
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

13

LabVIEW Remote Lab

Aurel Gontean and Roland Szabó
“Politehnica” University of Timişoara

România

1. Introduction

LabVIEW is a quite interesting programming language, and despite its odd first impression
is very powerful. We remember when we started to use it for the first time it was somehow
strange to me, we thought what this, a graphical programming language? For the first
contact whit this language, LabVIEW somehow hides its power, this could be due to fact
that for the first contact everyone tries the simulation part. A usual first application would
be to generate a sine wave to a graph. Unfortunately, this won’t really impress a user.
All LabVIEW field engineers nightmare is to know that the users think that LabVIEW is a
simulation environment. Their main job is to erase that from the users mind. Of course it has
a very strong simulation part, but the main target is the real hardware controlling.
If we think put of the box a little, we will realize that if LabVIEW hides its power, that means is
very simple to use, but if we think about the big amount of software and hardware National
instruments make, we will see that it’s quite an extraordinary programming language.
To make a short count, we can see that only LabVIEW 2009 with Modules, Toolkits and

Device Drivers are 3 DVDs in compressed kit version. If we consider that in other hand we

have NI Multisim circuit design suite, LabWindows/CVI C programming language for

instruments and Measurement Studio LabVIEW style buttons add-on for Microsoft Visual

Studio, then we can imagine that engineers National Instruments create a lot of software.

In hardware area we can just say that they have a lot of stuff, and if they don’t have am

equipment, then another company has it and LabVIEW has the driver for that equipment.

Sometimes the diver is made by the National Instruments engineers, sometimes is made by

third party vendors, but my only concern is to work, and they mostly do. A useful section in

the www.ni.com webpage is the IDNET (Instrument Driver Network), where you can find

the LabVIEW and LabWindows/CVI drivers for almost any equipment. You just have to

search here: www.ni.com/devzone/idnet. A good instruments vendor would be Agilent

Technologies; we can say that it’s very hard to find equipments from Agilent without

LabVIEW or LabWindows/CVI driver.

This way we can easily say that LabVIEW it’s much more than MATLAB Simulink in color.

LabVIEW has a strong programming part, despite its simple appearance, if we go deeply in

some specific area, like NI Vision or CompactRIO, then things will start to get quite complex

and complicated. But knowing that this is complicated in LabVIEW, if we think to do the

same thing without LabVIEW, in another programming language, it could be almost

impossible, for a reduced number of engineers, in a short amount of time.

In LabVIEW it’s possible, almost everything is possible.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

276

We would like to correct the sentence above; some things are possible only indirectly. Some
extra programming in needed, but after all an engineer can do what he planned.

2. Tips and tricks in LabVIEW

As we said not everything can be done directly, some of them need some extra
programming. We are not really sure why they did not include it in the LabVIEW package;
maybe they had a good reason. On forums is really hard to find a solution for these
problems, this way we will present a few common and useful tips and trick that we was
forced to develop, because we needed them during my projects.

2.1 Very long HEX String to ASCII Conversion
We shall show a method in LabVIEW how to convert a very long HEX string to ASCII.
This could be useful if we want to analyze memory dumps or binary files, which are mostly
in HEX, but to be interpretable, we need to convert it in some form, which we can
understand, and mostly we convert it in ASCII.
As we can see in Fig. 1. the program is working.

Fig. 1. HEX to ASCII Front Panel.

Fig. 2. HEX to ASCII Block Diagram.

In Fig. 2. we have the solution for the problem. First of all we have to enter a very long HEX

string. With the String Subset VI we have to fragment the string into groups with 2 HEX

www.intechopen.com

LabVIEW Remote Lab

277

numbers (8 bits). The first Shift Register with 0 initialization will always increase the

fragmentation index with 2, this way we will reach at the end minus 2 (n-2) of the HEX

word. There is a condition too, if we reach at the end of the HEX string to exist the While

loop. From String Subset we convert the HEX string to number, the number is converted to

ASCII with the Type Cast VI. For some strange reason the Type Cast VI puts an ASCII space

before the converted ASCII character, this space is a \00 type space, so this will have to be

deleted, it’s deleted with the Match Pattern VI using the ^[\00]* command and wired to the

after substring output (after the \00), and we will obtain the good converted ASCII value.

This value will be concatenated with the following strings using the second Shift Register

with the empty string initialization.

2.2 Very long ASCII to HEX string conversion
If we made the HEX to ASCII conversion, than we have to do the reverse operation too. In

LabVIEW ASCII to HEX the conversion is not that simple. Unfortunately there is no VI

which will do the job, so the user has to make his own VI. On possible method will be

presented next.

In Fig. 3. we can see the working program.

Fig. 3. ASCII to HEX Front Panel.

In Fig. 4. We have the ASCII input, which will be converted in a number, with byte data

type. Byte is more than enough, because we have a total of 128 ASCII characters, in the other

hand in LabVIEW there is no ASCII string to number conversion in with other data type, so

this is our only solution. The numbers are converted into HEX with the length of 2 for each

HEX number. The string to number conversion makes an array, this way the HEX values

will be an array of HEX string with the length of 2. We want to make a long HEX string, not

an array of strings. We made a For loop with the number of iteration equal to the length of

the HEX array. We indexed the array and with the use of Shift Registers we concatenated it

into a long HEX string.

Fig. 4. ASCII to HEX Block Diagram.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

278

2.3 Creating a toggle button from a push button
This application would be useful when we want to have an LED light to be ON, for very
short impulses, like the sound of claps of falling coins, otherwise we would see only a LED
blink and we would have to be very attentive. The idea would be to keep the signal on “1”
logic for a longer period with shift registers. There could be many variants, but the hardest
variant will be presented, the one where after the first “1” logic the light is ON and after the
second “1” logic the light is OFF. For the Button the “Latch When Released” Mechanical
Action was used, so it’s a push-button.
As we can see the program’s name is Button Latch (Fig. 5.), we need a latch to keep the LED
ON after only one impulse and to turn the LED OFF after the second.

Fig. 5. Button Latch Front Panel.

In Fig. 6. we can see that Shift Registers were used. As we can see the initialization value for
the Shift Registers is FALSE. The Button is connected to the Implies VI, which computes an
OR logic between the negated x (first) input and y (second) input. In case of Button press,
we will have FALSE in x input and FALSE in y input, so FALSE output, this means that
from the Select VI the FALSE output is activated, which has an input of inverted FALSE
(which is TRUE), so the LED will be ON.
If the Button is pressed again, then we will have FALSE in x input and FALSE at y input of
the Implies VI, so at the Implies function will have FALSE output. The input of the second
Shift Register will be TRUE, because before this the LED in ON. With the FALSE Implies VI
we activate the inverted TRUE (which is FALSE), so the LED will be OFF.

Fig. 6. Button Latch Block Diagram.

www.intechopen.com

LabVIEW Remote Lab

279

2.4 Append file (Write to file line by line)
Surprisingly in LabVIEW we can’t find a simple method to append a file. If a program
writes to a file for the second time, it will overwrite the previous data. This is what we want
to avoid, when we want to make complex logs or even when we want to save the
parameters of a program during execution. This program is useful when we make some
moves, like mouse, joystick moves, and we want to save the coordinates into a file and
maybe the file will be closed an opened in the program more times. We can create programs
to move robotic arms with mouse, or to save the specific parameters of measuring
equipments.
Fig. 7. shows that after multiple runs of the program, the previous text is not erased.

Fig. 7. Text File with Appended Text.

In Fig. 8. we have the standard dataflow of the programming with the settings and the
writing to the file, between the opening/creating and closing the file. At the end it’s good to
put a Simple Error Handler. The file opening/creating VI is set to open or create and a
certain path is given to it. The file setting VI is set to have an offset with the length of 0, and
is set to write at the end of the file. The writing VI has an input with a text which is
concatenated with a new line constant, this way after any running of the program we will
have the appended text in a new line, keeping the old information.

Fig. 8. Text Append Block Diagram.

2.5 Create an arbitrary signal
As we know LabVIEW has a lot of built in signals, but it’s impossible to have any arbitrary
signal. It has the possibility to create arbitrary signals, but we have found it not really
flexible in some situations. It has an arbitrary signal creator with Express VIs, but we always
avoid using them, because you can have more control over traditional VIs. The chosen

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

280

signal was the trapezoidal signal, which is mostly used when controlling motors. Nobody
wants a square pattern for the motors acceleration. In cars, in lifts the motor usually
accelerates in a trapezoidal pattern.
As we can see in Fig. 9., the program is working. The hardest part is configuring the
parameters. The parameters are configured using equation (1).

0

0

p minr

p minf

N U A U

N U A U

⋅ = −⎧⎪
⎨ ⋅ = −⎪⎩

 (1)

Where Np is the number of points; Uminr,Uminf are the minimal voltages for rise and fall; A is
the amplitude of the signal; U0 is the start voltage. In our case it will be: 0,0003 * 10000 = 5 –
2, this way we created the trapezoidal signal.

Fig. 9. Trapezoidal Signal Front Panel.

The Block Diagram (Fig. 10.) it is not so complicated, the main thing is the idea to build
arrays of rising edge, continuous part and falling edge. The building of the arrays is made
with For loops, shift registers and the exit from the loops is made with enable indexing,
which is by default at For loops. Maybe the hardest part is the building of the array, which
builds three 1D arrays intro one 1D array. Normally LabVIEW makes the built array in
multidimensional array, but we need a 1D array, because we want one single signal. This
can be done by changing the enable indexing to disable indexing and then change it back to
enable indexing again at the exit from the For loop of the horizontal signal.

3. Virtual instruments for the PXI chassis

Our LabVIEW remote lab has 6 PXI experiments working and controllable trough a web
browser.

3.1 Transfer characteristic of a NAND gate
The first experiment makes the transfer characteristic of a gate; we made it for a NAND
gate. In Fig. 11. we can see the block schematics of the transfer characteristics of the NAND
gate.
We generate a rising ramp signal at the NAND gates one input and supply a constant
voltage to the other input and measure the voltage at the output, this way we have the
transfer characteristics of the gate.

www.intechopen.com

LabVIEW Remote Lab

281

Fig. 10. Trapezoidal Signal Block Diagram.

Fig. 11. Block Schematics of the Experimental Setup.

The transfer characteristic is the input voltage as a function of the output voltage like shown
in equation (2).

 ()out inU f U= (2)

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

282

In Fig. 12. We can see the experimental setup of the NAND gate on a PCB with protection
and connectors for accessing. The used NAND gate is integrated in a 74ACT00 IC.
The used NI equipment for this experiment was the NI PXI-4110 power supply and the NI
PXI-4072 digital multimeter.

Fig. 12. NAND Gate with PCB.

In Fig. 13. we can see the Front Panel of the experiment.
As we can see we have the digital multimeter (DMM) configuration with reference ID, a

range at 5 V and resolution at 6½ digits. We have two channels (0 and 1) of the power

supply activated with the current limit set to 100 mA and a slider to set the voltage level

from 0 – 4 V. The most important part is the XY Graph where we see the actual transfer

characteristic of the gate, we have also indicators of the temporary value on both axes of the

graph. We have also cursors to measure certain values.

As we can see is not so complicated to program, the hardest part is maybe that we use

traditional NI acquisition cards, not the newer DAQ cards.

In Fig. 14. We have the Block Diagram of the program.
All the instruments are programmed in this pattern, first we have to create the channel and

after it close it. Between these two VIs we have the configuration or acquisition and

generation. Mostly we have the creation, configuration and closing outside the loop and the

acquisition or generation part in the loop.

In out experiment we first create the channel for the DMM and than configure its range ad

digits. After it we will create the power supply’s channel we configure the voltage and

current for the first channel and enable the output, after we will do the same or the other

channel. For channel 1 we will measure the output voltage. We will measure the voltage

with the multimeter at the output of the NAND gate. Finally we will close an reset the two

equipments.

We can remark that LabVIEW uses the read expression for acquisitioning and the write

expression for generation, this way the used icons for the VI are mostly a pair of glasses for

reading and a pencil for writing.

www.intechopen.com

LabVIEW Remote Lab

283

Fig. 13. Front Panel of the Transfer Characteristic Program.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

284

Fig. 14. Block Diagram of the Transfer Characteristic Program.

3.2 Propagation time measuring for a NAND Gate
This experiment uses the same 74ACT00 NAND gate, but measures the gate’s propagation
time.
In Fig. 15. we can see the block schematics of the experimental setup.

Fig. 15. Block schematics for the propagation time measuring.

We generate a square waveform to the gate’s one input with a signal generator and measure
its output with an oscilloscope.
The propagation time is given by the formula from equation (3).

www.intechopen.com

LabVIEW Remote Lab

285

2

pHL pLH
p

t t
t

+
= (3)

In the standard TTL gate’s case tpLH = 12 ns and tpHL = 8 ns, so tp = 10 ns.
The experimental setup can be seen on Fig. 12. The setup is on the same PCB as for the
transfer characteristic.
The used NI equipments are NI PXI-4110 power supply, the NI PXI-5112 oscilloscope and
the NI PXI-5412 signal generator.
In Fig. 16. we can see the Front Panel of the experiment.

Fig. 16. Front Panel of the Transfer Characteristic Program.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

286

As we can see we have the configuration of the oscilloscope, the power supply and the
function generator.
The oscilloscope has a configured resource ID and the Time/div setting. It has also both
channels activated with 0 V offset for channel 0 and 3 V offset for channel 1 and Volts/div
(Vertical Range) dial. It also has some triggering configurations like slope on positive, DC
coupling and 1 V level. We have the both graphs (input and output of the NAND gate) on
the waveform graph and cursors to measure the propagation time.
The power supply has a basic configuration just for supplying current to the IC. It has
resource ID, current limit to 100 mA, 5 V voltage level, output enabled indicator, an
indicator showing 0 as the selected channel, and a measurement of the output of the
activated channel.
The function generator has resource indicator, the settings for output mode, which is on
standard, square waveform type, and the setting for amplitude, which is at 5 V and the
setting for frequency, which is at 1 MHz.
In Fig. 17. we can see the Block Diagram of the program.
As we can see we have the initialization for the function generator, the setting of the output
mode, the amplitude and frequency setting, the enabling of the output and the starting of
the generation.
The oscilloscope is initialized and has standard initialization.
Finally the power supply is initialized.
We enter in the While loop. We configure the voltage and the current of the power supply;
we enable its output and measure the output voltage.

Fig. 17. Block Diagram of the Transfer Characteristic Program.

www.intechopen.com

LabVIEW Remote Lab

287

We continue to the oscilloscope, we configure the trigger settings, the timing settings. After
we make the settings for the vertical range and start the readings of the values for
representing on the graph both of the channels (0 and 1). We unite the two channels with a
Build Array and output it on a Waveform Graph.
For the function generator we can control the frequency and amplitude during the program
execution, this way we have it inside the loop too.
When we exit the loop we disabled the output, we stopped the generation we resettled the
device. Finally we close the function generator, the oscilloscope, we reset and close the
power supply and end the whole execution with a simple error handler to have the error
messages in case if something goes wrong.

3.3 Duty cycle analyzer
The duty cycle analyzer experiment has a more complicated setup. We have the 33250A
signal generator from Agilent and the NI PXI-6541 logic analyzer from National
Instruments.
In Fig. 18. We have the block schematics. We have the Agilent signal generator, which
generates a square signal to the Duty Cycle Analyzer. The signal is generated in the logic
control and in the PLL. The signal that exists the PLL will be entering in a counter and after I
in a display module. The signal is gathered with a logic analyzer from National Instruments
and shown on a graph.

Fig. 18. Block Schematics of the Logic Analyzer Experiment.

We have also an external circuit which can be seen on Fig. 19. This external circuit is a duty
cycle analyzer on which 14 different signals are analyzed with the experiment. The circuit
has more modules like a logic control, a PLL and a counter and the duty cycle of the square
signal is shown on the dual digit seven segment displays.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

288

Fig. 19. Experimental Setup of the Logic Analyzer Experiment.

In Fig. 20. we can see the front panel of the Duty Cycle Analyzer program.
For the logic analyzer we have a resource ID, 14 activated channels, and the clock rate at 300
kHz and 10000 acquired samples.
For the Agilent signal generator we have resource ID, square waveform type, 100 Hz for
frequency, 5 V amplitude, 25 % duty cycle, 0 V offset. The first signal (Clk) represents the
duty cycle. The second signal (VCO_Out) is the representation of the PLL. The third signal
(VCO_Div) is one input for the PLL. Q0 – Q7 is the counter part. Mst_QA, LD_Dcd, Mst_nQ
represent logic levels for testing purposes.

Fig. 20. Front Panel of the Logic Analyzer Experiment.

In Fig. 21. we have the block diagram of the experiment.
We have the initialization of the logic analyzer. In a while loop we have the configuring of
the channels, settings of the clock, setting of the buffer (Number of Samples To Acquire) and
finally we represent the data.
The Agilent signal generator is initialized, the amplitude, frequency, offset and waveform
type is configured. We continue with the duty cycle is configuration, the output is enabling

www.intechopen.com

LabVIEW Remote Lab

289

and at the end we close the signal generator. Finally the logic analyzer is closed too, and the
program is ended with a simple error handler.

Fig. 21. Block Diagram of the Logic Analyzer Experiment.

3.4 Simple motor control
In Fig. 22. we can see the Block Diagram of the experiment.
This experiment uses only PXI instruments and thee PICDEM Mechatronics board from
Microchip for amplifying and PID control. We have the NI PXI-6115 as the signal generator
which generates a trapezoidal signal using the method presented in paragraph 2.5. The
signal is amplified for the motors with the PICDEM Mechatroncis board; this board has also
an implemented PID algorithm. The motor has a disk with slots, which rotates between an
optocoupler pair, similar to and old mouse with ball. The signal from the optocoupler is sent
in a signal; amplifying and conditioning circuit. The output signal is sent to the NI PXI-6608
counter and with a simple formula the RPM is calculated. The signal that the optcoupler
reads should be similar to the generated signal, in our case both trapezoids should look the
same.

Fig. 22. Block Schematics of the Simple Motor Control Program.

In Fig. 23. we can se the PICDEM Mechatronics board and the motor with the disk with two
slots.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

290

Fig. 23. Experimental Setup of the Simple Motor Control Program.

In Fig. 24. we have the Front Panel of the program in LabVIEW with the trapezoidal signal
generation on Waveform Graph and the RPM readings represented on Waveform Graph 2.
The signal generation method is similar to the method presented in paragraph 2.5.
In the upper part of the Front Panel we have the signal generation configuration, where we
have the resource ID of the signal generation DAQ and the minimum value a t 0 V and the
maximum value at 5 V.
The second part of the Front Panel is the counter configuration with resource ID, rising
edge, minim frequency at 100 KHz and maximum frequency at 1 MHz, 100 samples per

Fig. 24. Front Panel of the Simple Motor Control Program.

www.intechopen.com

LabVIEW Remote Lab

291

channel and the sampling divisor is 5. We have also indicators for frequency and RPM. We
have also a median filter which can be deactivated with a button and we have a slot setting
dial, which must be set to be equal with the number of slots of the disk present on the
motor. This should be correctly set to calculate the RPM.
In Fig. 25. we can see the Block Diagram of the program. We have two parallel while loops.
The first loop is for the trapezoidal signal generation. We have first the creation of the channel,
after we have the start of the generation process. Next we enter the While loop, we have here
the trapezoidal signal creation similar to paragraph 2.5. This is the method how a signal is
generated by a DAQ board; we provide the numbers (samples) of the signal and the use the
write signal VI, which has the icon with the pencil. After we exit the loop with closing the
instrument (delete task) and we finish the program with the simple error handler.
The second loop is for the counter configuration. We have channel creation for the counter,
the timing settings (sample configuration), the start of the execution continues, followed by
the signal reading, which is filtered and with a specific formula we calculate the RPM and
represent it on a Waveform Graph.
Equation (4) shows how to calculate the RPM from the frequency.

 60
s

f
N

RPM s= ⋅ (4)

Finally we close the instrument and we handle errors. We put everything in the loop to be
controllable during execution.

Fig. 25. Block Diagram of the Simple Motor Control Program.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

292

3.5 Simple temperature measuring
In Fig. 26. we can see the setup for the temperature measurement. We have an LM35
centigrade sensor and an NI USB-6251 acquisition board. We also made the experiment with
the NI USB-6009 smaller acquisition board and worked very well. The idea of this
experiment is to measure voltage given from the temperature sensor and with the formula
from the datasheet we convert the voltage to temperature.

Fig. 26. Block Schematics of the Simple Temperature Measuring.

In Fig. 27. we have the Front Panel of the program. We have resource ID, timing rate at 1
and the actual temperature shown on an indicator and on a Waveform Graph.

Fig. 27. Front Panel of the Simple Temperature Measuring.

In Fig. 28. we have Block Diagram of the program. We start with the channel creation, the
setting of the timing (samples) and the start of the process. We enter in the While loop, here
we have the reading of the samples and some mean value calculation over 10 samples. The
temperature at the output of the LM35 centigrade sensor is its output voltage multiplied by
100. Finally we close the instrument and handle errors.

www.intechopen.com

LabVIEW Remote Lab

293

Fig. 28. Bock Diagram of the Simple Temperature Measuring.

3.6 Power supply testing
This experiment represents a more complex functional test. If we have many samples it's not
the best solution. For many samples graphs are not indicated, but for only one sample this is
the best test. With a graphs we can see really if the power supply is working.
The signal is generated with an Agilent 33250A function generator and the input and output
signals are viewed using an NI PXI-5112 oscilloscope (Fig. 29.)

Fig. 29. Block Schematics of the AC-DC Power supply.
In Fig. 30. we can see the AC-DC power supply.

Fig. 30. Power Supply.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

294

In Fig. 31. we have the Front Panel of the Agilent 33250A signal generator. As we can see we
have resource ID, the waveform type is sine wave, the frequency 100 kHz, the offset is 0 V
and the amplitude is 5 V.

Fig. 31. Front Panel for the Agilent 33250A Function / Arbitrary Waveform Generator.

In Fig. 32. we can see the Front Panel of the oscilloscope application. We can see the resource
ID of the oscilloscope and the horizontal adjust dial. We have two channels activated with
two graphs and two vertical adjust dials. The first graph represents the input AC signal and
the second graph represents the output DC signal. From this graphs we ca see that the
power supply works correctly and we have an AC – DC power supply.

Fig. 32. Font Panel for the Power Supply Testing with Oscilloscope.

www.intechopen.com

LabVIEW Remote Lab

295

In Fig. 33. we have the 33250A Agilent signal generator programming. We have between the
initialization and closing a While loop. In the loop we have the waveform configuration VI
and the output enable VI.

Fig. 33. Block Diagram for the Agilent 33250A Function / Arbitrary Waveform Generator.

In Fig. 34. we have the Block Diagram of the oscilloscope application.
We start with the channel creation. We enter in the while loop. We have some timing

settings for the horizontal adjust and the vertical adjust and readings for the both activated

channels (channel 0 and channel 1). We put a Bessel filter to the output signal of the voltage

supply. When we exit from the while loop we close the instrument and handle errors.

Fig. 34. Block Diagram for the Power Supply.

4. Virtual instruments for the CompactRIO chassis

4.1 Advanced motor control
In Fig. 35. we can see, we used both the PXI and the CompactRIO chassis. The trapezoidal

signal is generated with the NI PXI-4110 Power Supply. The signal then is amplified with

the NI 9505 H – bridge. The CompactRIO is programmed to make a PID loop too. The motor

is connected to NI 9505 H – bridge. The motor has a disk with 100 slots, which rotates

between an optocoupler pair.

The optocoupler is connected to the counter to read the frequency and calculate the RPM.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

296

Fig. 35. Block Schematics of the Advanced Motor Control.

In Fig. 36. we can see the experimental setup with the motor and the CompactRIO.

Fig. 36. Experimental Setup of the Advanced Motor Control.

In Fig. 37. we can see the front panel of the signal generation program, which is similar to
the program presented in paragraph 3.4. The trapezoid generation uses the method
presented in paragraph 2.5. In the signal generation program the NI PXI-4110 power supply
is used. In the Front Panel we have the resource ID, channel 1 is activated, the current limit
is set to 100 mA and the voltage is measured at the output of the power supply.

www.intechopen.com

LabVIEW Remote Lab

297

Fig. 37. Front Panel of the Signal Generation.

In Fig. 38. we have the RPM reading program. We have resource ID, rising edge, minimum
frequency set to 100 kHz and maximum set to 1 MHz, 100 samples acquisitioned at the
channel and the sampling divisor set to 5. We have put indicator for frequency and RPM
and a Waveform Graph to represent the RPM. This graph should be similar to the generated
signal.
In Fig. 39. we have the Front Panel of the FPGA programming. We have a lot of controls and
indicators, which are use to control some functions of the NI 9505 H – bridge, which are also
shown on the card with some LEDs. We have Enable Drive, Disable Drive and Enable
Emergency-Stop. We show the status of the Drive, the Drive Fault and the Overtemperature
Fault, the supply current (Vsup Present) present and the presents of the analog input's
trigger (AI Trigger). We have the Current Loop Rate set to 50 μs, this rate is the rate of the
PID loop. We have the PID parameters: 350 for the proportional gain, 300 for the integral
gain and 5500 for the derivative gain. We have a current setpoint at a negative value (in our
case -16) this for rotating the motor in one direction, if it's positive the motor rotates in other

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

298

Fig. 38. Front Panel of the RPM Reading.

Fig. 39. Front Panel of the FPGA Part.

direction. We limit the current at a certain value (in our case 2000) and we set current

feedback to 1, after we read the PWM Duty Cycle. The PWM Duty Cycle has the same sign

as the Current Setpoint, this way to show the direction of the motor rotation. The Front

Panel is almost the same with this one for all Block Diagrams which will be presented next.

In Fig. 40. we can see the Block Diagram of the trapeze generation program. This program is

similar to the first While loop from Fig. 25., but it's made with a power supply, not a DAQ.

The trapeze is generated with the method presented in paragraph 2.5.

The programming starts with channel creation. After entering in the While loop we set the

voltage. Here is connected the trapezoidal signal. After we set the current, we enable output

and we measure the voltage at the power supply's ports. When we exit from the While loop,

we disable output and close the instrument.

www.intechopen.com

LabVIEW Remote Lab

299

Fig. 40. Block Diagram of Trapeze Generation with Power Supply.

In Fig. 41. we have the RPM reading Block Diagram, which is same with the second While
loop from Fig. 25.

Fig. 41. RPM Reading Block Diagram.

In Fig. 42. we can see the we have a big While loop with all the controls used in the FPGA
part and called by the Real-Time controller. At the left part we have loaded the FPGA part
and at the output we closed it and we handle errors.
In Fig. 43. we have the block Diagram of the networked real-time host. This VI is made
copying the VI form Fig. 41. and adding global variables to send the data trough network to
the Windows host. We have the global variables also before of the FPGA part loading for
initialization.
In Fig. 44. we have the Windows host with the same global variables as in the networked
real-time host, but mirrored. This means if in the networked real-time host we had a control
in the windows host we have indicator and vice-versa. We can imagine an invisible line
between the global variables with the same name starting from the control to the indicator.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

300

Fig. 42. Block Diagram of the Real-Time Host.

Fig. 43. Block Diagram of the Networked Real-Time Host.

Fig. 44. Block Diagram of the Windows Host.

www.intechopen.com

LabVIEW Remote Lab

301

global variables communicates not only between different VIs on the same computer, but
between VIs on different computers, connected via networks cables if they are in the same
subnet.

4.2 Advanced temperature measuring
In Fig. 45. we can see the block schematics of the experiment.
We have the LM35 centigrade sensor connected to the NI 9201 analog input C series module
which is connected to a CompactRIO. The CompactRIO is connected via Ethernet interface
to the PC.

Fig. 45. Block Schematics of the Advanced Temperature Measuring.

In Fig. 46. we have the Front Panel of the FPGA part. We have only raw data collected here;
we just measure the voltage in mV with the NI 9201 analog input module. We ca set the loop
timing and we visualize errors.

Fig. 46. Front Panel of the FPGA part.

In Fig. 47. we have the Front Panel of the networked real-time host part. Here we have the
voltage converted in temperature in ºC, we visualize errors and we display the log of the
temperature o both Waveform Graph and Chart. Here we ca see a big log of the temperature
over one day when turning the air conditioning system OFF and ON.
In Fig. 48. we can see the Front Panel of the Windows host part. We have here a special stop
button (Stop Windows GUI). With this button we can stop only the windows part of the
program, the temperature acquisition will continue on the real-time system. We have
indicator for the Temperature and we have a Waveform Chart for graph. We have c dial
control for the sample interval in ms.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

302

Fig. 47. Front Panel of the Networked Real-Time Host.

Fig. 48. Front Panel of the Windows Host.

In Fig. 49. we have the block diagram of the FPGA part. We have While loop and a Flat
Sequence with some special FPGA timing and the acquisition with the FPGA node.

www.intechopen.com

LabVIEW Remote Lab

303

Fig. 49. Block Diagram of the FPGA part.

In Fig. 50. we can see the Block Diagram of the real-time host part. We have the FPGA
program loaded in the real-time host (FPGA Target RIO0). We have a while loop with the
used variables, the conversion from voltage to temperature in ºC with multiplying with 100,
a mean of 100 values. After the exit from the While loop we have the closing of the FPGA
program loaded in the real-time host and the handling of errors.

Fig. 50. Block Diagram of the Real-Time Host.

In Fig. 51. We have the Block Diagram of the networked real-time host, which is the copy of

the real-time host plus the adding of the global variables to the controls and indicators.

Fig. 51. Block Diagram of the Networked Real-Time Host.

In Fig. 52. we have the Block Diagram of the Windows host, which has the global variables

as the mirror image of the networked real-time host. This means where we have control, we

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

304

will have indicator and vice-versa. We can imagine an invisible line, connection between

these global variables. These lines transport the data between the two VIs via Ethernet. The

data is sent from the networked real-time host, but there is also feedback from the Widows

host.

Fig. 52. Block Diagram of the Windows Host.

5. Conclusion

LabVIEW is a very complete programming language. We could say that if assembly is a first

level programming language and C is a second level programming language, than

LabVIEW should be a third level programming language. LabVIEW is graphical and has a

lot of implemented blocks, as they say; you don't have to invent the wheel again. This

concept makes programming really fast and could reduce very much an engineer's work.

As we could see in paragraph 2., LabVIEW has a lot of block, but not enough. It hasn't got

everything that is needed. In paragraph 2. we presented only 7 programming tricks that we

made and we thought that should be important to know. We are sure that are much more

tricks in this programming language. We encountered and solved much more programming

problems, but we decided not to present those tricks, because, they are not so general. After

all LabVIEW is a very complex programming language, but there is place for more.

After the tricks we presented 6 applications made with the PXI industrial system and 2

applications made with CompactRIO. They have similarities; some of them are made with

both of the PXI and ComapctRIO platforms. The applications were made for didactical

purposes and for publishing them on the LabVIEW Remote Lab. All the applications are

published and accessible from the http://plst.etc.upt.ro address with a user name and

password.

6. References

Antonovičs U. & Priednieks Ē. (2006). Interactive Learning Tools for Electrical Engineering

and Electronics Course, Electronics and Electrical Engineering, ISSN 1392-1215 –

Kaunas Technologija, No. 7(71), pp. 29–34, 2006.

Auer, M.E. & Gallent, W. (2000) The Remote Electronic Lab as a Part of the Telelearning

Concept at the Carinthia Tech Institute, Proceedings of the ICL2000, Villach/Austria,

2000.

www.intechopen.com

LabVIEW Remote Lab

305

Garbus, R.U.; Aguirre, I.J.O.; Sanchez, R.C. & Pureco, O.R. (2006). Virtual Remote Lab for

Control Practic, Electronics, Robotics and Automotive Mechanics Conference, vol. 2, pp.

361-366, 2006.

Gontean, A.; Lie, I. & Szabó, R. (2009 a). LabVIEW powered remote lab, Design and

Technology of Electronics Packages, (SIITME) 2009 15th International Symposium, pp.

335-340, Gyula, Hungary, September , 2009.

Gontean, A.; Lie, I. & Szabó, R. (2009 b). Using a Low Cost Programmable Power Supply for

Automated Testing, Design and Technology of Electronics Packages, (SIITME) 2009 15th

International Symposium, pp. 341-346, Gyula, Hungary, September , 2009.

Gontean A. & Szabó R. (2009 a). Remote temperature measurement with and without FPGA,

TELFOR 2009 – 17th Telecommunications Forum, pp. 775-778, Belgrade, Serbia,

November, 2009.

Gontean A. & Szabó R. (2009 b). Comparison between PIC and CompactRIO remote motor

control, TELFOR 2009 – 17th Telecommunications Forum, pp. 747-750, Belgrade,

Serbia, November, 2009.

Grober, S.; Vetter, M.; Eckert, B. & Jodl, H.-J. (2007). Experimenting from a distance –

remotely controlled laboratory, Eur. J. Phys., vol. 28, pp. 127-141, 2007.

Hercog, D.; Gergic, B. & Matko, V. (2005). Remote Lab for Electric Drives, Industrial

Electronics – ISIE 2005 Proceedings of the IEEE International Symposium, vol. 4. pp.

1685-1690, 2005.

Khalil, A.; Hasna, M.; Benammar, M.; Chaabane, M. & Ben Amar, C. (2009). Development of

a remote lab for electrical engineering program, Signals, Circuits and Systems (SCS) –

3rd International Conference, pp. 1-5, 2009.

Mihela Lascu (2007). Advanced programming techniques in LabVIEW, Politehnica Publishing

House, Timişoara, 2007.

*** National Instruments (2008). LabVIEW™ Data Acquisition and Signal Conditioning

Exercises, 2008.

*** National Instruments (2008). Data Acquisition and Signal Conditioning – Course Manual,

2008.

*** National Instruments (2007). LabVIEW™ Basics II: Development – Course Manual, 2007.

*** National Instruments (2007). LabVIEW™ Basics I: Introduction – Course Manual, 2007.

*** National Instruments (2008). CompactRIO™ and LabVIEW™ Development Fundamentals –

Course Manual, 2008.

Paladini, S.; da Silva, J.B.; Alves, G.R.; Fischer, B.R. & da Mota Alves, J.B. (2008). Using

Remote Lab Networks to Provide Support to Public Secondary School Education

Level, Computational Science and Engineering Workshops – CSEWORKSHOPS '08 11th

IEEE International Conference, pp. 275-280, 2008.

Szabó, R.; Gontean, A. & Lie, I. (2010). Sound Based Coin Recognition and Clapper,

MENDEL '10 – 16th International Conference on Soft Computing, pp. 509-516, Brno,

Czech Republic, June, 2010.

Szabó, R.; Gontean, A.; Lie, I. & Băbăiţă, M. (2009). Oscilloscope Control with PC, NAUN

2010 – International Journal of Computers and Communications, pp. 33-40, Issue 3,

Volume 3, September, 2010.

www.intechopen.com

Modelling, Programming and Simulations Using LabVIEW™ Software

306

Uran, S.; Hercog, D. & Jezernik; K., (2006). Remote Lab Experiment RC Oscillator for

Learning of Control, International Journal of Online Engineering, vol. 2, no. 4, pp. 1-8,

2006.

www.intechopen.com

Modeling, Programming and Simulations Using LabVIEW™

Software

Edited by Dr Riccardo De Asmundis

ISBN 978-953-307-521-1

Hard cover, 306 pages

Publisher InTech

Published online 21, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Born originally as a software for instrumentation control, LabVIEW became quickly a very powerful

programming language, having some characteristics which made it unique: simplicity in creating very effective

User Interfaces and the G programming mode. While the former allows for the design of very professional

control panels and whole applications, complete with features for distributing and installing them, the latter

represents an innovative way of programming: the graphical representation of the code. The surprising aspect

is that such a way of conceiving algorithms is extremely similar to the SADT method (Structured Analysis and

Design Technique) introduced by Douglas T. Ross and SofTech, Inc. (USA) in 1969 from an original idea by

MIT, and extensively used by the US Air Force for their projects. LabVIEW enables programming by

implementing directly the equivalent of an SADT "actigram". Apart from this academic aspect, LabVIEW can be

used in a variety of forms, creating projects that can spread over an enormous field of applications: from

control and monitoring software to data treatment and archiving; from modeling to instrument control; from real

time programming to advanced analysis tools with very powerful mathematical algorithms ready to use; from

full integration with native hardware (by National Instruments) to an easy implementation of drivers for third

party hardware. In this book a collection of applications covering a wide range of possibilities is presented. We

go from simple or distributed control software to modeling done in LabVIEW; from very specific applications to

usage in the educational environment.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Aurel Gontean and Roland Szabo (2011). LabVIEW Remote Lab, Modeling, Programming and Simulations

Using LabVIEW™ Software, Dr Riccardo De Asmundis (Ed.), ISBN: 978-953-307-521-1, InTech, Available

from: http://www.intechopen.com/books/modeling-programming-and-simulations-using-labview-

software/labview-remote-lab

www.intechopen.com

Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

