually requires 
further cleanup of the extract obtained and higher initial cost than SFE or microwave-
assisted extraction (MAE) systems. 
Tao et al. (2004) applied PFE for extracting DDT and its metabolites from wheat with 
hexane/acetone (1:1, v/v) at 120 oC and a pressure of 101 MPa. Moreno et al. (2006) 
investigated the extraction of 65 pesticides including OC pesticides from greasy vegetable 
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matrices such as avocado using PFE with ethyl acetate/cyclohexane (1:1, v/v) at 120 oC and 
a pressure of 12 MPa.  
Chuang et al. (2001) investigated the use of PFE for the analysis of pesticides in baby food 
but observed matrix interferences due to the high level of fat present in the samples. 
Although widely used as an initial extraction for solid samples, for trace analysis, post-
extraction procedures for analyte enrichment/concentration are often required. SPE can be 
coupled to the extractor outlet to enable cleanup and concentration. Coupling of PFE to 
other cleanup steps was used for the determination of pesticides in foods (Herrera et al. 
2002).  
When water is employed as the extraction solvent in PFE, a different terminology is used to 
highlight the fact that water is an environmental-friendly solvent. Thus, terms such as 
pressurized hot water extraction, subcritical water extraction (SWE), superheated water 
extraction and high temperature water extraction can be found in the literature (Ramos et al., 
2002; Smith, 2003;  Carabias-Martinez et al., 2005). Because the polarity of water decreases 
markedly as the temperature is increased, superheated water at 100 – 200 oC, under a 
relatively low pressure can act as a medium to non-polar solvent (ethanol or acetone) and is 
an efficient extraction solvent for many analytes (Ramos et al., 2002; Smith, 2003;  Carabias-
Martinez et al., 2005). A review of the technique, including several applications was given by 
Smith in 2002.  
A limitation in extracting with hot water is the inability to recover compounds that are 
hydrophobic, thermally labile, or easily hydrolyzed. Besides, one of the disadvantages of 
SWE, particularly for trace analysis is that the extract obtained is a dilute aqueous solution. 
This means that a further concentration / extraction step is often required prior to analysis 
(such as liquid-liquid extraction or solid-phase extraction). To avoid the additional cleanup, 
a trapping agent can be added to the extraction vessel, such as an SPE disc, which is then 
subsequently extracted. Commercial PLE systems can be used and it is possible to link SWE 
to LC, by trapping analytes onto a cartridge, prior to elution with the mobile phase. Phase 
transfer catalysis can be used to enable in situ derivatisation and concentration of the 
product into an organic solvent (Chienthavorn et al. 2006) 

10. Microwave-assisted Extraction (MAE) 

MAE uses microwave radiation (0.3 – 300 GHz) as the source of heating a solid-solvent 
sample mixture. Due to the particular effects of microwaves on the matter namely, dipole 
rotation and ionic conductance, heating with microwaves is instantaneous and occurs in the 
bulk of the sample, leading to very fast extraction. The heat generated in the sample by the 
microwave field requires the presence of a dielectric compound. The greater the dielectric 
constant, the more thermal energy is released and the more rapid would be the heating for a 
given frequency. Consequently, the effect of microwave energy is strongly dependent on the 
nature of both the solvent and the solid matrix. Usually, the extraction solvent has a high 
dielectric constant, so that it strongly absorbs the microwave energy. However, in some 
cases especially for thermo labile compounds, the microwave may be absorbed only by the 
matrix, resulting in heating of the sample and the release of the solutes into the cold solvent. 
Therefore, the nature of the solvent is of great importance in MAE: it should selectively and 
efficiently solubilize the analytes in the sample but, at the same time, it should absorb the 
microwave without leading to a strong heating to avoid eventual degradation of the analyte 
compounds. Thus, it is common practice to use a binary solvent mixture (e.g. hexane-
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acetone, 1:1) where only one of the solvents is absorbing the microwave energy. Other 
important parameters affecting the extraction process are the applied power, the 
temperature and the extraction time. Moreover, the water content of the sample needs to be 
carefully controlled to avoid excessive heating, thus allowing reproducible results. 
The application of microwave energy to the samples may be performed either in closed 
vessels with pressure and temperature control (pressurized MAE) or in open vessels at 
atmospheric pressure (focused MAE). In focused MAE method, the temperature is limited 
by the boiling point of the solvent at atmospheric pressure, but in pressurized MAE the 
temperature may be elevated by applying an adequate pressure (Dean. 2000).  
The technique has proven to be better than soxhlet extraction by reducing the solvent 
consumption and extraction time (Diagne et al., 2002; Barriada-Pereira et al., 2003). Usually 
sample sizes range from 0.5 to 10 g and 10 ml of solvent is sufficient for the extraction time 
from less than 1 to 10 min. The same laboratory microwave unit previously described for 
sample digestion is used, so reducing costs; the simultaneous extraction of many different 
samples is also possible without any mutual interference.     
Cai et al. (2003) used MAE to extract OC pesticides from Chinese teas before solid-phase 
microextraction followed by GC-ECD analysis. The recoveries of MAE were compared with 
those of ultrasonic extraction and the results showed that MAE provided better recoveries 
(efficiencies) and shorter extraction times than ultrasonic extraction.  
Recently, MAE has been proposed for the extraction of pesticide residues in avocado, avocado 
oil and olive oil (Fuentes et al. 2008, Hernandez-Borges et al. 2008). Fuentes et al. (2008) 
proposed a method using MAE to assist the liquid-liquid extraction of pesticide in avocado oil 
and olive oil. An additional cleanup step using an Envi-carb SPE cartridge was proposed. The 
method is relatively simple, low solvent consuming and has a good throughput of samples (10 
samples can be analyzed in 4 hrs). Hernandez-Borges et al. (2008) proposed a MAE of 
abamectin residues in avocado. Homogenized avocado samples were extracted once with 20 
mL acetonitrile:water 4:1 (v/v) in a microwave oven for 26 min at 700 W with a maximum 
temperature of 80 ºC. An additional cleanup step was performed using a C18 SPE cartridge. 
MAE also limits contamination or absorption from the vessel, due to direct heating of the 
sample. The main advantages of microwave pre-treatment are the low temperature 
requirement, high extraction rate, complete automation and the possibility of 
simultaneously extracting many different samples at the same time with little interference. 
However, MAE has also several drawbacks such as the extract must be filtered after 
extraction, polar solvents are needed, cleanup of extracts may be necessary and the 
equipment is moderately expensive. 

11. Supercritical Fluid Extraction (SFE) 

A general trend in the isolation of pesticide residues is to decrease the consumption of 
expensive and toxic organic solvents and to increase the availability of a broad range of 
analytes and matrices. A possible solution is to use supercritical fluid extraction (SFE). SFE 
uses liquids such as compressed carbon dioxide (CO2) as an extracting phase that is capable 
of removing less volatile compounds at ambient temperature. Supercritical fluids possess 
both gas-like mass transfer and liquid-like solvating characteristics. 
SFE utilizes commercially available equipment where the fluid is pumped, at a pressure 
above its critical point (7.38 mPa & 31.1 oC), with the sample placed in an inert extraction 
cell. The temperature of the cell is increased to overcome the critical point of the fluid. After 
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depressurization, the analytes are collected in a small volume of organic solvent or on a 
solid-phase filled cartridge (solid adsorbent trap). Extraction can be performed in the static, 
dynamic or recirculating mode: in the static extraction mode, the cell containing the sample 
is filled with the supercritical fluid, pressurized and allowed to equilibrate; using the 
dynamic mode, the supercritical fluid is passed through the extraction cell continuously; 
finally in the recirculating mode the same fluid is repeatedly pumped through the sample 
and, after the required number of cycles, it is pumped out to the collection system (Figure 7). 
One of the most interesting properties of these fluids is the direct relationship of solvent 
strength to density. Since the density of the fluid is a function of its temperature and 
pressure, precise control of these parameters allows a solvent with a narrow window of 
solvating strength to be obtained. It is possible, therefore, to substitute a variety of 
conventional solvents with a single supercritical fluid. For instance, supercritical carbon 
dioxide at 7.515 MPa and 80 oC (d 0.15 g/ml) is characterized by a  solvating strength similar 
to gases, such as pentane, while at 38.265 MPa and 40 oC (d 0.95 g/ml) its solvating strength 
resembles liquids, such as dichloromethane, carbon tetrachloride, toluene or benzene. When 
selecting the extraction pressure, it should be kept in mind that as the pressure increases, 
higher molecular weight compounds become soluble, while as the pressure decreases, the 
supercritical fluid loses some of its solvent strength. If the pressure is reduced to 
atmospheric values, the fluid loses practically all of its solvating ability and the extracted 
compounds fall out of the solution (Buldine et al., 2002). 
 

 
Fig. 7. Schematic Diagram of a SFE System (Fidalgo-Used et al., 2007) 

Water is a poor choice for this technique because of its high critical temperature and 
pressure. The most widely used supercritical fluid is carbon dioxide which is characterized 
by low critical values and low chemical reactivity. Carbon dioxide is easily obtained in 
extremely pure form at a reasonable cost, and it has low viscosity, non-inflammable, 
environment-friendly, high diffusion rate with a high volatility and it can be separated from 
the collected analytes without incurring disposal problems. Nitrous oxide would be a good 
supercritical fluid, but it is highly inflammable. Ammonia is a polar substance with good 
solvent strength, but it is chemically reactive and corrosive. The hydrocarbons are usually 
inflammable and are not viable for analytical SFE. A common practice in SFE, which has to 
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be taken into consideration in connection with the physicochemical properties of 
supercritical fluids, is the use of modifiers (co-solvents). There are compounds that are 
added to the primary fluid to enhance extraction efficiency. For example, the addition of a 
small percentage (1 – 10%) of methanol to carbon dioxide expands its extraction range to 
include more polar analytes (Buldine et al., 2002). 
King et al. (1993) applied SFE with carbon dioxide for the selective isolation of 
organochlorine, organophosphorus and organonitrogen pesticides from contaminated 
cereals. The resulting extracts were cleaned-up by GPC and GC-FPD  and used for 
quantification. A determination method for 56 different pesticides was reported by Lehotay 
and Garcia (1997). The sample was frozen and a drying agent consisting of magnesium 
sulfate was mixed and homogenized with a small amount of dry ice. The sample was 
extracted with supercritical CO2, trapped with C18 bonded silica, eluted with acetone, and 
subsequently analyzed by GC ion-trap mass spectrometry. Magnesium sulfate as a drying 
agent was mixed with the sample to get rid of water, and gave a high recovery for 
methamidophos as well as for other pesticides.  
Highly polar pesticides such as the phosphorothioates and phosphoramidothioates showed 
very low recoveries by the supercritical CO2 extraction method (e.g., acephate, omethoate 
and vamidothion). Generally, a modifier is added to the supercritical CO2 to improve the 
extraction yield. Stefani et al. (1997) worked on many extraction methods using two steps, 
such as two subsequent extractions of the same sample without the addition of a polar 
solvent to supercritical CO2. The two steps were similar except for the volume of the trap 
solvent. Celite and anhydrous calcined sodium sulfate were added as drying agents to the 
samples. The optimization of SFE on several organochlorine and organophosphorus 
pesticides in samples with high water content such as strawberry was performed. 
Lyophilization and addition of anhydrous sodium sulfate were examined to solve the 
problem caused by the water content of vegetable samples (Nerin et al., 1998). SFE efficiency 
is affected by a wide range of parameters such as the nature of the supercritical fluid, 
temperature and pressure, extraction time, the shape of the extraction cell, the sample 
particle size, the matrix type, the moisture content of the matrix and the analyte collection 
system. Due to these numerous parameters affecting the extraction efficiencies, SFE affords a 
high degree of selectivity and the extracts are relatively clean. However, the presence of 
water and fat in food samples can require extensive sample preparation and the 
development of more on-line cleanup procedures for SFE should enable further applications 
for food analysis to be developed. For example, sorbents, such as alumina, florisil and silica, 
can be placed in the extraction cell, or used as a cleanup following extraction to increase 
selectivity. Sorbents in the extraction cell can also be used for ‘inverse’ SFE extraction, in 
which interfering compounds are removed by a weak supercritical extraction fluid, leaving 
the analyte trapped on the sorbent for subsequent extraction under stronger conditions 
(King, 1998). Besides, the need to control so many operating parameters makes SFE 
optimization tedious and difficult in practice. Other disadvantages of the SFE technique 
include: limited sample size and high cost of the equipment. 
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