
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

33

A Software Development Framework for
Agent-Based Infectious Disease Modelling

Luiz C. Mostaço-Guidolin1,2, Nick J. Pizzi2,3,
Aleksander B. Demko2,3 and Seyed M. Moghadas1,2

1Department of Mathematics and Statistics, University of Winnipeg,
2Institute for Biodiagnostics, National Research Council Canada,

3Department of Computer Science, University of Manitoba,
Canada

1. Introduction

From the Black Death of 1347–1350 (Murray, 2007) and the Spanish influenza pandemic of
1918–1919 (Taubenberger & Morens, 2006), to the more recent 2003 SARS outbreak
(Lingappa et al., 2004) and the 2009 influenza pandemic (Moghadas et al., 2009), as well as
countless outbreaks of childhood infections, infectious diseases have been the bane of
humanity throughout its existence causing significant morbidity, mortality, and
socioeconomic upheaval. Advanced modelling technologies, which incorporate the most
current knowledge of virology, immunology, epidemiology, vaccines, antiviral drugs, and
public health, have recently come to the fore in identifying effective disease mitigation
strategies, and are being increasingly used by public health experts in the study of both
epidemiology and pathogenesis. Tracing its historical roots from the pioneering work of
Daniel Bernoulli on smallpox (Bernoulli, 1760) to the classical compartmental approach of
Kermack and McKendrick (Kermack & McKendrick, 1927), modelling has evolved to deal
with data that is more heterogeneous, less coarse (based at a community or individual
level), and more complex (joint spatial, temporal and behavioural interactions). This
evolution is typified by the agent-based model (ABM) paradigm, lattice-distributed
collections of autonomous decision-making entities (agents), the interactions of which unveil
the dynamics and emergent properties of the infectious disease outbreak under
investigation. The flexibility of ABMs permits an effective representation of the
complementary interactions between individuals characterized by localized properties and
populations at a global level.
However, with flexibility comes complexity; hence, the software implementation of an ABM
demands more stringent software design requirements than conventional (and simpler)
models of the spread and control of infectious diseases, especially with respect to outcome
reproducibility, error detection and system management. Outcome reproducibility is a
challenge because emergent properties are not analytically tractable, which is further
exacerbated by subtle and difficult to detect errors in algorithm logic and software design.
System management of software simulating populations/individuals and biological
/physical interactions is a serious challenge, as the implementation will involve distributed
(parallelized), non-linear, complex, and multiple processes operating in concert. Given these

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

642

issues, it is clear that any implementation of an ABM must satisfy three objectives:
reliability, efficiency, and adaptability. Reliability entails robustness, reproducibility, and
validity of generated results with given initial conditions. Efficiency is essential for running
numerous experiments (simulations) in a timely fashion. Adaptability is also a necessary
requirement in order to adjust an ABM system as changes to fundamental knowledge occur.
Past software engineering experience (Pizzi & Pedrycz, 2008; Pizzi, 2008) and recent
literature (Grimm & Railsback, 2005; Ormerod & Rosewell, 2009; Railsback et al., 2006;
Ropella et al., 2002) suggest several guidelines to which ABM development should adhere.
These include:
i. Spiral methodology. ABM software systems require rapid development, with continual

changes to user requirements and incremental improvements to a series of testable
prototypes. This demands a spiral methodology for software development, beginning
with an initial prototype and ending with a mature ABM software release, via an
incremental and iterative succession of refined requirements, design, implementation,
and validation phases.

ii. Activity streams. Three parallel and complementary activity streams (conceptual,
algorithmic, and integration) will be required during the entire software development
life cycle. High-level analytical ABM concepts drive the creation of functionally relevant
algorithms, which are implemented and tested, and, if validated, integrated into the
existing code base. Normally considered a top-down approach, in a spiral
methodology, bottom-up considerations are also relevant. For instance, the choice from
a set of competing conceptual representations for an ABM model may be made based
on an analysis of the underlying algorithms or the performance of the respective
implementations.

iii. Version control. With a spiral development methodology, an industry standard version
control strategy must be in place to carefully audit changes made to the software
(including changes in relation to rationales, architects, and dates).

iv. Code review. As code is integrated into the ABM system, critical software reviews should
be conducted on a regular basis to ensure that the software implementation correctly
captures the functionality and intent of the over-arching ABM.

v. Validation. A strategy must be established to routinely and frequently test the software
system for logic and design errors. For instance, the behaviour of the simulation model
could be verified by comparing its output with known analytical results for large-scale
networks. Software validation must be relevant and pervasive across guidelines (i)–(iv).

vi. Standardized software development tools. Mathematical programming environments such
as Matlab® (Sigmon & Davis, 2010), Mathematica® (Wolfram, 1999), and Maple®

(Geddes et al., 2008) are excellent development tools for rapidly building ABM
prototypes. However, performance issues arise as prototypes grow in size and
complexity to become software systems. A development framework needs to provide a
convenient bridge from these prototyping tools to mature efficient ABM systems.

vii. System determinism. In a parallel or distributed environment, outcome reproducibility is
difficult to achieve with systems comprising stochastic components. Nevertheless,
system determinism is a requirement even if executed on a different computer cluster.

viii. System profiling. It is important to observe and assess the performance of parts of the
system as it is running. For instance, which components are executed often; what are
their execution times; are processing loads balanced across nodes in a computer
cluster?

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

643

In order to adhere to these guidelines and satisfy the objectives described above, we
designed a software development framework for ABMs of infectious diseases. The next
section of this chapter describes Scopira, a general application development library designed
by our research group to be a highly extensible application programming interface with a
wholly embedded transport layer that is fully scalable from single machines to site-wide
distributed clusters. This library was used to implement the agent-based modelling
framework, details of which are provided in the subsequent section. We conclude with a
section describing future research activities.

2. Scopira

In the broad domain of biomedical data analysis applications, preliminary prototype
software solutions are usually developed using an interpreted programming language or
environment (e.g., Matlab®). When performance becomes an issue, some components of the
prototype are subsequently ported to a compiled language (e.g., C) and integrated into the
remaining interpreted components. Unfortunately, this process can introduce logic and
design errors and the functionality of resultant hybrid system can often be difficult to extend
or adapt. Further, it also becomes difficult to take advantage of features such as memory
management, object orientation, and generics, which are all essential requirements for
building large scale, robust applications. To address these concerns, we developed Scopira
(Demko & Pizzi, 2009), an open source C++ framework suitable for biomedical data analysis
applications such as ABMs for infectious diseases. Scopira provides high performance end-
to-end application development features, in the form of an extensible C++ library. This
library provides general programming utilities, numerical matrices and algorithms,
parallelization facilities, and graphical user interface elements.
Our motivation behind the design of Scopira was to satisfy the needs of three categories of
users within the biomedical research community: software architects; scientists
/mathematicians; and data analysts. With the design and implementation of new software,
architects typically need to incorporate legacy systems often written in interpreted
languages. Coupled with the facts that end-user requirements in a research environment
often change (sometimes radically) and that biomedical data is becoming ever more
complex and voluminous, a software development framework must be versatile, extensible,
and exploit distributed, generic, and object oriented programming paradigms. For scientists
or mathematicians, data analysis tools must be intuitive with responsive interfaces that
operate both effectively and efficiently. Finally, the data analyst has requirements straddling
those from the other user categories. With an intermediate level of programming
competence, they require a relatively intuitive development environment that can hide some
of the low level programming details, while at the same time allowing them to easily set up
and conduct numerical experiments that involve parameter tuning and high-level
looping/decision constructs. As a result of this motivation, the emphasis with Scopira has
been on high performance, open source development and the ability to easily integrate other
C/C++ libraries used in the biomedical data analysis field by providing a common object-
oriented application programming interface (API) for applications. This library provides a
large breadth of services that fall into the following four component categories.
Scopira Tools provide extensive programming utilities and idioms useful to all application
types. This category contains a reference counted memory management system,
flexible/redirectable flow input/output system, which supports files, file memory mapping,

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

644

network communication, object serialization and persistence, universally unique identifiers
(UUIDs) and XML parsing and processing.
The Numerical Functions all build upon the core n-dimensional narray concept (see below).
C++ generic programming is used to build custom, high-performance arrays of any data
type and dimension. General mathematical functions build upon the narray. A large suite of
biomedical data analysis and pattern recognition functions is also available to the developer.
Multiple APIs for Parallel Processing are provided with the object-oriented framework,
Scopira Agents Library (SAL)‡, which allows algorithms to scale with available processor and
cluster resources. Scopira provides easy integration with native operating system threads as
well as the Message Passing Interface (MPI) (Snir & Gropp, 1998) and Parallel Virtual
Machine (PVM) (Geist et al., 1994) libraries. Further, this library may be embedded into
desktop applications allowing them to use computational clusters automatically, when
detected. Unlike other parallel programming interfaces such as MPI and PVM, Scopira’s
facilities provide an object-oriented strategy with support for common parallel
programming patterns and approaches.
Finally, a Graphical User Interface (GUI) Library based on GTK+ (Krause, 2007) is provided.
This library provides a collection of useful widgets including a scalable numeric matrix
editor, plotters, image and viewers as well as a plug-in platform and a 3D canvas based on
OpenGL® (Hill & Kelley, 2006). Scopira also provides integration classes with the popular Qt
GUI Library (Summerfield, 2010).

2.1 Programming utilities

Intrusive reference counting (recording an object’s reference count within the object itself)
provides the basis for memory management within Scopira-based applications. Unlike
many referencing counting systems (such as those in VTK (Kitware, 2010) and GTK+),
Scopira’s system uses a decisively symmetric concept. References are only added through
the add_ref and sub_ref calls — specifically, the object itself is created with a reference count
of zero. This greatly simplifies the implementation of smart pointers and easily allows stack
allocated use (by passing the reference count), unlike VTK and GTK+ where objects are
created with a reference count and a modified reference count, respectively. Scopira
implements a template class count_ptr that emulates standard pointer semantics while
providing implicit reference counting on any target object. With smart pointers, reference
management becomes considerably easier and safe, a significant improvement over C’s
manual memory management.
Scopira provides a flexible, polymorphic and layered input/output system. Flow objects
may be linked dynamically to form I/O streams. Scopira includes end flow objects, which
terminate or initiate a data flow for standard files, network sockets and memory buffers.
Transform flow objects perform data translation from one form to another (e.g., binary-to-
hex), buffer consolidation and ASCII encoding. Serialization flow objects provide an interface
for objects to encode their data into a persistent stream. Through this interface, large
complex objects can quickly and easily encode themselves to disk or over a network. Upon
reconstruction, the serialization system re-instantiates objects from type information stored
in the stream. Shared objects — objects that have multiple references — are serialized just
once and properly linked to multiple references.

‡ The term “agent” used in this context refers to the software concept rather than the modelling concept.
To avoid confusion, we will use the term “SAL node” to refer to the software concept.

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

645

A platform independent configuration system is supplied via a central parsing class, which
accepts input from a variety of sources (e.g., configuration files and command line
parameters) and present them to the programmer in one consistent interface. The
programmer may also store settings and other options via this interface, as well as build
GUIs to aid in their manipulation by the end user. Using a combination of the serialization
type registration system and C++’s native RTTI functions, Scopira is able to dynamically (at
runtime) allow for the registration and inspection of object types and their class hierarchy
relationships. From this, an application plug-in system can be built by allowing external
dynamic link libraries to register their own types as being compatible with an application,
providing a platform for third party application extensions.

2.2 N-dimensional data arrays

The C and C++ languages provide the most basic support for one-dimensional arrays, which
are closely related to C’s pointers. Although usable for numerical computing, they do not
provide the additional functionality that scientists and mathematicians demand such as easy
memory management, mathematical operations, or fundamental features such as storing
their own dimensions. Multiple dimensional arrays are even less used in C as they require
compile-time dimension specifications, drastically limiting their flexibility. The C++
language, rather than design a new numeric array type, provides all the necessary language
features for developing such an array in a library. Generic programming (via C++ templates,
that allow code to be used for any data types at compile time), operator overloading (e.g.,
being able to redefine the addition “+” or assignment “=” operators) and inlining (for
performance) provide all the tools necessary to build a high performance, usable array class.
Rather than force the developer to add another dependent library for an array class, Scopira
provides n-dimensional arrays through its narray class. This class takes a straightforward
approach, implementing n-dimensional arrays, as any C programmer would have, but
providing a type safe, templated interface to reduce programming errors and code
complexity. The internals are easy to understand, and the class works well with standard
C++ library iterators as well as C arrays, minimizing lock-in and maximizing code
integration opportunities. Using basic C++ template programming, we can see the core
implementation ideas in the following code snippet:

 template <class T, int DIM> class narray {
 T* dm_ary; // actual array elements
 nindex<DIM> dm_size; // the size of each of the dimensions

 T get(nindex<DIM> c) const {
 assert(c<dm_size);
 return dm_ary[dm_size.offset(c)];
 }
 }

From this code snippet we can see that an narray is a template class with two compile time
parameters: T, the element data type (int, float, etc.) and DIM, the number of dimensions.
The actual elements are stored in a dynamically allocated C array, dm_ary. The dimension
lengths are stored in an nindex type, a generic class at is used to store array offsets. A
generalized accessor is provided, which uses the nindex-offset method to convert the
dimension specific index and size of the array into an offset into the C array. This
generalization works for any dimension size.

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

646

Another feature shown here is the use of C’s assert macro to check the validity of the supplied
index. This boundary check verifies that the index is indeed valid otherwise failing and
terminating the program while alerting the user. This check greatly helps the programmer
during the development and testing stages of the application, and during a high
performance/optimized build of the application, these macros are transparently removed,
obviating any performance penalties from the final, deployed code. More user-friendly
accessors (such as those taking an x value or an x-y value directly) are also provided. Finally,
C++’s operator overloading facilities are used to override the bracket “[]” and parenthesis “()”
operators to give the arrays a more succinct feel, over explicit get and set method calls.
The nslice template class is a virtual n-dimensional array that is a reference to an narray. The
class only contains dimension specification information and is copyable and passable as
function parameters. Element access translates directly to element accesses in the host
narray. An nslice must always be of the same numerical type as its host narray, but can have
any dimensionality less than or equal to the host. This provides significant flexibility; one
could have a one-dimensional vector slice from a matrix, cube or five-dimensional array, for
example. Matrix slices from volumes are quite common (see Figure 1). These sub slices can
also span any of the dimensions/axes, something not possible with simple pointer arrays
(e.g., matrix slices from a cube array need not follow the natural memory layout order of the
array structure).

Fig. 1. An nslice reference into an narray data item.

The narray class provides hooks for alternate memory allocation systems. One such system
is the DirectIO mapping system. Using the memory mapping facilities of the operating
system (typically via the mmap function on POSIX systems), a disk file may be mapped into
memory. When this memory space is accessed, the pages of the files are loaded into memory
transparently. Writes to the memory region will result in writes to the file. This allows files
to be loaded in portions and on demand. The operating system will take care of
loading/unloading the portions as needed. Files larger than the system’s memory size can
also be loaded (the operating system will keep only the working set portion of the array in
memory). The programmer must be aware of this and take care to keep the working set
within the memory size of the machine. If the working set exceeds the available memory
size, performance will suffer greatly as the operating system pages portions to and from
disk (this excessive juggling of disk-memory mapping is called “page thrashing”).

nslice<double,2>

narray<double,2>

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

647

2.3 Parallel processing

With the increasing number of processors in both the user’s desktops and in cluster server

rooms, computationally intensive applications and algorithms should be designed in a

parallel fashion if they are to be relevant in a future that depends on multiple-core and

cluster computing as a means of scaling processing performance. To take advantage of the

various processors within a single system or shared address space (SAS), developers need

only utilize the operating system’s thread API or shared memory services. However, for

applications that would also like to utilize the cluster resources to achieve greater scalability,

explicit message passing is used. Although applying a SAS model to cluster computing is

feasible, to achieve the best computational performance and scalability results, a message

passing model is preferred (Shan et al., 2003; Dongarra & Dunigan, 1997). Scopira includes

support for two well established message passing interfaces, MPI and PVM, as well as a

custom, embedded, object-oriented message passing interface designed for ease of use and

deployment.

SAL is a parallel execution framework extension with several notable goals particularly

useful to Scopira based applications. The API, which is completely object-oriented, includes

functionality for: using the flow system for messaging; task movement; GUI application

integration; multi-platform communication support; and, the registration system for task

instantiation. SAL introduces high-performance computing to a wider audience of end users

by permitting software developers to build standard cluster capabilities into desktop

applications, allowing those applications to pool their own as well as cluster resources. This

is in contrast to the goals of MPI (providing a dedicated and fast communications API

standard for computer clusters) and PVM (providing a virtual machine architecture among

a variety of powerful computer platforms).

By design, SAL borrowed a variety of concepts from both MPI and PVM. SAL, like PVM,

attempts to a build a unified and scalable “task” management system with an emphasis on

dynamic resource management and interoperability. Users develop intercommunicating

task objects. Tasks can be thought of as single processes or processing instances, except that

they are implemented as language objects and not operating system processes. A SAL node

manages one or more tasks, and teams of nodes communicate with each other to form

computational networks (see Figure 2). The tasks are coupled with a powerful message

passing API inspired by MPI. Unlike PVM, SAL also focuses on ease-of-use: emphasizing

automatic configuration detection and de-emphasizing the need for infrastructure processes.

When no cluster or network computation resources are available, SAL uses operating
system threads to enable multi-programming within a single operating system process and
thereby embedding a complete message passing implementation within the application
(greatly reducing deployment complexity). Applications always have an implementation of
SAL available, regardless of the availability or access to cluster resources. Developers may
always use the message passing interface, and their application will work with no
configuration changes from both single machine desktop installations to complete parallel
compute cluster deployments.
The mechanics and implementation of the SAL nodes and their load balancing system are
built into the SAL library, and thereby, Scopira applications. Users do not need to install
additional software, nor do they need to explicitly configure or set-up a parallel
environment. This is paramount in making cluster and distributed computing accessible to
the non-technical user, as it makes it a transparent feature in their graphical applications.

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

648

Fig. 2. SAL topology of tasks and nodes.

SAL provides an object-oriented, packet based and routable (like PVM, but unlike MPI) API
for message passing. This API provides everything needed to build multi-threaded, cluster-
aware algorithms embeddable in applications. Tasks are the core objects that developers build
for the SAL system. A task represents a single job or instance in the SAL node system, which is
analogous to a process in an operating system. However, they are almost never separate
processes, but rather grouped into one or more SAL node processes that are embedded into
the host application. This is unlike most existing parallel APIs, that allocate one operating
system process per task concept, that, although conceptually simpler for the programmer,
incurs more communication and start up overhead, as well as making task management more
complex and operating system dependent. The tasks themselves are language-level objects but
are usually assigned their own operating system threads to achieve pre-emptive concurrency.
A context object is a task’s gateway into the SAL message passing system. There may be
many tasks within one process, so each will have differing context interfaces – something
not feasible with an API with a single, one-task-per-process model (as used in PVM or MPI).
This class provides several facilities, including: task creation and monitoring; sending,
checking and receiving messages; service registration; and group management. It is the core
interface a developer must use to build parallel applications with SAL.
Developers often launch a group of instances of the same task time, and then systematically
partition the problem space for parallel processing. To support this popular paradigm of
development, SAL’s identification system supports the concept of groups. A group is simply
a collection of N task instances, where each instance has a groupid={0,…,N–1}. The group
concept is analogous to MPI’s communicators (but without support for complex topology)
and PVM’s named groups. This sequential numbering of task instances allows the developer
to easily map problem work units to tasks. Similar to how PVM’s group facility
supplements the task identifier concept, SAL groups build upon the UUID system, as each
task still functionally retains their underlying UUID for identification.
The messaging system within SAL is built upon both the generic Scopira input/output layer
as well as the UUID identification system. SAL employs a packet-based (similar to PVM)

Remote Node Instance

Task

Task

Remote Node Instance

Task

Task

Embedded Node Instance

Task

Task

Task

Task

User Application
Front-End

GUI
Plug-Ins

…

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

649

message system, where the system only sends and routes complete messages, and not the
individual data primitives (as MPI can and routinely does) and objects within them. Only
after the sending task completes and commits a message is it processed by the routing and
delivery sub-systems. A node uses operating system threads to transport the data, freeing
the user’s thread to continue to work.
Sending (committing) the data during the send_msg object’s destruction (that is, via its
destructor) was the result of an intentional software design decision. In C++, stack objects
are destroyed as they exit scope. The user should therefore place a send_msg object in its own
set of scope-braces, which would constitute a sort of “send block”. All data transmissions for
the message would be done within that send block, and the software programmer can then
be assured that the message will be sent at the end of the scope block without having to
remember to do a manual send commit operation. Similarly, the receiver uses a recv_msg
object to receive, decode and parse a message packet, all within a braced “receive block.”
The following code listing provides an example of a task object that, via its context interface
(the interface to the message network), is sending a variety data objects using the object-
oriented messaging API.

 // declare my task object and its run method
 class mytask : public agent_task_i
 { public: virtual void int run(task_context &ctx); };
 int mytask::run(task_context &ctx) {
 // send some data to the master task
 narray<double,2> a_matrix;
 { // this scope (or send) block encapsulates the sent message
 send_msg msg(ctx, 0); // prepare the message to task #0

 msg.write_int(10); // send one integer
 msg.save(a_matrix); // send a matrix – type safe
 msg.save(user_object); // send a user object – via serialization

 // at this point, msg’s destructor will be called (automatically)
 // triggering the sending of the message
 }
 }

SAL currently has two types of scheduling engines, a “local” engine that uses operating
system threads on a single host machine and a “network” implementation that is able to
utilize a network of workstations. The “local” engine is a basic multi-threaded
implementation of the SAL API. It uses the operating system’s threads to implement
multiprocessing within the host application process. As this engine is contained within a
single-process, it is the fastest and easiest to use for application development and
debugging. The programmer may fully design and test their parallel algorithm and its
messaging logic before moving to a multi-node deployment. The local engine is always
available and requires no configuration from the user. Developers need not write a
dedicated non-message passing versions of their algorithms simply to satisfy users that may
not go to the trouble of deploying a Cluster. As the local engine provides as many worker
threads as active tasks, it relies on the operating system’s ability to manage threads within
the processors. This works quite well when the number of tasks instantiated into the system
is a function of the number of physical processors, as encouraged by the API.
The network engine implements the SAL API over a collection of machines connected by an
IP-based network; typically Ethernet. The cluster can be a dedicated computer cluster and/or a
collection of user workstations. The engine itself provides inter-node routing and

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

650

management, leaving the local scheduling decisions within each node up to a local-engine
derived manager. A SAL network stack has two layers (see Figure 3). The lower transport
layer contains the SAL nodes themselves (objects that manage all the tasks and administration
on a single process) and their TCP/IP based links. Tasks can send messages to each other
using their UUIDs, ignorant of the IP layer or the connection topology of the nodes
themselves. For simplicity and efficiency, a SAL network (like PVM) has a master node
residing on one process. This master node is responsible for the allocation, tracking and
migration of all the tasks in the system. The network engine uses a combination of URL-like
direct addressing and UDP/IP broadcast based auto-discovery in building the node network.
The simplest and most popular sequence is to start an application in auto discovery mode.
When a network engine starts, it searches the local network for any other node peers and, if
found, joins their network. If no peers are found, then it starts a network consisting of itself as
the only member and assumes the master node role. Users may also key in the master’s URL
directly, connecting them explicitly to a particular network. In addition to its critical routing
functions, the master node is also responsible for all the task tracking and management within
the network. By centralizing this information, load and resource allocation decisions can be
made instantly and decisively. The master node handles all task instantiation requests. When a
task within node requests the creation of more tasks, the request is routed by the hosting node
to the master node. The nodes then create the actual tasks report back to the master, which in
turn reports back to the initial node and task.

2.4 Graphical user interface library

This subsystem provides a basic graphical API wrapped around GTK+ and consists of
widget and window classes that become the foundation for all GUI widgets in Scopira. More
specialized and complex widgets, particularly useful to numerical computing and
visualization, are also provided. This includes widgets useful for the display of matrices, 2D
images, bar plots and line plots. Developers can use the basic GUI components provided to
create more complex viewers for a particular application domain.
The Scopira graphical user interface subsystem provides useful user-interface tools
(widgets) for the construction of graphical, scientific applications. These widgets
complement the generic widgets provided by the GTK+ widget library with additional
widgets for the visualization and inspection of numeric array data.
A matrix/spreadsheet like widget is able to view and edit data arrays (often, but not limited
to matrices) of any size. This extensible widget is able to operate on Scopira narrays natively.
The widget supports advances functionality such as bulk editing via an easy to use, stack
based macro-language. This macro-language supports a variety of operations of setting,
copying and filter selecting data within the array. A generic plotting widget allows the
values of Scopira narrays to be plotted. The plotter supports a variety of plotting styles and
criteria, and the user-interface allows for zooming, panning and other user customizations
of the data plot. An image viewer allows fully zooming, panning and scaling of narrays,
useful for the display of image data. The viewer supports arbitrary colour mapping,
includes a legend display and supports a tiled view for displaying a collection of many
images simultaneously. A simplified drawing canvas interface is included that permits
software developers to quickly and easily build their own custom widgets. Finally, Scopira
provides a Lab facility to rapidly prototype and implement algorithms that need casual
graphical output. Users implement their algorithms as per usual, and a background thread
handles the updating of the graphical subsystem and event loop.

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

651

Network Hardware Layer (Ethernet, …)

TCP/IP

Network Engine

Node Infrastructure

Node Transport Layer

UUID Messaging Layer

Additional APIs

(MPI, …) Tasks Services

Fig. 3. The SAL network stack.

Scopira provides an architecture for logically separating models (data types) and views
(graphical widgets that present or operate on that data) in the application. This view-model
relationship is then registered at runtime. At runtime, Scopira pairs the compatible models
and views for presentation to the user. A collection of utility classes for the easy registration
of typical objects types such as data models and views are provided. This registration
mechanism succeeds regardless of how the code was loaded; be it as part of the application,
as a linked code library, or as an external plug-in.
Third parties can easily extend a Scopira application that utilizes models and views
extensively. Third party developers need only register new views on the existing data
models in an application, then load their plug-in alongside the application to immediately
add new functionality to the application. The open source C++ image processing and
registration library ITK (Ibáñez & Schroeder, 2005) has been successfully integrated into
Scopira applications at run time using the registration subsystem.
A model is defined as an object that contains data and is able to be monitored by zero or more
views. A view is an object that is able to bind to and listen to a model. Typically, views are
graphical in nature, but in Scopira non-graphical views are also possible. A project is a
specialized model that may contain a collection of models and organize them in a
hierarchical fashion. Full graphical Scopira applications are typically project-oriented,
allowing the user to easily work with many data models in a collective manner. A basic
project-based application framework is provided for developers to quickly build GUI
applications using models and views.
A complementary subsystem provides the base OpenGL-enabled widget class that utilizes
the GTKGLExt library (Logan, 2001). The GTKGLExt library enables GTK+ based
applications to utilize OpenGL for 2D and 3D visualization. Scopira developers can use this

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

652

system to build 3D visualization views and widgets, which allows for greater data
exploration and processing. Integration with more complete visualization packages such as
VTK (Schroeder et al., 2006) is also possible.

3. Agent based modelling framework

3.1 Agent based models

ABM simulations consists of emulating real-world systems in which collections of
autonomous decision-making entities, distributed in a grid or lattice, interact with each
other unveiling the dynamics of the system under investigation (Bonabeau, 2002;
Sokolowski & Banks, 2010). This kind of simulation has emerged from the need to analyse
and model systems that are becoming more complex in terms of their interdependencies, at
the same time that data are becoming more organized into databases at finer levels of
granularity. This type of modelling and simulation originated in the field of multi-agent
systems, which derived from research in distributed artificial intelligence. The idea behind
distributed artificial intelligence is to solve problems (or a related set of sub-problems) by
distributing them amongst a number of relatively simple programs or agents, each with its
own particular type of knowledge or expertise (Gilbert & Terna, 2000; Epstein, 2007).
Additionally, ABM research draws from several related fields including computer science,
management science, social science, system dynamics, complexity theory, complex
networks, and traditional modelling and simulation (Macal & North, 2005; Shoham &
Leyton-Brown, 2008).
The first step in defining an ABM is to establish the meaning of the term “agent”. Although
there is not one universally accepted definition, a good characterization may be given as:
“An agent is an encapsulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet its design objectives.”
(Wooldridge, 1997). The most fundamental feature of an agent is the capability of making
independent decisions and relating itself with other agents and their environment. From a
practical modelling standpoint, an agent is a discrete individual, identifiable and located;
goal-directed and autonomous; lives in an environment; has a set of intrinsic characteristics
(properties), decision-making capabilities, a system of rules that govern its behaviour, and
the ability to learn and adapt based on experience (which requires some kind of internal
memory); can interact with other agents, and respond to the environment.
Depending on the subject under investigation, there may be different types of agents, for
example trees, bugs, humans, viruses, bacteria, or cells. Even sub-types are possible, like
tissue cells, immunological system cells, stem cells, or nerve cells. Considering the vast
gamut of possible agents and situations, a system may be composed of more than one type
of agent at the same time. For instance, assuming an infectious disease in a population of
susceptible individuals, the variability of the species may be included considering that each
agent may present different levels of susceptibility to the specific disease caused by
differences in their immune system, lifestyle, prior health conditions, specific health risk
factors, and so on.
The uniqueness of every agent is established by its state variables, or attributes, such as an
identity number (desirably unique and immutable so that the agent can be traced during all
the pertinent simulations), age, gender, location, size, weight, energy reserves, political
opinion, disease stage, etc. These attributes distinguish an entity from others of the same
kind, trace how the agent changes over time and guide its behaviour. In addition, these state

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

653

variables may be saved allowing re-starting the simulation once interrupted. It is from the
heterogeneity of agents, and consequent variety of behaviours, that the collective aspects of
interest concerning the real-world system being modelled and simulated emerge.
From the uniqueness and autonomous nature of the agents, it becomes quite clear that
adopting an agent-based approach demands multiple agents in order to represent the
decentralized perspective of the problem. Moreover, the agents must interact with one
another and with the environment. For this purpose, the agents must be spatially located in
some type of grid or lattice in which they can come into contact with other agents based on
defined rules and assumptions.
The agent lattice awareness is limited and localized. Agents are always placed in some
position of the grid and have limited visibility of their surroundings, implying that only a
few other agents are in the agent’s domain of influence. This is in contrast with a typical
two-dimensional cellular automata, in which every position of the grid consists of a cell;
each cell can assume different states that may be updated according to some rules based
only on its immediate neighbours. In an ABM, there can be more than one agent per location
of the lattice at the same time. The agents are not static, ensuring that they are free to move
so their radius of interaction in the long term is not restricted to their nearest agent
neighbours.
In contrast to many analytical models, which are in general easier to communicate and
analyse since they are described using precise mathematical formulas, ABM descriptions are
frequently incomplete and therefore less accessible to the reader. In an attempt to tackle this
pertinency problem, a group of modellers in the field of ecology (Grimm et al., 2006)
proposed a standard protocol for describing ABMs. The “Overview, Design Concept and
Details” protocol, or simply ODD, proposes that an ABM (and its various interaction rules)
be described in a standardized way making model descriptions easier to understand and
complete. Achieving this objective makes ABMs reproducible and a much more reliable
scientific tool for investigations.

3.2 Designing an agent based model
Before modelling a problem using an agent-based approach, a few points must be
considered. First, one must consider the nature of the problems that can benefit from this
method and how the simulations can provide useful information about the scenarios being
investigated. An ABM can provide a realistic and flexible description of a system, and it can
capture emergent phenomena (Bonabeau, 2002; Shoham & Leyton-Brown, 2008). An
“emergent phenomenon” can be conceptualized as a large scale, group behaviour of a
system, which does not seem to have any clear explanation in terms of the systems
constituent parts (Darley, 1994; Sokolowski & Banks, 2010). These phenomena may arise due
to the nonlinear nature of the behaviour of the agents, which can be described by
discontinuities in agent behaviour that is difficult to capture with differential equations. In
addition, agent exhibits memory (non-markovian process), path-dependence, learning and
adaptation. Being so, ABMs are adequate for describing real world phenomena where agent
behaviour is complex (Ferguson, 2007). Upon concluding that an ABM is appropriate for a
specific case, the chart in Figure 4 offers some guidelines for the development of an ABM.
Modelling agent-based simulations requires the creation of a representation of the “sub-
world” under investigation. For this representation to be realistic and accurate, there should
be a set of available data to support the various considerations adopted for the several
aspects and parts included in the agent-based model. As we go through the design process

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

654

of an ABM for the spread of an infectious disease in an urban centre, we are going to
illustrate what data can be used in each step.
Considering the spread of an infectious disease in a population, data regarding the age-
gender structure of the population can be obtained and used to create the in silico
population. However, the lack of detailed information regarding the actual event (e.g.,
estimates of epidemiological parameters for an emerging infectious disease) often poses
significant challenges for modelling agent-based simulations. On the other hand,
experimenting with the model under various assumptions (for instance, different
intervention strategies) may reveal emergent phenomena that lead to a better understanding
of the system and its behaviour. It is this circular dependency relationship that makes ABMs
powerful and challenging at the same time.
Although this modelling framework was built to be generic for major types of ABMs, it is
possible that some aspects of very specific cases have not been included. Nevertheless, with
this framework, the reader should have a starting point for designing an ABM and performing
simulations by adding specific characteristics of the system. As with any software
development project, the main point to be defined is the purpose of the application. In our
example, the purpose of the model is to understand what are the key characteristics of a
population, with its social interaction patterns, that influences the spread of an infectious
disease and leads to epidemic scenarios. In this stage, the appropriate disease model for the
specific disease must be chosen. Unless the disease under investigation is completely new and
uncharted, it is possible to choose whether a simple susceptible-infectious-recovered (SIR)
model suffices or if a more refined one, including other intermediate states, is required. It is
important to note that the assumptions based on global community parameters influence
some of the local individual parameters. In this example, choosing an SIR model implies that,
in terms of the disease, the agents can be in only one of the three (susceptible, infective, or
recovered) states. From the perspective of the local individual parameters, aspects such as
pregnancy, aspirin treatment, and so on, can be taken into account.
This description gives the general idea of what is going to be simulated. At this point it is
important to know the exact questions the model is aimed to answer. This way it will be
clearer what data resulting from the simulation should be stored for analysis. Once the
purpose is established, we will have a clear idea of what the agents in our simulation are
going to be. In general, simulations will involve different kinds of agents. In a typical spread
of some virus in a population, as with the 2009 H1N1 influenza pandemic, there is only one
type of agent involved, namely humans. These agents are either affected by the disease or
not. When infected, they can transmit the disease to a susceptible agent if they come to a
close contact range (the definition of close contact is all interactions that can result in
infection). In this case, there is no need to have more than one agent since the infectious
disease may be considered as a property of the agent. Conversely, if the interest is to
investigate the pattern of transmission of a disease from pigs to humans, then two types of
agents may be involved (pigs and humans). In more specific scenarios, the interest may be
in the virus population itself. In this case, there can be sub-types of agents, i.e. virus strains,
which are all sub-types of a broader class of a specific virus.
Regardless of the type of agents, they will have features (state variables) that define them as
individuals. For all agents, the modeller will need to list all the state variables including not
only those that define their characteristics (like age, weight, and temperature), but also those
that describe the agent’s behavioural traits, such as velocities, strategies, probabilities,
susceptibility, etc. In addition, it is important to define how the agents interact with the

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

655

environment within specified time periods. Demographic data is used to create the agents so
that the resulting in silico population follows the same distributions as the real population.
In this sense, the state variables are defined as the primitive characteristics of the individuals
that can be later described in terms of demographic information, such as age and gender
profiles. Additionally, several other, non-demographic specific, variables must be defined.
Some of these variables relate to the disease, such as symptoms duration, susceptibility, etc.
Other kinds of variables relate to behavioural traits. Based on these variables and relevant
information acquired from the environment and other agents, an agent can have its state
altered and make decisions regarding its next steps. In short, the state variables are the most
important part of the model, given that they define the agents and provide the relevant
information for them to act in an autonomous fashion.
Once agents are defined, the next step is to determine where they are placed, thus defining

their environment. If the relationship between the agent and the environment is not important

for simulation purposes, the environment should be only a place that facilitates the

interactions between agents. In some cases, this relationship may be important, as in the case

when the demographic distribution may play an important role in the spread of an infectious

disease. Once the environment is defined, its scales must be determined to establish its

dimension and the size of each dimension. Additionally, the representation of the environment

is not restricted to an n-dimensional space but rather defined as a complex network or some

other data structure, and may contain other properties that influence the agents’ decisions and

behaviour. In epidemic scenarios, urban centre characteristics such as commuting distance,

demographic density, and city boundaries, may affect the spread of the infectious disease, as

well as agent behaviour. Being so, data regarding mobility patterns can be used to define

lattice properties, which in turn can be used by the agents in its decisions and actions.

The planning of the agents and environment is not complete until the processes associated

with them are defined, which leads us to the next block in the flowchart in Figure 4. The set

of processes are the kernel of the simulation. At this stage, it should be pointed out that all

actions that each agent takes are in terms of updating its state, interacting with other agents,

and interacting with the environment. Likewise, all the mechanisms for updating the

environment should be listed.

In terms of updating the state of an agent, several steps may be considered, such as deciding

if the agent’s objective has been achieved, or identifying the best course of action for

achieving the objective. As an example, considering the case of an infectious disease, it must

be verified if the agent is infected and, if so, to decide if it is time to seek medical care.

Performing agent-to-agent (or agent-to-environment) interactions requires communication

between the agents (or with the environment), so that the entities involved can access each

other’s information and choose their next action. In the case of a susceptible agent

interacting with an infective agent, it must be determined whether the susceptible

individual will become infected.

Once all the associated processes are defined, a natural question that arises is the timing at

which these actions take place. This issue is represented by the scheduling box in Figure 4.

Here, a flowchart of the processes will be useful for determining the order that the processes

are performed. Several processes may occur concurrently, while others may depend on

other processes. Knowing the overall picture of the events, it is possible to identify if the

state variables are updated synchronously or asynchronously. Moreover, the type of time-

scheme should be determined in terms of being discrete, continuous, or both.

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

656

Fig. 4. Development cycle for an agent-based infectious disease model.

In the context of parallel computing, the relationship among processes will determine the
ease with which to parallelize the code (for example, tightly coupled or spatially proximal
relationships are more difficult to parallelize compared to loosely coupled or spatially
distant relationships). ABMs may start with small and simple simulations. However, as the
ABM evolves over time, it can become large and computationally complex, thus requiring
the parallelization of the execution of the code. In this way, structuring the model before
coding, and choosing the right tools for the task, will certainly save time in the end.

3.3 Building an agent-based simulation

In this section, we describe an ABM software framework for simulating the spread of a
contagious disease in human populations. The agents in this model are a simplified
representation of the real inhabitants of an urban centre in which an infectious pathogen
was introduced. In this system, the three main components of simulations are: the agents,
the lattice (or grid) in which these agents are placed, and the rules of between-agent and
agents-environment interactions. Considering that ABM simulations rely on the interactions
between agents that are similar in characteristics but have different behaviours, it is natural
to choose any object oriented programming (OOP) language to run such simulations. Using
OOP, each agent may be created as a representation of a common class of agents in which
every software object has the same set of properties, or state variables. Assuming a different
set of values for the properties of each agent, the uniqueness of each agent is established,
and the variability of the species is taken into account (Grimm et al., 2006; Epstein, 2007).

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

657

In the context of an ABM, the unit of simulations is the agent (often referred to as an
individual), and in the context of OOP, this unit is the object of a defined class. It is, however,
important to note that agents and software objects are different components of the ABM. A
software object is an appropriate way to represent agents in the sense that objects encapsulate
both agent state (as data members) and agent behaviour (as methods), and communicate via
message passing. But agents, on the other hand, are “rational decision making systems” that
are able to react and behave according to the situation (Wooldridge, 1997).
Depending on the particular problem being modelled, the agents’ properties of interest may
vary. For an epidemic spread in a population of susceptible agents, some of the relevant
characteristics of these agents include age, gender, susceptibility to the disease, state of the
disease, among several other properties pertinent to the nature of disease in infectious
agents. In such a scenario, investigating the dynamics and evolution of the contagious
disease requires the development of a realistic model of the population with a significantly
large number of agents (as given in pertinent demographic data) whose properties render
the age-gender distribution of that specific location. Hence, the performance of the
simulation framework becomes an important issue when choosing the proper tools for
building the simulation.
As with every software engineering project, choosing the appropriate programming
language and libraries to build the ABM application is crucial to produce reliable, efficient,
and adaptable software code as described in Section 1. In an ABM, the use of OOP is an
appropriate simplifying approach for the logic of simulations and coding processes.
Furthermore, the choice of the right model data and libraries will impact the performance
and resource utilization, reflecting in the last instance in the running time of the simulation.
Keeping in mind these requirements, we adopted C++ as the most suitable programming
language for the ABM described here. In terms of performance and versatility, the C++
language is comparable to the C language with the addition of some OOP specializations.
Moreover, using the Scopira framework (see Section 2) functionalities and data structures
like smart pointers, narrays and its distributed computing tools, simplifies the software
development of ABM applications especially with respect to code parallelization.
Another important characteristic of ABMs is related to the stochasticity present in every part
of the simulation. The variability among agents may arise from sampling, for example, an
age-gender distribution, a susceptibility distribution, or distribution of infectious period.
The state of an agent can be altered by means of interactions with other agents, where the
outcome of these interactions depends on the value of parameters sampled from some
prescribed distribution. As a result, the random number generators must be chosen
carefully. For the generation of random numbers, a good choice of numerical library is the
GNU Scientific Library, which has been widely adopted in scientific and engineering
applications and which has the additional advantage of being open source, thread safe, well
tested, and portable (Gough, 2009).

3.4 Simulation framework design

Agents are modelled as objects of a class named Agents in which the member variables
represent the characteristics of the agents, such as age, gender, susceptibility to the disease,
and state of the disease. The methods of this class are simple manipulators that change the
values of these member variables. In this way, every agent represents a person with the
same basic characteristics that may assume different values. Using age-gender distributions
for a specific population, variability in age and gender is introduced. In an epidemic disease

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

658

scenario, an agent may assume different states regarding its epidemiological status, which
may be one of the following: susceptible, exposed (but not yet infectious), infectious and
recovered (immune against re-infection). Since the number of agents in a simulation may
range from a few thousands to millions, it is important to save memory whenever possible.
Considering that these states of infectious may assume only two values (true or false), stating
whether the agent is in the specific state or not, the best way to store this information is to
use one unsigned int as a bit set (or alternatively to use the bitset class from the C++ standard
library), in which every bit represents one of the possible states. Furthermore, the state of
the agent may be assessed by using bitwise operations testing only the specific bits of
interest, saving in this way, a few processor operations per agent per cycle.
Similar to a real world scenario, agents, in general, live in a city (or community) in which
they must be located somewhere and are free to move to different locations. Therefore, the
city is modelled as another class, named Lattice, in which a 2-dimensional n-array is used to
represent the city map and is a container to hold agents. The simplest way to build ABM
simulations is to consider only one agent per site that interacts with its adjacent neighbours,
as in a cellular automaton, or even with distant neighbours, but carrying these interactions
without moving from its position. Another approach, which is used in the model presented
here, is to consider several free-to-move agents at the same position. This model tries to
mimic the behaviour of people in a city, where it is possible for people to interact with
others in the same location, as would be the case in a house, office, or a shopping mall.
Considering that several agents may be in the same x-y position of the city grid at the same
time, and that these agents may move through the map, every site in the lattice holds a
standard vector of Scopira’s smart pointers to agents, that is, the lattice is a two-dimensional n-
array of standard vectors of pointers to agents as shown in the left panel in Figure 5. Based on
this scheme, moving an agent from one location to another is done by assigning a pointer to
the agent being moved to the vector at the destination location, and then removing the pointer
to this agent from the vector at the initial position, as shown in the right panel in Figure 5.
Using this smart pointer strategy, there would be no additional overhead of moving or
copying the agent’s data into memory. Another advantage with smart pointers is that there
is no need to manually free the memory at the end of the application, since it is refreshed as
soon as the smart pointer goes out of the scope. Furthermore, it is possible to test if the
software object is alive, which dramatically reduces the number of segmentation faults
during the software development phase due to access attempts to memory pages that have
already been released. Additionally, by using scope as a way to control the life cycle of the
software objects, the resulting application is better structured, robust and extensible.

Fig. 5. Representation of agent movements in the lattice.

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

659

The methods of the Lattice class are used to control the access to the map locations and to the
agents located in each position. Using, for example, the map of a city in which its
boundaries and demographic distribution is specified, the lattice representation will define
all the sites (that is, x-y positions) according to the city boundaries, and the number of agents
allowed in each site according to the demographic density. In this approach, the agents are
placed in the lattice but they may not be directly related. The agent-to-agent and agent-to-
lattice relationships are stored in another class called Simulation. In this class, a smart pointer
to the lattice is used, and the rules concerning the movement of the agents in the lattice and
interaction between agents are considered as methods of this class. Furthermore, this class is
responsible for updating counters that keep track of the number of agents in each state in
the simulation, and for writing reports to files on the computer system’s hard disk drive. For
these two tasks, the Counters and Reports classes are generated.
Since the simulation has been built to be able to use more than one processor using threaded
programming, Counters and Reports classes need to be built in order to be thread safe, thereby
supporting concurrency. When working with multiple threads, it is possible that different
threads will try to access the same memory area simultaneously; for example, to increment the
value of the same variable at the same time; this may cause unpredictable results. One way to
avoid data inconsistencies is to use mutual exclusion locks, or mutexes. Before a thread
operates with a variable, it must acquire the lock on this variable in order to prevent other
threads from operating on the same variable at the same time. This ensures serialization of
access to the specific data area. After the thread has performed the desired operations, it needs
to unlock this variable for other threads to access it. Determining what resources should be
locked and unlocked, and in what order, are fundamental considerations when parallel
programming. Moreover, a strategy must be adopted for interacting with these shared
resources in order to minimize the number of simultaneous accesses to the same shared area.
Otherwise, it will slow down the simulation considering that when a thread is waiting to
acquire the lock, it stops its other operations. Although it is possible to tackle this situation in
different ways, it makes the problem more complex and might introduce other unnecessary
synchronization issues.
The Counters and Reports classes both perform actions on areas of common access by threads.
The member variables of the Counters class, keep track of several aspects of the simulation, like
the current time step in which the simulation is run, the total number of susceptible agents,
and the number of infectious agents. Scopira provides several methods for parallel
programming in SAL that simplifies this process. In the case of protecting certain data areas
like variables, it defines a shared_area class to which is associated a mutex that can be later
accessed by objects of the lock_ptr class. Auxiliary to the Counters class, it defines a data
structure called SimulationCounters that holds all the counter variables that may be accessed by
more than one thread at the same time. In the Counters class, an instance of the shared_area class
associated with the SimulationCounters data structure is created. The methods of the Counters
class, when manipulating these variables, call them through an object of the lock_ptr class
associated with the object of the shared area. When the lock pointer is created, it automatically
locks the shared area with which it is associated, and when it moves out of scope, it is
automatically destroyed, thereby unlocking the associated shared area. Likewise, when the
method is called, it creates the lock pointer and acquires the lock, then the desired operations
are performed, and at the end of execution of the method, the lock pointer is destroyed
automatically, hence unlocking the shared area. With this method, the programmer does not
need to manually lock and unlock the variables, but rather needs to define the lock pointer
inside the scope targeted for manipulation of the shared area.

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

660

Following the same idea, the Reports class is used to write information about the simulation
into files. If two threads try to access the same file at the same time, the message may
become garbled, and therefore mutexes must be used. For this purpose, Scopira provides the
fileflow class that in turn provides methods for manipulating files and also includes mutexes.
An object instance of the Reports class is associated with each file. It is basically responsible
for opening and closing files, and overloads the stream insertion operator “<<”. In this way,
every time the insertion operator is called on a Reports object, it calls the fileflow::write_lock()
method, passes the message to the fileflow object, and then unlocks it through the
fileflow::unlock() method.
Figure 6 shows a diagram of the simulation environment with its several components. In
this representation, the Simulation class aggregates Lattice, Reports, and Counters classes.
These three classes are included in the Simulation class via smart pointers to the appropriate
objects of each class. Since the Lattice class contains smart pointers to all the agents in the
simulation that can be accessed through the Lattice object, the rules concerning the agent-to-
agent and agent-to-lattice interactions are methods of the Simulation class.

Fig. 6. Simulation environment showing the interaction of two threads.

For the agent-based simulation infrastructure proposed here, we now present the
mechanisms for parallelizing the simulations. The parallelism strategy adopted in this
example was to divide the lattice into chunks and assign them to different processing
threads. To balance the amount of work performed by each thread, the narray that
represents the lattice was divided into an approximately equal number of active sites, which
correspond to the defined locations in the city map. Agents are allowed to move between
sites in the map but the location of the destination site may be out of the scope of control for
the actual processing thread. As a result, it is necessary for all threads to be equipped with a
shared area to which other threads can send the moving agents (see Figure 6). The Threads
class inherits the basic functionality of the scopira::thread class, which provides the
mechanisms for creating the parallel environment and controlling all aspects of the threads

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

661

independent of the operational system. As a result, only a few methods concerning the
particular problem being investigated and a shared area for exchanging agents between
threads need to be implemented in the Threads class. The most important method, from the
simulation point of view, is the Threads::run() method, which is an overload of the Scopira’s
thread::run() method, where the actual simulation takes places. The pseudo-code for this
method is given below.

 Threads::run() {
 CheckSharedArea()

 foreach site:
 simulation.InteractAgentsToAgents(site)
 simulation.InteractAgentsWithLattice(site)
 simulation.MoveAgents(site)

 CheckSharedArea()
 }

In this case, every thread iterates over all the sites under its control, and performs the tasks
required by the simulation. In a simple case, it will perform the agent-to-agent and agent-to-
lattice interactions, and move the agents if necessary. The latter step of moving agents is the
most critical task in terms of distributed programming, as it involves other threads and
synchronization issues.
As mentioned before, an agent may move to a location out of the scope of control for its
current assigned thread. For this reason, the controlling thread must verify if the agent is
moving out of its domains and send it to the shared area of the responsible thread.
Consequently, additional steps in the run() method are required, including verification of its
own shared area, which is performed by the CheckSharedArea() method, and attribution of
the moving agent to its new location, performed by the MoveAgents() method. At this point,
synchronization issues emerge requiring strict control over the time step of the agents.
Although threads share the same address space, they are not aware of other threads and
should be controlled from a central location, namely the parent process. The Workspace class
is responsible for creating, control, destroying, and keeping track of the threads and their
domains, as well as facilitating their communication. In order to perform these activities,
each thread must have a reference to the instance of the Workspace that can be used as a
mediator between all active threads.

4. Concluding remarks and outlook

The current spectacular interest in agent-based modelling has gradually built up over the
last twenty years, in particular for understanding the social aspects of human populations
and simulating the spread of infectious diseases within and between communities. The use
of agent-based models, in general, requires a more comprehensive incorporation of agents’
characteristics both individually and group-wise, detailed information of the pertinent
environment and the relationship between the system’s various components. Despite the
rapid evolution of ABM-based software applications and development of more
sophisticated simulation approaches, the study of ABMs of any kind lacks a comprehensive
and flexible software development framework. While some efforts have been made on
developing such simulation models more consistent with the nature of the systems under

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

662

investigation, and on designing computer software algorithms for their rapid
implementation, the literature on general theoretical aspects of agent-based models is, as
yet, quite small.
In this chapter, we reported our attempts in developing a software simulation framework
for agent-based infectious disease modelling. Models implemented using this development
framework will satisfy the software objectives of reliability, efficiency, and adaptability as
fully described in Section 1. This framework has already been used to implement an agent-
based model to evaluate mitigation strategies applied during the 2009 influenza pandemic
in urban centres. An important aspect of this development framework is its flexibility to be
adopted for simulating interconnected populations with distinctly different mobility
patterns and demographic structures. Strategies for implementing this framework to
simulate the spread of a disease in remote and isolated populations are being currently
investigated.
The agent-based modelling framework described has several advantages that go beyond
computer simulation experiments, providing a platform for addressing important aspects of
modern world with global connectivity. We plan to use this framework to develop desktop
decision-support systems for use in public health to address critical issues arising in the
acute management of public health crises. Incorporating agent-based models into these
software systems can provide an essential tool for public health experts to perform
preliminary analysis, which can inform the formulation of optimal mitigation strategies in
the face of substantial uncertainty regarding epidemiological aspects of a novel disease.
Such decision support systems will require rapid development and deployment, an intuitive
graphical user interface, and must quickly produce scenario outcomes. Such requirements
can be satisfied using the framework presented here.
In the context of software design and engineering, future research activities will include the
development of fault-tolerant distributed agent-based modelling systems as well as a
comprehensive model description markup language to generate efficient software. The end
results of these activities must satisfy the requirements of both modellers and public health
officials in simulating the outcomes of infectious disease transmission, as well as prevention
and control strategies.

5. Acknowledgment

The research activities and software engineering described in this chapter were supported
by the Natural Sciences and Engineering Research Council of Canada (NSERC), the
Mathematics of Information Technology and Complex Systems (MITACS), Canadian
Institutes of Health Research (CIHR), and the Department of Foreign Affairs and
International Trade of Canada, Emerging Leaders of the Americas Program.

6. References

Bernoulli, D (1760). Essai d’une nouvelle analyse de la mortalité causée par la petite verole,
Histoire de l’Académie Royale des Sciences, Memoires, Année, 1–45

Bonabeau, B. (2002). Agent-based modeling: methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences, Vol. 99, Supplement 3, 7280–
7287, ISSN: 1091-6490

www.intechopen.com

A Software Development Framework for Agent-Based Infectious Disease Modelling

663

Darley, V. (1994). Emergent phenomena and complexity, In: Artificial life IV, Proceedings of
the 4th International Workshop on the Synthesis and Simulation of Living Systems,
Brooks, R. & Maes, P. (Ed.), 411–416, MIT Press, ISBN: 0262521903, Cambridge

Demko, A. B. & Pizzi, N. J. (2009). Scopira: an open source C++ framework for biomedical
data analysis applications. Software: Practice and Experience, Vol. 39, No. 6, 641–660,
ISSN: 1097-024X

Dongarra, J. J. & Dunigan, T. (1997). Message-passing performance of various computers.
Concurrency and Computation: Practice & Experience, Vol. 9, No. 10, 915–926, ISSN:
1532-0634

Epstein, J. M. (2007). Generative Social Science: Studies in Agent-Based Computational Modeling,
Princeton University Press, ISBN: 0691125473, Princeton

Ferguson, N. M. (2007). Connections capturing human behaviour, Nature, Vol. 446, 733,
ISSN: 0028-0836

Geddes, K.; Labahn, G. & Monagan, M (2008). Maple 12 Advanced Programming Guide,
Maplesoft, ISBN: 9781897310472, Waterloo

Geist, A.; Beguelin, A.; Dongarra, J.; Jiang, W.; Manchek, R. & Sunderam, V. S. (1994). PVM:
Parallel Virtual Machine: A Users' Guide and Tutorial for Network Parallel Computing,
MIT Press, ISBN:0262571080, Cambridge

Gilbert, N. & Terna, P. (2000). How to build and use agent-based models in social science.
Mind & Society, Vol. 1, No. 1, 57–72, ISSN: 1593-7879

Gough, B. (2009). GNU Scientific Library Reference Manual, Network Theory Ltd., ISBN:
0954612078

Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.;
Grand, T.; Heinz, S. K. & Huse, G. (2006). A standard protocol for describing
individual-based and agent-based models. Ecological Modelling, Vol. 198, No. 1–2,
115–126, ISSN: 0304-3800

Grimm, V. & Railsback, S. F. (2005). Individual-based Modeling and Ecology, Princeton
University Press, ISBN: 069109666X, Princeton

Hill, F. S. &, Kelley, S. M. (2006). Computer Graphics Using OpenGL (3rd Edition), Prentice Hall,
ISBN: 0131496700, Upper Saddle River

Ibáñez, L. & Schroeder, W. (2005). The ITK Software Guide: The Insight, Segmentation and
Registration Toolkit, Kitware, Inc., ISBN: 1930934157, Clifton Park

Kermack, W. O. & McKendrick, A. G. (1927). A contribution to the mathematical theory of
epidemics, Proceedings of the Royal Society London A, Vol. 115, 700–721, ISSN: 1471-
2946

Kitware, Inc. (2010). VTK User’s Guide: Install, Use and Extend the Visualization Toolkit,
Kitware, Inc., ISBN: 1930934238, Clifton Park

Krause, A. (2007). Foundations of GTK+ Development, Springer-Verlag, ISBN: 1590597931,
New York

Lingappa, J. R.; McDonald, L. C.; Simone, P. & Parashar, U.D. (2004). Wresting SARS from
uncertainty. Emerging Infectious Diseases, Vol. 10, No. 2, 167–170, ISSN: 1080-6059

Logan, S. (2001). GTK+ Programming in C, Prentice Hall, ISBN: 0130142646, Upper Saddle
River

Macal, C. M. & North, M. J. (2005). Tutorial on agent-based modeling and simulation,
Proceedings of the 37th Winter Simulation Conference, pp. 2–15, ISBN: 0780395190,
Orlando, USA, December 4–7, Winter Simulation Conference, Orlando

Moghadas, S. M.; Pizzi, N. J.; Wu, J. & Yan, P (2009). Managing public health crises: the role
of models in pandemic preparedness. Influenza and Other Respiratory Viruses, Vol. 3,
No. 2, 75–79, ISSN: 1750-2659

www.intechopen.com

 Biomedical Engineering Trends in Electronics, Communications and Software

664

Murray, J. D. (2007). Mathematical Biology: Vol. I. An Introduction (3rd Edition), Springer-
Verlag, ISBN: 0387952233, Heidelberg

Ormerod, P. & Rosewell, B. (2009). Validation and Verification of Agent-Based Models in the
social sciences, In: Epistemological Aspects of Computer Simulation in the Social
Sciences, Squazzoni, F. (Ed.), 130–140, Springer, ISBN: 364201108X, Berlin

Pizzi, N.J. (2008). Software quality prediction using fuzzy integration: a case study. Soft
Computing Journal, Vol. 12, No. 1, 67–76, ISSN: 1432-7643

Pizzi, N. J. & Pedrycz, W. (2008). Effective classification using feature selection and fuzzy
integration. Fuzzy Sets and Systems, Vol. 159, No. 21, 2859–2872, ISSN: 0165-0114

Railsback S. F.; Lytinen, S. L. & Jackson, S.K. (2006). Agent-based simulation platforms:
review and development recommendations, Simulation, Vol. 82, No. 9, 609–623,
ISSN: 0037-5497

Ropella, G. E. P.; Railsback, S. F. & Jackson, S. K. (2002). Software engineering considerations
for individual-based models. Natural Resource Modelling, Vol. 15, No. 1, 5–22, ISSN:
1939-7445

Schroeder, W.; Martin, K. & Lorensen, B. (2006). Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, Prentice Hall, ISBN: 0139546944, Upper Saddle River

Shan, H.; Singh, J. P.; Oliker, L. & Biswas, R. (2003). Message passing and shared address
space parallelism on an SMP cluster. Parallel Computing, Vol. 29, No. 2, 167–186,
ISSN: 0167-8191

Shoham, Y. & Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations, Cambridge University Press, ISBN: 0521899435,
Cambridge

Sigmon K. & Davis, T.A. (2010). Matlab Primer (8th Edition), Chapman & Hall/CRC Press,
Inc., ISBN: 1439828628, Boca Raton

Snir, M. & Gropp, W. (1998). MPI: The Complete Reference (Volume 1: The MPI Core), MIT
Press, ISBN: 0262692163, Cambridge

Sokolowski, J. A. & Banks, C. M. (2010). Modeling and Simulation Fundamentals: Theoretical
Underpinnings and Practical Domains, John Wiley & Sons, Inc., ISBN: 0470486740,
Hoboken

Summerfield, M. (2010). Advanced Qt Programming: Creating Great Software with C++ and Qt 4,
Prentice Hall, ISBN: 0321635906, Upper Saddle River.

Taubenberger, J. K. & Morens, D.M. (2006). 1918 influenza: The mother of all pandemics.
Emerging Infectious Diseases, Vol. 12,No. 1, 15–22, ISSN: 1080-6059

Wolfram S. (1999). The Mathematica Book, Cambridge University Press, ISBN: 0521643147,
Cambridge

Wooldridge, M. (1997). Agent-based software engineering. IEE Proceedings: Software
Engineering, Vol. 144, No. 1, 26–37, ISSN: 1364-5080

www.intechopen.com

Biomedical Engineering, Trends in Electronics, Communications

and Software

Edited by Mr Anthony Laskovski

ISBN 978-953-307-475-7

Hard cover, 736 pages

Publisher InTech

Published online 08, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Rapid technological developments in the last century have brought the field of biomedical engineering into a

totally new realm. Breakthroughs in materials science, imaging, electronics and, more recently, the information

age have improved our understanding of the human body. As a result, the field of biomedical engineering is

thriving, with innovations that aim to improve the quality and reduce the cost of medical care. This book is the

first in a series of three that will present recent trends in biomedical engineering, with a particular focus on

applications in electronics and communications. More specifically: wireless monitoring, sensors, medical

imaging and the management of medical information are covered, among other subjects.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luiz C. Mostaço-Guidolin, Nick J. Pizzi, Aleksander B. Demko and Seyed M. Moghadas (2011). A Software

Development Framework for Agent-Based Infectious Disease Modelling, Biomedical Engineering, Trends in

Electronics, Communications and Software, Mr Anthony Laskovski (Ed.), ISBN: 978-953-307-475-7, InTech,

Available from: http://www.intechopen.com/books/biomedical-engineering-trends-in-electronics-

communications-and-software/a-software-development-framework-for-agent-based-infectious-disease-

modelling

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

