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1. Introduction 

From the Black Death of 1347–1350 (Murray, 2007) and the Spanish influenza pandemic of 
1918–1919 (Taubenberger & Morens, 2006), to the more recent 2003 SARS outbreak 
(Lingappa et al., 2004) and the 2009 influenza pandemic (Moghadas et al., 2009), as well as 
countless outbreaks of childhood infections, infectious diseases have been the bane of 
humanity throughout its existence causing significant morbidity, mortality, and 
socioeconomic upheaval. Advanced modelling technologies, which incorporate the most 
current knowledge of virology, immunology, epidemiology, vaccines, antiviral drugs, and 
public health, have recently come to the fore in identifying effective disease mitigation 
strategies, and are being increasingly used by public health experts in the study of both 
epidemiology and pathogenesis. Tracing its historical roots from the pioneering work of 
Daniel Bernoulli on smallpox (Bernoulli, 1760) to the classical compartmental approach of 
Kermack and McKendrick (Kermack & McKendrick, 1927), modelling has evolved to deal 
with data that is more heterogeneous, less coarse (based at a community or individual 
level), and more complex (joint spatial, temporal and behavioural interactions). This 
evolution is typified by the agent-based model (ABM) paradigm, lattice-distributed 
collections of autonomous decision-making entities (agents), the interactions of which unveil 
the dynamics and emergent properties of the infectious disease outbreak under 
investigation. The flexibility of ABMs permits an effective representation of the 
complementary interactions between individuals characterized by localized properties and 
populations at a global level. 
However, with flexibility comes complexity; hence, the software implementation of an ABM 
demands more stringent software design requirements than conventional (and simpler) 
models of the spread and control of infectious diseases, especially with respect to outcome 
reproducibility, error detection and system management. Outcome reproducibility is a 
challenge because emergent properties are not analytically tractable, which is further 
exacerbated by subtle and difficult to detect errors in algorithm logic and software design. 
System management of software simulating populations/individuals and biological 
/physical interactions is a serious challenge, as the implementation will involve distributed 
(parallelized), non-linear, complex, and multiple processes operating in concert. Given these 
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issues, it is clear that any implementation of an ABM must satisfy three objectives: 
reliability, efficiency, and adaptability. Reliability entails robustness, reproducibility, and 
validity of generated results with given initial conditions. Efficiency is essential for running 
numerous experiments (simulations) in a timely fashion. Adaptability is also a necessary 
requirement in order to adjust an ABM system as changes to fundamental knowledge occur. 
Past software engineering experience (Pizzi & Pedrycz, 2008; Pizzi, 2008) and recent 
literature (Grimm & Railsback, 2005; Ormerod & Rosewell, 2009; Railsback et al., 2006; 
Ropella et al., 2002) suggest several guidelines to which ABM development should adhere. 
These include: 
i. Spiral methodology. ABM software systems require rapid development, with continual 

changes to user requirements and incremental improvements to a series of testable 
prototypes. This demands a spiral methodology for software development, beginning 
with an initial prototype and ending with a mature ABM software release, via an 
incremental and iterative succession of refined requirements, design, implementation, 
and validation phases. 

ii. Activity streams. Three parallel and complementary activity streams (conceptual, 
algorithmic, and integration) will be required during the entire software development 
life cycle. High-level analytical ABM concepts drive the creation of functionally relevant 
algorithms, which are implemented and tested, and, if validated, integrated into the 
existing code base. Normally considered a top-down approach, in a spiral 
methodology, bottom-up considerations are also relevant. For instance, the choice from 
a set of competing conceptual representations for an ABM model may be made based 
on an analysis of the underlying algorithms or the performance of the respective 
implementations. 

iii. Version control. With a spiral development methodology, an industry standard version 
control strategy must be in place to carefully audit changes made to the software 
(including changes in relation to rationales, architects, and dates). 

iv. Code review. As code is integrated into the ABM system, critical software reviews should 
be conducted on a regular basis to ensure that the software implementation correctly 
captures the functionality and intent of the over-arching ABM. 

v. Validation. A strategy must be established to routinely and frequently test the software 
system for logic and design errors. For instance, the behaviour of the simulation model 
could be verified by comparing its output with known analytical results for large-scale 
networks. Software validation must be relevant and pervasive across guidelines (i)–(iv). 

vi. Standardized software development tools. Mathematical programming environments such 
as Matlab® (Sigmon & Davis, 2010), Mathematica® (Wolfram, 1999), and Maple® 

(Geddes et al., 2008) are excellent development tools for rapidly building ABM 
prototypes. However, performance issues arise as prototypes grow in size and 
complexity to become software systems. A development framework needs to provide a 
convenient bridge from these prototyping tools to mature efficient ABM systems. 

vii. System determinism. In a parallel or distributed environment, outcome reproducibility is 
difficult to achieve with systems comprising stochastic components. Nevertheless, 
system determinism is a requirement even if executed on a different computer cluster. 

viii. System profiling. It is important to observe and assess the performance of parts of the 
system as it is running. For instance, which components are executed often; what are 
their execution times; are processing loads balanced across nodes in a computer 
cluster? 
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In order to adhere to these guidelines and satisfy the objectives described above, we 
designed a software development framework for ABMs of infectious diseases. The next 
section of this chapter describes Scopira, a general application development library designed 
by our research group to be a highly extensible application programming interface with a 
wholly embedded transport layer that is fully scalable from single machines to site-wide 
distributed clusters. This library was used to implement the agent-based modelling 
framework, details of which are provided in the subsequent section. We conclude with a 
section describing future research activities. 

2. Scopira 

In the broad domain of biomedical data analysis applications, preliminary prototype 
software solutions are usually developed using an interpreted programming language or 
environment (e.g., Matlab®). When performance becomes an issue, some components of the 
prototype are subsequently ported to a compiled language (e.g., C) and integrated into the 
remaining interpreted components. Unfortunately, this process can introduce logic and 
design errors and the functionality of resultant hybrid system can often be difficult to extend 
or adapt. Further, it also becomes difficult to take advantage of features such as memory 
management, object orientation, and generics, which are all essential requirements for 
building large scale, robust applications. To address these concerns, we developed Scopira 
(Demko & Pizzi, 2009), an open source C++ framework suitable for biomedical data analysis 
applications such as ABMs for infectious diseases. Scopira provides high performance end-
to-end application development features, in the form of an extensible C++ library. This 
library provides general programming utilities, numerical matrices and algorithms, 
parallelization facilities, and graphical user interface elements. 
Our motivation behind the design of Scopira was to satisfy the needs of three categories of 
users within the biomedical research community: software architects; scientists 
/mathematicians; and data analysts. With the design and implementation of new software, 
architects typically need to incorporate legacy systems often written in interpreted 
languages. Coupled with the facts that end-user requirements in a research environment 
often change (sometimes radically) and that biomedical data is becoming ever more 
complex and voluminous, a software development framework must be versatile, extensible, 
and exploit distributed, generic, and object oriented programming paradigms. For scientists 
or mathematicians, data analysis tools must be intuitive with responsive interfaces that 
operate both effectively and efficiently. Finally, the data analyst has requirements straddling 
those from the other user categories. With an intermediate level of programming 
competence, they require a relatively intuitive development environment that can hide some 
of the low level programming details, while at the same time allowing them to easily set up 
and conduct numerical experiments that involve parameter tuning and high-level 
looping/decision constructs. As a result of this motivation, the emphasis with Scopira has 
been on high performance, open source development and the ability to easily integrate other 
C/C++ libraries used in the biomedical data analysis field by providing a common object-
oriented application programming interface (API) for applications. This library provides a 
large breadth of services that fall into the following four component categories. 
Scopira Tools provide extensive programming utilities and idioms useful to all application 
types. This category contains a reference counted memory management system, 
flexible/redirectable flow input/output system, which supports files, file memory mapping, 
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network communication, object serialization and persistence, universally unique identifiers 
(UUIDs) and XML parsing and processing. 
The Numerical Functions all build upon the core n-dimensional narray concept (see below). 
C++ generic programming is used to build custom, high-performance arrays of any data 
type and dimension. General mathematical functions build upon the narray. A large suite of 
biomedical data analysis and pattern recognition functions is also available to the developer. 
Multiple APIs for Parallel Processing are provided with the object-oriented framework, 
Scopira Agents Library (SAL)‡, which allows algorithms to scale with available processor and 
cluster resources. Scopira provides easy integration with native operating system threads as 
well as the Message Passing Interface (MPI) (Snir & Gropp, 1998) and Parallel Virtual 
Machine (PVM) (Geist et al., 1994) libraries. Further, this library may be embedded into 
desktop applications allowing them to use computational clusters automatically, when 
detected. Unlike other parallel programming interfaces such as MPI and PVM, Scopira’s 
facilities provide an object-oriented strategy with support for common parallel 
programming patterns and approaches. 
Finally, a Graphical User Interface (GUI) Library based on GTK+ (Krause, 2007) is provided. 
This library provides a collection of useful widgets including a scalable numeric matrix 
editor, plotters, image and viewers as well as a plug-in platform and a 3D canvas based on 
OpenGL® (Hill & Kelley, 2006). Scopira also provides integration classes with the popular Qt 
GUI Library (Summerfield, 2010). 

2.1 Programming utilities 

Intrusive reference counting (recording an object’s reference count within the object itself) 
provides the basis for memory management within Scopira-based applications. Unlike 
many referencing counting systems (such as those in VTK (Kitware, 2010) and GTK+), 
Scopira’s system uses a decisively symmetric concept. References are only added through 
the add_ref and sub_ref calls — specifically, the object itself is created with a reference count 
of zero. This greatly simplifies the implementation of smart pointers and easily allows stack 
allocated use (by passing the reference count), unlike VTK and GTK+ where objects are 
created with a reference count and a modified reference count, respectively. Scopira 
implements a template class count_ptr that emulates standard pointer semantics while 
providing implicit reference counting on any target object. With smart pointers, reference 
management becomes considerably easier and safe, a significant improvement over C’s 
manual memory management. 
Scopira provides a flexible, polymorphic and layered input/output system. Flow objects 
may be linked dynamically to form I/O streams. Scopira includes end flow objects, which 
terminate or initiate a data flow for standard files, network sockets and memory buffers. 
Transform flow objects perform data translation from one form to another (e.g., binary-to-
hex), buffer consolidation and ASCII encoding. Serialization flow objects provide an interface 
for objects to encode their data into a persistent stream. Through this interface, large 
complex objects can quickly and easily encode themselves to disk or over a network. Upon 
reconstruction, the serialization system re-instantiates objects from type information stored 
in the stream. Shared objects — objects that have multiple references — are serialized just 
once and properly linked to multiple references. 

                                                 
‡ The term “agent” used in this context refers to the software concept rather than the modelling concept. 
To avoid confusion, we will use the term “SAL node” to refer to the software concept. 
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A platform independent configuration system is supplied via a central parsing class, which 
accepts input from a variety of sources (e.g., configuration files and command line 
parameters) and present them to the programmer in one consistent interface. The 
programmer may also store settings and other options via this interface, as well as build 
GUIs to aid in their manipulation by the end user. Using a combination of the serialization 
type registration system and C++’s native RTTI functions, Scopira is able to dynamically (at 
runtime) allow for the registration and inspection of object types and their class hierarchy 
relationships. From this, an application plug-in system can be built by allowing external 
dynamic link libraries to register their own types as being compatible with an application, 
providing a platform for third party application extensions. 

2.2 N-dimensional data arrays 

The C and C++ languages provide the most basic support for one-dimensional arrays, which 
are closely related to C’s pointers. Although usable for numerical computing, they do not 
provide the additional functionality that scientists and mathematicians demand such as easy 
memory management, mathematical operations, or fundamental features such as storing 
their own dimensions. Multiple dimensional arrays are even less used in C as they require 
compile-time dimension specifications, drastically limiting their flexibility. The C++ 
language, rather than design a new numeric array type, provides all the necessary language 
features for developing such an array in a library. Generic programming (via C++ templates, 
that allow code to be used for any data types at compile time), operator overloading (e.g., 
being able to redefine the addition “+” or assignment “=” operators) and inlining (for 
performance) provide all the tools necessary to build a high performance, usable array class. 
Rather than force the developer to add another dependent library for an array class, Scopira 
provides n-dimensional arrays through its narray class. This class takes a straightforward 
approach, implementing n-dimensional arrays, as any C programmer would have, but 
providing a type safe, templated interface to reduce programming errors and code 
complexity. The internals are easy to understand, and the class works well with standard 
C++ library iterators as well as C arrays, minimizing lock-in and maximizing code 
integration opportunities. Using basic C++ template programming, we can see the core 
implementation ideas in the following code snippet: 
 

  

 template <class T, int DIM> class narray { 
 T* dm_ary;  // actual array elements 
 nindex<DIM> dm_size; // the size of each of the dimensions 
  
 T get(nindex<DIM> c) const { 
   assert(c<dm_size); 
   return dm_ary[dm_size.offset(c)]; 
  } 
 }  
 

From this code snippet we can see that an narray is a template class with two compile time 
parameters: T, the element data type (int, float, etc.) and DIM, the number of dimensions. 
The actual elements are stored in a dynamically allocated C array, dm_ary. The dimension 
lengths are stored in an nindex type, a generic class at is used to store array offsets. A 
generalized accessor is provided, which uses the nindex-offset method to convert the 
dimension specific index and size of the array into an offset into the C array. This 
generalization works for any dimension size. 
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Another feature shown here is the use of C’s assert macro to check the validity of the supplied 
index. This boundary check verifies that the index is indeed valid otherwise failing and 
terminating the program while alerting the user. This check greatly helps the programmer 
during the development and testing stages of the application, and during a high 
performance/optimized build of the application, these macros are transparently removed, 
obviating any performance penalties from the final, deployed code. More user-friendly 
accessors (such as those taking an x value or an x-y value directly) are also provided. Finally, 
C++’s operator overloading facilities are used to override the bracket “[]” and parenthesis “()” 
operators to give the arrays a more succinct feel, over explicit get and set method calls. 
The nslice template class is a virtual n-dimensional array that is a reference to an narray. The 
class only contains dimension specification information and is copyable and passable as 
function parameters. Element access translates directly to element accesses in the host 
narray. An nslice must always be of the same numerical type as its host narray, but can have 
any dimensionality less than or equal to the host. This provides significant flexibility; one 
could have a one-dimensional vector slice from a matrix, cube or five-dimensional array, for 
example. Matrix slices from volumes are quite common (see Figure 1). These sub slices can 
also span any of the dimensions/axes, something not possible with simple pointer arrays 
(e.g., matrix slices from a cube array need not follow the natural memory layout order of the 
array structure). 
 

 
 

Fig. 1. An nslice reference into an narray data item. 

The narray class provides hooks for alternate memory allocation systems. One such system 
is the DirectIO mapping system. Using the memory mapping facilities of the operating 
system (typically via the mmap function on POSIX systems), a disk file may be mapped into 
memory. When this memory space is accessed, the pages of the files are loaded into memory 
transparently. Writes to the memory region will result in writes to the file. This allows files 
to be loaded in portions and on demand. The operating system will take care of 
loading/unloading the portions as needed. Files larger than the system’s memory size can 
also be loaded (the operating system will keep only the working set portion of the array in 
memory). The programmer must be aware of this and take care to keep the working set 
within the memory size of the machine. If the working set exceeds the available memory 
size, performance will suffer greatly as the operating system pages portions to and from 
disk (this excessive juggling of disk-memory mapping is called “page thrashing”). 

nslice<double,2>

narray<double,2>
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2.3 Parallel processing 

With the increasing number of processors in both the user’s desktops and in cluster server 

rooms, computationally intensive applications and algorithms should be designed in a 

parallel fashion if they are to be relevant in a future that depends on multiple-core and 

cluster computing as a means of scaling processing performance. To take advantage of the 

various processors within a single system or shared address space (SAS), developers need 

only utilize the operating system’s thread API or shared memory services. However, for 

applications that would also like to utilize the cluster resources to achieve greater scalability, 

explicit message passing is used. Although applying a SAS model to cluster computing is 

feasible, to achieve the best computational performance and scalability results, a message 

passing model is preferred (Shan et al., 2003; Dongarra & Dunigan, 1997). Scopira includes 

support for two well established message passing interfaces, MPI and PVM, as well as a 

custom, embedded, object-oriented message passing interface designed for ease of use and 

deployment. 

SAL is a parallel execution framework extension with several notable goals particularly 

useful to Scopira based applications. The API, which is completely object-oriented, includes 

functionality for: using the flow system for messaging; task movement; GUI application 

integration; multi-platform communication support; and, the registration system for task 

instantiation. SAL introduces high-performance computing to a wider audience of end users 

by permitting software developers to build standard cluster capabilities into desktop 

applications, allowing those applications to pool their own as well as cluster resources. This 

is in contrast to the goals of MPI (providing a dedicated and fast communications API 

standard for computer clusters) and PVM (providing a virtual machine architecture among 

a variety of powerful computer platforms). 

By design, SAL borrowed a variety of concepts from both MPI and PVM. SAL, like PVM, 

attempts to a build a unified and scalable “task” management system with an emphasis on 

dynamic resource management and interoperability. Users develop intercommunicating 

task objects. Tasks can be thought of as single processes or processing instances, except that 

they are implemented as language objects and not operating system processes. A SAL node 

manages one or more tasks, and teams of nodes communicate with each other to form 

computational networks (see Figure 2). The tasks are coupled with a powerful message 

passing API inspired by MPI. Unlike PVM, SAL also focuses on ease-of-use: emphasizing 

automatic configuration detection and de-emphasizing the need for infrastructure processes. 

When no cluster or network computation resources are available, SAL uses operating 
system threads to enable multi-programming within a single operating system process and 
thereby embedding a complete message passing implementation within the application 
(greatly reducing deployment complexity). Applications always have an implementation of 
SAL available, regardless of the availability or access to cluster resources. Developers may 
always use the message passing interface, and their application will work with no 
configuration changes from both single machine desktop installations to complete parallel 
compute cluster deployments. 
The mechanics and implementation of the SAL nodes and their load balancing system are 
built into the SAL library, and thereby, Scopira applications. Users do not need to install 
additional software, nor do they need to explicitly configure or set-up a parallel 
environment. This is paramount in making cluster and distributed computing accessible to 
the non-technical user, as it makes it a transparent feature in their graphical applications. 
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Fig. 2. SAL topology of tasks and nodes.  

SAL provides an object-oriented, packet based and routable (like PVM, but unlike MPI) API 
for message passing. This API provides everything needed to build multi-threaded, cluster-
aware algorithms embeddable in applications. Tasks are the core objects that developers build 
for the SAL system. A task represents a single job or instance in the SAL node system, which is 
analogous to a process in an operating system. However, they are almost never separate 
processes, but rather grouped into one or more SAL node processes that are embedded into 
the host application. This is unlike most existing parallel APIs, that allocate one operating 
system process per task concept, that, although conceptually simpler for the programmer, 
incurs more communication and start up overhead, as well as making task management more 
complex and operating system dependent. The tasks themselves are language-level objects but 
are usually assigned their own operating system threads to achieve pre-emptive concurrency. 
A context object is a task’s gateway into the SAL message passing system. There may be 
many tasks within one process, so each will have differing context interfaces – something 
not feasible with an API with a single, one-task-per-process model (as used in PVM or MPI). 
This class provides several facilities, including: task creation and monitoring; sending, 
checking and receiving messages; service registration; and group management. It is the core 
interface a developer must use to build parallel applications with SAL. 
Developers often launch a group of instances of the same task time, and then systematically 
partition the problem space for parallel processing. To support this popular paradigm of 
development, SAL’s identification system supports the concept of groups. A group is simply 
a collection of N task instances, where each instance has a groupid={0,…,N–1}. The group 
concept is analogous to MPI’s communicators (but without support for complex topology) 
and PVM’s named groups. This sequential numbering of task instances allows the developer 
to easily map problem work units to tasks. Similar to how PVM’s group facility 
supplements the task identifier concept, SAL groups build upon the UUID system, as each 
task still functionally retains their underlying UUID for identification. 
The messaging system within SAL is built upon both the generic Scopira input/output layer 
as well as the UUID identification system. SAL employs a packet-based (similar to PVM) 
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message system, where the system only sends and routes complete messages, and not the 
individual data primitives (as MPI can and routinely does) and objects within them. Only 
after the sending task completes and commits a message is it processed by the routing and 
delivery sub-systems. A node uses operating system threads to transport the data, freeing 
the user’s thread to continue to work. 
Sending (committing) the data during the send_msg object’s destruction (that is, via its 
destructor) was the result of an intentional software design decision. In C++, stack objects 
are destroyed as they exit scope. The user should therefore place a send_msg object in its own 
set of scope-braces, which would constitute a sort of “send block”. All data transmissions for 
the message would be done within that send block, and the software programmer can then 
be assured that the message will be sent at the end of the scope block without having to 
remember to do a manual send commit operation. Similarly, the receiver uses a recv_msg 
object to receive, decode and parse a message packet, all within a braced “receive block.” 
The following code listing provides an example of a task object that, via its context interface 
(the interface to the message network), is sending a variety data objects using the object-
oriented messaging API. 
 

  
 // declare my task object and its run method 
 class mytask : public agent_task_i 
  { public: virtual void int run(task_context &ctx); }; 
 int mytask::run(task_context &ctx) { 
  // send some data to the master task 
  narray<double,2> a_matrix; 
  {   // this scope (or send) block encapsulates the sent message 
  send_msg msg(ctx, 0); // prepare the message to task #0 
  
  msg.write_int(10); // send one integer 
  msg.save(a_matrix); // send a matrix – type safe 
  msg.save(user_object); // send a user object – via serialization 
  
  // at this point, msg’s destructor will be called (automatically) 
  // triggering the sending of the message 
  } 
 }  

 

SAL currently has two types of scheduling engines, a “local” engine that uses operating 
system threads on a single host machine and a “network” implementation that is able to 
utilize a network of workstations. The “local” engine is a basic multi-threaded 
implementation of the SAL API. It uses the operating system’s threads to implement 
multiprocessing within the host application process. As this engine is contained within a 
single-process, it is the fastest and easiest to use for application development and 
debugging. The programmer may fully design and test their parallel algorithm and its 
messaging logic before moving to a multi-node deployment. The local engine is always 
available and requires no configuration from the user. Developers need not write a 
dedicated non-message passing versions of their algorithms simply to satisfy users that may 
not go to the trouble of deploying a Cluster. As the local engine provides as many worker 
threads as active tasks, it relies on the operating system’s ability to manage threads within 
the processors. This works quite well when the number of tasks instantiated into the system 
is a function of the number of physical processors, as encouraged by the API. 
The network engine implements the SAL API over a collection of machines connected by an 
IP-based network; typically Ethernet. The cluster can be a dedicated computer cluster and/or a 
collection of user workstations. The engine itself provides inter-node routing and 
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management, leaving the local scheduling decisions within each node up to a local-engine 
derived manager. A SAL network stack has two layers (see Figure 3). The lower transport 
layer contains the SAL nodes themselves (objects that manage all the tasks and administration 
on a single process) and their TCP/IP based links. Tasks can send messages to each other 
using their UUIDs, ignorant of the IP layer or the connection topology of the nodes 
themselves. For simplicity and efficiency, a SAL network (like PVM) has a master node 
residing on one process. This master node is responsible for the allocation, tracking and 
migration of all the tasks in the system. The network engine uses a combination of URL-like 
direct addressing and UDP/IP broadcast based auto-discovery in building the node network. 
The simplest and most popular sequence is to start an application in auto discovery mode. 
When a network engine starts, it searches the local network for any other node peers and, if 
found, joins their network. If no peers are found, then it starts a network consisting of itself as 
the only member and assumes the master node role. Users may also key in the master’s URL 
directly, connecting them explicitly to a particular network. In addition to its critical routing 
functions, the master node is also responsible for all the task tracking and management within 
the network. By centralizing this information, load and resource allocation decisions can be 
made instantly and decisively. The master node handles all task instantiation requests. When a 
task within node requests the creation of more tasks, the request is routed by the hosting node 
to the master node. The nodes then create the actual tasks report back to the master, which in 
turn reports back to the initial node and task. 

2.4 Graphical user interface library 

This subsystem provides a basic graphical API wrapped around GTK+ and consists of 
widget and window classes that become the foundation for all GUI widgets in Scopira. More 
specialized and complex widgets, particularly useful to numerical computing and 
visualization, are also provided. This includes widgets useful for the display of matrices, 2D 
images, bar plots and line plots. Developers can use the basic GUI components provided to 
create more complex viewers for a particular application domain. 
The Scopira graphical user interface subsystem provides useful user-interface tools 
(widgets) for the construction of graphical, scientific applications. These widgets 
complement the generic widgets provided by the GTK+ widget library with additional 
widgets for the visualization and inspection of numeric array data. 
A matrix/spreadsheet like widget is able to view and edit data arrays (often, but not limited 
to matrices) of any size. This extensible widget is able to operate on Scopira narrays natively. 
The widget supports advances functionality such as bulk editing via an easy to use, stack 
based macro-language. This macro-language supports a variety of operations of setting, 
copying and filter selecting data within the array. A generic plotting widget allows the 
values of Scopira narrays to be plotted. The plotter supports a variety of plotting styles and 
criteria, and the user-interface allows for zooming, panning and other user customizations 
of the data plot. An image viewer allows fully zooming, panning and scaling of narrays, 
useful for the display of image data. The viewer supports arbitrary colour mapping, 
includes a legend display and supports a tiled view for displaying a collection of many 
images simultaneously. A simplified drawing canvas interface is included that permits 
software developers to quickly and easily build their own custom widgets. Finally, Scopira 
provides a Lab facility to rapidly prototype and implement algorithms that need casual 
graphical output. Users implement their algorithms as per usual, and a background thread 
handles the updating of the graphical subsystem and event loop. 
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Fig. 3. The SAL network stack. 

Scopira provides an architecture for logically separating models (data types) and views 
(graphical widgets that present or operate on that data) in the application. This view-model 
relationship is then registered at runtime. At runtime, Scopira pairs the compatible models 
and views for presentation to the user. A collection of utility classes for the easy registration 
of typical objects types such as data models and views are provided. This registration 
mechanism succeeds regardless of how the code was loaded; be it as part of the application, 
as a linked code library, or as an external plug-in. 
Third parties can easily extend a Scopira application that utilizes models and views 
extensively. Third party developers need only register new views on the existing data 
models in an application, then load their plug-in alongside the application to immediately 
add new functionality to the application. The open source C++ image processing and 
registration library ITK (Ibáñez & Schroeder, 2005) has been successfully integrated into 
Scopira applications at run time using the registration subsystem. 
A model is defined as an object that contains data and is able to be monitored by zero or more 
views. A view is an object that is able to bind to and listen to a model. Typically, views are 
graphical in nature, but in Scopira non-graphical views are also possible. A project is a 
specialized model that may contain a collection of models and organize them in a 
hierarchical fashion. Full graphical Scopira applications are typically project-oriented, 
allowing the user to easily work with many data models in a collective manner. A basic 
project-based application framework is provided for developers to quickly build GUI 
applications using models and views. 
A complementary subsystem provides the base OpenGL-enabled widget class that utilizes 
the GTKGLExt library (Logan, 2001). The GTKGLExt library enables GTK+ based 
applications to utilize OpenGL for 2D and 3D visualization. Scopira developers can use this 
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system to build 3D visualization views and widgets, which allows for greater data 
exploration and processing. Integration with more complete visualization packages such as 
VTK (Schroeder et al., 2006) is also possible. 

3. Agent based modelling framework 

3.1 Agent based models 

ABM simulations consists of emulating real-world systems in which collections of 
autonomous decision-making entities, distributed in a grid or lattice, interact with each 
other unveiling the dynamics of the system under investigation (Bonabeau, 2002; 
Sokolowski & Banks, 2010). This kind of simulation has emerged from the need to analyse 
and model systems that are becoming more complex in terms of their interdependencies, at 
the same time that data are becoming more organized into databases at finer levels of 
granularity. This type of modelling and simulation originated in the field of multi-agent 
systems, which derived from research in distributed artificial intelligence. The idea behind 
distributed artificial intelligence is to solve problems (or a related set of sub-problems) by 
distributing them amongst a number of relatively simple programs or agents, each with its 
own particular type of knowledge or expertise (Gilbert & Terna, 2000; Epstein, 2007). 
Additionally, ABM research draws from several related fields including computer science, 
management science, social science, system dynamics, complexity theory, complex 
networks, and traditional modelling and simulation (Macal & North, 2005; Shoham & 
Leyton-Brown, 2008). 
The first step in defining an ABM is to establish the meaning of the term “agent”. Although 
there is not one universally accepted definition, a good characterization may be given as: 
“An agent is an encapsulated computer system that is situated in some environment and that is 
capable of flexible, autonomous action in that environment in order to meet its design objectives.” 
(Wooldridge, 1997). The most fundamental feature of an agent is the capability of making 
independent decisions and relating itself with other agents and their environment. From a 
practical modelling standpoint, an agent is a discrete individual, identifiable and located; 
goal-directed and autonomous; lives in an environment; has a set of intrinsic characteristics 
(properties), decision-making capabilities, a system of rules that govern its behaviour, and 
the ability to learn and adapt based on experience (which requires some kind of internal 
memory); can interact with other agents, and respond to the environment. 
Depending on the subject under investigation, there may be different types of agents, for 
example trees, bugs, humans, viruses, bacteria, or cells. Even sub-types are possible, like 
tissue cells, immunological system cells, stem cells, or nerve cells. Considering the vast 
gamut of possible agents and situations, a system may be composed of more than one type 
of agent at the same time. For instance, assuming an infectious disease in a population of 
susceptible individuals, the variability of the species may be included considering that each 
agent may present different levels of susceptibility to the specific disease caused by 
differences in their immune system, lifestyle, prior health conditions, specific health risk 
factors, and so on. 
The uniqueness of every agent is established by its state variables, or attributes, such as an 
identity number (desirably unique and immutable so that the agent can be traced during all 
the pertinent simulations), age, gender, location, size, weight, energy reserves, political 
opinion, disease stage, etc. These attributes distinguish an entity from others of the same 
kind, trace how the agent changes over time and guide its behaviour. In addition, these state 
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variables may be saved allowing re-starting the simulation once interrupted. It is from the 
heterogeneity of agents, and consequent variety of behaviours, that the collective aspects of 
interest concerning the real-world system being modelled and simulated emerge. 
From the uniqueness and autonomous nature of the agents, it becomes quite clear that 
adopting an agent-based approach demands multiple agents in order to represent the 
decentralized perspective of the problem. Moreover, the agents must interact with one 
another and with the environment. For this purpose, the agents must be spatially located in 
some type of grid or lattice in which they can come into contact with other agents based on 
defined rules and assumptions. 
The agent lattice awareness is limited and localized. Agents are always placed in some 
position of the grid and have limited visibility of their surroundings, implying that only a 
few other agents are in the agent’s domain of influence. This is in contrast with a typical 
two-dimensional cellular automata, in which every position of the grid consists of a cell; 
each cell can assume different states that may be updated according to some rules based 
only on its immediate neighbours. In an ABM, there can be more than one agent per location 
of the lattice at the same time. The agents are not static, ensuring that they are free to move 
so their radius of interaction in the long term is not restricted to their nearest agent 
neighbours. 
In contrast to many analytical models, which are in general easier to communicate and 
analyse since they are described using precise mathematical formulas, ABM descriptions are 
frequently incomplete and therefore less accessible to the reader. In an attempt to tackle this 
pertinency problem, a group of modellers in the field of ecology (Grimm et al., 2006) 
proposed a standard protocol for describing ABMs. The “Overview, Design Concept and 
Details” protocol, or simply ODD, proposes that an ABM (and its various interaction rules) 
be described in a standardized way making model descriptions easier to understand and 
complete. Achieving this objective makes ABMs reproducible and a much more reliable 
scientific tool for investigations. 

3.2 Designing an agent based model 
Before modelling a problem using an agent-based approach, a few points must be 
considered. First, one must consider the nature of the problems that can benefit from this 
method and how the simulations can provide useful information about the scenarios being 
investigated. An ABM can provide a realistic and flexible description of a system, and it can 
capture emergent phenomena (Bonabeau, 2002; Shoham & Leyton-Brown, 2008). An 
“emergent phenomenon” can be conceptualized as a large scale, group behaviour of a 
system, which does not seem to have any clear explanation in terms of the systems 
constituent parts (Darley, 1994; Sokolowski & Banks, 2010). These phenomena may arise due 
to the nonlinear nature of the behaviour of the agents, which can be described by 
discontinuities in agent behaviour that is difficult to capture with differential equations. In 
addition, agent exhibits memory (non-markovian process), path-dependence, learning and 
adaptation. Being so, ABMs are adequate for describing real world phenomena where agent 
behaviour is complex (Ferguson, 2007). Upon concluding that an ABM is appropriate for a 
specific case, the chart in Figure 4 offers some guidelines for the development of an ABM. 
Modelling agent-based simulations requires the creation of a representation of the “sub-
world” under investigation. For this representation to be realistic and accurate, there should 
be a set of available data to support the various considerations adopted for the several 
aspects and parts included in the agent-based model. As we go through the design process 
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of an ABM for the spread of an infectious disease in an urban centre, we are going to 
illustrate what data can be used in each step. 
Considering the spread of an infectious disease in a population, data regarding the age-
gender structure of the population can be obtained and used to create the in silico 
population. However, the lack of detailed information regarding the actual event (e.g., 
estimates of epidemiological parameters for an emerging infectious disease) often poses 
significant challenges for modelling agent-based simulations. On the other hand, 
experimenting with the model under various assumptions (for instance, different 
intervention strategies) may reveal emergent phenomena that lead to a better understanding 
of the system and its behaviour. It is this circular dependency relationship that makes ABMs 
powerful and challenging at the same time. 
Although this modelling framework was built to be generic for major types of ABMs, it is 
possible that some aspects of very specific cases have not been included. Nevertheless, with 
this framework, the reader should have a starting point for designing an ABM and performing 
simulations by adding specific characteristics of the system. As with any software 
development project, the main point to be defined is the purpose of the application. In our 
example, the purpose of the model is to understand what are the key characteristics of a 
population, with its social interaction patterns, that influences the spread of an infectious 
disease and leads to epidemic scenarios. In this stage, the appropriate disease model for the 
specific disease must be chosen. Unless the disease under investigation is completely new and 
uncharted, it is possible to choose whether a simple susceptible-infectious-recovered (SIR) 
model suffices or if a more refined one, including other intermediate states, is required. It is 
important to note that the assumptions based on global community parameters influence 
some of the local individual parameters. In this example, choosing an SIR model implies that, 
in terms of the disease, the agents can be in only one of the three (susceptible, infective, or 
recovered) states. From the perspective of the local individual parameters, aspects such as 
pregnancy, aspirin treatment, and so on, can be taken into account. 
This description gives the general idea of what is going to be simulated. At this point it is 
important to know the exact questions the model is aimed to answer. This way it will be 
clearer what data resulting from the simulation should be stored for analysis. Once the 
purpose is established, we will have a clear idea of what the agents in our simulation are 
going to be. In general, simulations will involve different kinds of agents. In a typical spread 
of some virus in a population, as with the 2009 H1N1 influenza pandemic, there is only one 
type of agent involved, namely humans. These agents are either affected by the disease or 
not. When infected, they can transmit the disease to a susceptible agent if they come to a 
close contact range (the definition of close contact is all interactions that can result in 
infection). In this case, there is no need to have more than one agent since the infectious 
disease may be considered as a property of the agent. Conversely, if the interest is to 
investigate the pattern of transmission of a disease from pigs to humans, then two types of 
agents may be involved (pigs and humans). In more specific scenarios, the interest may be 
in the virus population itself. In this case, there can be sub-types of agents, i.e. virus strains, 
which are all sub-types of a broader class of a specific virus. 
Regardless of the type of agents, they will have features (state variables) that define them as 
individuals. For all agents, the modeller will need to list all the state variables including not 
only those that define their characteristics (like age, weight, and temperature), but also those 
that describe the agent’s behavioural traits, such as velocities, strategies, probabilities, 
susceptibility, etc. In addition, it is important to define how the agents interact with the 
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environment within specified time periods. Demographic data is used to create the agents so 
that the resulting in silico population follows the same distributions as the real population. 
In this sense, the state variables are defined as the primitive characteristics of the individuals 
that can be later described in terms of demographic information, such as age and gender 
profiles. Additionally, several other, non-demographic specific, variables must be defined. 
Some of these variables relate to the disease, such as symptoms duration, susceptibility, etc. 
Other kinds of variables relate to behavioural traits. Based on these variables and relevant 
information acquired from the environment and other agents, an agent can have its state 
altered and make decisions regarding its next steps. In short, the state variables are the most 
important part of the model, given that they define the agents and provide the relevant 
information for them to act in an autonomous fashion. 
Once agents are defined, the next step is to determine where they are placed, thus defining 

their environment. If the relationship between the agent and the environment is not important 

for simulation purposes, the environment should be only a place that facilitates the 

interactions between agents. In some cases, this relationship may be important, as in the case 

when the demographic distribution may play an important role in the spread of an infectious 

disease. Once the environment is defined, its scales must be determined to establish its 

dimension and the size of each dimension. Additionally, the representation of the environment 

is not restricted to an n-dimensional space but rather defined as a complex network or some 

other data structure, and may contain other properties that influence the agents’ decisions and 

behaviour. In epidemic scenarios, urban centre characteristics such as commuting distance, 

demographic density, and city boundaries, may affect the spread of the infectious disease, as 

well as agent behaviour. Being so, data regarding mobility patterns can be used to define 

lattice properties, which in turn can be used by the agents in its decisions and actions. 

The planning of the agents and environment is not complete until the processes associated 

with them are defined, which leads us to the next block in the flowchart in Figure 4. The set 

of processes are the kernel of the simulation. At this stage, it should be pointed out that all 

actions that each agent takes are in terms of updating its state, interacting with other agents, 

and interacting with the environment. Likewise, all the mechanisms for updating the 

environment should be listed. 

In terms of updating the state of an agent, several steps may be considered, such as deciding 

if the agent’s objective has been achieved, or identifying the best course of action for 

achieving the objective. As an example, considering the case of an infectious disease, it must 

be verified if the agent is infected and, if so, to decide if it is time to seek medical care. 

Performing agent-to-agent (or agent-to-environment) interactions requires communication 

between the agents (or with the environment), so that the entities involved can access each 

other’s information and choose their next action. In the case of a susceptible agent 

interacting with an infective agent, it must be determined whether the susceptible 

individual will become infected. 

Once all the associated processes are defined, a natural question that arises is the timing at 

which these actions take place. This issue is represented by the scheduling box in Figure 4. 

Here, a flowchart of the processes will be useful for determining the order that the processes 

are performed. Several processes may occur concurrently, while others may depend on 

other processes. Knowing the overall picture of the events, it is possible to identify if the 

state variables are updated synchronously or asynchronously. Moreover, the type of time-

scheme should be determined in terms of being discrete, continuous, or both. 
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Fig. 4. Development cycle for an agent-based infectious disease model. 

In the context of parallel computing, the relationship among processes will determine the 
ease with which to parallelize the code (for example, tightly coupled or spatially proximal 
relationships are more difficult to parallelize compared to loosely coupled or spatially 
distant relationships). ABMs may start with small and simple simulations. However, as the 
ABM evolves over time, it can become large and computationally complex, thus requiring 
the parallelization of the execution of the code. In this way, structuring the model before 
coding, and choosing the right tools for the task, will certainly save time in the end. 

3.3 Building an agent-based simulation 

In this section, we describe an ABM software framework for simulating the spread of a 
contagious disease in human populations. The agents in this model are a simplified 
representation of the real inhabitants of an urban centre in which an infectious pathogen 
was introduced. In this system, the three main components of simulations are: the agents, 
the lattice (or grid) in which these agents are placed, and the rules of between-agent and 
agents-environment interactions. Considering that ABM simulations rely on the interactions 
between agents that are similar in characteristics but have different behaviours, it is natural 
to choose any object oriented programming (OOP) language to run such simulations. Using 
OOP, each agent may be created as a representation of a common class of agents in which 
every software object has the same set of properties, or state variables. Assuming a different 
set of values for the properties of each agent, the uniqueness of each agent is established, 
and the variability of the species is taken into account (Grimm et al., 2006; Epstein, 2007). 
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In the context of an ABM, the unit of simulations is the agent (often referred to as an 
individual), and in the context of OOP, this unit is the object of a defined class. It is, however, 
important to note that agents and software objects are different components of the ABM. A 
software object is an appropriate way to represent agents in the sense that objects encapsulate 
both agent state (as data members) and agent behaviour (as methods), and communicate via 
message passing. But agents, on the other hand, are “rational decision making systems” that 
are able to react and behave according to the situation (Wooldridge, 1997). 
Depending on the particular problem being modelled, the agents’ properties of interest may 
vary. For an epidemic spread in a population of susceptible agents, some of the relevant 
characteristics of these agents include age, gender, susceptibility to the disease, state of the 
disease, among several other properties pertinent to the nature of disease in infectious 
agents. In such a scenario, investigating the dynamics and evolution of the contagious 
disease requires the development of a realistic model of the population with a significantly 
large number of agents (as given in pertinent demographic data) whose properties render 
the age-gender distribution of that specific location. Hence, the performance of the 
simulation framework becomes an important issue when choosing the proper tools for 
building the simulation. 
As with every software engineering project, choosing the appropriate programming 
language and libraries to build the ABM application is crucial to produce reliable, efficient, 
and adaptable software code as described in Section 1. In an ABM, the use of OOP is an 
appropriate simplifying approach for the logic of simulations and coding processes. 
Furthermore, the choice of the right model data and libraries will impact the performance 
and resource utilization, reflecting in the last instance in the running time of the simulation. 
Keeping in mind these requirements, we adopted C++ as the most suitable programming 
language for the ABM described here. In terms of performance and versatility, the C++ 
language is comparable to the C language with the addition of some OOP specializations. 
Moreover, using the Scopira framework (see Section 2) functionalities and data structures 
like smart pointers, narrays and its distributed computing tools, simplifies the software 
development of ABM applications especially with respect to code parallelization. 
Another important characteristic of ABMs is related to the stochasticity present in every part 
of the simulation. The variability among agents may arise from sampling, for example, an 
age-gender distribution, a susceptibility distribution, or distribution of infectious period. 
The state of an agent can be altered by means of interactions with other agents, where the 
outcome of these interactions depends on the value of parameters sampled from some 
prescribed distribution. As a result, the random number generators must be chosen 
carefully. For the generation of random numbers, a good choice of numerical library is the 
GNU Scientific Library, which has been widely adopted in scientific and engineering 
applications and which has the additional advantage of being open source, thread safe, well 
tested, and portable (Gough, 2009). 

3.4 Simulation framework design 

Agents are modelled as objects of a class named Agents in which the member variables 
represent the characteristics of the agents, such as age, gender, susceptibility to the disease, 
and state of the disease. The methods of this class are simple manipulators that change the 
values of these member variables. In this way, every agent represents a person with the 
same basic characteristics that may assume different values. Using age-gender distributions 
for a specific population, variability in age and gender is introduced. In an epidemic disease 
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scenario, an agent may assume different states regarding its epidemiological status, which 
may be one of the following: susceptible, exposed (but not yet infectious), infectious and 
recovered (immune against re-infection). Since the number of agents in a simulation may 
range from a few thousands to millions, it is important to save memory whenever possible. 
Considering that these states of infectious may assume only two values (true or false), stating 
whether the agent is in the specific state or not, the best way to store this information is to 
use one unsigned int as a bit set (or alternatively to use the bitset class from the C++ standard 
library), in which every bit represents one of the possible states. Furthermore, the state of 
the agent may be assessed by using bitwise operations testing only the specific bits of 
interest, saving in this way, a few processor operations per agent per cycle. 
Similar to a real world scenario, agents, in general, live in a city (or community) in which 
they must be located somewhere and are free to move to different locations. Therefore, the 
city is modelled as another class, named Lattice, in which a 2-dimensional n-array is used to 
represent the city map and is a container to hold agents. The simplest way to build ABM 
simulations is to consider only one agent per site that interacts with its adjacent neighbours, 
as in a cellular automaton, or even with distant neighbours, but carrying these interactions 
without moving from its position. Another approach, which is used in the model presented 
here, is to consider several free-to-move agents at the same position. This model tries to 
mimic the behaviour of people in a city, where it is possible for people to interact with 
others in the same location, as would be the case in a house, office, or a shopping mall. 
Considering that several agents may be in the same x-y position of the city grid at the same 
time, and that these agents may move through the map, every site in the lattice holds a 
standard vector of Scopira’s smart pointers to agents, that is, the lattice is a two-dimensional n-
array of standard vectors of pointers to agents as shown in the left panel in Figure 5. Based on 
this scheme, moving an agent from one location to another is done by assigning a pointer to 
the agent being moved to the vector at the destination location, and then removing the pointer 
to this agent from the vector at the initial position, as shown in the right panel in Figure 5. 
Using this smart pointer strategy, there would be no additional overhead of moving or 
copying the agent’s data into memory. Another advantage with smart pointers is that there 
is no need to manually free the memory at the end of the application, since it is refreshed as 
soon as the smart pointer goes out of the scope. Furthermore, it is possible to test if the 
software object is alive, which dramatically reduces the number of segmentation faults 
during the software development phase due to access attempts to memory pages that have 
already been released. Additionally, by using scope as a way to control the life cycle of the 
software objects, the resulting application is better structured, robust and extensible.  
 
 

 
 

Fig. 5. Representation of agent movements in the lattice. 
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The methods of the Lattice class are used to control the access to the map locations and to the 
agents located in each position. Using, for example, the map of a city in which its 
boundaries and demographic distribution is specified, the lattice representation will define 
all the sites (that is, x-y positions) according to the city boundaries, and the number of agents 
allowed in each site according to the demographic density. In this approach, the agents are 
placed in the lattice but they may not be directly related. The agent-to-agent and agent-to-
lattice relationships are stored in another class called Simulation. In this class, a smart pointer 
to the lattice is used, and the rules concerning the movement of the agents in the lattice and 
interaction between agents are considered as methods of this class. Furthermore, this class is 
responsible for updating counters that keep track of the number of agents in each state in 
the simulation, and for writing reports to files on the computer system’s hard disk drive. For 
these two tasks, the Counters and Reports classes are generated. 
Since the simulation has been built to be able to use more than one processor using threaded 
programming, Counters and Reports classes need to be built in order to be thread safe, thereby 
supporting concurrency. When working with multiple threads, it is possible that different 
threads will try to access the same memory area simultaneously; for example, to increment the 
value of the same variable at the same time; this may cause unpredictable results. One way to 
avoid data inconsistencies is to use mutual exclusion locks, or mutexes. Before a thread 
operates with a variable, it must acquire the lock on this variable in order to prevent other 
threads from operating on the same variable at the same time. This ensures serialization of 
access to the specific data area. After the thread has performed the desired operations, it needs 
to unlock this variable for other threads to access it. Determining what resources should be 
locked and unlocked, and in what order, are fundamental considerations when parallel 
programming. Moreover, a strategy must be adopted for interacting with these shared 
resources in order to minimize the number of simultaneous accesses to the same shared area. 
Otherwise, it will slow down the simulation considering that when a thread is waiting to 
acquire the lock, it stops its other operations. Although it is possible to tackle this situation in 
different ways, it makes the problem more complex and might introduce other unnecessary 
synchronization issues. 
The Counters and Reports classes both perform actions on areas of common access by threads. 
The member variables of the Counters class, keep track of several aspects of the simulation, like 
the current time step in which the simulation is run, the total number of susceptible agents, 
and the number of infectious agents. Scopira provides several methods for parallel 
programming in SAL that simplifies this process. In the case of protecting certain data areas 
like variables, it defines a shared_area class to which is associated a mutex that can be later 
accessed by objects of the lock_ptr class. Auxiliary to the Counters class, it defines a data 
structure called SimulationCounters that holds all the counter variables that may be accessed by 
more than one thread at the same time. In the Counters class, an instance of the shared_area class 
associated with the SimulationCounters data structure is created. The methods of the Counters 
class, when manipulating these variables, call them through an object of the lock_ptr class 
associated with the object of the shared area. When the lock pointer is created, it automatically 
locks the shared area with which it is associated, and when it moves out of scope, it is 
automatically destroyed, thereby unlocking the associated shared area. Likewise, when the 
method is called, it creates the lock pointer and acquires the lock, then the desired operations 
are performed, and at the end of execution of the method, the lock pointer is destroyed 
automatically, hence unlocking the shared area. With this method, the programmer does not 
need to manually lock and unlock the variables, but rather needs to define the lock pointer 
inside the scope targeted for manipulation of the shared area. 
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Following the same idea, the Reports class is used to write information about the simulation 
into files. If two threads try to access the same file at the same time, the message may 
become garbled, and therefore mutexes must be used. For this purpose, Scopira provides the 
fileflow class that in turn provides methods for manipulating files and also includes mutexes. 
An object instance of the Reports class is associated with each file. It is basically responsible 
for opening and closing files, and overloads the stream insertion operator “<<”. In this way, 
every time the insertion operator is called on a Reports object, it calls the fileflow::write_lock() 
method, passes the message to the fileflow object, and then unlocks it through the 
fileflow::unlock() method. 
Figure 6 shows a diagram of the simulation environment with its several components. In 
this representation, the Simulation class aggregates Lattice, Reports, and Counters classes. 
These three classes are included in the Simulation class via smart pointers to the appropriate 
objects of each class. Since the Lattice class contains smart pointers to all the agents in the 
simulation that can be accessed through the Lattice object, the rules concerning the agent-to-
agent and agent-to-lattice interactions are methods of the Simulation class. 
 

 

Fig. 6. Simulation environment showing the interaction of two threads. 

For the agent-based simulation infrastructure proposed here, we now present the 
mechanisms for parallelizing the simulations. The parallelism strategy adopted in this 
example was to divide the lattice into chunks and assign them to different processing 
threads. To balance the amount of work performed by each thread, the narray that 
represents the lattice was divided into an approximately equal number of active sites, which 
correspond to the defined locations in the city map. Agents are allowed to move between 
sites in the map but the location of the destination site may be out of the scope of control for 
the actual processing thread. As a result, it is necessary for all threads to be equipped with a 
shared area to which other threads can send the moving agents (see Figure 6). The Threads 
class inherits the basic functionality of the scopira::thread class, which provides the 
mechanisms for creating the parallel environment and controlling all aspects of the threads 
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independent of the operational system. As a result, only a few methods concerning the 
particular problem being investigated and a shared area for exchanging agents between 
threads need to be implemented in the Threads class. The most important method, from the 
simulation point of view, is the Threads::run() method, which is an overload of the Scopira’s 
thread::run() method, where the actual simulation takes places. The pseudo-code for this 
method is given below. 
 

 Threads::run() { 
  CheckSharedArea() 
   
  foreach site: 
   simulation.InteractAgentsToAgents( site ) 
   simulation.InteractAgentsWithLattice( site ) 
   simulation.MoveAgents( site ) 
    
  CheckSharedArea() 
  }  
 

In this case, every thread iterates over all the sites under its control, and performs the tasks 
required by the simulation. In a simple case, it will perform the agent-to-agent and agent-to-
lattice interactions, and move the agents if necessary. The latter step of moving agents is the 
most critical task in terms of distributed programming, as it involves other threads and 
synchronization issues. 
As mentioned before, an agent may move to a location out of the scope of control for its 
current assigned thread. For this reason, the controlling thread must verify if the agent is 
moving out of its domains and send it to the shared area of the responsible thread. 
Consequently, additional steps in the run() method are required, including verification of its 
own shared area, which is performed by the CheckSharedArea() method, and attribution of 
the moving agent to its new location, performed by the MoveAgents() method. At this point, 
synchronization issues emerge requiring strict control over the time step of the agents. 
Although threads share the same address space, they are not aware of other threads and 
should be controlled from a central location, namely the parent process. The Workspace class 
is responsible for creating, control, destroying, and keeping track of the threads and their 
domains, as well as facilitating their communication. In order to perform these activities, 
each thread must have a reference to the instance of the Workspace that can be used as a 
mediator between all active threads. 

4. Concluding remarks and outlook 

The current spectacular interest in agent-based modelling has gradually built up over the 
last twenty years, in particular for understanding the social aspects of human populations 
and simulating the spread of infectious diseases within and between communities. The use 
of agent-based models, in general, requires a more comprehensive incorporation of agents’ 
characteristics both individually and group-wise, detailed information of the pertinent 
environment and the relationship between the system’s various components. Despite the 
rapid evolution of ABM-based software applications and development of more 
sophisticated simulation approaches, the study of ABMs of any kind lacks a comprehensive 
and flexible software development framework. While some efforts have been made on 
developing such simulation models more consistent with the nature of the systems under 
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investigation, and on designing computer software algorithms for their rapid 
implementation, the literature on general theoretical aspects of agent-based models is, as 
yet, quite small. 
In this chapter, we reported our attempts in developing a software simulation framework 
for agent-based infectious disease modelling. Models implemented using this development 
framework will satisfy the software objectives of reliability, efficiency, and adaptability as 
fully described in Section 1. This framework has already been used to implement an agent-
based model to evaluate mitigation strategies applied during the 2009 influenza pandemic 
in urban centres. An important aspect of this development framework is its flexibility to be 
adopted for simulating interconnected populations with distinctly different mobility 
patterns and demographic structures. Strategies for implementing this framework to 
simulate the spread of a disease in remote and isolated populations are being currently 
investigated. 
The agent-based modelling framework described has several advantages that go beyond 
computer simulation experiments, providing a platform for addressing important aspects of 
modern world with global connectivity. We plan to use this framework to develop desktop 
decision-support systems for use in public health to address critical issues arising in the 
acute management of public health crises. Incorporating agent-based models into these 
software systems can provide an essential tool for public health experts to perform 
preliminary analysis, which can inform the formulation of optimal mitigation strategies in 
the face of substantial uncertainty regarding epidemiological aspects of a novel disease. 
Such decision support systems will require rapid development and deployment, an intuitive 
graphical user interface, and must quickly produce scenario outcomes. Such requirements 
can be satisfied using the framework presented here. 
In the context of software design and engineering, future research activities will include the 
development of fault-tolerant distributed agent-based modelling systems as well as a 
comprehensive model description markup language to generate efficient software. The end 
results of these activities must satisfy the requirements of both modellers and public health 
officials in simulating the outcomes of infectious disease transmission, as well as prevention 
and control strategies. 
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