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LabVIEW Remote Lab 

Aurel Gontean and Roland Szabó 
“Politehnica” University of Timişoara 

România 

1. Introduction    

LabVIEW is a quite interesting programming language, and despite its odd first impression 
is very powerful. We remember when we started to use it for the first time it was somehow 
strange to me, we thought what this, a graphical programming language? For the first 
contact whit this language, LabVIEW somehow hides its power, this could be due to fact 
that for the first contact everyone tries the simulation part. A usual first application would 
be to generate a sine wave to a graph. Unfortunately, this won’t really impress a user. 
All LabVIEW field engineers nightmare is to know that the users think that LabVIEW is a 
simulation environment. Their main job is to erase that from the users mind. Of course it has 
a very strong simulation part, but the main target is the real hardware controlling. 
If we think put of the box a little, we will realize that if LabVIEW hides its power, that means is 
very simple to use, but if we think about the big amount of software and hardware National 
instruments make, we will see that it’s quite an extraordinary programming language. 
To make a short count, we can see that only LabVIEW 2009 with Modules, Toolkits and 

Device Drivers are 3 DVDs in compressed kit version. If we consider that in other hand we 

have NI Multisim circuit design suite, LabWindows/CVI C programming language for 

instruments and Measurement Studio LabVIEW style buttons add-on for Microsoft Visual 

Studio, then we can imagine that engineers National Instruments create a lot of software.  

In hardware area we can just say that they have a lot of stuff, and if they don’t have am 

equipment, then another company has it and LabVIEW has the driver for that equipment. 

Sometimes the diver is made by the National Instruments engineers, sometimes is made by 

third party vendors, but my only concern is to work, and they mostly do. A useful section in 

the www.ni.com webpage is the IDNET (Instrument Driver Network), where you can find 

the LabVIEW and LabWindows/CVI drivers for almost any equipment. You just have to 

search here: www.ni.com/devzone/idnet. A good instruments vendor would be Agilent 

Technologies; we can say that it’s very hard to find equipments from Agilent without 

LabVIEW or LabWindows/CVI driver. 

This way we can easily say that LabVIEW it’s much more than MATLAB Simulink in color. 

LabVIEW has a strong programming part, despite its simple appearance, if we go deeply in 

some specific area, like NI Vision or CompactRIO, then things will start to get quite complex 

and complicated. But knowing that this is complicated in LabVIEW, if we think to do the 

same thing without LabVIEW, in another programming language, it could be almost 

impossible, for a reduced number of engineers, in a short amount of time. 

In LabVIEW it’s possible, almost everything is possible. 

www.intechopen.com



  
Modelling, Programming and Simulations Using LabVIEW™ Software 

 

276 

We would like to correct the sentence above; some things are possible only indirectly. Some 
extra programming in needed, but after all an engineer can do what he planned. 

2. Tips and tricks in LabVIEW 

As we said not everything can be done directly, some of them need some extra 
programming. We are not really sure why they did not include it in the LabVIEW package; 
maybe they had a good reason. On forums is really hard to find a solution for these 
problems, this way we will present a few common and useful tips and trick that we was 
forced to develop, because we needed them during my projects. 

2.1 Very long HEX String to ASCII Conversion 
We shall show a method in LabVIEW how to convert a very long HEX string to ASCII. 
This could be useful if we want to analyze memory dumps or binary files, which are mostly 
in HEX, but to be interpretable, we need to convert it in some form, which we can 
understand, and mostly we convert it in ASCII. 
As we can see in Fig. 1. the program is working. 
 

 

Fig. 1. HEX to ASCII Front Panel. 

 

Fig. 2. HEX to ASCII Block Diagram. 

In Fig. 2. we have the solution for the problem. First of all we have to enter a very long HEX 

string. With the String Subset VI we have to fragment the string into groups with 2 HEX 
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numbers (8 bits). The first Shift Register with 0 initialization will always increase the 

fragmentation index with 2, this way we will reach at the end minus 2 (n-2) of the HEX 

word. There is a condition too, if we reach at the end of the HEX string to exist the While 

loop. From String Subset we convert the HEX string to number, the number is converted to 

ASCII with the Type Cast VI. For some strange reason the Type Cast VI puts an ASCII space 

before the converted ASCII character, this space is a \00 type space, so this will have to be 

deleted, it’s deleted with the Match Pattern VI using the ^[\00]* command and wired to the 

after substring output (after the \00), and we will obtain the good converted ASCII value. 

This value will be concatenated with the following strings using the second Shift Register 

with the empty string initialization. 

2.2 Very long ASCII to HEX string conversion 
If we made the HEX to ASCII conversion, than we have to do the reverse operation too. In 

LabVIEW ASCII to HEX the conversion is not that simple. Unfortunately there is no VI 

which will do the job, so the user has to make his own VI. On possible method will be 

presented next. 

In Fig. 3. we can see the working program. 
 
 

 

Fig. 3. ASCII to HEX Front Panel. 

In Fig. 4. We have the ASCII input, which will be converted in a number, with byte data 

type. Byte is more than enough, because we have a total of 128 ASCII characters, in the other 

hand in LabVIEW there is no ASCII string to number conversion in with other data type, so 

this is our only solution. The numbers are converted into HEX with the length of 2 for each 

HEX number. The string to number conversion makes an array, this way the HEX values 

will be an array of HEX string with the length of 2. We want to make a long HEX string, not 

an array of strings. We made a For loop with the number of iteration equal to the length of 

the HEX array. We indexed the array and with the use of Shift Registers we concatenated it 

into a long HEX string. 

 
 

 
Fig. 4. ASCII to HEX Block Diagram. 
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2.3 Creating a toggle button from a push button 
This application would be useful when we want to have an LED light to be ON, for very 
short impulses, like the sound of claps of falling coins, otherwise we would see only a LED 
blink and we would have to be very attentive. The idea would be to keep the signal on “1” 
logic for a longer period with shift registers. There could be many variants, but the hardest 
variant will be presented, the one where after the first “1” logic the light is ON and after the 
second “1” logic the light is OFF. For the Button the “Latch When Released” Mechanical 
Action was used, so it’s a push-button. 
As we can see the program’s name is Button Latch (Fig. 5.), we need a latch to keep the LED 
ON after only one impulse and to turn the LED OFF after the second. 
 

 

Fig. 5. Button Latch Front Panel. 

In Fig. 6. we can see that Shift Registers were used. As we can see the initialization value for 
the Shift Registers is FALSE. The Button is connected to the Implies VI, which computes an 
OR logic between the negated x (first) input and y (second) input. In case of Button press, 
we will have FALSE in x input and FALSE in y input, so FALSE output, this means that 
from the Select VI the FALSE output is activated, which has an input of inverted FALSE 
(which is TRUE), so the LED will be ON.  
If the Button is pressed again, then we will have FALSE in x input and FALSE at y input of 
the Implies VI, so at the Implies function will have FALSE output. The input of the second 
Shift Register will be TRUE, because before this the LED in ON. With the FALSE Implies VI 
we activate the inverted TRUE (which is FALSE), so the LED will be OFF. 

 

Fig. 6. Button Latch Block Diagram. 
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2.4 Append file (Write to file line by line) 
Surprisingly in LabVIEW we can’t find a simple method to append a file. If a program 
writes to a file for the second time, it will overwrite the previous data. This is what we want 
to avoid, when we want to make complex logs or even when we want to save the 
parameters of a program during execution. This program is useful when we make some 
moves, like mouse, joystick moves, and we want to save the coordinates into a file and 
maybe the file will be closed an opened in the program more times. We can create programs 
to move robotic arms with mouse, or to save the specific parameters of measuring 
equipments. 
Fig. 7. shows that after multiple runs of the program, the previous text is not erased. 
 

 

Fig. 7. Text File with Appended Text. 

In Fig. 8. we have the standard dataflow of the programming with the settings and the 
writing to the file, between the opening/creating and closing the file. At the end it’s good to 
put a Simple Error Handler. The file opening/creating VI is set to open or create and a 
certain path is given to it. The file setting VI is set to have an offset with the length of 0, and 
is set to write at the end of the file. The writing VI has an input with a text which is 
concatenated with a new line constant, this way after any running of the program we will 
have the appended text in a new line, keeping the old information. 

 
Fig. 8. Text Append Block Diagram. 

2.5 Create an arbitrary signal 
As we know LabVIEW has a lot of built in signals, but it’s impossible to have any arbitrary 
signal. It has the possibility to create arbitrary signals, but we have found it not really 
flexible in some situations. It has an arbitrary signal creator with Express VIs, but we always 
avoid using them, because you can have more control over traditional VIs. The chosen 
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signal was the trapezoidal signal, which is mostly used when controlling motors. Nobody 
wants a square pattern for the motors acceleration. In cars, in lifts the motor usually 
accelerates in a trapezoidal pattern. 
As we can see in Fig. 9., the program is working. The hardest part is configuring the 
parameters. The parameters are configured using equation (1). 

 
0

0

p minr

p minf

N U A U

N U A U

⋅ = −⎧⎪
⎨ ⋅ = −⎪⎩

 (1) 

Where Np is the number of points; Uminr,Uminf are the minimal voltages for rise and fall; A is 
the amplitude of the signal; U0 is the start voltage. In our case it will be: 0,0003 * 10000 = 5 – 
2, this way we created the trapezoidal signal. 
 

 

Fig. 9. Trapezoidal Signal Front Panel. 

The Block Diagram (Fig. 10.) it is not so complicated, the main thing is the idea to build 
arrays of rising edge, continuous part and falling edge. The building of the arrays is made 
with For loops, shift registers and the exit from the loops is made with enable indexing, 
which is by default at For loops. Maybe the hardest part is the building of the array, which 
builds three 1D arrays intro one 1D array. Normally LabVIEW makes the built array in 
multidimensional array, but we need a 1D array, because we want one single signal. This 
can be done by changing the enable indexing to disable indexing and then change it back to 
enable indexing again at the exit from the For loop of the horizontal signal. 

3. Virtual instruments for the PXI chassis  

Our LabVIEW remote lab has 6 PXI experiments working and controllable trough a web 
browser. 

3.1 Transfer characteristic of a NAND gate 
The first experiment makes the transfer characteristic of a gate; we made it for a NAND 
gate. In Fig. 11. we can see  the block schematics of the transfer characteristics of the NAND 
gate. 
We generate a rising ramp signal at the NAND gates one input and supply a constant 
voltage to the other input and measure the voltage at the output, this way we have the 
transfer characteristics of the gate. 
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Fig. 10. Trapezoidal Signal Block Diagram. 

 

 
 

Fig. 11. Block Schematics of the Experimental Setup. 

The transfer characteristic is the input voltage as a function of the output voltage like shown 
in equation (2). 

 ( )out inU f U=  (2) 
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In Fig. 12. We can see the experimental setup of the NAND gate on a PCB with protection 
and connectors for accessing. The used NAND gate is integrated in a 74ACT00 IC. 
The used NI equipment for this experiment was the NI PXI-4110 power supply and the NI 
PXI-4072 digital multimeter. 

 

 
 

Fig. 12. NAND Gate with PCB. 

In Fig. 13. we can see the Front Panel of the experiment. 
As we can see we have the digital multimeter (DMM) configuration with reference ID, a 

range at 5 V and resolution at 6½ digits. We have two channels (0 and 1) of the power 

supply activated with the current limit set to 100 mA and a slider to set the voltage level 

from 0 – 4 V. The most important part is the XY Graph where we see the actual transfer 

characteristic of the gate, we have also indicators of the temporary value on both axes of the 

graph. We have also cursors to measure certain values. 

As we can see is not so complicated to program, the hardest part is maybe that we use 

traditional NI acquisition cards, not the newer DAQ cards. 

In Fig. 14. We have the Block Diagram of the program. 
All the instruments are programmed in this pattern, first we have to create the channel and 

after it close it. Between these two VIs we have the configuration or acquisition and 

generation. Mostly we have the creation, configuration and closing outside the loop and the 

acquisition or generation part in the loop. 

In out experiment we first create the channel for the DMM and than configure its range ad 

digits. After it we will create the power supply’s channel we configure the voltage and 

current for the first channel and enable the output, after we will do the same or the other 

channel. For channel 1 we will measure the output voltage. We will measure the voltage 

with the multimeter at the output of the NAND gate. Finally we will close an reset the two 

equipments. 

We can remark that LabVIEW uses the read expression for acquisitioning and the write 

expression for generation, this way the used icons for the VI are mostly a pair of glasses for 

reading and a pencil for writing.  
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Fig. 13. Front Panel of the Transfer Characteristic Program. 
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Fig. 14. Block Diagram of the Transfer Characteristic Program. 

3.2 Propagation time measuring for a NAND Gate 
This experiment uses the same 74ACT00 NAND gate, but measures the gate’s propagation 
time.  
In Fig. 15. we can see  the block schematics of the experimental setup. 

 

Fig. 15. Block schematics for the propagation time measuring. 

We generate a square waveform to the gate’s one input with a signal generator and measure 
its output with an oscilloscope. 
The propagation time is given by the formula from equation (3). 
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2

pHL pLH
p

t t
t

+
=  (3) 

In the standard TTL gate’s case tpLH  = 12 ns and tpHL = 8 ns, so tp = 10 ns. 
The experimental setup can be seen on Fig. 12. The setup is on the same PCB as for the 
transfer characteristic. 
The used NI equipments are NI PXI-4110 power supply, the NI PXI-5112 oscilloscope and 
the NI PXI-5412 signal generator. 
In Fig. 16. we can see the Front Panel of the experiment. 
 

 

Fig. 16. Front Panel of the Transfer Characteristic Program. 
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As we can see we have the configuration of the oscilloscope, the power supply and the 
function generator.  
The oscilloscope has a configured resource ID and the Time/div setting. It has also both 
channels activated with 0 V offset for channel 0 and 3 V offset for channel 1 and Volts/div 
(Vertical Range) dial. It also has some triggering configurations like slope on positive, DC 
coupling and 1 V level. We have the both graphs (input and output of the NAND gate) on 
the waveform graph and cursors to measure the propagation time. 
The power supply has a basic configuration just for supplying current to the IC. It has 
resource ID, current limit to 100 mA, 5 V voltage level, output enabled indicator, an 
indicator showing 0 as the selected channel, and a measurement of the output of the 
activated channel. 
The function generator has resource indicator, the settings for output mode, which is on 
standard, square waveform type, and the setting for amplitude, which is at 5 V and the 
setting for frequency, which is at 1 MHz. 
In Fig. 17. we can see the Block Diagram of the program. 
As we can see we have the initialization for the function generator, the setting of the output 
mode, the amplitude and frequency setting, the enabling of the output and the starting of 
the generation. 
The oscilloscope is initialized and has standard initialization. 
Finally the power supply is initialized. 
We enter in the While loop. We configure the voltage and the current of the power supply; 
we enable its output and measure the output voltage. 
 

 

Fig. 17. Block Diagram of the Transfer Characteristic Program. 
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We continue to the oscilloscope, we configure the trigger settings, the timing settings. After 
we make the settings for the vertical range and start the readings of the values for 
representing on the graph both of the channels (0 and 1). We unite the two channels with a 
Build Array and output it on a Waveform Graph. 
For the function generator we can control the frequency and amplitude during the program 
execution, this way we have it inside the loop too. 
When we exit the loop we disabled the output, we stopped the generation we resettled the 
device. Finally we close the function generator, the oscilloscope, we reset and close the 
power supply and end the whole execution with a simple error handler to have the error 
messages in case if something goes wrong. 

3.3 Duty cycle analyzer 
The duty cycle analyzer experiment has a more complicated setup. We have the 33250A 
signal generator from Agilent and the NI PXI-6541 logic analyzer from National 
Instruments. 
In Fig. 18. We have the block schematics. We have the Agilent signal generator, which 
generates a square signal to the Duty Cycle Analyzer. The signal is generated in the logic 
control and in the PLL. The signal that exists the PLL will be entering in a counter and after I 
in a display module. The signal is gathered with a logic analyzer from National Instruments 
and shown on a graph. 
 

 

Fig. 18. Block Schematics of the Logic Analyzer Experiment. 

We have also an external circuit which can be seen on Fig. 19. This external circuit is a duty 
cycle analyzer on which 14 different signals are analyzed with the experiment. The circuit 
has more modules like a logic control, a PLL and a counter and the duty cycle of the square 
signal is shown on the dual digit seven segment displays. 
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Fig. 19. Experimental Setup of the Logic Analyzer Experiment. 

In Fig. 20. we can see the front panel of the Duty Cycle Analyzer program. 
For the logic analyzer we have a resource ID, 14 activated channels, and the clock rate at 300 
kHz and 10000 acquired samples. 
For the Agilent signal generator we have resource ID, square waveform type, 100 Hz for 
frequency, 5 V amplitude, 25 % duty cycle, 0 V offset. The first signal (Clk) represents the 
duty cycle. The second signal (VCO_Out) is the representation of the PLL. The third signal 
(VCO_Div) is one input for the PLL. Q0 – Q7 is the counter part. Mst_QA, LD_Dcd, Mst_nQ 
represent logic levels for testing purposes. 
 

 

Fig. 20. Front Panel of the Logic Analyzer Experiment. 

In Fig. 21. we have the block diagram of the experiment. 
We have the initialization of the logic analyzer. In a while loop we have the configuring of 
the channels, settings of the clock, setting of the buffer (Number of Samples To Acquire) and 
finally we represent the data. 
The Agilent signal generator is initialized, the amplitude, frequency, offset and waveform 
type is configured. We continue with the duty cycle is configuration, the output is enabling 
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and at the end we close the signal generator. Finally the logic analyzer is closed too, and the 
program is ended with a simple error handler. 

 

Fig. 21. Block Diagram of the Logic Analyzer Experiment. 

3.4 Simple motor control 
In Fig. 22. we can see the Block Diagram of the experiment. 
This experiment uses only PXI instruments and thee PICDEM Mechatronics board from 
Microchip for amplifying and PID control. We have the NI PXI-6115 as the signal generator 
which generates a trapezoidal signal using the method presented in paragraph 2.5. The 
signal is amplified for the motors with the PICDEM Mechatroncis board; this board has also 
an implemented PID algorithm. The motor has a disk with slots, which rotates between an 
optocoupler pair, similar to and old mouse with ball. The signal from the optocoupler is sent 
in a signal; amplifying and conditioning circuit. The output signal is sent to the NI PXI-6608 
counter and with a simple formula the RPM is calculated. The signal that the optcoupler 
reads should be similar to the generated signal, in our case both trapezoids should look the 
same. 

 

Fig. 22. Block Schematics of the Simple Motor Control Program. 

In Fig. 23. we can se the PICDEM Mechatronics board and the motor with the disk with two 
slots. 
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Fig. 23. Experimental Setup of the Simple Motor Control Program. 

In Fig. 24. we have the Front Panel of the program in LabVIEW with the trapezoidal signal 
generation on Waveform Graph and the RPM readings represented on Waveform Graph 2. 
The signal generation method is similar to the method presented in paragraph 2.5.  
In the upper part of the Front Panel we have the signal generation configuration, where we 
have the resource ID of the signal generation DAQ and the minimum value a t 0 V and the 
maximum value at 5 V. 
The second part of the Front Panel is the counter configuration with resource ID, rising 
edge, minim frequency at 100 KHz and maximum frequency at 1 MHz, 100 samples per  
 

 

Fig. 24. Front Panel of the Simple Motor Control Program. 
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channel and the sampling divisor is 5. We have also indicators for frequency and RPM. We 
have also a median filter which can be deactivated with a button and we have a slot setting 
dial, which must be set to be equal with the number of slots of the disk present on the 
motor. This should be correctly set to calculate the RPM. 
In Fig. 25. we can see the Block Diagram of the program. We have two parallel while loops. 
The first loop is for the trapezoidal signal generation. We have first the creation of the channel, 
after we have the start of the generation process. Next we enter the While loop, we have here 
the trapezoidal signal creation similar to paragraph 2.5. This is the method how a signal is 
generated by a DAQ board; we provide the numbers (samples) of the signal and the use the 
write signal VI, which has the icon with the pencil. After we exit the loop with closing the 
instrument (delete task) and we finish the program with the simple error handler. 
The second loop is for the counter configuration. We have channel creation for the counter, 
the timing settings (sample configuration), the start of the execution continues, followed by 
the signal reading, which is filtered and with a specific formula we calculate the RPM and 
represent it on a Waveform Graph.  
Equation (4) shows how to calculate the RPM from the frequency. 

 60
s

f
N

RPM s= ⋅   (4) 

Finally we close the instrument and we handle errors. We put everything in the loop to be 
controllable during execution. 
 

 

Fig. 25. Block Diagram of the Simple Motor Control Program. 
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3.5 Simple temperature measuring 
In Fig. 26. we can see the setup for the temperature measurement. We have an LM35 
centigrade sensor and an NI USB-6251 acquisition board. We also made the experiment with 
the NI USB-6009 smaller acquisition board and worked very well. The idea of this 
experiment is to measure voltage given from the temperature sensor and with the formula 
from the datasheet we convert the voltage to temperature. 

 

Fig. 26. Block Schematics of the Simple Temperature Measuring. 

In Fig. 27. we have the Front Panel of the program. We have resource ID, timing rate at 1 
and the actual temperature shown on an indicator and on a Waveform Graph. 
 

 

Fig. 27. Front Panel of the Simple Temperature Measuring. 

In Fig. 28. we have Block Diagram of the program. We start with the channel creation, the 
setting of the timing (samples) and the start of the process. We enter in the While loop, here 
we have the reading of the samples and some mean value calculation over 10 samples. The 
temperature at the output of the LM35 centigrade sensor is its output voltage multiplied by 
100. Finally we close the instrument and handle errors. 
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Fig. 28. Bock Diagram of the Simple Temperature Measuring. 

3.6 Power supply testing 
This experiment represents a more complex functional test. If we have many samples it's not 
the best solution. For many samples graphs are not indicated, but for only one sample this is 
the best test. With a graphs we can see really if the power supply is working.  
The signal is generated with an Agilent 33250A function generator and the input and output 
signals are viewed using an NI PXI-5112 oscilloscope (Fig. 29.) 
 

 
Fig. 29. Block Schematics of the AC-DC Power supply. 
In Fig. 30. we can see the AC-DC power supply. 
 

 

Fig. 30. Power Supply. 
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In Fig. 31. we have the Front Panel of the Agilent 33250A signal generator. As we can see we 
have resource ID, the waveform type is sine wave, the frequency 100 kHz, the offset is 0 V 
and the amplitude is 5 V. 
 

 

Fig. 31. Front Panel for the Agilent 33250A Function / Arbitrary Waveform Generator. 

In Fig. 32. we can see the Front Panel of the oscilloscope application. We can see the resource 
ID of the oscilloscope and the horizontal adjust dial. We have two channels activated with 
two graphs and two vertical adjust dials. The first graph represents the input AC signal and 
the second graph represents the output DC signal. From this graphs we ca see that the 
power supply works correctly and we have an AC – DC power supply. 
 

 

Fig. 32. Font Panel for the Power Supply Testing with Oscilloscope. 
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In Fig. 33. we have the 33250A Agilent signal generator programming. We have between the 
initialization and closing a While loop. In the loop we have the waveform configuration VI 
and the output enable VI. 

 

Fig. 33. Block Diagram for the Agilent 33250A Function / Arbitrary Waveform Generator. 

In  Fig. 34. we have the Block Diagram of the oscilloscope application. 
We start with the channel creation. We enter in the while loop. We have some timing 

settings for the horizontal adjust and the vertical adjust and readings for the both activated 

channels (channel 0 and channel 1). We put a Bessel filter to the output signal of the voltage 

supply. When we exit from the while loop we close the instrument and handle errors. 

 

Fig. 34. Block Diagram for the Power Supply. 

4. Virtual instruments for the CompactRIO chassis 

4.1 Advanced motor control 
In Fig. 35. we can see, we used both the PXI and the CompactRIO chassis. The trapezoidal 

signal is generated with the NI PXI-4110 Power Supply. The signal then is amplified with 

the NI 9505 H – bridge. The CompactRIO is programmed to make a PID loop too. The motor 

is connected to NI 9505 H – bridge. The motor has a disk with 100 slots, which rotates 

between an optocoupler pair. 

The optocoupler is connected to the counter to read the frequency and calculate the RPM. 
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Fig. 35. Block Schematics of the Advanced Motor Control. 

In Fig. 36. we can see the experimental setup with the motor and the CompactRIO. 
 

 

Fig. 36. Experimental Setup of the Advanced Motor Control. 

In Fig. 37. we can see the front panel of the signal generation program, which is similar to 
the program presented in paragraph 3.4. The trapezoid generation uses the method 
presented in paragraph 2.5. In the signal generation program the NI PXI-4110 power supply 
is used. In the Front Panel we have the resource ID, channel 1 is activated, the current limit 
is set to 100 mA and the voltage is measured at the output of the power supply. 
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Fig. 37. Front Panel of the Signal Generation. 

In Fig. 38. we have the RPM reading program. We have resource ID, rising edge, minimum 
frequency set to 100 kHz and maximum set to 1 MHz, 100 samples acquisitioned at the 
channel and the sampling divisor set to 5. We have put indicator for frequency and RPM 
and a Waveform Graph to represent the RPM. This graph should be similar to the generated 
signal. 
In Fig. 39. we have the Front Panel of the FPGA programming. We have a lot of controls and 
indicators, which are use to control some functions of the NI 9505 H – bridge, which are also 
shown on the card with some LEDs. We have Enable Drive, Disable Drive and Enable 
Emergency-Stop. We show the status of the Drive, the Drive Fault and the Overtemperature 
Fault, the supply current (Vsup Present) present and the presents of the analog input's 
trigger (AI Trigger). We have the Current Loop Rate set to 50 μs, this rate is the rate of the 
PID loop. We have the PID parameters: 350 for the proportional gain, 300 for the integral 
gain and 5500 for the derivative gain. We have a current setpoint at a negative value (in our 
case -16) this for rotating the motor in one direction, if it's positive the motor rotates in other 
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Fig. 38. Front Panel of the RPM Reading. 

 

 

Fig. 39. Front Panel of the FPGA Part. 

direction. We limit the current at a certain value (in our case 2000) and we set current 

feedback to 1, after we read the PWM Duty Cycle. The PWM Duty Cycle has the same sign 

as the Current Setpoint, this way to show the direction of the motor rotation. The Front 

Panel is almost the same with this one for all Block Diagrams which will be presented next. 

In Fig. 40. we can see the Block Diagram of the trapeze generation program. This program is 

similar to the first While loop from Fig. 25., but it's made with a power supply, not a DAQ. 

The trapeze is generated with the method presented in paragraph 2.5. 

The programming starts with channel creation. After entering in the While loop we set the 

voltage. Here is connected the trapezoidal signal. After we set the current, we enable output 

and we measure the voltage at the power supply's ports. When we exit from the While loop, 

we disable output and close the instrument. 
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Fig. 40. Block Diagram of Trapeze Generation with Power Supply. 

In Fig. 41. we have the RPM reading Block Diagram, which is same with the second While 
loop from Fig. 25. 
 

 

Fig. 41. RPM Reading Block Diagram. 

In Fig. 42. we can see the we have a big While loop with all the controls used in the FPGA 
part and called by the Real-Time controller. At the left part we have loaded the FPGA part 
and at the output we closed it and we handle errors. 
In Fig. 43. we have the block Diagram of the networked real-time host. This VI is made 
copying the VI form Fig. 41. and adding global variables to send the data trough network to 
the Windows host. We have the global variables also before of the FPGA part loading for 
initialization. 
In Fig. 44. we have the Windows host with the same global variables as in the networked 
real-time host, but mirrored. This means if in the networked real-time host we had a control 
in the windows host we have indicator and vice-versa. We can imagine an invisible line 
between the global variables with the same name starting from the control to the indicator.  
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Fig. 42. Block Diagram of the Real-Time Host. 
 

 

Fig. 43. Block Diagram of the Networked Real-Time Host. 

 

Fig. 44. Block Diagram of the Windows Host. 
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global variables communicates not only between different VIs on the same computer, but 
between VIs on different computers, connected via networks cables if they are in the same 
subnet. 

4.2 Advanced temperature measuring 
In Fig. 45. we can see the block schematics of the experiment. 
We have the LM35 centigrade sensor connected to the NI 9201 analog input C series module 
which is connected to a CompactRIO. The CompactRIO is connected via Ethernet interface 
to the PC. 

 

Fig. 45. Block Schematics of the Advanced Temperature Measuring. 

In Fig. 46. we have the Front Panel of the FPGA part. We have only raw data collected here; 
we just measure the voltage in mV with the NI 9201 analog input module. We ca set the loop 
timing and we visualize errors. 
 

 

Fig. 46. Front Panel of the FPGA part. 

In Fig. 47. we have the Front Panel of the networked real-time host part. Here we have the 
voltage converted in temperature in ºC, we visualize errors and we display the log of the 
temperature o both Waveform Graph and Chart. Here we ca see a big log of the temperature 
over one day when turning the air conditioning system OFF and ON. 
In Fig. 48. we can see the Front Panel of the Windows host part. We have here a special stop 
button (Stop Windows GUI). With this button we can stop only the windows part of the 
program, the temperature acquisition will continue on the real-time system. We have 
indicator for the Temperature and we have a Waveform Chart for graph. We have c dial 
control for the sample interval in ms. 
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Fig. 47. Front Panel of the Networked Real-Time Host. 

 

 

Fig. 48. Front Panel of the Windows Host. 

In Fig. 49. we have the block diagram of the FPGA part. We have While loop and a Flat 
Sequence with some special FPGA timing and the acquisition with the FPGA node. 
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Fig. 49. Block Diagram of the FPGA part. 

In Fig. 50. we can see the Block Diagram of the real-time host part. We have the FPGA 
program loaded in the real-time host (FPGA Target RIO0). We have a while loop with the 
used variables, the conversion from voltage to temperature in ºC with multiplying with 100, 
a mean of 100 values. After the exit from the While loop we have the closing of the FPGA 
program loaded in the real-time host and the handling of errors. 
 

 

Fig. 50. Block Diagram of the Real-Time Host. 

In Fig. 51. We have the Block Diagram of the networked real-time host, which is the copy of 

the real-time host plus the adding of the global variables to the controls and indicators. 

 

Fig. 51. Block Diagram of the Networked Real-Time Host. 

In Fig. 52. we have the Block Diagram of the Windows host, which has the global variables 

as the mirror  image of the networked real-time host. This means where we have control, we 
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will have indicator and vice-versa. We can imagine an invisible line, connection between 

these global variables. These lines transport the data between the two VIs via Ethernet. The 

data is sent from the networked real-time host, but there is also feedback from the Widows 

host. 

 
 

 
 

Fig. 52. Block Diagram of the Windows Host. 

5. Conclusion 

LabVIEW is a very complete programming language. We could say that if assembly is a first 

level programming language and C is a second level programming language, than 

LabVIEW should be a third level programming language. LabVIEW is graphical and has a 

lot of implemented blocks, as they say; you don't have to invent the wheel again. This 

concept makes programming really fast and could reduce very much an engineer's work.  

As we could see in paragraph 2., LabVIEW has a lot of block, but not enough. It hasn't got 

everything that is needed. In paragraph 2. we presented only 7 programming tricks that we 

made and we thought that should be important to know. We are sure that are much more 

tricks in this programming language. We encountered and solved much more programming 

problems, but we decided not to present those tricks, because, they are not so general. After 

all LabVIEW is a very complex programming language, but there is place for more. 

After the tricks we presented 6 applications made with the PXI industrial system and 2 

applications made with CompactRIO. They have similarities; some of them are made with 

both of the PXI and ComapctRIO platforms. The applications were made for didactical 

purposes and for publishing them on the LabVIEW Remote Lab. All the applications are 

published and accessible from the http://plst.etc.upt.ro address with a user name and 

password. 
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