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1. Introduction 

Electroencephalographic (EEG) data is widely used as a biosignal for the identification of 
different mental states in the human brain. EEG signals can be captured by relatively 
inexpensive equipment and acquisition procedures are non-invasive and not overly 
complicated. On the negative side, EEG signals are characterized by low signal-to-noise 
ratio and non-stationary characteristics, which makes the processing of such signals for the 
extraction of useful information a challenging task. 
When a person performs specific events, such as cued imagery tasks, left-hand or right-hand 
movements, imagined motor tasks and auditory tasks, corresponding variations in the 
characteristics of the person’s EEG signal take place. These are typically identified by so-
called event-related potentials (ERP). For example, event-related potentials associated with 
real and imagined motor tasks exhibit frequency-specific characteristics: a decrease in EEG 
band power occurs on the contra-lateral side, a phenomenon known as Event-Related 
Desynchronization (ERD), followed some time later by an increase in band power on the 
ipsi-lateral side, known as Event -Related Synchronization (ERS). Hence the detection and 
identification of ERD and ERS phenomena would enable the classification of mental activity. 
Such techniques can find useful application in brain-computer interface (BCI) systems where 
EEG data is measured from the brain and processed by a computer so as to, for example, 
detect and classify real or imagined left and right-hand movements for the execution of 
useful tasks such as wheelchair navigation (Pfurtscheller et al., 2006). Several signal 
processing techniques have been proposed to classify left and right-hand movement from 
the EEG signal either by detecting ERD and ERS phenomena directly, or by the application 
of appropriate signal analysis techniques which are characterised by the ERD/ERS 
phenomena. These include the inter-trial variance approach, the Short-time Fourier 
Transform, Wavelet Transform methods and Source Localization methods (Pfurtscheller & 
Lopes da Silva, 1999; Qin et al., 2004).  
A different approach, on which this chapter will focus, aims to capture the dynamics of the 
EEG signal by means of auto-regressive (AR) or auto-regressive moving average (ARMA) 
parametric models (Pardey et al., 1996). This chapter will specifically address the use of such 
models for the identification and classification of imagined left and right-hand movements. 
It will start with a literature review on the use of AR and ARMA parametric models for EEG 
signals and their practical applications. It then proceeds to report, in a unified manner, a 
number of novel contributions proposed and published by the authors as summarized 
below. 
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The first contribution proposes a novel three-mode classifier which uses the parameters of the 
AR model as a feature for distinguishing between no hand movement and left-hand or right-
hand movement (Cassar et al., 2010b). The quality of the classifier depends on the optimal 
estimation of the AR model parameters. The Kalman filter presents itself as a versatile tool for 
on-line estimation of model coefficients. However, the performance of the Kalman filter 
depends critically on its initialisation and the correct setting of the Kalman filter parameters, 
which are generally unknown. (Khan & Dutt, 2007) showed that the Expectation Maximization 
(EM) algorithm could be used to estimate the Kalman filter parameters and hence obtain AR 
coefficient estimates which improve the identification of ERD. Following the same approach, 
this chapter shows that the EM algorithm for Kalman filter initialization, together with the 
proposed three-mode classifier, yields better scores than two-mode classifiers typically 
proposed in the literature for brain computer interface applications.  
Additionally, it is shown that a potentially richer interpretation of the AR parameters can be 
obtained through their relation with the poles of the model. It is argued that these poles 
provide explicit dominant frequency information which may be useful to describe, represent 
and identify ERD/ERS phenomena taking place over time. Such dominant frequencies can 
be individually tracked, showing that poles in the alpha band represent ERD phenomena 
which are related to hand movement.  
The final contribution focuses on the selection of the AR or ARMA model order; an 
important aspect of parametric techniques. Several approaches have been proposed for the 
estimation of model order from the data, each having its own advantages and 
disadvantages.  In order to obtain a more robust model order estimation, this chapter 
reviews an improved criterion developed by the authors in (Cassar et al., 2010a) which leads 
to a lower probability of error for model order estimation in the case of multivariate 
systems. The performance of this criterion is tested by extensive Monte Carlo analysis and it 
is also used to fit an ARMA model to real EEG data. 

2. Literature review 

Parametric modelling has long been recognized as a versatile tool for the analysis of EEG 
data (Bohlin, 1973; Isaksson et al., 1981). Nevertheless, this is still an active area of research 
and several open problems need to be addressed in order to successfully deploy these 
techniques for practical applications such as EEG driven, brain-computer interface systems. 
Linear parametric models have been widely used to fit EEG data. The auto-regressive 
moving average (ARMA) model structure, or variations based upon this structure, are 
commonly employed. The tutorial paper by (Pardey et al., 1996) provides good explanations 
on the use of parametric modelling techniques for time series analysis, with emphasis on 
EEG data and autoregressive models. The concept of signal stationarity is addressed and the 
use of adaptive and non-adaptive models is discussed, together with the issues of model 
complexity and stability.  
EEG data is generally considered to be non-stationary because its statistical characteristics 
change with time, depending upon the mental states that are active at any given time 
instant.  In order to handle this feature, one approach is to assume that over short time 
intervals the signal remains stationary. A batch processing algorithm is then applied to 
estimate the optimal parameters which best fit the measurements taken over each of these 
short time intervals. This approach leads to non-adaptive models, where AR or ARMA 
structures are normally used. The Burg algorithm or the Levinson-Durbin algorithm are 
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used to estimate the parameters of the model. Alternatively the model’s parameter estimates 
are updated recursively at every time instant with the arrival of new data samples, typically 
by means of the Kalman filter algorithm. This approach leads to so-called adaptive models 
because the model parameters adapt themselves recursively to the characteristics of the data 
measurements taken along the course of time (Pardey et al., 1996; Isaksson et al., 1981). The 
term “time varying auto-regressive” (TVAR) is also used to refer to this technique when AR 
model structures are applied.  
Several papers on different aspects of adaptive modelling for EEG signal analysis and 
applications have been published.  For example, (Shloegl et al., 1997) used the Adaptive 
Autoregressive Method (AAR) together with a linear discriminant classifier to investigate EEG 
data from two subjects executing imagined left-hand and right-hand movements. The AAR 
parameters were estimated by a Recursive Least Squares (or Kalman filter) algorithm. The 
parameters at a specific classification time instant were applied for linear discriminant analysis 
and an error rate calculated. By repeating this at different classification time instants, the 
dependence of error rate upon time was determined. It was concluded that left-hand and 
right-hand movements could be discriminated on the basis of the estimated AAR parameters 
instead of the more traditional method based upon the analysis of signal energy in specific 
frequency bands. In order to analyze non-stationary EEG data, TVAR models were used in 
(Krystal et al., 1999) where the evolution of the models was represented by latent components 
having a time-varying frequency leading to a representation made up of: damped sinusoid 
components with amplitude, phase and frequency characteristics that vary temporally; and 
high-frequency sinusoid components. In this paper, these latent components were plotted and 
tracked to provide insights into the EEG variation in time. The work of (Li, 2007) investigated 
how a time varying AR model can be used to estimate the complexity and synchronization of 
an EEG signal in order to identify epileptic seizures. The onset of a seizure is detected by a 
change in complexity of the AR model, where complexity is measured by the model order that 
is required to adequately represent the EEG signal. In (Tarvainen et al., 2001) the Kalman 
smoother is adopted instead of the more common LMS or RLS algorithms for adaptive ARMA 
modelling of non-stationary EEG. An ARMA(6,2) model was used to track alpha band 
characteristics of a subject having eyes opening and closing. The study suggests that the 
Kalman smoother method gives more reliable tracking compared to the other algorithms. The 
problem of model order estimation was also pointed out in this paper, indicating methods that 
could be used to handle this problem. However an order of (6,2) was arbitrarily selected and 
deemed to be suitable for all the experiments in this work. 
Three different model order estimation techniques for fitting an AR model to EEG data were 
studied by (Palaniappan et al., 2000). The model order selection criteria considered in this 
work are the Final Prediction Error, Akaike’s Information Criterion and Reflection 
Coefficient. The parameters of the resulting AR models were used to generate the Power 
Spectral Density which was applied as an input to a neural network classifier.  Out of the 
three criteria, the Reflection Coefficient criterion resulted in models which gave the best 
classification performance and lower optimum order.  
When a combination of signals from multiple EEG channels is used for analysis, a multivariate 
(vector) model is often used to fit this data. The advantages of multivariate modelling 
techniques for biomedical signals are explained in (Rezek, 2006), where an example of 
multivariate AR (MVAR) modelling for sleep EEG is demonstrated. The work of (Anderson et 
al., 1998) introduced the use of multivariate AR models for mental state classification. The 
performance of classification of two mental tasks – relaxed state and mental multiplication – 
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using features derived from univariate (scalar) AR and 6-channel MVAR models was studied. 
The results showed that the MVAR features have a slightly better classification performance 
and better consistency. Adaptive on-line MVAR was explored in (Arnold et al., 1998), adapting 
the use of the Kalman filter from the univariate case to the multivariate model. A trivariate AR 
model of order 22 was used, from which spectral parameters were extracted yielding relevant 
information regarding neural communication processes. A multivariate adaptive 
autoregressive model is proposed in (Ding et al., 2000) for the analysis of non-stationary, 
multichannel event-related potentials originating from the cerebral cortex.  The model 
parameters, captured over successive time windows, are used to derive spectral quantities by 
means of which the cortical dynamics can be illustrated.  In (Pei & Zheng, 2004) a multivariate 
AR model is fitted to EEG signals from two channels recorded from a subject performing left-
hand and right-hand movements. They show that the parameters of the multivariate AR 
model can be used to form a feature vector for discriminant analysis based upon the 
Mahalanobis distance, and that the performance of the multivariate approach surpasses that of 
a univariate AR model. In (Schloegl & Supp, 2006), multivariate AR models are applied to 
event-related EEG data for the analysis of multichannel spectral properties of EEG. 
 Some research studies have investigated whether nonlinear models are more suitable than 
linear models for fitting EEG data. In (Popivanov et al., 1998), linear (AR) and a non-linear 
analysis (point-wise dimension, Kolmogorov entropy, largest Lyapunov exponent and non-
linear prediction) of EEG data arising from voluntary movement were compared. The study 
concluded that linear and non-linear components in the EEG of voluntary movement co-exist 
and that both the linear and the non-linear methods detected EEG transitions prior to the 
movement. The results of the study also indicate that the two classes of methods do not have 
temporally coincident measures and were thus supposed to detect different dynamics of the 
EEG signal. The paper by (Inoue et al., 2004) addresses the issue of nonlinearity by proposing 
the use of a Quasi-AR model for EEG data during motor tasks. This model has a linear 
structure, similar to AR, but nonlinear parameters and hence it could capture the nonlinear 
dynamics of the EEG signal. The model parameters were estimated by a recursive prediction 
error method. The features obtained from the spectrum of the Quasi-AR model were used for 
discrimination between left and right-hand movement tasks.  This approach showed superior 
performance when compared with conventional AR models. Two linear and two nonlinear 
models were compared by (Jain & Deshpande, 2004). Their analysis shows that the Bilinear 
model structure gives better results for EEG than AR, ARMA and Polynomial AR models. 
Unfortunately it is also the most computationally demanding of all four.  The Bilinear AR 
model has also been studied by (Poulos et al., 2010) in the context of person identification from 
EEG. The results of this study also show that the Bilinear model gives superior results than an 
AR model, indicating the presence of information bearing nonlinearities in the EEG signal, and 
the capability of the Bilinear model to extract these nonlinear components.  
(Atry et al., 2005) address the problem of noise. They propose an EEG signal purification 
technique on specific channels using the fitted parametric models prior to classification, so 
as to mitigate the effects of noise and improve classification results by up to 15%. They 
consider univariate AR, multivariate AR and Box-Jenkins models. (Kelly et al., 2002) 
investigate the use of an autoregressive model with exogenous input (ARX) to model event-
related potentials from the EEG of a subject executing left-hand and right-hand tasks. 
Classification results derived from the use of features from this model and features from 
other approaches are compared. It is concluded that the ARX model leads to the best results 
in the feature extraction stage. This analysis and results are developed further in (Burek et 
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al., 2005). AR modelling has also been applied to the inverse problem of EEG source 
localisation or current distribution estimation. In (Galka et al., 2004) a new interpretation of 
the dynamic inverse problem for estimating local current vectors in the brain was proposed 
by breaking away from the classical constrained least squares formulation and 
reformulating the problem as a spatiotemporal AR model. 
Several other relevant publications can be found in the literature. However, due to space 
limitations, the rest of the chapter will review in some detail the authors’ own contributions 
to EEG data analysis covering parameter estimation and its effect on classification results, 
the relation between model poles and EEG characteristics, and the problem of model order 
estimation. However, due to space limitations, the rest of the chapter will review in some 
detail the authors’ own contributions to EEG data analysis (Cassar et al., 2010a; Cassar et al., 
2010b). These concern the parameter estimation problem and its effect on classification 
results, the relation between model poles and EEG characteristics, and the problem of model 
order estimation. 

3. Classification of imagined hand movements and their effect on AR pole 
variations 

One popular technique for brain-computer interfacing involves the acquisition of EEG 
signals from a person who interacts with a computer by imagining the movement of his/her 
left-hand or right-hand. This method opens up the possibility of a communication channel 
between a person who is subject to serious motor impairments and a computer.  The 
execution of such imagined actions gives rise to a pattern of specific variations in particular 
frequency bands of the person`s EEG (Penny et al., 1998). Just prior to the imagined event, a 
decrease in power is typically detected in the alpha band (8-12Hz) of EEG signals captured 
from the controlateral side of the imagined hand movement. This is called Event Related 
Desynchronization (ERD) (Pfurtscheller & Lopes da Silva, 1999).  When the imagined 
movement is stopped, an increase in power is typically exhibited in the beta (13-30Hz) band 
of the EEG signals captured from the ipsilateral side of the relevant hand movement. This is 
called Event Related Synchronization (ERS). Therefore, if ERD and ERS phenomena are 
identified from EEG signals, there exists a potential for the classification of the imagined 
action i.e. whether the person imagined a left-hand or a right-hand movement.  
Towards this end, one approach is to model the EEG signals by means of an auto-regressive 
(AR) parametric model (Pardey et al., 1996). The parameters of the model are typically 
estimated from the EEG signals by using the Yule-Walker equations or a Kalman 
filter/smoother. These parameters, which are sometimes assumed to be constant and 
sometimes time-varying, can then be used as a feature vector to classify the underlying 
event related potential (Huan & Palaniappan, 2005; Anderson et al., 1998). This process is 
typically cast as a 2-mode classifier, one mode for each of the two possible actions, namely 
imagined left or right-hand movement. This chapter proposes to identify also the 
background periods, where no imagined actions are taking place, as a third class that is 
distinct from the two classes representing left-hand or right-hand movement. It will be 
shown that this approach, together with a Kalman Smoother algorithm for parameter 
estimation that is initialized by the Expectation Maximization algorithm, will lead to 
improved classification results. 
It is assumed that the EEG signal is modelled by a linear AR model of order p, characterized 
by the following difference equation in the discrete-time domain: 
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=
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where ty represents the EEG signal recorded at time t, ( )k
ta is the kth time-varying AR model 

parameter and tυ is a random Gaussian process of zero mean and covariance R. The AR 

model is fitted to EEG data measurements by estimation of parameters ( )k
ta . In this work, the 

Kalman Smoother (Maybeck, 1979) is used to find the optimal value of the parameters 

which fit the data in the least square error sense. Equation (1) is first re-written in state space 

form: 

 1t t tx x ω−= Φ +  (2) 

 t t t ty H x υ= +  (3) 

 

where tx is the vector of AR parameters ( )(1) (2)[ ... ]p T
t t ta a a which requires estimation by the 

Kalman Smoother. tH is the vector of past EEG measurements 1 2[ ... ]t t t py y y− − −  and tω is a 

random Gaussian process of zero mean and covariance Q which allows a random walk of 

the parameter vector tx . Although state matrix Φ is sometimes set to be the identity matrix, 

this could be detrimental to the estimation of the AR parameters. (Khan & Dutt, 2007) show 

that the accuracy of the Kalman Smoother algorithm is very much dependent on the values 

assigned toΦ , the noise covariances Q and R, and the initial conditions of the parameter 

vector and its covariance. They show that if these are estimated by the Expectation-

Maximization algorithm, rather than set randomly to some reasonable values, the Kalman 

Smoother algorithm yields AR parameter estimates which capture better the dynamics and 

spectra of event related potentials. 
The Kalman Smoother algorithm consists of a set of forward recursion Equations (4) to (8), 

also known as the Kalman filter equations, followed by the set of backward recursion 

Equations (9) to (11) as shown here: 

 1 1
1 t t

t tx x− −
−= Φ  (4) 

 1 1 '
1

t t
t tP P Q− −
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1 ' 1 't t
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 1 1  t t t
t t t t tP P K H P− −= −  (8) 
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1 ' 1

1 1 1
t t

t t tJ P P
−− −

− − −= Φ  (9) 

 ( )1 1
1 1 1 1

n t n t
t t t t tx x J x x− −
− − − −= + −Φ  (10) 
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 ( )1 1 '
1 1 1 1

n t n t
t t t t t tP P J P P J− −
− − − −= + −  (11) 

where the initial conditions 0
0x and 0

0P are estimated together with Φ , Q and R by the 

Expectation-Maximization algorithm as detailed in (Khan & Dutt, 2007; Cassar et al., 2010b). 
The following comparative analysis will utilize the above algorithms to analyze EEG data 

from a subject performing imagined left and right-hand movements. It is shown that the 

classification results based upon a 3-mode classifier with the Kalman Smoother initial 

conditions estimated by Expectation-Maximization, are superior to both the 2-mode 

classifier and to a Kalman Smoother that is initialized with arbitrary values.  

The EEG data utilized for this analysis was recorded by Dr. Allen Osman from the 

University of Pennsylvania which was made available for the Neural Information 

Processing Systems (NIPS 2001) Brain-Computer Interface Workshop (Sajda et al., 2003). 

This data consists of 59 channels of EEG signals sampled at 100Hz. The experimental 

protocol starts off with a blank screen for 2 seconds. This is followed by a fixation point for 

500ms indicating the start of the trial. A letter ’E’ or ’I’, is then displayed for 250ms to 

indicate whether the subject is requested to perform an explicit or an imaginary movement. 

The fixation cross is shown again for 1s and in the next 250ms the subject is told whether to 

act with the left-hand, right-hand, both hands or not at all through the letters ’L’, ’R’, ’B’, ’N’ 

displayed on the screen. After another fixation cross presented for 1s, an ’X’ appears for 

50ms acting as the synchronization cue to perform the requested response. The trial ends 

with the fixation cross being displayed for the next 950ms. This analysis will utilize the EEG 

from channels C3 and C4 (10/20 electrode placement system) arising from the imagined left 

or right-hand movements of Subject 2, for which 90 left and 90 right-hand trials are 

available. In order to enhance spatial activity of the EEG, the Hjorth derivation is applied to 

the signals (Pfurtscheller & Lopes da Silva, 1999).  

The Kalman Smoother algorithm is applied on this data so as to estimate the parameters of a 

7th order AR model. For the purpose of comparative analysis, the initial conditionsΦ , Q, R, 
0
0x and 0

0P are set in two different ways:  

a. an arbitrary initialization, with Φ set to be an identity matrix I, Q = 0.001xI, R = 1,   
0
0x  = 0 and 0

0P  = 10xI , 
b. using the Expectation-Maximization (EM) code provided by (Khan, 2007).  This 

estimation starts off by using the Kalman Smoother. The EM algorithm is then used to 

estimate the initial conditions. Rather than working on each individual trial, the EM 

initialized parameters are found from all trials in the training set and an average is 

calculated. This allows for smoother estimates of the AR parameters. Once the EM 

initialized system parameters are obtained, they are fed to the Kalman Smoother to 

estimate the AR parameters of each trial in the data set. 

3.1 A three-mode classification approach 

The novel approach presented here is to consider that the process is characterized by three 

possible modes:  

a. Background Mode; effective during the time period prior to 3.75s where the subject is 
told the type of movement to perform. At 3.75s, the subject is aware of the required task 
and hence the EEG characteristics are expected to change.  
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b. Left Movement Mode; effective from 3.75s up to 6s and characterized by ERD activity 
on the controlateral channel (C4) and no ERD activity on the ipsilateral channel (C3).  

c. Right Movement Mode; effective from 3.75s up to 6s and characterized by ERD activity 
on the controlateral channel (C3) and no ERD activity on the ipsilateral channel (C4). 

AR parameters are estimated for the whole 6s time period of each signal from channels C3 
and C4, for both cases of left-hand and right-hand movement. For the case of arbitrary 
setting of initial conditions, these are kept fixed throughout the whole length of data 
irrespective of whether the EEG signal is in a background or a movement state. For 
classification purposes, a feature vector is generated by concatenating the AR parameters 
estimated from signals recorded at C3 and C4 respectively, leading to a 14-element feature 
vector. To train the classifier, the parameters at each time instant up to 3.75s are considered 
as Background Mode, whereas the parameters at C3 and C4 for each time instant between 
3.75s and 6s for a left task are considered for the Left Movement Mode. Similarly, the 
parameters at C3 and C4 for each time instant between 3.75s and 6s for a right task are 
considered for the Right Movement Mode. 
For the EM initialization approach, different initial conditions are estimated for each of the 3 
modes of operation. Taking the EEG signal on channel C4 during a left task as an example, 
two sets of AR parameters are estimated; one obtained by using the initial conditions from 
the Background Mode and another obtained by using the initial conditions from the Left 
Movement Mode. Similarly for channel C3 during a right task, one set of AR parameters is 
estimated assuming Background Mode initial conditions and another set assuming Right 
Movement Mode initial conditions. These AR parameters are concatenated, leading to a 28-
element feature vector in this case. The time periods used to train this classifier are the same 
as those for the arbitrary initialization. 
The available 90-trial data was split into two: the first 45 trials were used for training and the 
rest for testing, for both imagined left and right-hand movements respectively. For 
comparative purposes, the classification results using both arbitrary initialization as well as 
initial conditions estimated by the EM algorithm will be shown next. For Background Mode 
classification results, the number of trials at each time instant between 0 and 3.75s which 
were classified as correct have been considered. For Left Movement and Right Movement 
Mode classification, the total number of correctly classified movement tasks at each time 
instant between 3.75s and 6s were considered. Figure 1 shows the percentage of correctly 
classified results for the case of arbitrary initialization. It is clear that for the Background 
Mode there occur frequent misclassifications as either a left or a right–hand movement. 
Classifications results improve to just below 80% at around 5s when the imagined 
movement is actually performed.   
A significant improvement is obtained when the initial conditions are estimated with the 
Expectation-Maximization algorithm, as shown in the classification results of Figure 2. There 
is a significant improvement in the classification of the Background Mode because the 
estimated parameters are very smooth and differ from those during the movement periods. 
Classification is close to 100% during the first 2s but it reduces as the movement period 
approaches. At around 5s, when the movement is performed, the classification score 
approaches 90%, as opposed to 80% for the arbitrary initialization case.  
Additional insight can be obtained by the construction of a confusion matrix. Table 1 and 
Table 2 show the confusion matrices for the two different initialization approaches. The 
arbitrarily initialized case leads to around 64% and 65% correct classification for left and 
right movement respectively and it performs very poorly when classifying the background 
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period. Many of these time instances are classified as an imagined right-hand movement 
instead. The EM initialized case gives superior performance with background periods being 
identified with a score of 89%, a significant improvement on the 39% score of the previous 
case. There is also improvement in the classification of right and left-hand movement, where 
scores of 68% and 80% respectively, are obtained. As in the previous case, a number of left 
modes (around 22%) are incorrectly classified as right modes. These classification results 
compare well with the 76% overall classification obtained by Dornhege et. al. in the NIPS 
2001 workshop, where a 2-mode classifier was used (Sajda et al., 2003). 
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Fig. 1. Percentage correct classification for arbitrary initialization 

 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Time/s

%
 C

o
rr

e
c
t 

C
la

s
s
if
ic

a
ti
o
n

 

Fig. 2. Percentage correct classification for EM-based initialization 

 

Actual Mode  
Background Left Right 

Background 38.68% 14.52% 22.35% 

Left 24.11% 63.87% 12.76% 
Predicted 

Mode 
Right 37.20% 21.51% 64.89% 

Table 1. Confusion matrix for arbitrary initialization 
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Actual Mode  

Background Left Right 

Background 89.32% 9.59% 8.96% 

Left 3.50% 68.12% 11.50% 
Predicted 

Mode 
Right 7.19% 22.29% 79.89% 

Table 2. Confusion matrix for EM-based initialization 

3.2 Interpretation in terms of AR pole variation 

Another contribution of this work centres on the analysis of the variation of the AR 

parameter estimates with time, together with the corresponding poles of the model, during 

the 6s time interval of the trial. The transfer function of the AR model in the z-domain is: 

 
( )

1

1
( )

1
p

k k
t

k

G z

a z−

=

=
+∑

 (12) 

The poles of the model are given by the roots of the denominator of Equation (12). These 

poles can therefore be calculated at every time instant from the AR parameter estimates 
( )k
ta and marked on a pole-zero plot whose x-axis represents the real part of the pole and the 

y-axis represents the imaginary part. The frequency associated with a given pole is 

proportional to the angle it subtends with the positive x-axis on the pole-zero plot.  
The resulting poles obtained at each time instant for imagined left-hand trials are plotted in 

Figure 3 and 4, which show both the pole-zero plot and the variation of the magnitude of 

the poles with time. Note that the latter displays four plots instead of seven because 3 pairs 

of poles are complex conjugates and their magnitudes are equal. These poles are computed 

from the average of the AR parameters over the 90 available trails.  

Figure 3(a) shows the poles obtained from the model fitted to data from channel C3 when 
the Kalman Smoother is initialized arbitrarily. Figure 3(b) follows the same pattern, but for 
channel C4. Figures 4(a) and 4(b) show the corresponding plots for the case of EM-based 
initialization.  
An analysis of the pole variations gives some interesting insights on the EEG data which are 
otherwise not directly apparent from the AR parameter estimates. In all cases, the angle of 
the obtained poles indicates that there is concentrated activity at around 12Hz (alpha band), 
24Hz (beta band) and 40Hz (gamma band). Activity in the alpha and beta bands is 
synonymous with this type of data (Pfurtscheller & Lopes da Silva, 1999). All plots also 
show that on the ipsilateral side (C3 for the case of left-hand trials) the poles do not vary 
much with time and that their magnitude remains fairly constant. This contrasts with the 
activity on the contralateral side (C4 for the case of left-hand trials) where, during the 
imagined hand movement, a significant decrease in the magnitude of the alpha and beta 
poles occurs. This indicates that on the contralateral side there is a significant change in pole 
magnitude between background and movement periods, which corresponds to ERD. This 
characteristic is correspondingly reflected in the trajectories of the poles shown in the pole-
zero plots, which are more spread out on the contalateral side (C4) than the pole trajectories 
on the ipsilateral (C3) side. 
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Fig. 3. Pole trajectories and magnitudes for imagined left-hand movement arising from 
arbitrary initialization. (a) corresponds to C3 and (b) corresponds to C4 

4. Model order estimation 

In system identification, the effectiveness of the model that is used to fit a data set depends 

critically on the determination of a suitable model order. There exist various techniques for 

the estimation of model order. These can be categorized into three main groups. One group 

is based on the prior estimation of model parameters using a set of candidate models of 

different order. Information criteria such as the Akaike Information Criterion or Minimum 

Description Length are then used to find the best compromise between model complexity 

and best fit within the candidate models of this set. These methods incur computational 

complexity due to the consideration of multiple candidate models.  

Another group of methods, which do not require prior estimation of model parameters, use 

eigendecomposition of the input/output data covariance matrix to estimate the model 

order. This approach, based on the Minimum Description Length criterion, was applied to 

univariate ARMA and ARX models by Liang et al. (1993). The method was shown to be able 
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Fig. 4. Pole trajectories and magnitudes for imagined left-hand movement arising from EM-
based initialization. (a) corresponds to C3 and (b) corresponds to C4 

to estimate the correct model order even in the presence of limited noise conditions. These 
methods are more computationally efficient than the previous group. The third group of 
methods estimate the model order and model parameters simultaneously. They utilize a 
Bayesian approach and are normally very demanding computationally.  
The work presented in this section, which is based on the second group of methods, 
proposes a modified criterion to that of (Liang et al., 1993) which leads to a lower probability 
of error for model order estimation.  As in (Lardies & Larbi, 2001), which extended Liang’s 
method to multivariate AR models, this work will not be restricted to univariate models. 
However in (Lardies & Larbi, 2001), the effects of different model order, model parameters 
and data lengths are not investigated. In this work, an extensive Monte Carlo analysis will 
be applied in order to evaluate such effects. Finally the approach is applied to real EEG data 
recorded from a subject performing motor imagery tasks. 
A multivariate ARMA model is given by the difference equation 

 1 1 1 1... ...t t p t p t q t q t ty A y A y B e B e e υ− − − −= − − − + + + + +  (13) 
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where n
ty R∈  represents the output data on n channels measured at time t, iA and 

i
B n nR ×∈ , represent the AR and MA parameter matrices respectively, p and q represent the 

AR and MA orders, n
te R∈  represents the input to the model which is a white Gaussian 

noise process having zero mean and covariance C, and n
t Rυ ∈ , which represents observation 

or modeling error, is also a random white noise process having covariance Qυ .  
Extending the approach of (Liang et al., 1993) to the multivariate case, assuming that N time 
samples of the output data are available, Equation (13) can be written as follows: 

 , ,p q p qD θ υ=  (14) 

where , ,, ,p q p qD θ υ  are defined as follows: 

 

1 1

1 1

,

1 1

0 0 0 0

0 0

T T

T T

p q

T T T T T T
N N N p N N N q

y e

y e
D

y y y e e e− − − −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

… "
# " #
# # " # # "

" "

 (15) 

 ( ), 0 0

T
T T T T

p q p qA A B Bθ = − −" "  (16) 

 
( )1υ υ υ= "

T
T T

N

 (17) 

with 0A and 0B assumed to be identity matrices.  

In order to compose the input/output matrix ,p qD , the unknown input signal te needs to be 

estimated. This could be done by preliminarily fitting a high order AR model to the output 

data ty  using a least squares approach to estimate the corresponding AR parameters. As 

explained in (Cassar et al., 2010a), these AR parameters are next used to generate an estimate 

for te which, together with the output data, is used to compose ,p qD  as defined in Equation 

(15). This matrix is then used to generate the covariance data matrix ,p qR defined as: 

 , , ,
T

p q p q p qR D D=  (18) 

The relevance of this matrix becomes evident when the Minimum Description Length 
criterion is used for the estimation of model order. This criterion strikes a compromise 
between model complexity and the maximum likelihood estimator of the parameters, by 
minimizing the following cost function:  

 2
1( , ) log ( , , ) 0.5 ( 1)logMDL NJ p q f n p q Nυ υ= − + + +"  (19) 

where 1( , , )Nf υ υ" is the probability density function of noise υ . For a multivariate 

Gaussian model, this density function is given by the normal distribution equation: 

 1 ,/2/2

1 1
( , , ) exp

2(2 )

T
N p qNN

f R
QQ υυ

υ υ θ θ
π

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
"  (20) 

which, after substitution in (20), yields 
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2

,

( , , ) log 2 log
2 2

1 1
( 1)log

2 2

MDL

T
p q

N N
J p q Q

R n p q N
Q

υ

υ

θ π

θ θ

= + +

+ + +
 (21) 

Given a fixed model order (p,q), the covariance matrix Qυ which minimizes Equation (21) is 

,
T

p qQ Rυ θ θ= . As shown by (Lardis & Larbi, 2001), the minimum value of the determinant of 

Qυ is obtained from an eigendecomposition of the covariance data matrix ,p qR as follows: 

  ,

0

0

T
L L

p q L S T
S S

V
R V V

V

λ
λ

⎡ ⎤⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦ ⎣ ⎦
 (22) 

where Lλ is a diagonal matrix whose terms consist of the first ( )p q n+  largest eigenvalues of 

,p qR , the columns of LV contain the corresponding eigenvectors, Sλ  is a diagonal matrix 

whose terms are the 2n  smallest eigenvalues and the columns of SV  contain the 

corresponding eigenvectors of ,p qR . 

If an orthogonality constraint is imposed onθ , then the value of θ which minimizes (21) is 

the matrix of eigenvectors SV  which correspond to the smallest eigenvalues of ,p qR  (Lardis 

& Larbi, 2001). Due to the orthonormality of the eigenvectors, it turns out that sQυ λ=  and 

1

( )
n

S
i

Q iυ λ
=

=∏ . Following substitution in (21) and some manipulation, the following result is 

obtained 

 
2 ( )/

1

2
( , ) log ( )

n
n p q N

MDL S
i

J p q i N
N

λ +

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏  (23) 

An analysis of matrix MDLJ  shows that the eigenvalues of ,p qR  are large for model orders 

less than the true order. By contrast, they decrease significantly for orders which are greater 

than the true order (Liang et al., 1993). Hence if ( , )MDLJ p q is organized such that the AR 

order p increases along the columns and the MA order q increases along the rows, as shown 

in Figure 5, it will be possible to identify a ‘corner` which corresponds to the true order of 

the multivariate model. 
 

J
MDL

(p,q) has large values

p
c

q
c

p

q

corner

J
MDL

(p,q) has small values

 

Fig. 5. The values of MDLJ  for a range of p and q values. The corner gives the model order 
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For the univariate case, (Liang et al., 1993) generate a column ratio (CR) and a row ratio (RR) 

table to identify the transition between the two regions shown in Figure 5. The CR entry at 

( , )p q is constructed by dividing ( 1, )MDLJ p q− by ( , )MDLJ p q . Similarly, the RR table is 

determined by dividing ( , 1)MDLJ p q − by ( , )MDLJ p q . The optimal model order is then chosen 

by taking the value of the p column which corresponds to the largest value in the CR table, 

and the value of q row which corresponds to the largest value in the RR table. 
In the multivariate ARMA case, the situation becomes complicated because additional 
spurious peaks tend to appear in the CR and RR tables, thereby making it difficult to select 
the peak which actually corresponds to the corner that identifies the true model order. This 
phenomenon often gives rise to incorrect estimation of the model order. In order to address 
this problem, a modified criterion is proposed to enhance the value of the corner, as 
described next. 
The CR and RR tables are constructed as described previously, but then an element-by-
element product of these two tables is performed so as to generate a product matrix PM. This 
has the tendency of enhancing the value of the true peak in matrix PM, because it is 
reinforced by peaks appearing in the same location within both the CR and RR tables. On 
the other hand, the contribution of incorrect peaks is diminished because their location will 
not be consistent between the two tables. Nevertheless, experimental analysis has shown 
that there may be situations where the product matrix PM exhibits a number of comparable 
peaks in close proximity, with the maximum peak not necessarily corresponding to the 
correct corner. Given that a significant change in value is expected between the point 
corresponding to the correct corner and its neighbours, the modified criterion also checks 
whether neighbouring locations exhibit a value that is relatively much smaller than the peak 
being analyzed. A relative difference corresponding to a factor of 5 was found to be suitable 
from Monte Carlo analysis. Hence the modified criterion can be described by the following 
algorithm: 

1. Form the CR and RR tables by computing ( 1, ) / ( , )MDL MDLJ p q J p q−  and 

( , 1) / ( , )MDL MDLJ p q J p q−  respectively. 

2. Perform an element by element product of CR and RR to generate the product matrix 
PM. 

3. Find the largest value in PM and check whether its neighbours, corresponding to a one 
step increase in p and q satisfy the following conditions: 

a.      ( , ) 5 ( , 1)M MP p q P p q≥ +  

b.      ( , ) 5 ( 1, )M MP p q P p q≥ +  

4. If the conditions in step 3 are satisfied, (p, q) are taken to be the model order. If the 
conditions in step 3 are not satisfied, recursively go through the other values of PM in 
descending order until a (p, q) pair that satisfies both conditions (a) and (b) is found. 
This is chosen as the optimal model order. 

5. If none of the values in PM satisfy the above, recursively reduce the factor of 5 
appearing on the right-hand side of the equations in conditions (a) and (b) above, until 
the correct corner, and hence optimal model order, is identified. 

4.1 Performance analysis 
Probability arguments were applied in (Cassar et al., 2010a) to show that the modified 
criterion proposed in the previous section has less chance of model order estimation error 
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than the criterion proposed by (Liang et al., 1993). Cassar et al. showed that if Liang’s 
criterion estimates q correctly and the proposed criterion does not, then Liang’s criterion 
would always estimate p incorrectly except for one specific exceptional condition. Similarly, 
if Liang’s criterion estimates p correctly and the proposed criterion does not, then Liang’s 
criterion would always estimate q incorrectly except for a second, very specific exceptional 
condition. Extensive Monte Carlo trials demonstrated that the probability of occurrence of 
the above-mentioned two exceptional conditions is close to zero i.e. there were no cases 
during the Monte Carlo trials where the proposed criterion gave an error while Liang’s 
criterion did not. This led to the conclusion that the probability of error of the proposed 
criterion is bounded above by the probability of error of Liang’s criterion (Cassar et al., 
2010a). 

In order to evaluate the proposed order estimation technique, Monte Carlo analysis was 
performed. One hundred different two-channel, minimum phase ARMA models with p = 2 
and q = 2 were generated. The magnitude of the poles and zeros of these models was 
randomly chosen within the range of 0.6 to 0.99, and their phase between 1 degree and 180 
degrees. Each of these models was subjected to different random realizations of ,t te υ . The 
Monte Carlo trials were conducted with different signal-to-noise ratios (SNR). 2000 samples 
were considered for each model. The order of the preliminary AR model used to estimate 
the input signal te was set to 10. The proposed modified criterion and Liang’s criterion were 
applied and, in both cases, the percentage amount of correctly estimated model orders was 
noted.  
The results are shown in Table 3. Note the improvement in performance obtained by using 
the proposed criterion, where the percentage of correct hits always exceeds Liang’s criterion, 
even with low SNR. For every model, the mean square error between the true and estimated 
model order was calculated across the 2000 samples. The mean and standard deviation of 
these errors across the 100 different models were then calculated and are shown in the last 
two columns of Table 3. Once again, note the improved performance of the modified 
criterion with order estimation error being consistently lower on average, than that of 
Liang’s criterion. The difference between the errors obtained from the two criteria was 
tested for statistical significance by means of a t-Test. With a significance level of 0.05, the 
results from the no noise case up to the case with SNR of 10dB, indicate that the difference 
between the errors of the two criteria is indeed statistically significant.    
 

Percentage of Correct Hits Mean Error ± Std. Dev. 

SNR/dB Liang’s 
Criterion 

Modified 
Criterion 

Liang’s 
Criterion 

Modified Criterion 

no noise 32 97 0.50± 0.35 0.03±  0.17 
25 44 94 0.43± 0.39 0.06±  0.24 
20 39 90 0.49±  0.41 0.09±  0.29 
15 38 83 0.55± 0.45 0.16±  0.35 
10 28 59 0.69±  0.44 0.39±  0.48 
5 15 29 0.83±  0.36 0.81±  0.76 

Table 3. Results of Monte Carlo analysis utilizing 100 models 

4.2 Results with EEG data 

The proposed technique was applied on a real EEG measurements obtained from data set 3a 
of the BCI Competition III where a subject performed a cued motor imagery task while EEG 
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was recorded from 60 channels at a sampling frequency of 250Hz. The data was bandpass 
filtered between 1 and 50Hz by a notch filter. The subject, facing a computer screen, was 
asked to perform one of four possible imaginary movements: left-hand, right-hand, foot or 
tongue. For this analysis, only the trials for left-hand and right-hand movement were 
considered. 36 left-hand and 36 right-hand artifact-free trials were averaged over the 4s 
period during which movement is performed, utilizing data from channels C3 and C4. 
A multivariate ARMA model was set up to capture the dynamics of this data. The proposed 
modified criterion was then applied, which estimated a model order of p = 2 and q = 1. The 
product matrix PM which gave rise to this model order is shown in Figure 6, exhibiting a 
distinctive peak at the location corresponding to the recommended model order. For 
comparison purposes, the classical Akaike Information Criterion was also applied to 
estimate the model order for this data. The Akaike criterion estimated the same model order 
as the proposed criterion (p = 2 and q = 1). However, the computational efficiency of the 
proposed criterion is superior to that of the Akaike criterion. The former took 0.6 seconds of 
processing time to generate the model order result, whereas the latter required 
approximately 4 seconds (both tests performed on an Intel Core 2 Duo PC having a 2GHz 
processor and 2 GB RAM).   

 

Fig. 6. The product matrix PM for the EEG data obtained from the modified criterion 

Using this recommended model order, the parameters of the ARMA model were then 
estimated using a Kalman filter initialized by the EM algorithm. This model was used to 
reconstruct the data within a frequency range of 0 to 45Hz. Auto and cross spectra of the 
original data and the reconstructed data were then calculated for model evaluation 
purposes. These are shown in Figure 7, indicating clearly that the recommended model 
order captures well the dynamics of the EEG data.  

5. Conclusion 

This chapter has investigated the use of parametric models for the identification of mental 
tasks from EEG data, with specific emphasis on linear modelling techniques. Following a 
brief review of relevant papers which appear in the literature, it was shown how improved 
classification results can be obtained from EEG data recorded during imagined hand 
movement trials. This improvement is the result of a 3-mode classifier which makes use of 
AR parameters estimated during periods of left movement, right movement and inactivity, 
together with a Kalman Smoother initiated by the Expectation-Maximization algorithm. 
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In addition it was shown how the trajectories of the poles of the AR model relate with ERD 
phenomena pertaining to imagined hand movements, in a more direct way than the model 
parameters. Finally a new model order selection criterion was proposed for the multivariate 
ARMA case, which is more accurate than alternative criteria developed for univariate 
ARMA. The efficacy of the proposed criterion was exhibited with extensive Monte Carlo 
analysis under different conditions of signal-to-noise ratio.  
The use of EEG data for the identification of mental tasks carries with it several interesting 
possibilities for future applications. From these possibilities, brain-computer interfacing is 
one of the leading and most challenging ones. One hopes that the improvements 
documented in this chapter, together with other techniques which are continuously being 
developed by the research community, would contribute to the advancement of brain-
computer interface technology so as to make it more practical, robust and realistic. 
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Fig. 7. Cross and auto spectra of the original EEG averaged data and the reconstructed data 
from the estimated model 

www.intechopen.com



Parametric Modelling of EEG Data for the Identification of Mental Tasks 

 

385 

6. References 

Anderson, C. W.; Stolz, E. A. & Shamsunder, S. (1998). Multivariate Autoregressive Models 
for Classification of Spontaneous Electroencephalogram During Mental Tasks, IEEE 
Transactions on Biomedical Engineering, 45(3), 277-286. 

Arnold, M.; Miltner, W. H. R.; Witte, H.; Bauer, R. & Braun, C. (1998). Adaptive AR 
Modeling of Nonstationary Time Series by Means of Kalman Filtering, IEEE 
Transactions on Biomedical Engineering, 45(5), 553-562. 

Atry, F.; Omidvarnia, A.H. & Kamaledin Setarehdan, S. (2005). Model Based EEG Signal 
Purification to Improve the Accuracy of the BCI Systems, Proceedings of the 13th 
European Signal Processing Conference EUSIPCO, Antalya, Turkey. 

Bohlin, T. (1973). Comparison of Two Methods of Modeling Stationary EEG Signals, IBM J. 
Res. Dev., 17(3), 194-205.  

Burke, D.P.; Kelly, S.P.; de Chazal P.; Reilly, R.B. and Finucane, C. (2005). A Parametric 
Feature Extraction and Classification Strategy for Brain-computer Interfacing, IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 13(1), 12-17.  

Cassar, T.; Camilleri, K. P. & Fabri, S. G. (2010a). Order Estimation of Multivariate ARMA 
Models, IEEE Journal of Selected Topics in Signal Processing, 4(3), 494-503. 

Cassar, T.; Camilleri, K. P. & Fabri, S. G. (2010b), Three-mode Classification and Study of AR 
Pole Variations of Imaginary Left and Right Hand Movements, Proceedings of the 
Biomed 2010 Conference, Austria. 

Galka, A.; Yamashita, O.; Ozaki, T.; Biscay, R. & Valdes-Sosa, P. (2004). A solution to the 
dynamical inverse problem of EEG generation using spatiotemporal Kalman 
filtering, NeuroImage, 23, 435-453. 

Huan, N.J. & Palaniappan, R. (2005). Classification of Mental Tasks Using Fixed and 
Adaptive Autoregressive Models of EEG Signals, Proceedings of the 2nd International 
IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, 633-636.  

Inoue, K.; Kajikawa, R.;  Nakamura, T.; Pfurthscheller, G. & Kumamaru, K. (2004). EEG Signal 
Analysis Based on Quasi-AR Model – Application to EEG Signals during Right and 
Left Motor Imagery, Proceedings of the SICE Annual Conference, Japan, 2197-2201. 

Isaksson, A.; Wennberg, A. & Zetterberg L.H. (1981). Computer Analyis of EEG Signals with 
Parametric Models, Proceedings of the IEEE, 69(4), 451-461. 

Jain, S. & Deshpande, G. (2004). Parametric Modeling of Brain Signals, Biotechnology and 
Bioinformatics, 2004. Proceedings. Technology for Life: North Carolina Symposium on , 
85- 91. 

Kelley, S.; Burke, D.; de Chazal, P. & Reilly R. (2002). Parametric Models and Spectral 
Analysis for Classification in Bran-computer Interfaces, Proceedings of the 14th 
International Conference on Digital Signal Processing, Greece. 

Khan, M.E. (2007). http://people.cs.ubc.ca/~emtiyaz/software.html [last visited Sep 2010]. 
Khan, M. E. & Dutt, D. N. (2007). An Expectation-Maximization Algorithm Based Kalman 

Smoother Approach for Event-Related Desynchronization (ERD) Estimation from 
EEG, IEEE Transactions on Biomedical Engineering, 54(7), 1191-1198. 

Krystal, A. D.; Prado, R. & West. M. (1999). New Methods of Time Series Analysis of Non-
Stationary EEG Data: Eigenstructure Decompositions of Time Varying 
Autoregressions, Clinical Neurophysiology, 110(12), 2197-2206. 

Lardies, J. & Larbi, N. (2001). A new method for model order selection and modal parameter 
estimation in time domain, Journal of Sound and Vibration, 245(2), 187-203. 

www.intechopen.com



 Biomedical Engineering Trends in Electronics, Communications and Software 

 

386 

Li, X. (2007). Complexity and Synchronization Measures of EEG with a Time Varying 
Parametric Model, Life Science Data Mining (Wong, S. & Li, C-S. Eds.), World 
Scientific Press, Chapter 5. 

Liang, G; Wilkes, D. M. & Cadzow, J. A. (1993). ARMA Model Order Estimation Based on 
the Eigenvalues of the Covariance Matrix, IEEE Transactions on Signal Processing, 
Vol. 41, No. 10, 3003-3009. 

Maybeck, P.S. (1979). Stochastic Models, Estimation and Control, Academic Press, San Diego. 
Palaniappan, R.; Raveendran, P.; Nishida, S. & Saiwaki, N. (2000). Autoregressive Spectral 

Analysis and Model Order Selection Criteria for EEG Signals, TENCON 2000 
Proceedings, vol.2, 126-129. 

Pardey, J.; Roberts, S. & Tarassenko, L. (1996). A Review of Parametric Modelling 
Techniques for EEG Analysis, Med. Eng. Phys., 18, 2-11. 

Pei, X-M. & Zheng C-X. (2004). Feature Extraction and Classification of Brain Motor Imagery 
Task Based on MVAR Model, Proceedings of the Third International Conference on 
Machine Learning and Cybernetics, Shanghai, 3726-3730. 

Penny, W.D.; Roberts S.J. & Stokes M.J. (1998). Imagined hand movements identified from 
the EEG mu-rhythm, Technical Report TR-98-1.   

Pfurtscheller, G. & Lopes da Silva, F. H. (1999). Handbook of Electroencephalography and 
Clinical Neurophysiology: Event Related Desynchronization, Elsevier, 044482999 7 
(volume), 0444 80125 1 (series). 

Pfurtscheller, G.; Graimann, B. & Neuper, C. (2006). EEG-Based Brain-Computer Interface 
System, Wiley Encyclopedia of Biomedical Engineering (Akay, M. Ed.), Wiley, 978 0471 
740360.  

Popivanov, D.; Mineva, A. & Dushanova, A. (1998). Tracking EEG Signal Dynamics During 
Mental Tasks, IEEE Engineering in Medicine and Biology, 17(2), 89-94. 

Poulos, M.; Rangoussi, M.; Alexandris, N. & Evangelou A. (2010). Person Identification from 
the EEG using Nonlinear Signal Classification, Methods of Information in Medicine, 
Issue 4, 64-75. 

Qin, L.; Deng, J.; Ding, L. & He, B. (2004). Motor Imagery Classification by Means of Source 
Analysis Methods, Proceedings of the 26th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Vol.2, 4356-4358. 

Rezek, I. (2006). Multivariate Biomedical Signal Processing, Wiley Encyclopedia of Biomedical 
Engineering (Akay, M. Ed.), Wiley, 978 0471 249672.  

Sajda, P.; Gerson A.; Mueller K. R.; Blankertz B. & Parra  L. (2003). A data analysis 
competition to evaluate machine learning algorithms for use in brain computer 
interfaces, IEEE Trans Neural Syst. Rehabil. Eng., 11(2), 184-185. 

Shloegl, A.; Neuper, C & Pfurtscheller G. (1997). Subject Specific EEG Patterns During Motor 
Imaginary, Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th 
Annual International Conference of the IEEE , vol.4, pp.1530-1532. 

Shloegl, A. & Supp, G. (2006). Analyzing Event-related EEG Data With Multivariate 
Autoregressive Parameters, Progress in Brain Research, Vol. 159, Elsevier, 0079-6123, 
135-147. 

Tarvainen, M. P.; Ranta-aho, P. O.; Karjalainen, P. A. (2001). Time-Varying ARMA 
modelling of Nonstationary EEG using Kalman Smoother Algorithm, Proceedings of 
the 2001 Finnish Signal Processing Symposium, FinSig01, 28-31. 

www.intechopen.com



Biomedical Engineering, Trends in Electronics, Communications

and Software

Edited by Mr Anthony Laskovski

ISBN 978-953-307-475-7

Hard cover, 736 pages

Publisher InTech

Published online 08, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Rapid technological developments in the last century have brought the field of biomedical engineering into a

totally new realm. Breakthroughs in materials science, imaging, electronics and, more recently, the information

age have improved our understanding of the human body. As a result, the field of biomedical engineering is

thriving, with innovations that aim to improve the quality and reduce the cost of medical care. This book is the

first in a series of three that will present recent trends in biomedical engineering, with a particular focus on

applications in electronics and communications. More specifically: wireless monitoring, sensors, medical

imaging and the management of medical information are covered, among other subjects.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Simon G. Fabri, Kenneth P. Camilleri and Tracey Cassar (2011). Parametric Modelling of EEG Data for the

Identification of Mental Tasks, Biomedical Engineering, Trends in Electronics, Communications and Software,

Mr Anthony Laskovski (Ed.), ISBN: 978-953-307-475-7, InTech, Available from:

http://www.intechopen.com/books/biomedical-engineering-trends-in-electronics-communications-and-

software/parametric-modelling-of-eeg-data-for-the-identification-of-mental-tasks



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


