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1. Introduction 

A common way of obtaining information about a physiological system is to measure one or 
more signals from the system, consider their temporal evolution in the form of numerical 
time series, and obtain quantitative indexes through the application of time series analysis 
techniques. While historical approaches to time series analysis were addressed to the study 
of single signals, recent advances have made it possible to study collectively the behavior of 
several signals measured simultaneously from the considered system. In fact, multivariate 
(MV) time series analysis is nowadays extensively used to characterize interdependencies 
among multiple signals collected from dynamical physiological systems. Applications of 
this approach are ubiquitous, for instance, in neurophysiology and cardiovascular 
physiology (see, e.g., (Pereda et al., 2005) and (Porta et al., 2009) and references therein). In 
neurophysiology, the time series to be analyzed are obtained, for example, sampling 
electroencephalographic (EEG) or magnetoencephalographic (MEG) signals which measure 
the temporal dynamics of the electro-magnetic fields of the brain as reflected at different 
locations of the scalp. In cardiovascular physiology, the time series are commonly 
constructed measuring at each cardiac beat cardiovascular and cardiorespiratory variables 
such as the heart period, the systolic/diastolic arterial pressure, and the respiratory flow. It 
is well recognized that the application of MV analysis to these physiological time series may 
provide unique information about the coupling mechanisms underlying brain dynamics 
and cardiovascular control, and may also lead to the definition of quantitative indexes 
useful in medical settings to assess the degree of mechanism impairment in pathological 
conditions. 
MV time series analysis is not only important to detect coupling, i.e., the presence or absence 
of interactions, between the considered time series, but also to identify driver-response 
relationships between them. This problem is a special case of the general question of 
assessing causality, or cause-effect relations, between (sub)systems, processes or phenomena. 
The assessment of coupling and causality in MV processes is often performed by linear time 
series analysis approaches, i.e. approaches in which a linear model is supposed to underlie 
the generation of temporal dynamics and interactions of the considered signals (Kay, 1988; 
Gourevitch et al., 2006). While non-linear methods are continuously under development 
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(Pereda et al., 2005; Faes et al., 2008), the traditional linear approach remains of great interest 
for the study of physiological signals, mainly because it has the important advantage to be 
strictly connected to the frequency-domain representation of multichannel data. Indeed, 
physiological signals such as the brain and cardiovascular ones are rich of oscillatory 
content and thus lend themselves to spectral representation. Typical examples of 
physiological rhythms are the EEG dynamics, typically observed within the well-bounded 
frequency bands from delta to gamma (Nunez, 1995), and the cardiovascular oscillations, 
characterized by spectral peaks within the so-called low frequency (LF, ~0.1 Hz) and high 
frequency (HF, synchronous with respiratory activity) bands (Akselrod et al., 1981). As a 
consequence, the linear frequency-domain evaluation of coupling and causality constitutes 
an eligible approach to characterize the interdependence among specific oscillations 
manifested within the same frequency band in two or more physiological signals. 
While an unique and universally accepted definition of causality does not exist, in time 
series analysis inference about cause-effect relationships is commonly based on the notion 
introduced by Nobel Prize winning Clive Granger (Granger, 1969). Granger causality was 
mathematically formalized within a linear time-domain framework widely applied in 
economy and finance but rapidly spread to other fields including the analysis of 
physiological time series. This notion of causality is defined in terms of predictability and 
exploits the direction of the flow of time to achieve a causal ordering of dependent 
processes. The definition may be contextualized in a different way for bivariate (based on 
two signals only) and MV (based on more than two signals) analysis; in the MV formulation, 
a distinction between direct causality from one series to another and indirect causality (i.e., 
causality between two series mediated by other series) is achieved (Faes et al., 2010b). 
Moreover, while the most intuitive definition of causality accounts for lagged effects only 
(i.e., effects of the past of a time series on the present of another), the concept of 
instantaneous causality, describing influences which occur within the same lag, is crucial for 
the evaluation of causal relationships among processes (Lutkepohl, 1993). Finally, the 
different facets of the concept of causality may be related to the concept of coupling between 
two processes, according to which the presence or absence of an interaction is detected and 
measured, but the directionality of such interaction is not elicited. 
The notions of causality and coupling are commonly formalized in the context of a MV 
autoregressive (MVAR) representation of the available time series, which allows to derive 
time- and frequency-domain pictures of these concepts respectively through the model 
coefficients and through their spectral representation. Accordingly, several frequency domain 
measures of causality and coupling have been introduced and applied in recent years. 
Coupling is traditionally investigated by means of the coherence (Coh) and the partial 
coherence (PCoh), classically known, e.g., from Kay (1988) or (Bendat & Piersol, 1986). 
Measures able to quantify causality in the frequency domain have been proposed more 
recently: the most used are the directed transfer function (DTF) (Kaminski & Blinowska, 1991), 
the directed coherence (DC) (Baccala et al., 1998), and the partial directed coherence (PDC) 
(Baccala & Sameshima, 2001). All these measures have been used extensively for the analysis 
of physiological time series, and applications showing their usefulness for the interpretation of 
interaction mechanisms among, e.g., EEG rhythms or cardiovascular oscillations, are plentiful 
in the literature (see, for instance, (Porta et al., 2002; Schlogl & Supp, 2006; Astolfi et al., 2007; 
Faes & Nollo, 2010a)). Despite this, several issues have to be taken into account for their correct 
utilization. While the relationships existing among these indices are generally understood, and 
most of the properties linking these measures to the different concepts of causality and 
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coupling are known, an organic joint description and contextualization in relation to the 
underlying time domain concepts is lacking. Also for this reason, the interpretation of 
frequency-domain coupling and causality measures is not always straightforward, and this 
may lead to an erroneous description of connectivity and related mechanisms. Examples of 
ambiguities emerged in the interpretation of these measures are the debates about the ability 
of PCoh to measure some forms of causality (Albo et al., 2004; Baccala & Sameshima, 2006), 
and about the specific kind of causality which is reflected by the DTF and DC measures 
(Kaminski et al., 2001; Baccala & Sameshima, 2001; Eichler, 2006). An aspect which is perhaps 
more problematic regards the structure of the model used to represent the data prior to 
computation of the frequency domain measures, which commonly accounts for lagged but not 
for instantaneous effects among the series. Despite this, the significance of instantaneous 
correlations among the series is almost never tested in practical applications, and the possible 
effects on coupling and causality measures of forsaking such correlations have not been 
investigated thoroughly. Very recent studies have suggested that neglecting instantaneous 
interactions in the model representation may lead to heavily modified connectivity patterns 
(Hyvarinen et al., 2008; Faes & Nollo, 2010b). 
The mission of this chapter is to enhance the theoretical interpretability of the available 

frequency domain measures of coupling and causality derived from the MVAR 

representation of multiple time series. To this end, a common framework for the definition 

of Coh, PCoh, DC/DTF, and PDC is provided on the basis of the frequency domain MVAR 

representation, and is exploited to relate the various measures to each other as well as to the 

specific coupling or causality definitions which they underlie. The chapter is structured as 

follows: Sect. 2 presents a comprehensive definition of the various forms of causality and 

coupling that can be observed in MV processes; Sect. 3 particularizes these definitions for 

standard MVAR processes, derives the corresponding frequency domain measures of 

coupling and causality, and discusses their interpretation; Sect. 4 proposes an extended 

MVAR representation to be used in the presence of significant instantaneous correlations in 

the observed process, whereby novel frequency domain causality measures are defined and 

compared to the existing ones; Sect. 5 briefly discuss the practical application of the 

measures on physiological time series; and Sect. 6 concludes the chapter. 

2. Causality and coupling in multivariate processes 

Let us consider M stationary stochastic processes ym, m=1,...,M. Without loss of generality 

we assume that the processes are real-valued, defined at discrete time (ym={ym(n)}; e.g., are 

sampled versions of the continuous time processes ym(t), taken at the times tn=nT, with T the 

sampling period) and have zero mean (E[ym(n)]=0, where E[·] is the statistical expectation 

operator). A MV closed loop process is defined as: 

 ym(n)=fm(Ym,Ýl|l≠m)+wm(n) ,   l,m=1,...,M, (1) 

where fm is the function linking the set of the p past values of the m-th process, collected in 

Ym={ym(n-1),...,ym(n-p)}, as well as the sets of the present and the p past values of all other 

processes, collected in Ýl={yl(n),Yl}={yl(n),yl(n-1),...,yl(n-p)}, l≠m, to the present value ym(n), 

and wm is a white noise process describing the error in the representation. Given two 

processes yi and yj, i,j=1,...,M, different definitions of causality and coupling between the 

processes may be defined as discussed in the following, and summarized in Table 1. 
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Strictly causal MVAR 

representation 
Extended MVAR 

representation 

DIRECT    

a) direct causality yj→yi PDC, πij( f ) PDC, ( )ij fπ#  

b) extended direct causality yj →$ yi - ePDC, χij( f ) 

c) direct coupling yi↔yj PCoh, Πij( f ) 

DIRECT+INDIRECT    

a) causality yj ⇒ yi DC, γij( f ) DC, ( )ij fγ#  

b) extended causality yj ⇒$ yi - eDC,  ξij( f ) 

c) coupling yi ⇔ yj Coh, Γij( f ) 

Table 1. Frequency domain measures of causality and coupling between two processes yi 
and yj of a multivariate closed loop process. Note that causality and direct causality measure 
lagged effects only, while extended causality and extended direct causality measure 
combined instantaneous and lagged effects. 

Denoting as Zj={Yl|l=1,...,M,l≠j} the set of the past values of all processes except yj, direct 
causality from yj to yi, yj→yi, exists if the prediction of yi(n) based on Zj and Yj is better than 

the prediction of yi(n) solely based on Zj. Causality from yj to yi, yj ⇒ yi, exists if a cascade of 

direct causality relations yj→ym···→yi occurs for at least one value m in the set (1,…,M); if 

m=i or m=j causality reduces to direct causality. This last case is obvious for a bivariate 

closed loop process (M=2), where only one definition exists and agrees with the notion of 

Granger causality (Granger, 1969) involving only the relations between two processes. For 

multivariate processes (M≥3) the definition of direct causality agrees with the notion of 

prima facie cause introduced in (Granger, 1980); the definition of causality is a generalization 

including also causal indirect effects between two processes, i.e., effects mediated by one or 

more other processes in the MV closed loop. 

While the definitions provided above are based on the exclusive consideration of lagged 

effects from one series to another, the interactions modeled in (1) consider also the possible 

instantaneous effects, i.e. effects which occur within the same lag. If we consider the directed 

interaction from yj to yi, lagged causality (with lag k≥1) occurs if yj(n-k) is useful to predict 

yi(n), while instantaneous causality (with lag k=0) occurs if yj(n) is useful to predict yi(n). 

These two concepts may be combined together to provide extended causality definitions as 

follows. Denoting as Zij={Yi,Ýl|l=1,...,M,l≠j,l≠i} the set of the past values of yi and the present 

and past values of all other processes except yj, extended direct causality from yj to yi, yj →$ yi, 

exists if the prediction of yi(n) based on Zij and Ýj is better than the prediction of yi(n) solely 

based on Zij. Extended causality from yj to yi, yj ⇒$ yi, exists if a cascade of extended direct 

causality relations yj →$ ym··· →$ yi occurs for at least one value m in the set (1,…,M); again, if 

m=i or m=j extended causality reduces to extended direct causality. 

Definitions of coupling between two processes are derived from the causality definitions as 

follows. Direct coupling between yi and yj, yi↔yj, exists if yi →$ ym and yj →$ ym; while the most 

obvious case is when m=i or m=j, two processes are considered as directly coupled also 
when they both directly cause a third common process (m≠i, m≠j). Coupling between yi and 
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yj, yi ⇔ yj, exists if ym ⇒$ yi and ym ⇒$ yj; again, coupling may arise when the of the two 

processes causes the other (m=i or m=j), or when both processes are caused by other 
common processes (m≠i, m≠j). Thus, the coupling definitions generalize the concept of 
causality accounting for both forward and backward interactions between two processes. 
An illustrative example of the described causality and coupling relations is reported in Fig. 
1. In the diagrams, the set of interactions is represented with a network where nodes 
correspond to processes and connecting arrows depict direct causality relations. 
 

 

Fig. 1. Examples of networks of interacting processes exhibiting only lagged interactions (a) 
and combined instantaneous and lagged interactions (b). Lagged and instantaneous effects 
are depicted with solid and dashed arrows, respectively. 

Fig. 1a shows a network of M=4 interacting processes in which only lagged effects from one 
process to another are present. In this situation, extended causality reduces to causality due 
to the absence of instantaneous effects. The direct causality relations imposed in the net are 
y1→y2, y2→y3, y3→y2, and y1→y4. Since direct causality is a condition sufficient for causality, 
we observe also y1 ⇒ y2, y2 ⇒ y3, y3 ⇒ y2, and y1 ⇒ y4; moreover, the cascade y1→y2→y3 

determines an indirect effect such that causality y1 ⇒ y3 exists. Direct coupling follows from 

direct causality, so that y1↔y2, y2↔y3, and y1↔y4, but is also caused by the common driving 
exerted by y1 and y3 on y2, so that y1↔y3. Finally, coupling is present between each pair of 
processes: y1 ⇔ y2, y2 ⇔ y3, y1 ⇔ y4, and y1 ⇔ y3 result from the causality relations, while 

y2 ⇔ y4 and  y3 ⇔ y4 result from the common driving exerted by y1 respectively on y2 and y4, 

and on y3 and y4. In Fig. 1b, instantaneous effects are considered together with lagged ones. 
In this case, direct causality occurs only when lagged effects are present, i.e., over the 
directions y1→y2, y3→y1. Extended direct causality follows from lagged and/or 

instantaneous direct causality, so that we have y1 →$ y2, y2 →$ y3, y2 →$ y4, and y3 →$ y1. As no 

indirect lagged causality is present, causality follows exclusively from direct causality, i.e. 
y1 ⇒ y2, y3 ⇒ y1. On the contrary, extended causality is observed very often because of the 

existence of several cascades of instantaneous and/or lagged effects: we observe indeed 

y1 ⇒$ y2, y1 ⇒$ y3, y1 ⇒$ y4, y2 ⇒$ y1, y2 ⇒$ y3, y2 ⇒$ y4, y3 ⇒$ y1, y3 ⇒$ y2, y3 ⇒$ y4. Direct coupling 

follows from extended direct causality: y1↔y2, y2↔y3, y2↔y4, y3↔y1 (no common driving of 
two processes on a third one is observed). Finally, coupling is detected between all pairs of 
processes as the network is fully connected (i.e., there are no isolated groups of processes). 
While causality definitions cannot be explored by means of conventional statistical 
operators, the concepts of coupling and direct coupling may be quantified through standard 
analysis of the correlation structure of the observed processes. Specifically, defining as 
Y(n)=[y1(n)···yM(n)]T the observed M×1 vector process, as R(k)=E[Y(n)YT(n-k)] its M×M 
correlation matrix evaluated at lag k, and as P(k)=R(k)-1 the inverse correlation matrix, 
coupling yi ⇔ yj and direct coupling yi↔yj are quantified at the time lag k respectively by the 

correlation coefficient and the partial correlation coefficient (Whittaker, 1990): 
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 ( )
( )

( ) ( )krkr

kr
k

jjii

ij
ij =ρ , ( )

( )
( ) ( )kpkp

kp
k

jjii

ij
ij −=η , (2) 

where rij(k) and pij(k) are the i-j elements of R(k) and P(k). The correlation and partial 
correlation coefficients are normalized measures of the linear interdependence existing 
between yi(n) and yj(n-k), and of the linear interdependence between yi(n) and yj(n-k) after 

removing the effects of all remaining processes. As such, ρij and ηij quantify the correlation 
and the “direct correlation” (i.e., the correlation that cannot be accounted for by the 
influence of any other process) between yi and yj. To identify the frequency-domain 
analogous of these two coefficients, we consider the spectral representation of the vector 
process Y(n), which is provided by the M×M spectral density matrix S( f ), defined as the 
Fourier transform (FT) of the correlation matrix R(k). The spectral matrix contains the 
spectrum of yi(n), Sii( f ), and the cross-spectrum between yi(n) and yj(n), Sij( f ), as diagonal 
and off-diagonal terms, respectively (i,j=1,…,M). In analogy with the time domain 
definitions, the spectral matrix and its inverse, P( f )=S( f )-1, are exploited to provide 
frequency-domain measures of coupling and direct coupling, respectively through the 
coherence (Coh) and the partial coherence (PCoh) functions (Bendat & Piersol, 1986): 

 ( ) ( )
( ) ( )fSfS

fS
f

jjii

ij
ij =Γ , ( ) ( )

( ) ( )fPfP

fP
f

jjii

ij
ij =Π , (3) 

As the functions in (3) are complex-valued, their squared modulus is commonly used to 
measure the strength of coupling and direct coupling in the frequency domain. Specifically, 

the magnitude-squared Coh |Γij( f )|2 measures the strength of the linear, non-directed 
interactions between the processes yi and yj as a function of frequency, being 0 in case of 

uncoupling and 1 in case of full coupling. The squared PCoh |Πij( f )|2 measures the 
strength of the direct, non-directed interaction between yi and yj, i.e. the strength of the 
interaction remaining after subtracting the effect of the remaining processes. We stress that, 
due to the symmetrical nature of these measures, they cannot provide information about 
causality; such an information may be extracted, as explained in the following, from the 
coefficients of a parametric representation of the time series. 

3. Causality and coupling in MVAR processes 

3.1 Time domain definitions 

The joint multivariate process Y(n) can be represented as the output of a MV linear shift-
invariant filter (Kay, 1988): 

 ( ) ( ) ( )∑
∞

−∞=

−=
k

knkn UHY , (4) 

where U(n)=[u1(n)···uM(n)]T is a vector of M zero-mean input processes and H(k) is the M×M 
filter impulse response matrix. A particular case of the general model in (4), extensively 
used in time series analysis, is the MV autoregressive (MVAR) model (Kay, 1988): 

 ( ) ( ) ( ) ( )nknkn
p

k

UYAY +−= ∑
=1

, (5) 
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where p is the model order, defining the maximum lag used to quantify interactions. The 

input process U(n), also called innovation process, is assumed to be composed of white and 

uncorrelated noises; this means that the correlation matrix of U(n), RU(k)=E[U(n)UT(n-k)], is 

zero for each lag k>0, while it is equal to the covariance matrix Σ=cov(U(n)) for k=0. One 

major benefit of the representation in (5)  is that it allows to interpret properties of the joint 

description of the processes ym(n) —like coupling or causality— in terms of the estimated 

coefficients A(k). In fact, the i-j element of A(k), aij(k), quantifies the causal linear interaction 

effect occurring at lag k from yj to yi. As a consequence, the definitions of causality and 

coupling provided above for a general closed-loop MV process can be specified for a MVAR 

process in terms of the off-diagonal elements of A(k) as follows: yj→yi if aij(k)≠0 for at least 

one k=1,…,p; yj ⇒ yi if ( ) 0
1

≠
− smm ka

ss
 for at least a set of L≥2 values for ms (with m0=j, mL-1=i) 

and a set of lags k0,...,kL-1 with values in (1,...,p); yi↔yj if ami(k1)≠0 for at least one k1 or amj(k2)≠0 

for at least one k2; yi ⇔ yj if ( ) 0
1

≠
− smm ka

ss
 for at least a set of L≥2 values for ms (either with 

m0=m, mL-1=i or with m0=m, mL-1=j) and a set of lags k0,...,kL-1. Thus, causality and coupling 

relations are found when the pathway relevant to the interaction is active, i.e., is described 

by nonzero coefficients in A. Note that the extended definitions of causality and direct 

causality cannot be tested from the coefficients of the MVAR model (5), as the model does 

not describe instantaneous interactions. We refer to Sect. 3.3 to see how the MVAR 

coefficients may be related to causality and coupling effects in an illustrative example. 

3.2 Frequency domain definitions 

The spectral representation of a MVAR process is derived considering the FT of the 
representations in (4) and (5), which yield respectively the equations Y( f )=H( f )U( f ) and  
Y( f )=A( f )Y( f )+U( f ), where Y( f ) and U( f ) are the FTs of Y(n) and U(n), and the M×M 
transfer matrix and coefficient matrix are defined in the frequency domain as: 

 ( ) ( ) kTfj
k

ekf π2−∞

−∞=Σ= HH , ( ) ( ) kTfjp

k
ekf π2

1

−
=Σ= AA . (6) 

Comparing the two spectral representations, it is easy to show that the coefficient and 
transfer matrices are linked by: H( f )=[I-A( f )]-1=Œ( f )-1. This relation is useful to draw the 
connection between the cross-spectral density matrix S( f ) and its inverse P( f ), as well as to 
derive frequency domain estimates of coupling and causality in terms of the MVAR 
representation. Indeed, the following factorizations hold for a MVAR process (Kay, 1988): 

 S( f )=H( f )ΣHH( f ) ,  P( f )=ŒH( f )Σ-1Œ( f ), (7) 

where the superscript H stands for the Hermitian transpose. The (i-j)th elements of S( f ) and 
P( f ) can be represented in the compact form: 

 ( ) ( ) ( )fffS jiij
HΣhh= , ( ) ( ) ( )fffP jiij aΣa 1H −= , (8) 

where hi( f ) is the i-th row of the transfer matrix (H( f )=[h1( f )···hM( f )]T) and œi( f ) is the i-th 
column of the coefficient matrix (Œ( f )=[œ1( f )···œM( f )]). Under the assumption that the 
input white noises are uncorrelated even at lag zero, their covariance cov(U(n)) reduces to 

the diagonal matrix Σ=diag(σ2i), and its inverse to the matrix Σ-1=diag(1/σ2i) which is 

diagonal as well (σ2i is the variance of ui). In this specific case, (8) factorize into: 
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 ( ) ( ) ( )∑
=

=
M

m

*
jmimmij fHfHfS

1

2σ , ( ) ( ) ( )∑
=

=
M

m
mj

*
mi

m
ij fffP

1
2

1
AA

σ
 (9) 

The usefulness of the factorizations in (9) is in the fact that they allow to decompose the 
frequency domain measures of coupling and direct coupling previously defined into terms 
eliciting the directional information from one process to another. Substituting (8) and (9) 
into (3), the Coh between yi and yj can be factored as: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

( ) ( )∑∑
==

===Γ
M

m

*
jmim

M

m jj

*
jmm

ii

imm

jjii

ji
ij ff

fS

fH

fS

fH

ffff

ff
f

11
HH

H

γγ
σσ

ΣhhΣhh

Σhh
, (10) 

where the last term contains the so-called directed coherence (DC). Thus, the DC from yj to yi is 
defined as (Baccala et al., 1998): 

 ( ) ( )

( )∑ =

=
M

m imm

ijj
ij

fH

fH
f

1

22σ

σ
γ . (11) 

Note that the directed transfer function (DTF) defined in (Kaminski & Blinowska, 1991) is a 

particularization of the DC in which all input variances are all equal (σ21=σ22=···=σ2M) so 

that they cancel each other in (11). The factorization in (10) justifies the term DC, as γij( f ) can 

be interpreted as a measure of the influence of yj onto yi, as opposed to γji( f ) which 
measures the interaction occurring over the opposite direction from yi to yj. Further 
interpretation of the DC in terms of coupling strength is achieved considering its 
normalization properties: 

 ( ) ( ) 110
1

22
=≤≤ ∑

=

M

m
imij f,f γγ . (12) 

The inequality in (12) indicates that the squared DC |γij( f )|2 measures a normalized 

coupling strength, being 0 in the absence of directed coupling from yj to yi at the frequency f, 
and 1 in the presence of full coupling. The equality indicates that |γij( f )|2 measures the 

coupling strength from yj to yi as the normalized proportion of Sii( f ) which is due to yj, i.e. is 

transferred from uj via the transfer function Hij( f ). Indeed, combining (9) and (12) it is easy 

to show that the spectrum of the process yi may be decomposed as: 

 ( ) ( ) ( ) ( ) ( )fSffS,fSfS iiimm|i
M

m m|iii
2

1
γ== ∑ =

. (13) 

where Si|m( f ) is the part of Sii( f ) due to ym; Si|i( f ) measures the part of Sii( f ) due to none of 

the other processes, which is quantified in normalized units by the squared DC |γii( f )|2. 

Note that the useful decomposition in (13) does not hold for the DTF, unless all input 

variances are equal to each other so that the DC reduces to the DTF. For this reason, in the 

following we will consider the DC only, as it provides a similar, but more general and 

interpretable in terms of power content, measure of frequency domain causality. 

In a similar way to that followed to decompose the Coh, the PCoh defined in (3) can be 
factored, using (8) and (9), as: 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( )

( )

( )
( ) ( )∑∑

==
−−
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===Π
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m
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mimj

M

m ii
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mi
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jj

mj
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jjii
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ij ff

fP

fA

fP

fA
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f
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1H1H

1H
11

ππ
σσ

aΣaaΣa

aΣa
, (14) 

where the last term contains the partial directed coherence (PDC) functions. The PDC from yj to 
yi is thus defined as (Baccala et al., 2007): 

 ( )
( )

( )∑ =

=
M

m mj
m

ij
i

ij

fA

fA
f

1

2

2

1

1

σ

σ
π . (15) 

As suggested by the factorization in (14), the PDC extracts the directional information from 
the PCoh, and is thus a measure of the direct directed interaction occurring from yj to yi at 
the frequency f. The normalization properties for the squared modulus of the PDC are: 

 ( ) ( ) 110
1

22
=≤≤ ∑

=

M

m
mjij f,f ππ , (16) 

suggesting that |πij( f )|2 quantifies the interaction from yj to yi as the normalized proportion 
of Pjj( f ) which is which is sent to yi, via the coefficients Āji( f ). Indeed, we have that: 

 ( ) ( ) ( ) ( ) ( )fPffP,fPfP jjmjmj
M

m mjjj

2

1
π== →= →∑ , (17) 

where Pj→m( f ) is the part of Pjj( f ) sent to ym; in particular, Pj→j( f ) measures the part of Pjj( f ) 
which is not sent to the other processes, and is expressed in normalized terms by the 

squared PDC |πjj( f )|2. The quantity which we denote as PDC was named “generalized 
PDC” in (Baccala et al., 2007), while the original version of the PDC (Baccala & Sameshima, 
2001) was not including inner normalization by the input noise variances. Our definition 
(15) follows directly from the decomposition in (14); besides, this definition shares with the 
Coh, PCoh and DC functions the desirable property of scale-invariance, contrary to the 
original PDC that may be affected by different amplitudes for the considered signals. 

Although both DC and PDC may be regarded as frequency domain descriptors of causality, 

there are important differences between these two estimators. First, as the DC and the PDC 

are factors in the decomposition of Coh and PCoh, respectively, they measure causality and 

direct causality in the frequency domain. In fact, the PDC πij( f ) is nonzero if and only if 

direct causality yj→yi exists, because the numerator of (15) contains, with i≠j, the term 

( )fAij , which is nonzero only when aij(k)≠0 for some k and is uniformly zero when aij(k)=0 

for each k. As to the DC, one can show that, expanding H( f )=Œ( f )-1 as a geometric series, 

the transfer function Hij( f ) contains a sum of terms each one related to one of the (direct or 

indirect) transfer paths connecting yj to yi (Eichler, 2006). Hence, the DC γij( f ) is nonzero 

whenever any path connecting yj to yi is significant, i.e., when causality yj ⇒ yi occurs. 

Another important difference between DC and PDC is in the normalization: as seen in (12) 

and in (16), γij( f ) is normalized with respect to the structure that receives the signal, while 

πij( f ) is normalized with respect to the structure that sends the signal. Summarizing, we can 
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state that the DC measures causality as the amount of information flowing from yj to yi 

through all (direct and indirect) transfer pathways, relative to the total inflow entering the 

structure at which yi is measured; the PDC measures direct causality as the amount of 

information flowing from yj to yi through the direct transfer pathway only, relative to the 

total outflow leaving the structure at which yj is measured. We note that this dual 

interpretation highlights advantages and disadvantages of both measures. The DC has a 

meaningful physical interpretation as it measures causality as the amount of signal power 

transferred from one process to another, but cannot distinguish between direct and indirect 

causal effects measured in the frequency domain. Conversely, the PDC reflects clearly the 

underlying interaction structure as it provides a one-to-one representation of direct 

causality, but is hardly useful as a quantitative measure because its magnitude quantifies 

the information flow through the inverse spectral matrix elements (which do not find easy 

interpretation in terms of power spectral density). 

3.3 Theoretical example 

To discuss the properties and compare the behavior of the frequency domain measures of 
causality and coupling summarized in Table 1, we consider the MVAR vector process of 
order p=2, composed by M=4 processes, generated by the equations: 
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, (18) 

with ρ=0.9, f1=0.1 and f3=0.3, where the inputs ui(n), i=1,2,3, are fully uncorrelated and with 

variance σ2i. The process (18) is one of the possible MVAR realizations of the diagram of Fig. 
1a. The coupling and causality relations emerging from the diagram, discussed in Sect. 2, 
can be interpreted here in terms of the MVAR coefficients set in (18). In fact, the nonzero off-
diagonal values of the coefficient matrix (a21(1)=1, a23(1)=0.5, a32(1)=0.5, a32(2)=0.5, a41(2)=1) 
determine direct causality and causality among the processes —and consequently direct 
coupling and coupling— in agreement with the definitions particularized at the end of Sect. 
3.1. For instance, a21(1) and a32(2)=0.5 determine direct causality y1→y2 and y2→y3 as well as 
causality y1 ⇒ y2, y2 ⇒ y3 (direct interaction) and y1 ⇒ y3 (indirect interaction). The diagonal 

values of the coefficient matrix determine autonomous oscillations in the processes. Indeed, 

the values set for aii(k), aii(1)=2ρcos(2π fi), aii(2)=-ρ2, generate complex-conjugate poles with 

modulus ρ and phases ±2πfi for the process yi (the sampling period is implicitly assumed to 
be T=1). In this case, narrow-band oscillations at 0.1 Hz and 0.2 Hz are set for y1 and y3. 
The trends of spectral and cross-spectral density functions are reported in Fig. 2.  
The spectra of the four processes, reported as diagonal plots in Fig. 2a (black), exhibit clear 
peaks at the frequency of the two imposed oscillations: the peaks at ~0.1 Hz and ~0.3 Hz are 
dominant for y1 and y3, respectively, and appear also in the spectra of the remaining 
processes according to the imposed causal information transfer. The inverse spectra, 
computed as the diagonal elements of the inverse spectral matrix P( f ), are also reported as 
diagonal plots in Fig. 2b (black). Off diagonal plots of Fig. 2a and Fig. 2b depict respectively 
the trends of the squared magnitudes of Coh and PCoh; note the symmetry of the two 
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functions (Γij( f )=Γ*ji( f ), Πij( f )=Π*ji( f )), reflecting the fact that they measure coupling and 
direct coupling but cannot account for directionality of the considered interaction. As 
expected, Coh is nonzero for each pair of processes, thus measuring the full connectivity of 
the considered network. PCoh is clearly nonzero whenever a direct coupling relation exists 
(y1↔y2, y2↔y3, y1↔y4, y1↔y3), and is uniformly zero between y2 and y4 and between y3 and 
y4 where no direct coupling is present. 
Figs. 3 and 4 depict the decomposition of spectra and inverse spectra, as well as the trends of 
DC and PDC functions resulting from these decompositions. 
Fig. 3a provides a graphical representation of (13), showing how the spectrum of each 
process can be decomposed into power contributions related to all processes; normalizing 
these contributions one gets the squared modulus of the DC, as depicted in Fig. 3b. In the 
example, the spectrum of y1 is decomposed in one part only, deriving from the same 
process. This indicates that none part of the power of y1 is due to the other processes. The 
absence of external contributions is reflected by the null profiles of the DC from y1 to y2, to y3 

and to y4 seen in Fig. 3b; as a result, the squared DC |γ11( f )|2 has a flat unitary profile. On 
the contrary, the decompositions of yi, with i=2,3,4, results in contributions from the other 

processes, so that the squared DC |γij( f ) |2 is nonzero for some j≠i, and the squared DC  

|γii( f ) |2 is not uniformly equal to 1 as a result of the normalization condition. In particular, 
we observe that the power of the peak at f1=0.1 Hz is entirely due to y1 for all processes, 
determining very high values of the squared DC in the first column of the matrix plot in Fig. 

3b, i.e., |γi1( f1 )|2=1; this behavior represents in the frequency domain the causality relations 
imposed from y1 to all other processes. The remaining two causality relations, relevant to the 
bidirectional interaction between y2 and y3, concern the oscillation at f2=0.3 Hz, which is 
 

 
 

 
Sii( f ): spectrum of the process yi; Pii( f ): inverse spectrum of yi; Γij( f ): coherence between yj and  

yi; Πij( f ): partial coherence between yj and yi. 

Fig. 2. Spectral functions and frequency domain coupling measures for the theoretical 
example (18).  
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Fig. 3. Decomposition of the power spectrum of each process yi in (18), Sii( f ), into 
contributions from each process yj (Si|j, shaded areas in each plot) (a), and corresponding 

DC from yj to yi, γij( f ) (b) depicted for each i,j=1,...,M. 

 

 

Fig. 4. Decomposition of the inverse power spectrum of each process yj in (18), Pjj( f ), into 
contributions towards each process yi (Pj→i, shaded areas in each plot) (a), and 

corresponding PDC from yj to yi, πij( f ) (b) depicted for each i,j=1,...,M. 
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generated in y3 and then transmitted forward and backward to y2. This behavior is reflected 
by the spectral decomposition of the peak at ~0.3 Hz of the spectra of y2 and y3, which shows 

contributions from both processes, and then in the nonzero profiles of the DCs |γ23( f )|2 and 

|γ32( f )|2 (with peaks at ~0.3 Hz). To complete the frequency domain picture of causality, 
we observe that the DC is uniformly zero along all directions over which no causality is 
imposed in the time domain (e.g., compare Fig. 3b with Fig. 1a). 
A specular interpretation to the one given above holds for the decomposition of the inverse 
spectra into absolute and normalized contributions sent to all processes, which are depicted 
for the considered example in the area plot of Fig. 4a and in the matrix PDC plot of Fig. 4b, 
respectively. The difference is that now contributions are measured as outflows instead as 
inflows, are normalized to the structure sending the signal instead to that receiving the 
signal, and reflect the concept of direct causality instead that of causality. With reference to 
the proposed example, we see that the inverse spectrum of y1 is decomposed into 
contributions flowing out towards y2 and y4 (yellow and cyan areas underlying P11( f ) in Fig. 

4a), which are expressed in normalized units by the squared PDCs |π21( f )|2 and |π41( f )|2. 

While y2 and y3 affect each other (absolute units: P2→3≠0, P3→2≠0; normalized units: |π32|2≠0 

and |π23|2≠0) without being affected by the other processes (|πi2|2=0, |πi3|2=0, i=1,4), y4 

does not send information to any process (P4→i=0, |πi4|2=0, i=1,2,3). As can be easily seen 

comparing Fig. 4 with Fig. 1a, the profiles of Pj→i and |πij|2 provide a frequency domain 
description, respectively in absolute and normalized terms, of the imposed pattern of direct 
causality. We note also that all inverse spectra contain a contribution coming from the same 
process, which describes the part of Pjj( f ) which is not sent to any of the other processes 

(Pj→j in Fig. 4a). After normalization, this contribution is quantified by the PDC |πjj|2, as 
depicted by the diagonal plots of Fig. 4b. 

4. Causality and coupling in the presence of instantaneous interactions 

4.1 MVAR processes with instantaneous effects 

The MVAR model defined in (5) is a strictly causal model, in the sense that it accounts only 
for lagged effects, i.e. the effects of the past of a time series on another series, while 
instantaneous effects (i.e., effects of yj(n) on yi(n)) are not described by any model coefficient. 
The problem with this model representation is that any zero-lag correlation among the 
observed series yi, when present, cannot be described by the model because A(k) is defined 
only for positive lags (k=0 is not considered in (5)). Neglecting instantaneous effects in the 
MVAR representation of multiple processes implies that any zero-lag correlation among the 
processes is translated into a correlation among the model inputs (Lutkepohl, 1993). As a 

result, the input covariance matrix Σ=cov(U(n)) is not diagonal. We will see in the next 

subsections that, since non-diagonality of Σ contradicts the assumptions of spectral 
factorization, the presence of significant instantaneous interactions may be detrimental for 
the estimation of causality and direct causality through the DC and PDC estimators. 
As an alternative to using the strictly causal model (5), the multivariate process Y(n) can be 
described including instantaneous effects into the interactions allowed by the model. This is 
achieved considering the extended MVAR process (Faes & Nollo, 2010b): 

 ( ) ( ) ( ) ( )nknkn
p

k

WYBY +−= ∑
=0

, (19) 
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where W(n)=[w1(n),...,wM(n)]T is a vector of zero-mean uncorrelated white noise processes 

with diagonal covariance matrix Λ=diag(λ2i). The difference with respect to strictly causal 
MVAR modelling as in (5) is that now the lag variable k takes the value 0 as well, which 
brings instantaneous effects from yj(n) to yi(n) into the model in the form of the coefficients 
bij(0) of the matrix B(0). In the extended MVAR model, absence of correlation among the 

noise inputs wi, i.e. diagonality of Λ=cov(W(n)), is guaranteed by the presence of the 
instantaneous effects. Thus, the assumption that the input is a white noise vector process is 
always fulfilled by the extended representation. 
The relation between the strictly causal representation and the extended representation can 
be established moving the term B(0)Y(n) from the right to the left side of (19) and then left-
multiplying both sides by by the matrix L-1=[I-B(0)]. The comparison with (5) yields: 

 A(k)=LB(k)=[I-B(0)]-1B(k), (20) 

 U(n)=LW(n),    Σ=LΛLT  . (21) 

These relationships indicate that the two representations coincide in the absence of 
instantaneous effects, and that the assumption of uncorrelated inputs is not satisfied in the 

presence of instantaneous effects. In fact, in the model (5) the input noise covariance Σ is not 
diagonal whenever B(0)≠0 (and L≠I). If the matrix B(0) has all zero entries we have L=I and 

the model (19) reduces to (5) (A(k)=B(k), U(n)=W(n), Σ=Λ). By contrast, the existence of 
B(0)≠0 makes coefficients B(k) differ from A(k) at each lag k. This property is crucial as it 
says that different patterns of causality may be found depending on whether instantaneous 
effects are included or not in the MVAR model used to represent the available data set. 

Contrary to the strictly causal MVAR model which may describe only lagged interactions, 

the extended MVAR representation allows to detect any type of interaction defined in Sect. 2 

and Table 1 from the elements bij(k) of the matrix coefficients B(k). Specifically, direct 

causality yj→yi and extended direct causality yj →$ yi are detected if bij(k)≠0 for at least one 

k=1,…,p, and for at least one k=0,1,…,p, respectively. Causality yj ⇒ yi and extended 

causality yj ⇒$ yi are detected if ( ) 0
1

≠
− smm kb

ss
 for a set of lags k0,...,kL-1 with values in (1,...,p) 

and with values in (0,1,...,p), respectively. Direct coupling yi↔yj is detected if bji(k)≠0 and/or 

bij(k)≠0 for at least one k=0,1,…,p. Coupling yi ⇔ yj is detected if ( ) 0
1

≠
− smm kb

ss
 for a set of 

L≥2 values for ms (either with m0=j, mL-1=i or with m0=i, mL-1=j) and a set of lags k0,...,kL-1. 

4.2 Frequency domain analysis of extended MVAR processes 

The spectral representation of an extended MVAR process is obtained taking the FT of (19) 

to yield Y( f )=B( f )Y( f )+W( f ), where 

 ( ) ( ) ( ) kTfjp

k
ekf π2

1
0 −

=Σ+= BBB  (22) 

is the frequency domain coefficient matrix. The representation evidencing input-output 

relations is Y( f )=G( f )W( f ), where the transfer matrix is given by G( f )=[I-B( f )]-1= ( ) 1−fB . 

Given these representations, the spectral matrix S( f ) and its inverse P( f ) are expressed for 

the extended MVAR model as: 

 ( ) ( ) ( )Hf f f=S G ΛG , ( ) ( ) ( )fff BΛBP 1H −= , (23) 
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By means of some matrix algebra involving the spectral representations of (5) and (19), as 

well as (21), it is easy to show that the spectral matrix (and its inverse as well) resulting in 

(23) are exactly the same as those obtained in (7). This demonstrates the equivalence of the 

spectral representation for strictly causal MVAR processes and extended MVAR processes. 

Consequently, also the concepts of coupling and direct coupling are equivalent for the two 

process representation, since Coh and PCoh estimated as in (3) depend exclusively on the 

elements of S( f ) and P( f ). For this reason, a single estimator for Coh and PCoh is indicated 

in Table 1. A substantial difference between the conditions without and with instantaneous 

effects arises when coupling relations are decomposed to infer causality. We remark that the 

original formulation of DC and PDC holds fully only under the assumption of uncorrelation 

of the input processes, leading to diagonality of Σ and Σ-1. When such an assumption is not 

fulfilled, the spectral factorizations in (9) do not hold anymore and the DC and PDC may 

become unable to identify causality and direct causality in the frequency domain. On the 

contrary, since the extended MVAR representation leads to diagonal input covariance 

matrices Λ and Λ-1 by construction, the factorizations in (9) are valid (using B( f ) and G( f ) 
as coefficient and transfer matrices in place of A( f ) and H( f )) still in the presence of 

instantaneous interactions among the observed processes. In particular, the following 

factorizations hold for the Coh: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

( ) ( )∑∑
==

===Γ
M

m

*
jmim

M

m jj

*
jmm

ii

imm

jjii

ji
ij ff

fS

fG

fS

fG

ffff

ff
f

11
HH

H

ξξ
λλ

ΛggΛgg

Λgg
 (24) 

and the PCoh: 
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where gi( f ) is the i-th row of H( f ) and ( )fib  is the i-th column of ( )fB . The last terms of 

(24) and (25) contain the so-called extended DC (eDC) and extended PDC (ePDC), which are 

defined, for the extended MVAR model including instantaneous effects, respectively as: 
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m imm
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and as (Faes & Nollo, 2010b): 
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The normalization conditions in (12) and (16) keep holding for the eDC and the ePDC 
defined in (26) and in (27). Hence, the squared eDC and ePDC |ξij( f )|2 and |χij( f )|2 
maintain their meaning of normalized proportion of Sii( f ) which comes from yj, and 
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normalized proportion of Pjj( f ) which is sent to yi, respectively, even in the presence of 
significant zero-lag interactions among the observed processes. In other words, we have that 
the meaningful decompositions in (13) and (17) are always valid for the eDC and the ePDC, 
respectively. On the contrary, these decompositions hold for the DC and the PDC only if 
instantaneous effects are negligible; when they are not, DC and PDC can still be computed 
through (11) and (15) but, since the factorizations in (9) are not valid when Σ is not diagonal, 
their numerator is no more a factor in the decomposition of Coh and PCoh, and their 
denominator is no more equal to Sii( f ) or Pjj( f ). As we will see in a theoretical example in 
the next subsection, these limitations may lead to erroneous interpretations of causality and 
direct causality in the frequency domain. 
When we use the extended measures in (26) and (27), the information which flows from yi to 
yj is both lagged (k>0) and instantaneous (k=0), because it is measured in the frequency 
domain by the function B( f ) which incorporates both B(0) and B(k) with k>0. Therefore, 
eDC and ePDC measure in the frequency domain the concepts of extended causality and 
extended direct causality, respectively (see Table 1). If we want to explore lagged causality 
in the presence of zero-lag interactions, we have to exclude the coefficients related to the 
instantaneous effects from the desired spectral causality measure. Hence, we set: 

 ( ) ( ) ( ) ( ) ( ) ( ) 12

1
0 −−

=
=−=+= Σ f~f

~
,ekff~ kTfjp

k
BGBIBBB π  (28) 

and then we define the following DC and PDC functions: 
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Since they are derived exclusively from time domain matrices of lagged effects, ( )f~
ijγ  and 

( )f~
ijπ  measure respectively causality and direct causality in the frequency domain (see 

Table 1). We stress that, even though measuring the same kind of causality, the DC and PDC 

given in (29) are different from the corresponding functions given in (11) and (15), because 

the presence of instantaneous effects leads to different estimates of the coefficient matrix, or 

of the transfer matrix, using strictly causal or extended MVAR models. Only in the absence 

of instantaneous effects (B(0)=0) DC and PDC estimated by the two models are the same, 

and are also equivalent to eDC and ePDC. 

4.3 Theoretical example 
In this section we compare the behavior of the different measures of frequency domain 
causality in a MVAR processes with imposed connectivity patterns including instantaneous 
interactions. The process is defined according to the interaction diagram of Fig. 1b, and is 
generated by the equations: 
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with ρ1=0.95, f1=0.125, ρ2=0.8, and where the inputs wi(n), i=1,…,4 are fully uncorrelated 
white noise processes with variance equal to 1 for w1 and w4, equal to 2 for w2, and equal to 8 
for w3. The diagonal values of the coefficient matrix are set to generate autonomous 
oscillations at ~0.125 Hz and ~0.25 Hz for y1 and y2, respectively. The nonzero off-diagonal 
coefficients set the direct directed interactions, which are exclusively instantaneous from y2 
to y3 and from y2 to y4, exclusively lagged from y3 to y1, and mixed instantaneous and lagged 
from y1 to y2. The coupling and causality relations resulting from this scheme are described 
in detail in Sect. 2.1, with reference to Fig. 1b. 
The MVAR process (30) is suitably described by the MVAR model with instantaneous 
effects of Fig. 5a, in which the use of coefficients describing both instantaneous and lagged 
effects allows to reproduce identically both the set of interactions imposed in (30) and the 
connectivity pattern of Fig. 1b. On the contrary, when a strictly causal MVAR process in the 
form of (5) is used to describe the same network, the resulting model is that of Fig. 5b. The 
strictly causal structure in Fig. 5b results from the application of (20) and (21) to the 
extended structure, leading to different values for the coefficients. As seen in Fig. 5, the 
result is an overestimation of the number of active direct pathways, and a general different 
estimation of the causality patterns. For instance, while in the original formulation (30) and 
in the extended MVAR representation of Fig. 5a direct causality is present only from y1 to y2 
and from y3 to y1, a much higher number of direct causality relations is erroneously 
represented in Fig. 5b: in some cases instantaneous effects are misinterpreted as lagged (e.g., 
from y2 to y3 and from y2 to y4), in some other spurious connections appear (e.g., from y1 to 
y3 and from y1 to y4). The misleading connectivity pattern of Fig. 5b is the result of the 
impossibility for the model (5) to describe instantaneous effects. In the strictly causal 
representation, these effects are translated into the input covariance matrix (according to 
(20)): indeed, not only the input variances are different, but also cross-correlations between 

the input processes arise; in this case, we have σ212=1, σ213=0.8, σ214=0.6, σ223=2.4, σ224=1.8, 

σ234=1.44, whereas λ2ij=0 for each i≠j. 
 

 

Fig. 5. Extended MVAR representation (a) and strictly causal MVAR representation (b) of 
the MVAR process generated by the equations in (30). 

Fig. 6 reports the spectral and cross-spectral functions of the MVAR process (30). We remark 
that, due to the equivalence of eqs. (7) and (22), the profiles of spectra and inverse spectra, as 
well as of Coh and PCoh, perfectly overlap when calculated either from the strictly causal or 
from the extended MVAR representation. Despite this, these profiles are readily 
interpretable from the definitions of coupling and direct coupling only when the extended 
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representation is used, while they do not describe the strictly causal representation. For 
instance, the PCohs reported in Fig. 6b have a one-to-one correspondence with the extended 
MVAR diagram of Fig. 5a, as a nonzero PCoh is shown in Fig. 6b exactly when a direct 
coupling is described by the coefficients in Fig. 5a (i.e., between y1 and y2, y2 and y3, y2 and 
y4, and y1 and y3). On the contrary, the PCoh profiles do not explain the direct coupling 
interactions which may be inferred from the strictly causal model in Fig. 5b: e.g., the 
nonzero coefficients a41(1) and a41(2) suggest the existence of direct coupling y1↔y4,while 

such a coupling is not reflected by nonzero values of the PCoh Π14( f ). 
 

 

Sii( f ): spectrum of the process yi; Pii( f ): inverse spectrum of yi; Γij( f ): coherence between yj and  

yi; Πij( f ): partial coherence between yj and yi. 

Fig. 6. Spectral functions and frequency domain coupling measures for the theoretical 
example (30).  

The problems of using the strictly causal MVAR representation in the presence of 

instantaneous effects become even more severe when one aims at disentangling the 

coupling relations to measure causality in the frequency domain. In this case, the spectral 

representations closely reflect the time domain diagrams, but —quite for this reason— only 

the extended spectral profiles are correct while the strictly causal one may be strongly 

misleading. This is demonstrated in Figs. 7 and 8, depicting respectively the frequency 

domain evaluation of causality and direct causality for the considered theoretical example. 

As shown in Fig. 7, the extended MVAR representation of the considered process yields a 
frequency-domain connectivity pattern which is able to describe all and only the imposed 
direct connections: the PDC correctly portrays (lagged) direct causality from y1 to y2 and from y3 to 

y1, being zero over all other directions (black dashed curves in Fig. 7a); the ePDC portrays all 
extended causality relations, being nonzero only from y1 to y2 (mixed instantaneous and 
lagged effect), from y3 to y1 (lagged effect), as well as from y2 to y3 and from y2 to y4  
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Fig. 7. Diagrams of squared PDC for the strictly causal MVAR representation (|πij( f )|2) and 

the extended representation ( ( ) 2| |ij fπ# ) (a), and of squared ePDC (|χij( f )|2, b), for the 

theoretical example (30). 

 

 

Fig. 8. Diagrams of squared DC for the strictly causal MVAR representation (|γij( f )|2) and 

the extended representation ( ( ) 2|f~| ijγ ) (a), and of squared eDC (|ξij( f )|2, b), for the 

theoretical example (30). 

www.intechopen.com



 Biomedical Engineering Trends in Electronics, Communications and Software 

 

422 

(instantaneous effect) (Fig. 7b). On the contrary, utilization of the strictly causal MVAR 
representation leads to erroneous interpretation of lagged direct causality. Indeed, as seen in 
Fig. 7a (red solid curves), the PDC interprets as lagged the instantaneous connections from 
y2 to y3 and from y2 to y4. Moreover, spurious causality effects are measured, as the PDC is 
nonzero from y1 to y3, from y1 to y4 and from y3 to y4, albeit no direct effects (neither lagged 
nor instantaneous) are imposed in (30) over these directions. 
A similar situation occurs when causality and extended causality are studied in the 
frequency domain through DC-based functions. Fig. 8a shows that the pattern of causality 
relations imposed in (30) (i.e., y1 ⇒ y2, y3 ⇒ y1, and y3 ⇒ y2) is not reflected by the DC 

measured from the strictly causal model through eq. (11). The DC profile (blue solid curves) 
describes indeed many other causal effects besides the two correct ones; precisely, all (direct 
or indirect) causality relations emerging from the diagram of Fig. 5b are measured with 
nonzero values of the DC and thus interpreted as lagged causal effects. These effects are 
actually due to instantaneous interactions, and thus should not be represented by the DC as 
it is a measure of lagged causality only. The correct representation is given using the DC 
measured from the extended MVAR model through eq. (29): in this case, the only nonzero 
squared DCs are those measured over the three directions with imposed causality, while the 
squared DC is zero over all other directions (black dashed curves in Fig. 8a). The relations of 
causality emerging thanks to the instantaneous effects are detected by the eDC computed 
through (29) and plotted in Fig. 8b, which is able to measure also instantaneous effects in 
addition to the lagged ones. Thus, we see that a correct frequency domain representation of 
causality and extended causality is given by the DC and eDC functions derived from the 
extended MVAR representation of the considered process. 

5. Practical analysis 

5.1 Model identification 

The practical application of the theoretical concepts described in the previous sections is 
based on considering the available set of time series measured from the physiological 
system under analysis, {ym(n), m=1,…,M; n=1,…N}, as a finite-length realization of the vector 
stochastic process describing the evolution of the system over time. Hence, the descriptive 
equations of the MVAR processes (5) and (19) are seen as a model of how the observed data 
have been generated. To obtain the various frequency domain functions measuring causality 
and coupling, estimation algorithms have to be applied to the observed time series for 
providing estimates of the model coefficients, which are then used in the generating 
equations in place of the true unknown coefficient values. Obviously, the estimates will 
never be the exact coefficients, and consequently the frequency domain measures estimated 
from the real data will always be an approximation of the true functions. The goodness of 
the approximation depends on practical factors such as the data length, and on the type and 
parameters of the procedure adopted for the identification of the model coefficients. In the 
following, we describe some of the possible approaches to identify and validate the MVAR 
models in (5) and (19) from experimental data. 
Identification of the strictly causal MVAR model (5) can be performed with relative ease by 
means of classic regression methods. The several existing MVAR estimators (see, e.g., (Kay, 
1988) or (Lutkepohl, 1993) for detailed descriptions) are all based on the principle of 
minimizing the prediction error, i.e. the difference between actual and predicted data. A 
simple, consistent and asymptotically efficient estimator is the MV least squares method. It 
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is based first on representing (5) through the compact representation Y=AZ+U, where 
A=[A(1)···A(p)] is the M×pM matrix of the unknown coefficients, Y=[Y(p+1)···Y(N)] and 
U=[U(p+1)···U(N)] are M×(N-p) matrices, and Z=[Z1···Zp] is a pM×(N-p) matrix having 
Zi=[Y(i)···Y(N-p+i-1)] as i-th row block of (i=1,…M). Given this representation, the method 
estimates the coefficient matrices through the well known least squares formula: 
Â=YZT[ZZT]-1, and the input process as the residual time series: Û=ÂZ-Y. As to model order 
selection, one common approach is to set the order p at the value for which the Akaike 

figure of merit (Akaike, 1974), defined as AIC(p)=N log detΣ+M2p, reaches a minimum 
within a predefined range of orders (typically from 1 to 30). While the presented model 
identification and order selection methods have good statistical properties, more accurate 
approaches exist; e.g., we refer the reader to (Schlogl, 2006) for a comparison of different 
MVAR estimators, and to (Erla et al., 2009) for an identification approach combining MVAR 
coefficient estimation and order selection. 

The identification of the extended MVAR model (19) is much less straightforward, because 

the estimation of instantaneous causality is hard to extract from the covariance information 

(which is, per se,  non-directional). In principle, availing of an estimate of the instantaneous 

effects, described by the matrix B(0) in the representation (19), identification of the extended 

MVAR model would follow from that of the strictly causal model describing the same data. 

Indeed, we recall from (20) and (21) that lagged coefficients and residuals may be estimated 

for the extended model as B̂ (k)=[I-B(0)]Â(k) and Ŵ(n)=[I-B(0)]Û(n). Hence, the key for 

extended MVAR identification is to find the matrix B(0) which satisfies the instantaneous 

model U(n)=LW(n)=[I-B(0)]-1W(n), and then to use it together with estimates of A(k) and 

U(n) to estimate W(n) and B(k) for each k≥1. 
The basic problem with the instantaneous model is that it is strictly related to the zero-lag 
covariance structure of the observed data and, as such, it suffers from lack of identifiability. 
In other words, there may be several combinations of L (or, equivalently, B(0)) and W(n) 
which result in the same U(n), and thus describe the observed data Y(n) equally well. The 
easiest way to solve this ambiguity is to impose a priori the structure of instantaneous 
causation, i.e. to set the direction (though not the strength) of the instantaneous transfer 
paths. Mathematically, this can be achieved determining the mixing matrix L and the 

diagonal input covariance of the extended model, Λ=cov(W(n)), by application of the 
Cholesky decomposition to the estimate of input covariance of the strictly causal model, 

Σ=cov(U(n)) (Faes & Nollo, 2010b). While this decomposition agrees with (21), the resulting 
L is is a lower triangular matrix, and B(0) is also lower triangular with null diagonal. To 
fulfill this constraint in practical applications, the observed time series have to be ordered in 
a way such that, for each j<i, instantaneous effects are allowed from yj(n) to yi(n) (bij(0)≠0) 
but not from yi(n) to yj(n) (bji(0)=0). This can be done in some applications by means of 
physical considerations, e.g., based on the temporal order of the events of interest for each 
measured variable. Following this approach, frequency domain causality was assessed 
between heart period, arterial pressure and respiration variability in a recent study (Faes & 
Nollo, 2010a). Nevertheless, if similar prior knowledge is not available, as happens e.g., in 
the analysis of EEG data, other ways have to be followed to overcome problem of 
identifiability of the extended model. The most promising one seems that based on 
exploiting non-Gaussianity in the identification. Indeed, (Shimizu et al., 2006) demonstrated 
that, if the input process W(n) has a non-Gaussian distribution, no prior knowledge on the 
network structure is needed to identify the instantaneous model. The proposed algorithm 
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estimates B(0) in two steps (see (Shimizu et al., 2006) for details): first, independent 
component analysis (ICA) is performed on the estimated residuals U(n), finding a mixing 
matrix M which represents an unordered and non-normalized version of L; second, an 
appropriate row-permutation followed by normalization is applied to M-1 to get an estimate 
of L-1, and thus of B(0)=I-L-1. This algorithm has been exploited to demonstrate 
identifiability of the extended MVAR model in (Hyvarinen et al., 2008). More recently, the 
full algorithm has been proposed to estimate frequency domain causality, and used to assess 
patterns of directional cortical connectivity from multichannel EEG (Faes et al., 2010a). 

5.2 Validation 

Although model identification allows to find the estimates of coefficients and input 
covariances which easily lead to the desired frequency-domain measures of coupling and 
causality, validation steps need to be performed to guarantee a correct interpretation of the 
obtained results. In fact, proper checking has to be performed, in both time and frequency 
domains, in order to confirm the suitability of the estimated model for describing the 
observed data and to assess the significance of the estimated coupling strengths. 
Model validation refers to the use of a range of diagnostic tools which are available for 
checking the adequacy of the estimated structure. While validation tests are  rarely used in 
the practical application of tools like the DC or the PDC, they constitute actually 
fundamental safeguards against drawing erroneous inferences consequently to model 
misspecification. A striking example is the undervaluation of the impact of instantaneous 
effects in the assessment of frequency domain causality, which we demonstrated in this 
chapter and might be avoided by proper checking of the significance of instantaneous 
correlations in experimental multichannel data. While a thorough description of the 
statistical tools for model validation is beyond the scope of this work, here we remark the 
model assumptions that must be verified prior to frequency domain analysis. The 
identification of strictly causal MVAR models should result in temporally uncorrelated and 
mutually independent residuals Û(n). These assumptions may be checked, e.g., using the 
Ljung-Box portmanteau test for whiteness and the Kendall’s τ test for independence. 
Independence of the residuals has to be checked particularly at zero lag; when this 
assumption is violated, one should allow instantaneous effects to be modeled moving from 
the strictly causal to the extended MVAR representation. If performed without 
incorporating prior assumptions in the model formulation, the extended MVAR 
identification should result also in non-Gaussian residuals Ŵ(n); non-Gaussianity may be 
tested, e.g., by the Jarque-Bera test for non-normal distribution. All the diagnostic tests 
mentioned here are excellently reviewed in (Lutkepohl, 1993). 
Another issue of great practical importance is the assessment of the significance of any 
frequency domain index of coupling or causal coupling. Due to practical estimation 
problems, nonzero values are indeed likely to occur at some frequencies even in the case of 
absence of a true interaction between the two considered processes. This problem is 
commonly faced by means of statistical hypothesis testing procedures based on setting a 
threshold for significance at the upper limit of the confidence interval of the considered 
index, where confidence intervals are based on the sampling distribution of the index 
computed under the null hypothesis of absence of interaction. Comparing at each specific 
frequency the estimated index with the threshold allows rejection or acceptance of the null 
hypothesis, and thus detection or denial of coupling or causality, according to the 
predetermined level of significance. The sampling distribution in the absence of coupling or 
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causality may be derived theoretically or empirically: theoretical approaches are elegant and 
computationally more efficient, empirical ones are more general and free of approximations. 
For a detailed description of the two approaches we refer to (Koopmans, 1974; Schelter et al., 
2006; Eichler, 2006), where the statistical properties of Coh, DC/DTF, and PDC are studied 
and corresponding analytical threshold for significance are derived, and to (Faes et al., 2004; 
Faes et al., 2010b), where empirical significance levels are estimated for the same functions 
on the basis of surrogate data generation procedure devised specifically for each function. 

6. Conclusion 

In this chapter we have discussed the theoretical interpretation of the most common 
frequency-domain measures of coupling (Coh, PCoh) and causality (DC, PDC) in MV time 
series. We have shown that: (i) each of these measures reflects a specific time-domain 
definition of coupling or causality (see Table 1); (ii) while Coh and PCoh are symmetric 
measures, they can be decomposed into factors eliciting directionality,  these factors being 
exactly the DC and the PDC; (iii) the squared modulus of the DC and the PDC measure 
respectively the fraction of power of the output signal which is received from the input 
signal, normalized to all incoming contributions, and of inverse power of the input signal 
which is sent to the output signal, normalized to all outgoing contributions. The picture 
emerging from these results suggests that both DC and PDC should be computed for the 
complete inference of frequency-domain causality in MV time series: DC measures causality 
in meaningful physical terms as power contributions, but cannot separate direct effects from 
indirect ones; PDC determines the correct interaction structure in terms of direct causal 
effects, but its absolute values lack of straightforward interpretability. 
In addition, we emphasized the necessity extending the MVAR modeling approach 
traditionally used to assess frequency-domain causality whenever the time resolution of the 
measurements is lower than the time scale of the lagged influences occurring in the 
observed MV process. In such a case, the interpretation of the lagged effects may change 
considerably if instantaneous effects are not included in the model. We showed how the 
traditional DC and PDC computed from the strictly causal model may lead to misleading 
connectivity patterns, while the correct interpretation is obtained defining the two functions 
from the coefficients of the extended model. Moreover, we introduced novel frequency-
domain measures of causality and direct causality (eDC and ePDC) which were shown to 
reflect extended causality definitions combining both lagged and instantaneous causality 
from one signal to another. 
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